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ABSTRACT

Batch Normalization is an essential component of all state-of-the-art neural net-
works architectures. However, since it introduces many practical issues, much re-
cent research has been devoted to designing normalization-free architectures. In this
paper, we show that weights initialization is key to train ResNet-like normalization-
free networks. In particular, we propose a slight modification to the summation
operation of a block output to the skip-connection branch, so that the whole net-
work is correctly initialized. We show that this modified architecture achieves
competitive results on CIFAR-10 without further regularization nor algorithmic
modifications.

1 INTRODUCTION

Batch normalization (Ioffe & Szegedy, 2015; Summers & Dinneen, 2020), in conjunction with skip
connections (He et al., 2016a;b), has allowed the training of significantly deeper networks, so that
most state-of-the-art architectures are based on these two paradigms.

The main reason why this combination works well is that it yields well behaved gradients (removing
mean-shift, avoiding vanishing or exploding gradients). As a consequence, the training problem can
be "easily" solved by SGD or other first-order stochastic optimization methods. Furthermore, batch
normalization can have a regularizing effect (Hoffer et al., 2017; Luo et al., 2019).

However, while skip connections can be easily implemented and integrated in any network architecture
without major drawbacks, batch normalization poses a few practical challenges. As already observed
and discussed by Brock et al. (2020; 2021) and references therein, batch normalization adds a
significant memory overhead, introduces a discrepancy between training and inference time, has a
tricky implementation in distributed training, performs poorly with small batch sizes (Yan et al., 2020)
and breaks the independence between training examples in a minibatch, which can be extremely
harmful for some learning tasks (Lee et al., 2020; Lomonaco et al., 2020).

For these reasons a new stream of research emerged which aims at removing batch normalization
from modern architectures. Several works (Zhang et al., 2019; De & Smith, 2020; Bachlechner
et al., 2020) aim at removing normalization layers by introducing a learnable scalar at the end of
the residual branch, i.e., computing a residual block of the form xl = xl−1 + αf(xl−1). The scalar
α is often initialized to zero so that the gradient is dominated, early on in the training, by the skip
path. While these approaches have been shown to allow the training of very deep networks, they still
struggle to obtain state-of-the-art test results on challenging benchmarks.

More recently Brock et al. (2020; 2021) proposed an approach that combines a modification of the
latter residual block with a careful initialization, a variation of the Scaled Weight Standardization
(Huang et al., 2017; Qiao et al., 2020) and a novel adaptive gradient clipping technique. Such
combination has been shown to obtain competitive results on challenging benchmarks.

In this work we propose a simple modification of the residual block summation operation that,
together with a careful initialization, allows to train deep residual networks without any normalization
layer. Such scheme does not require the use of any standardization layer nor algorithmic modification.
Our contributions are as follows:
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• We show that while NFNets of Brock et al. (2020; 2021) enjoy a perfect forward variance (as
already noted by Brock et al. 2020), it puts the network in a regime of exploding gradients.
This is shown by looking at the variance of the derivatives of the loss w.r.t. to the feature
maps at different depths.

• We propose a simple modification of the residual layer and then develop a suitable initializa-
tion scheme building on the work of He et al. (2015).

• We show that the proposed architecture achieves competitive results on CIFAR-10
(Krizhevsky et al., 2009).

2 BACKGROUND

As highlighted in a number of recent studies (Hanin & Rolnick, 2018; Arpit et al., 2019; Dauphin &
Schoenholz, 2019), weights initialization is crucial to make deep networks work in absence of batch
normalization. In particular, the weights at the beginning of the training process should be set so as to
correctly propagate the forward activation and the backward gradients signal in terms of mean and
variance.

This kind of analysis was first proposed by Glorot & Bengio (2010) and later extended by He et al.
(2015). These seminal studies considered architectures composed by a sequence of convolutions
and Rectified Linear Units (ReLU), which mainly differ from modern ResNet architectures for the
absence of skip-connections.

The analysis in He et al. (2015) investigates the variance of each response layer l (forward variance):

zl = ReLU(xl−1), xl =Wlzl.

The authors find that if E[xl−1] = 0 and Var[xl−1] = 1 the output maintains zero mean and unit
variance if we initialize the kernel matrix in such a way that:

Var[W ] =
2

nin
, (1)

where nin = k2c with k the filter dimension and c the number of input channels (fan in).

A similar analysis is carried out considering the gradient of the loss w.r.t. each layer response
(backward variance) ∂L

∂xl
. In this case we can preserve zero mean and constant variance if we have

Var[W ] =
2

nout
, (2)

where nout = k2d with k the filter dimension and d the number of output channels (fan out).

Note that equations (1) and (2) only differ for a factor which, in most common network architectures,
is in fact equal to 1 in the vast majority of layers. Therefore, the initialization proposed by He et al.
(2015) should generally lead to the conservation of both forward and backward signals.

The two derivations are reported, for the sake of completeness, in Appendix B.

In a recent work Brock et al. (2020) argued that initial weights should not be considered as random
variables, but are rather the realization of a random process. Thus, weights mean and variance are
empirical values different from those of the generating random process. Hence, normalization of
the weights matrix should be performed after sampling to obtain the desired moments. Moreover,
they argue that channel-wise responses should be analyzed. This leads to the different initialization
strategy:

Var[Wi] =
2/(1− 1

π )

nin
, (3)

where Wi is a single channel of the filter. Note that if mean and variance are preserved channel-wise,
then they are also preserved if the whole layer is taken into account.

The authors do not take into account the backward variance. Brock et al. (2020) show that the latter
initialization scheme allows to experimentally preserve the channel-wise activation variance, whereas
He’s technique only works at the full-layer level.
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In the ResNet setting, initialization alone is not sufficient to make the training properly work without
batch normalization, if the commonly employed architecture with Identity Shortcuts (see Figure 1a)
is considered.

In particular, the skip-branch summation

xl = xl−1 + fl(xl−1), (4)

at the end of each block does not preserve variance, causing the phenomenon known as internal
covariate shift (Ioffe & Szegedy, 2015).

In order to overcome this issue, Batch Normalization has been devised. More recently, effort has
been put into designing other architectural and algorithmic modifications that dot not rely on batch
statistics.

Specifically, Zhang et al. (2019); De & Smith (2020); Bachlechner et al. (2020) modified the skip-
identity summation as to downscale the variance at the beginning of training, biasing, in other words,
the network towards the identity function, i.e., computing

xl+1 = xl−1 + αfl(xl−1).

This has the downside that α must be tuned and is dependent on the number of layers. Moreover,
while these solutions enjoy good convergence on the training set, they appear not to be sufficient to
make deep ResNets reach state-of-the-art test accuracies (Brock et al., 2020).

More recently, Brock et al. (2020) proposed to additionally perform a runtime layer-wise normal-
ization of the weights, together with the empirical channel-wise intialization scheme. However, we
show in the following that the latter scheme, while enjoying perfectly conserved forward variances,
induces the network to work in a regime of exploding gradients, i.e., the variance of the gradients of
the shallowest layers is exponentially larger than that of the deepest ones. Reasonably, Brock et al.
(2021) found the use of a tailored adaptive gradient clipping to be beneficial because of this reason.

3 THE PROPOSED METHOD

In order to overcome the issue discussed at the end of the previous section, we propose to modify the
summation operation of ResNet architectures so that, at the beginning of the training, the mean of
either the activations or the gradients is zero and the variance is preserved throughout the network. In
our view, our proposal is a natural extension of the work of He et al. (2015) for the case of ResNet
architectures. Note that, to develop an effective initialization scheme, the residual block summation
has to be slightly modified.

Namely, we propose the following general scheme (see Figure 1b):

xl = c · (h(xl−1) + fl(xl−1)) , (5)

where c is a suitable constant, h is a generic function operating on the skip branch and fl(xl−1)
represents the output of the convolutional branch. We assume that we are able, through a proper
initialization, to have zero mean and controlled variance (either backward or forward) for each block
fl.

In a typical ResNet architecture, fl is a sequence of two or three convolutions, each one preceded by
a ReLU activation - pre-activation (He et al., 2016b) - allowing to control both mean and variance
through initialization schemes (1) and (2). Note that post-activated ResNets do not allow fl to have
zero (either gradient or activation) mean, which corroborates the analysis done by He et al. (2016a).

We perform the analysis in this general setting, deriving the condition h and c must satisfy in order to
preserve either the forward or backward variance. Then, we propose different ways in which h and c
can be defined to satisfy such conditions.

3.1 THE FORWARD CASE

Firstly, we note that initializing the weights of each block f following rule (1), hypothesizing that
E[xl−1] = 0 and Var[xl−1] = 1, we can easily obtain that

E[fl(xl−1)] = E[xl−1] = 0, Var[fl(xl−1)] = Var[xl−1] = 1.
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We can also make the reasonable assumption that fl(xl−1) and h(xl−1) have zero correlation, thus,
getting

E[xl] = c · (E[h(xl−1)]) + E[fl(xl−1)]) = c · E[h(xl−1)]
Var[xl] = c2 · (Var[h(xl−1)] + Var[fl(xl−1)]) = c2 · (Var[h(xl−1)] + 1),

i.e., the activation signal can be preserved by defining h so that E[h(xl−1)] = 0 and Var[h(xl−1)] =
1
c2 − 1.

3.2 THE BACKWARD CASE

For the gradients at layer l − 1, we have

∂L
∂xl−1

=
∂L
∂xl

∂xl
∂xl−1

= c · ∂L
∂xl

(
∂h(xl−1)

∂xl−1
+
∂fl(xl−1)

∂xl−1

)
.

We can assume by induction that the gradients at layer l have zero mean, i.e., E
[
∂L
∂xl

]
= 0. Then, we

get

E
[
∂L
∂xl−1

]
= c · E

[
∂L
∂xl

∂xl
∂xl−1

]
= c · E

[
∂L
∂xl

]
E
[
∂xl
∂xl−1

]
= 0.

Assuming zero correlation between ∂L
∂xl

and ∂xl
∂xl−1

, we can further write

Var
[
∂L
∂xl−1

]
= c2 ·

(
Var
[
∂L
∂xl

]
Var
[
∂h(xl−1)

∂xl−1
+
∂fl(xl−1)

∂xl−1

]
+ Var

[
∂L
∂xl

]
E
[
∂h(xl−1)

∂xl−1
+
∂fl(xl−1)

∂xl−1

]2
+E

[
∂L
∂xl

]2
Var
[
∂h(xl−1)

∂xl−1
+
∂fl(xl−1)

∂xl−1

])

= c2 ·
(

Var
[
∂L
∂xl

](
Var
[
∂h(xl−1)

∂xl−1

]
+ Var

[
∂fl(xl−1)

∂xl−1

])
+ Var

[
∂L
∂xl

](
E
[
∂h(xl−1)

∂xl−1

]
+ E

[
∂fl(xl−1)

∂xl−1

])2

+E
[
∂L
∂xl

]2(
Var
[
∂h(xl−1)

∂xl−1

]
+ Var

[
∂fl(xl−1)

∂xl−1

]))
.

Now, we also know that, if we initialize the weight of each block fl by rule (2), it holds
E
[
∂fl(xl−1)
∂xl−1

]
= 0 and Var

[
∂fl(xl−1)
∂xl−1

]
= 1. Therefore we can conclude

Var
[
∂L
∂xl−1

]
= c2 ·

(
Var
[
∂L
∂xl

](
Var
[
∂h(xl−1)

∂xl−1

]
+ 1

)
+ Var

[
∂L
∂xl

]
E
[
∂h(xl−1)

∂xl−1

]2)
. (6)

The preservation of the gradients signal can thus be obtained by suitably defined h and c.

We argue that some of the techniques proposed by Brock et al. (2020; 2021) to train deep Residual
Networks (weight normalization layers, adaptive gradient clipping, etc.) become necessary because
initialization (3) focuses on the preservation of the forward activation signal while disregarding the
backward one.

Indeed, the correction factor γ2g in equation 3 breaks the conservation property of the gradients signal,
as opposed to equation 1. As we back-propagate through the model, the factor γ2g amplifies the
gradients signal at each layer, so that the gradients at the last layers are orders of magnitude larger
than those at the first layers (going from output to input layers), i.e., the network is in a regime of
exploding gradient. In the section devoted to the numerical experiments we will show the forward
and backward behaviour of these nets.
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3.3 GRADIENTS SIGNAL PRESERVING SETUPS

It is well know that exploding gradients make training hard (from an optimization perspective).
Indeed, without further algorithmic or architectural tricks we are unable to train very deep networks.
It is important to note that in the seminal analyses from Glorot & Bengio (2010) and He et al. (2015)
the derivation implied that preserving the forward variance entailed preserving also the backward
variance too (at least to some reasonable amount). Indeed forward and backward variance can be
equally preserved if, as already noted, for each layer, the number of input and output channels is equal.
On the contrary, in the derivation of Brock et al. (2020; 2021), this relationship between forward and
backward variance is lost so that conserving the forward variance implies exploding gradients.

For this reason, in the following we mainly focus on the backwards signal, which we argue being a
more important thing to look at when forward and backward variance are not tightly related. For this
reason, we propose three different possible schemes for choosing c and h in equation 5. In particular:

1. scaled identity shortcut (IdShort): h(x) = x, c =
√
0.5.

This choice, substituting in equation 6, leads to

Var
[
∂L
∂xl−1

]
= 0.5 ·

(
Var
[
∂L
∂xl

]
(0 + 1) + Var

[
∂L
∂xl

]
· 1
)

= Var
[
∂L
∂xl

]
,

i.e., the variance of gradients is preserved. As for the activations, we get E[xl] = 0 and
Var[xl] = 0.5 · (1 + 1) = 1, i.e., activations signal preservation, for all layers where input
and output have the same size.
Note that the latter scheme is significantly different from approaches, like those from Zhang
et al. (2019); De & Smith (2020); Bachlechner et al. (2020), that propose to add a (learnable)
scalar that multiplies the skip branch. In fact, in the proposed scheme the (constant) scalar
multiplies both branches and aims at controlling the total variance, without biasing the
network towards the identity like in the other approaches.
This is the simplest variance preserving modification of the original scheme that can be
devised, only adding a constant scalar scaling at the residual block.

2. scaled identity shortcut with a learnable scalar (LearnScalar): h(x) = αx, α initialized
at 1, c =

√
0.5. In equation 6 we again get at initialization

Var
[
∂L
∂xl−1

]
= 0.5 ·

(
Var
[
∂L
∂xl

]
(0 + 1) + Var

[
∂L
∂xl

]
· α2

)
= Var

[
∂L
∂xl

]
,

and similarly as above we also obtain the forward preservation at all layers with N = N̂ .
3. scaled identity shortcut with a (1×1)-strided convolution (ConvShort): h(x) =Wsx

initialized by (2), c =
√
0.5. Since we use He initialization on the convolutional shortcut

(He et al., 2016b), we have E
[
∂h((xl−1)
∂xl−1

]
= 0 and Var

[
∂h((xl−1)
∂xl−1

]
= 1, hence we obtain in

equation 6

Var
[
∂L
∂xl−1

]
= 0.5 ·

(
Var
[
∂L
∂xl

]
(1 + 1) + Var

[
∂L
∂xl

])
= Var

[
∂L
∂xl

]
.

Again, if we consider the layers with equal size for inputs and outputs, we also get E[xl] = 0
and Var[xl] = 0.5 · (1 + 1) = 1.
Note that this setting (without the scale factor) is commonly used in most ResNet architec-
tures when xl−1 and fl(xl−1) have not the same pixel resolution (for instance because f
contains some strided convolution) or the same number of channels.

4 EXPERIMENTS

We start the investigation by numerically computing forward and backward variances for the different
initialization schemes. We employ the recently introduced Signal Propagation Plots (Brock et al.,
2020) for the forwards variance and a modification that looks at the gradients instead of the activations
for the backwards case.
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(a) Standard pre-activated Residual Block (b) Generalized Normalizer-Free Residual Block

Figure 1: Architectures of Residual Blocks. For both pictures the grey arrow marks the easiest path
to propagate the information.

We employ the ResNet-50 architecture to extract the plots. Other architectures are reported in
Appendix A. Notably, the pattern emerged for ResNet-50 is clearly visible also for the other ResNet
architectures.

In particular we extract the plots for

• classical ResNet with He initialization, fan in mode (1) and fan out mode (2);

• same of the preceding with batch normalization;

• ResNet with the three proposed residual summation modifications and their proper intializa-
tion to preserve the backwards variance1;

• same as the preceding but employing the intialization of Brock et al. (2020).

For all the initialization schemes, we perform the empirical standardization to zero mean and desired
variance of weights at each layer, after the random sampling.

From Figure 2 we first note that, as already pointed out by Brock et al. (2020), classical ResNets
with He initialization do not preserve neither forwards nor backwards signals while the use of batch
normalization manages to fix things up.

Next, we note that employing the proposed strategies (with proper initialization) we are able to
conserve the variance of the gradients. On the contrary, the initialization proposed by Brock et al.
(2020) amazingly preserves the forward signal but puts the network in a regime of exploding
gradients. Namely, the variance of the gradients exponentially increases going from the deepest to the
shallowest residual layers. Additionally, we can also note how the proposed strategies also preserve
the activations variance, up to some amount, while when employing the scheme of Brock et al. (2020)
the relationship between forward and backward variance is lost.

We continue the analysis by performing a set of experiments on the well-known CIFAR-10 dataset
(Krizhevsky et al., 2009) in order to understand if an effective training can be actually carried
out under the different schemes and compare them in terms of both train and test accuracy. In
particular, we are interested in checking out if the proposed schemes can reach batch normalization
test performance.

All the experiments described in what follows have been performed using SGD with an initial learning
rate of 0.01, a momentum of 0.9 and a batch size of 128, in combination with a Cosine Annealing
scheduler (Loshchilov & Hutter, 2016) that decreases the learning rate after every epoch. Moreover, in

1Note that, as in the standard implementation, in IdShort and LearnScalar we employ ConvShort when x has
not the same pixel resolution or number of channels of f(x).
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Figure 2: Signal propagation plots representing the variance of the forward activations (on the
left) and the backward gradients variance (on the right) under our proposed initialization scheme:
both values refer to residual block output. Both signals depict the behaviour for a ResNet-50 with
convolutional shortcuts. The x-axis is the residual layer depth, while on the y-axis the variance of the
signal is reported in a logarithmic scale.
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Figure 3: Test and Train accuracies of ResNet-50 under different combinations of residual block mod-
ifications and initialization: standard ResNet with BatchNorm and IdShort, LearnScalar, ConvShort
using both Brock et al. (2020) and ours initialization. Each experiment has been run three times: the
solid line is the mean value while the surrounding shadowed area represents the standard deviation.
Finally, the x-axis is the epoch at the which the accuracy (reported in the y-axis) has been computed.

addition to the standard data augmentation techniques, we have also employed the recently proposed
RandAugment method (Cubuk et al., 2020).

In Figure 3 both train and test accuracies are shown for all the configurations. The results report the
mean and the standard deviation of three independent runs.

The first thing to notice is that with the initialization scheme of Brock et al. (2020) we are unable to
train the network (the curve is actually absent from the plot). This is due to the fact that the network,
at the start of the training, is in a regime of exploding gradients, as observed in the SPPs.
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On the contrary, we can see how, thanks to the correct preservation of the backward signals, training
is possible for all the proposed schemes when a gradient preserving initialization scheme is employed.

Finally, we notice that, while all the schemes achieve satisfactory test accuracies, only the ConvShort
modification has an expressive power able to close the gap (and even outperform at the last epochs)
with the network trained using with Batch Normalization. Thus, according to Figure 3 (and also to
the additional experiments in Appendix A), ConvShort appears to be an architectural change that,
in combination with the proposed initialization strategy, is able to close the gap with a standard
pre-activated ResNet with Batch Normalization.

5 CONCLUSION

In this work we proposed a slight architectural modification of ResNet-like architectures that, coupled
with a proper weights initialization, can train deep networks without the aid of Batch Normalization.
Such initialization scheme is general and can be applied to a wide range of architectures with
different building blocks. Importantly, our strategy does not require any additional regularization
nor algorithmic modifications, as compared to other approaches. We show that this setting achieves
competitive results on CIFAR-10.
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A ADDITIONAL EXPERIMENTS

In the present Appendix we report additional experiments on other architectures, namely ResNet18
and ResNet-101, that were excluded from the main body of the paper (due to maximum length
constraint). We report both the Signal Propagation Plots (Brock et al., 2020) and the train and test
accuracy for CIFAR-10.

From the SPPs, shown in in Figures 4 and 5, we can observe that the same patterns that emerged for
ResNet-50 are also present in the other architectures. Interestingly, we note that the observed trends
are more conspicuous in deeper networks.
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Figure 4: Signal propagation plots representing the variance of the forward activations (on the
left) and the backward gradients variance (on the right) under our proposed initialization scheme:
both values refer to residual block output. Both signals depict the behaviour for a ResNet-18 with
convolutional shortcuts. The x-axis is the residual layer depth, while on the y-axis the variance of the
signal is reported in a logarithmic scale.
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Figure 5: Signal propagation plots representing the variance of the forward activations (on the left)
and the backward gradients variance (on the right) under our proposed initialization scheme: both
values refer to residual block output. Both signals depict the behaviour for a ResNet-101 with
convolutional shortcuts. The x-axis is the residual layer depth, while on the y-axis the variance of the
signal is reported in a logarithmic scale.
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Similarly, from CIFAR-10 accuracies, reported in Figures 6 and 7, we can see that the same findings
obtained for ResNet-50 carry over to the other architectures. While we were able to train all the
network configurations on ResNet-18 we were unable to do so for the deeper ResNet-101 when
non properly initialized. Moreover, once again, we found ConvShort to be the best configuration in
ResNet-101 although only the second-best in ResNet-18.
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Figure 6: Test and Train accuracies of ResNet-18 under different combinations of residual block
modifications and initialization: standard ResNet with BatchNorm and IdShort, LearnScalar, Con-
vShort using both Brock et al. and ours initialization. Each experiment has been run three times: the
solid line is the mean value while the surrounding shadowed area represents the standard deviation.
Finally, the x-axis is the epoch at the which the accuracy (reported in the y-axis) has been computed.
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Figure 7: Test and Train accuracies of ResNet-101 under different combinations of residual block
modifications and initialization: standard ResNet with BatchNorm and IdShort, LearnScalar, Con-
vShort using both Brock et al. and ours initialization. Each experiment has been run three times: the
solid line is the mean value while the surrounding shadowed area represents the standard deviation.
Finally, the x-axis is the epoch at the which the accuracy (reported in the y-axis) has been computed.

Finally we also report the number of parameters and FLOPs for the considered architecture in Table
1. We note that ConvShort and BatchNorm have the same computational cost while the others
configurations can be employed as more light-weight alternatives.
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Model Input Resolution Params (M) #FLOPs (G)
ResNet-18 BatchNorm 32× 32× 3 11.52 1.16
ResNet-18 IdShort 32× 32× 3 11.16 1.12
ResNet-18 LearnScalar 32× 32× 3 11.16 1.12
ResNet-18 ConvShort 32× 32× 3 11.52 1.16
ResNet-50 BatchNorm 32× 32× 3 38.02 4.2
ResNet-50 IdShort 32× 32× 3 23.47 2.6
ResNet-50 LearnScalar 32× 32× 3 23.47 2.6
ResNet-50 ConvShort 32× 32× 3 38.02 4.2
ResNet-101 BatchNorm 32× 32× 3 74.78 8.92
ResNet-101 IdShort 32× 32× 3 42.41 5.02
ResNet-101 LearnScalar 32× 32× 3 42.41 5.02
ResNet-101 ConvShort 32× 32× 3 74.78 8.92
ResNet-152 BatchNorm 32× 32× 3 105.06 13.62
ResNet-152 IdShort 32× 32× 3 58.01 3.72
ResNet-152 LearnScalar 32× 32× 3 58.01 3.72
ResNet-152 ConvShort 32× 32× 3 105.06 13.62

Table 1: Computational cost and number of parameters of the considered architectures.

B DERIVING STANDARD INITIALIZATION SCHEMES

B.1 HE INITIALIZATION

Consider the response of each layer l

zl = g(xl−1), xl =Wlzl,

where x is a k2c-by-1 vector that represents co-located k × k pixels in c input channels, Wl is a
d-by-n matrix where d is the number of filters and g(·) is a nonlinear activation function. In the
following, we will consider the classical ReLU, g(z) = max(0, z).

Formally, let us consider normally distributed input data xl−1 ∼ N (0, σ2). It is well known that with
this particular activation we get a Rectified Normal Distribution (Socci et al., 1998; Arpit et al., 2016)
with central moments:

µg = E[g(zl)] =
σ√
2π
, σ2

g = Var[g(zl)] =
σ2

2
− σ2

2π
.

From the basic properties of variance we also have

E[g(zl)2] = µ2
g + σ2

g =
σ2

2
. (7)

Making the assumption that the weights W (we omit for simplicity the dependency on layer l) at a
network’s layer l are i.i.d. with zero mean (µW = 0) and that have zero correlation with the input
(hence Var[Wg(xl−1)] = σ2

Wσ
2
g , putting V ar[W ] = σ2

W ), we obtain for the output elements that

E[xl] = ninµgµW = 0

and
Var[xl] = nin[E[W 2z2l ]− (E[Wzl])

2] = nin[E[W 2]E[z2l ]− (E[W ]E[zl])2]
= nin[(µ

2
W + σ2

W )(µ2
g + σ2

g)− µ2
Wµ

2
g] = nin[σ

2
g(µ

2
W + σ2

W ) + σ2
Wµ

2
g]

= nin[σ
2
W (µ2

g + σ2
g)].

(8)

where nin = k2c with k the filter dimension and c the number of input channels (fan in). Hence if
input has unit variance (σ2 = 1) we obtain output unit variance by initializing W in such a way that

Var[W ] =
2

nin
. (9)

Similarly we can perform the analysis w.r.t. the gradients signal.
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For back-propagation, we can also write

∂L
∂zl

= Ŵ
∂L
∂xl

,

where L is the loss function and Ŵ is a suitable rearrangement of W . If weights W are initialized
with zero mean from a symmetric distribution, ∂L∂zl will also have zero mean. We can assume ∂L

∂xl
and

Ŵ to be uncorrelated.

In addition,
∂L
∂xl−1

=
∂L
∂xl

g′(xl−1);

being g the ReLU, g′(xl−1) is either 0 or 1 with equal probability, hence, assuming g′(xl−1) and ∂L
∂xl

uncorrelated, we get

E
[
∂L
∂xl−1

]
=

1

2
E
[
∂L
∂xl

]
=

1

2
E
[
Ŵ
]
E
[
∂L
∂xl−1

]
= 0,

E

[(
∂L
∂xl−l

)2
]
= Var

[
∂L
∂xl−l

]
=

1

2
Var
[
∂L
∂xl

]
.

Therefore, we can conclude that

Var
[
∂L
∂xl−1

]
=

1

2
Var
[
∂L
∂xl

]
=

1

2
Var
[
Ŵ
∂L
∂xl

]
=
nout

2
σ2
WVar

[
∂L
∂xl

]
.

Thus, the initialization

Var[W ] =
2

nout
, (10)

where nout = k2d with k the filter dimension and d the number of output channels (fan out), allows
to preserve the variance of gradients.

B.2 BROCK INITIALIZATION

In contrast with the analysis from Appendix B.1, here initial weights are not considered as random
variables, but are rather the realization of a random process. Thus, weights mean and variance are
empirical values different from those of the generating random process. In order to satisfy the suitable
assumptions of the analysis, weights should be actually re-normalized to have empirical zero mean
and predefined variance.

Moreover, the channel-wise responses are analyzed. The derivations in equation 8 should be revised
in order to consider expected value and the variance of any single channel i of the output xl and to
take into account constant σ2

Wi
and µWi

= 0; specifically, we obtain

Var[xli] =
nin∑
j=1

Var[Wijzlj ] =

nin∑
j=1

W 2
ijVar[zlj ]

= nin

σ2
g ·

1

nin

nin∑
j=1

W 2
ij

 = Nσ2
g(µ

2
Wi

+ σ2
Wi

) = ninσ
2
gσ

2
Wi
,

so that we retrieve the following initialization rule to preserve an activation signal with unit variance:

Var[Wi] =
γ2g
nin

, (11)

where γ2g = 2
1− 1

π

for the ReLU activation. Note that if mean and variance are preserved channel-wise,
then they are also preserved if the whole layer is taken into account.
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