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ABSTRACT

Offline-to-online deployment of reinforcement learning (RL) agents often stumbles
over two fundamental gaps: (1) the sim-to-real gap, where real-world systems
exhibit latency and other physical imperfections not captured in simulation; and (2)
the interaction gap, where policies trained purely offline face out-of-distribution
(OOD) issues during online execution, as collecting new interaction data is costly
or risky. As a result, agents must generalize from static, delay-free datasets into
dynamic, delay-prone environments. In this work, we propose DT-CORL (Delay-
Transformer belief policy Constrained Offline RL), a novel framework for learning
delay-robust policies solely from static, delay-free offline data. DT-CORL intro-
duces a transformer-based belief model to infer latent states from delayed obser-
vations and jointly trains this belief with a constrained policy objective, ensuring
that value estimation and belief representation remain aligned throughout learning.
Crucially, our method does not require access to delayed transitions during training
and outperforms naive history-augmented baselines, state-of-the-art delayed RL
methods, and existing belief-based approaches. Empirically, we demonstrate that
DT-CORL achieves strong delay-robust generalization across both locomotion and
goal-conditioned tasks in the D4RL benchmark under varying delay regimes. Our
results highlight that joint belief-policy optimization is essential for bridging the
sim-to-real latency gap and achieving stable performance in delayed environments.

1 INTRODUCTION

Real-world autonomy, ranging from embodied assistants to autonomous robots (Jiao et al., 2024;
Wang et al., 2023a;b; Wei et al., 2017; Zhan et al., 2024), routinely faces observation and actuation
delays, where sensing lags and control commands arrive late due to computation or communica-
tion (Cao et al., 2020; Mahmood et al., 2018; Sun et al., 2022). Such delays violate the Markov
assumption and cause severe performance degeneration. Existing solutions often approximate the
problem with Delayed Differential Equations (DDEs) (Bellen & Zennaro, 2013; Zhu et al., 2021) or
augmented MDPs (Altman & Nain, 1992).

Collecting online interaction data under delayed dynamics is unsafe, costly, or impractical (Li et al.,
2023; Yang et al., 2024; Zou et al., 2015). In contrast, many systems already provide large delay-
free datasets from simulators or legacy controllers (Fu et al., 2020; Mu et al., 2021), which omit
deployment-time latencies. This mismatch is especially pronounced in various applications: simula-
tions and idealized hardware logs (Makoviychuk et al., 2021; Krishnan et al., 2021) are delay-free,
whereas real platforms, such as drones, warehouse manipulators, cloud-robot systems, or even high-
frequency trading pipelines, inevitably suffer delays from computation and communication (Gupta &
Chow, 2009). Since collecting trajectories with realistic delays is infeasible, the key challenge is to
leverage delay-free data while ensuring robustness to delayed dynamics at deployment. Consequently,
we investigate the following question:

How can we train a robust policy offline—using only pre-collected, delay-
free trajectories—so that it performs reliably when executed in a delayed
real-world environment?

This question extends to two pressing needs: (i) leveraging static offline data without further interac-
tion with the environment (offline RL), and (ii) robustly coping with latency at online deployment
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(delayed RL). Achieving both simultaneously promises safer development cycles, reduced sample
complexity, and smoother sim-to-real transfer for latency-sensitive robotic and autonomous systems.

Delayed RL arises when perceptual or actuation latencies break the Markov property, forcing agents
to reason over the gap between true system states and delayed observations. Existing solutions fall
into two categories. State augmentation methods (Kim et al., 2023; Liotet et al., 2022; Wu et al.,
2024b;a) extend the state with stacked histories, but incur severe sample inefficiency as dimensionality
grows. Belief-state methods (Chen et al., 2021; Karamzade et al., 2024; Wu et al., 2025) compress
histories into latent beliefs, yet are prone to compounding prediction errors and distribution mismatch
when deployed. In parallel, offline RL (Levine et al., 2020) trains policies from static datasets
without online interaction, but struggles to balance conservatism against effective generalization,
often yielding cautious or suboptimal behavior. When delay handling is combined with offline
training, these difficulties intensify. Naive augmentation produces artificial delay distributions that
are poorly covered by static data, leading to extreme sample inefficiency and dimensional blow-
up. Meanwhile, policies and belief models trained separately offline lack corrective feedback: at
deployment, even minor distribution shifts force the policy to query unseen state–action pairs, where
the frozen belief module must extrapolate. Errors then accumulate step by step, compounding over
long horizons and causing rapid performance collapse.

In this work, we propose DT-CORL (Delay-aware Transformer-belief Constrained Offline RL), a
novel belief-based framework explicitly designed to tackle the compounded challenges arising in the
offline delayed RL setting. By employing a transformer to infer compact belief states, DT-CORL
reformulates policy-constrained offline learning in delayed MDPs as standard MDP optimization,
enabling delay-robust policies to be trained directly from delay-free data. This end-to-end formulation
both improves sample efficiency and belief model expectation during training, thereby sidestepping
the distribution-mismatch and compounding-error issues that plague original belief-state pipelines.
Empirically, comprehensive experiments on the D4RL suite (Fu et al., 2020) across various delay
scenarios—including varying delay lengths, deterministic delays, and stochastic delays—consistently
confirm the superiority of DT-CORL over baseline methods, encompassing SOTA online delayed RL
methods, augmented-state approaches, and belief-based methods (i.e., direct integration of pretrained
belief models with offline RL algorithms).

In Sec. 2,we review related literature. In Sec. 3, we introduce the necessary background and
assumptions on delayed Markov decision processes (MDPs). In Eq. (1), we explicitly define the offline
delayed RL problem and the corresponding policy-iteration constrained optimization formulation in
the augmented delayed MDP. In Sec. 4.1, we provide theoretical connection between the above policy
optimization formulation and belief-based constrained policy iteration. Then, in Sec. 4.2, we present
our proposed DT-CORL framework, illustrating practical implementation details of our algorithm.
Comprehensive empirical evaluations are presented in Sec. 5. Finally, we conclude with a discussion
of findings and implications in Sec. 6.

2 RELATED WORK

Delayed RL. Delayed reinforcement learning arises in domains such as high-frequency trad-
ing (Hasbrouck & Saar, 2013) and transportation (Cao et al., 2020). While reward delay has been
extensively analyzed (Arjona-Medina et al., 2019; Han et al., 2022; Zhang et al., 2023), we focus
on the more challenging observation/action delay. Existing solutions follow two main strategies.
Augmentation-based methods restore the Markov property by stacking the past ∆ actions (and
sometimes states), then learning policies in the enlarged state space. Examples include DIDA (Liotet
et al., 2022), DC/AC (Bouteiller et al., 2020), ADRL and BPQL (Kim et al., 2023; Wu et al., 2024b),
which bootstrap from small-delay tasks, and VDPO (Wu et al., 2024a), which frames delayed control
as a variational inference problem. Their weakness is structural: the augmented dimension grows
linearly with ∆, causing sample inefficiency and poor scalability. Belief-based methods instead
compress histories into latent states and act in the original space. DATS performs Gaussian filter-
ing (Chen et al., 2021), D-Dreamer builds recurrent world models (Karamzade et al., 2024), D!-SAC
uses causal-transformer attention (Liotet et al., 2021), and DFBT applies sequence-to-sequence
transformers to reduce compounding error (Wu et al., 2025). These approaches are more compact,
but still accumulate belief error over long rollouts and face distribution mismatch when deployed.
All of the above methods assume online interaction with a delayed environment. Aside from some
imitation-style studies that pre-train on delay-free logs and then fine-tune online (Liotet et al., 2022;
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Chen et al., 2021), we are unaware of any work that learns delay-robust policies offline using only
delay-free data.

Offline RL and Online Adaptation. Offline reinforcement learning seeks to train high-performing
policies from fixed datasets without further interaction, addressing safety and data-collection con-
straints in domains such as robotics, healthcare, and recommendation systems (Levine et al., 2020).
Early approaches emphasized value conservatism—for instance, CQL (Kumar et al., 2020) and
IQL (Kostrikov et al., 2021) penalize Q-values of out-of-distribution (OOD) actions to prevent
overestimation. Complementary policy-constraint methods such as BRAC (Wu et al., 2019) and
TD3,+BC (Fujimoto & Gu, 2021) regularize the learned policy toward the behavior policy to remain
within dataset support. While these strategies reduce OOD failure, they can still yield suboptimal
policies if the dataset lacks trajectories near the optimum. To address this, offline-to-online (hybrid)
methods bootstrap from an offline policy and fine-tune with limited online data, e.g., AWAC (Nair
et al., 2020), Conservative Fine-Tuning (Nakamoto et al., 2023), and Hy-Q (Song et al., 2022).
Other work seeks to bridge mismatches between simulators and the real world (Feng et al., 2023;
Niu et al., 2022; Tiboni et al., 2023), but none address the equally important challenge of delay
gaps—when offline data is delay-free while deployment involves delayed dynamics. This challenge
echoes classic control theory, where time-delay compensation has been studied for decades. The
Smith Predictor (Smith, 1957), for example, optimizes a controller on a delay-free internal model and
predicts the “present” plant output to counteract runtime delays (Normey-Rico & Camacho, 2007;
Grimholt & Skogestad, 2018). Such techniques are widely used in industry precisely because they
leverage delay-free models to operate reliably under delayed dynamics (Thomas et al., 2020; Mejía
et al., 2022; Moraes et al., 2024). In a similar spirit, our setting seeks to learn from delay-free offline
data while ensuring robustness at deployment in delayed environments.

3 PRELIMINARIES AND PROBLEM FORMULATION

MDP. An RL problem is typically formulated as a finite-horizon Markov Decision Process (MDP),
defined by the tuple ⟨S,A,P, r,H, γ, ρ0⟩(Sutton et al., 1998). Here, S denotes the state space, A the
action space, P : S ×A× S → [0, 1] the probabilistic transition kernel, r : S ×A → R the reward
function, H the horizon length, γ ∈ (0, 1) the discount factor, and ρ0 the initial state distribution. At
each timestep t, given the current state st ∈ S, the agent selects an action at ∼ π(·|st) according to
policy π : S × A → [0, 1]. Subsequently, the MDP transitions to the next state st+1 ∼ P(·|st, at),
and the agent receives a scalar reward rt := r(st, at). We further introduce several mild assumptions
commonly adopted in the RL literature (Liotet et al., 2022; Rachelson & Lagoudakis, 2010):
Definition 3.1 (Lipschitz Continuous Policy (Rachelson & Lagoudakis, 2010)). A stationary
Markovian policy π is Lπ-LC if for all s1, s2 ∈ S,

W1 (π(·|s1), π(·|s2)) ≤ Lπ dS(s1, s2).

Definition 3.2 (Lipschitz Continuous MDP (Rachelson & Lagoudakis, 2010)). An MDP is
(LP , LR)-Lipschitz Continuous (LC) if for all (s1, a1), (s2, a2) ∈ S ×A,

W1 (P(·|s1, a1), P(·|s2, a2)) ≤ LP (dS(s1, s2) + dA(a1, a2)) ,

|r(s1, a1)− r(s2, a2)| ≤ LR (dS(s1, s2) + dA(a1, a2)) ,

whereW1 is L1-Wasserstein distance.
Definition 3.3 (Lipschitz Continuous Q-function (Rachelson & Lagoudakis, 2010)). Consider an
(LP , LR)-LC MDP and an Lπ-LC policy π. If the discount factor γ satisfies γLP(1 + Lπ) < 1,
then the action-value function Qπ is LQ-Lipschitz continuous for some finite constant LQ > 0.

Delayed MDP. A delayed RL problem can be reformulated as a delayed MDP with Markov prop-
erty based on the augmentation approaches (Altman & Nain, 1992). Assuming the delay being
∆, the delayed MDP is denoted as a tuple ⟨X ,A,P∆, r∆, H, γ, ρ∆⟩, where the augmented state
space is defined as X := S × A∆ (e.g., an augmented state xt = {st−∆, at−∆, · · · , at−1} ∈
X ), A is the action space, the delayed transition function is defined as P∆(xt+1|xt, at) :=

P(st−∆+1|st−∆, at−∆)δat(a
′
t)
∏∆−1

i=1 δat−i(a
′
t−i) where δ is the Dirac distribution, the delayed

reward function is defined as r∆(xt, at) := Est∼b(·|xt) [r(st, at)] where b is the belief function de-
fined as b∆(st|xt) :=

∫
S∆

∏∆−1
i=0 P(st−∆+i+1|st−∆+i, at−∆+i)dst−∆+i+1, the initial augmented
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state distribution is defined as ρ∆ = ρ
∏∆

i=1 δa−i
. Noted that delayed RL is not necessarily only

observational delay, there could be action delay as well. However, it has been proved that action-
delay formulated delay RL problem is a subset of observation-delay RL problem (Katsikopoulos &
Engelbrecht, 2003). Thus, without loss of generality, we only consider the general observation delay
in the remainder of the paper.

Problem Formulation. We consider the offline delayed RL setting in which the agent learns
solely from a pre-collected static dataset, D = {(sit, ait, rit, sit+1)}Ht=0, i = 1, . . . ,K}, consisting of
K trajectories collected by the behavior policy µ in a delay-free environment (e.g., a simulator or
other idealized demonstration system). At deployment, however, the policy operates under delayed
feedback, where observations and rewards arrive after either a fixed latency of ∆ steps, or a variable
latency bounded by ∆, which we treat as an effective fixed delay–a common simplification in
control settings. In offline learning under this delayed MDP formulation, the agent must construct
augmented state–action pairs from the delay-free dataset D, enabling training in the delayed setting
without new environment interaction. However, standard offline RL methods suffer from out-of-
distribution (OOD) generalization issues when the learned policy queries actions not well-covered in
D (Levine et al., 2020). To address this, policy-constrained approaches such as BRAC (Wu et al.,
2019) and ReBRAC (Tarasov et al., 2023a) enforce similarity between the learned policy and the
dataset’s behavior policy, often by bounding a divergence measure D(π, µ). This motivates the
policy-constrained learning objective under the delayed MDP:

Q̂π∆

∆ ← argmin
Q∆

E(x,a,x′)∼D

[(
Q∆(x, a)−

(
r∆(x, a) + γEa′∼π∆(·|x′)Q∆(x

′, a′)
))2]

(1)

πk+1
∆ ← argmax

π∆

Ex∼D

[
Ea∼π∆(·|x)[Q̂

π∆

∆ (x, a)]
]

s.t. D(π∆, µ∆) ≤ ϵ (2)

Here, Q∆ is the action-value function defined over augmented states, and µ∆ is the dataset’s behavior
policy lifted to the augmented space. The constraint margin ϵ controls the allowable divergence
between the learned policy π∆ and µ∆, mitigating OOD queries in the offline setting.

4 OUR APPROACH

We now present the DT-CORL, a novel offline RL framework for adapting online delayed feedback.
DT-CORL integrates transformer-based belief modeling with policy-constrained offline learning to
address the challenges outlined in previous sections. This section describes how we construct delay-
compensated belief representations, train a policy using belief prediction, and incorporate policy
regularization to ensure effective deployment under delay. Specifically, we introduce a belief-based
policy-iteration framework that infers latent, delay-compensated states through a belief function,
providing a compact and semantically grounded alternative. Then, we provide detailed algorithmic
implementations. We further support this approach with a learning efficiency discussion to explain its
efficiency benefits compared with the augmented approach.

4.1 BELIEF-BASED POLICY ITERATION

While the augmented-state formulation restores the Markov property in delayed MDPs, applying
policy iteration in this space introduces key drawbacks, particularly under the offline setting. First, the
effective state dimension grows from |S| to |S||A|∆, increasing sample complexity and demanding
significantly more data for reliable learning. Second, augmented trajectories reconstructed from
delay-free datasets may not reflect the true delayed trajectories possibly happened online, leading to
distribution mismatch and unstable value estimates. Lastly, treating action-history sequences as part
of distinct augmented state inputs potentially discards some possible temporal order info, reducing
sample efficiency and increasing overfitting risk. Therefore, trying to mitigate above problems, we
propose our belief-based policy iteration framework, which essentially cast original augmented state
space problem back into original state space via belief estimation to preserve temporal alignment
introduce by potential online delay. Following the BRAC framework (Wu et al., 2019), we first
convert previously-defined constrained optimization to the unconstrained formulation for ease of
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optimization, where α1 and α2 are regularized constant.

Q̂π∆

∆ ← argmin
Q∆

E(x,a,x′)∼D

[
(Qπ∆

∆ (x, a)− (r∆(x, a) + γEa′∼πk
∆(·|x) [Q

π∆

∆ (x′, a′)]− α1 ·D(πk
∆, µ∆)))

2
]

πk+1
∆ ← argmax

π∆

Ex∼D

[
Ea∼π∆(·|x)

[
Q̂π∆

∆ (x, a)
]
− α2 ·D(π∆, µ∆)

]
Moving forward, we need to map the delayed policy π∆ and its Q function Q̂π

∆ back to the delay-free
counterparts π and Qπ via the belief distribution b∆(s |x) introduced in Sec. 3. This requires (i)
quantifying the performance gap between π∆ and its belief-induced policy π, and (ii) relating the
augmented value Q̂π

∆(x, a) to the Qπ(ŝ, a) with ŝ ∼ b∆(·|x). Noted, throughout the remainder of
this section we measure these discrepancies with the 1-Wasserstein distance (Villani et al., 2008).
Lemma 4.1 (Delayed Performance Difference Bound (Wu et al., 2024b)). For policies π∆τ and π∆,
with ∆τ < ∆. Given any x ∈ X , if Q∆τ is LQ-LC, the performance difference between policies can
be bounded as follows:

E
x̂τ∼b∆(·|x)

a∼π∆(·|x)

[V∆τ (x̂τ )−Q∆τ (x̂τ , a)] ≤ LQ E
x̂τ∼b∆(·|x)

[W1(π∆τ (·|x̂τ )||π∆(·|x))]

Lemma 4.2 (Delayed Q-value Difference Bound(Wu et al., 2024b)). For policies π∆τ and π∆, with
∆τ < ∆. Given any x ∈ X , if Q∆τ is LQ-LC, the corresponding Q-value difference can be bounded
as follows:

E
a∼π∆(·|x)

x̂τ∼b∆(·|x)

[Q∆τ (x̂τ , a)−Q∆(x, a)] ≤
γLQ

1− γ
E

x̂τ∼b∆(·|x)
x′∼P∆(·|x,a)
a∼π∆(·|x)

[W1(π∆τ (·|x̂τ )||π∆(·|x))]

Above two lemmas provide the exact quantification required. Moving along, we can convert π∆

and Qπ∆

∆ back to π and Qπ. And, we can arrive the new policy-iteration framework in the original
state space bridging by the belief function b∆ as follows, where λ1 and λ2 are constants and µ∆

is the behavior policy after data augmentation. Specific derivation from augmented offline PI to
belief-based PI in Eq. (3) and Eq. (4) can be found in App. B.1.

Q̂π ← argmin
Q

E(x,a,x′)∼D

[(
Eŝ∼b∆(·|x)

[
Qπ(ŝ, a)

]
−(

Eŝ∼b∆(·|x)
[
r(ŝ, a)

]
+ γ Eŝ′∼b∆(·|x′)

a′∼π(·|ŝ′)

[
Qπ(ŝ′, a′)

]
− λ1W1

(
π, µ∆

)))2]
(3)

πk+1 ← argmax
π

Ex∼D

[
Eŝ∼b∆(·|x)

a∼π(·|ŝ)

[
Q̂π(ŝ, a)

]
− λ2W1(π, µ∆)

]
(4)

Proposition 4.3. Let the policy before and after the update in Eq. (4) be πold and πnew. Then after
each policy evaluation in Eq. (3), we have Eā∼πnew [Qπnew(s, ā)] ≥ Eâ∼πold

[Qπold(s, â)].

Above proposition proves that iteratively applying Eq. (3) and Eq. (4) will monotonically increase Q
value after update. Detailed proof can be found in App. B.2.
Remark 4.4. For deterministic MDP, b∆ is also deterministic, meaning that Eŝ∼b∆(·|x) [r(ŝ, a)] =
r∆(x, a) and Eŝ∼b∆(·|x) [Q

π(ŝ, a)] = Qπ∆

∆ (x, a). Since b∆ becomes an injection mapping under
this setting, Eŝ∼b∆(·|x) [r(ŝ, a)] = r(s, a) should also hold. Thus, we can directly leverage existing
offline delay-free data tuples for update, except for the policy related terms.
A seemingly simpler alternative is a two–stage pipeline: (i) train a belief model offline; (ii) freeze
it and apply any delay-free offline-RL algorithm to the original delay-free samples, deploying the
resulting policy with that fixed belief function. This strategy, however, suffers from several drawbacks
that DT-CORL avoids. (i) Biased value targets. In DT-CORL, the Bellman target in Eq. (3) is
computed through the belief b∆(·|x), so the critic learns on exactly the latent states the policy will
later encounter. By contrast, the two–stage method treats the filter as error-free; residual belief error
becomes unmodelled noise, forcing the critic to fit a moving target and biasing the learned Q-values.
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Figure 1: Overall pipeline of DT-CORL. In the Offline Training phase, trajectory data are augmented
to train the transformer belief, and with the trained transformer belief, we conduct belief-based PI in
the offline setting. In the Online Adaptation, we utilize the transformer belief to predict the current
state from delayed observation, and adapt with offline-trained policy.

(ii) Distribution mismatch. Because the critic of the two-stage baseline is trained under (s, a)∼D
while the policy, evaluated through the frozen belief, quickly drifts to new action choices, the training
and deployment distributions diverge. This mismatch is magnified in delayed environments and
leads to sub-optimal returns, a phenomenon confirmed in our experiments (see Sec. 5). (iii) Inferior
sample efficiency in stochastic MDPs. For stochastic dynamics, each offline tuple (s, a, r, s′) reveals
only a single next state, whereas DT-CORL reuses the same transition to generate ∆ latent states
along the belief rollout, extracting richer supervision. Similar gains from “multiple synthetic samples
per transition” have been observed in model-based offline RL (Kidambi et al., 2020; Yu et al., 2020).
In short, embedding belief prediction inside the policy-iteration loop both contains model error and
keeps the critic, policy, and belief model aligned—benefits a frozen two-stage pipeline cannot match,
in addition to avoiding the dimensional explosion of raw state augmentation.
Remark 4.5. Existing work has compared the sample-complexity of augmentation- and belief-based
methods in the online delayed-RL setting (Wu et al., 2024a;b). The same intuition should carry over
to offline learning, but a formal analysis would require assumptions—e.g., uniform data-coverage,
linear value realizability, and bounded rewards—that are standard in statistical offline-RL theory (Bai
et al., 2022; Shi et al., 2022; Xie et al., 2021) yet do not hold in our setting. Establishing tight offline
bounds without these restrictive conditions is therefore an open problem that we leave for future.

4.2 PRACTICAL IMPLEMENTATION

Belief Prediction. The belief prediction can be taken as a dynamic modeling problem. With a given
offline trajectory {(st, at, rt, st+1)}Ht=0, we can manually create the augmented state by stacking
states and actions in ∆ steps from start to end, where xt = {st−∆, at−∆, at−∆+1, · · · , at−1} and
the true state is st. Thus, the problem becomes training a belief function b∆ which takes in xt and
predict st. To reduce the potential compounding loss from belief prediction, we employ a transformer
structure (Vaswani et al., 2017; Wu et al., 2025), where with the given augmented state xt transformer
predicts a sequence from ŝt−∆+1 to ŝt. Based on the deterministic or stochastic nature of MDP,
the transformer belief is updated with either MSE or MLE objectives. We validate the choice of
transformer architecture in Sec. 5.3.

Belief-based Policy Optimization. Although many offline RL methods regularize the policy
with KL, MMD, or Wasserstein distances (Levine et al., 2020; Wu et al., 2019), computing these
divergences exactly is costly. Following the pragmatic approach of TD3 +BC and ReBRAC (Fujimoto
& Gu, 2021; Tarasov et al., 2023a), we approximate the policy-behavior divergence by the mean-
squared error between actions sampled from the learned policy and the augmented behavior policy.
The policy-improvement step therefore, becomes

πk+1 = argmax
π

E(x,a)∼D

[
Eŝ∼b∆(·|x)

â∼π(·|ŝ)

[
Q̂πk

(ŝ, â)
]
− α

∥∥a− â
∥∥2
2

]
where α > 0 trades off exploitation and conservatism. This surrogate avoids training an explicit
delay-augmented behavior model while retaining a simple quadratic penalty that is trivial to compute
in continuous control. Besides, for deterministic MDPs the immediate reward r(st, at) can be
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Table 1: Normalized returns (%) on D4RL AntMaze tasks under deterministic and stochastic observa-
tion delays ∆ ∈ {4, 8, 16}. Results are averaged over 3 seeds. Best per column (including ties) is
shown in bold with a light blue background.

Setting Method umaze umaze-diverse medium-play large-play

4 8 16 4 8 16 4 8 16 4 8 16

Deterministic

DBPT-SAC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Augmented-BC 60.7 62.3 31.0 69.0 58.7 30.0 0.0 1.67 1.0 0.0 0.3 0.0
Augmented-CQL 72.3 44.0 12.7 27.7 23.7 22.0 0.33 1.67 4.67 0.0 1.33 0.67
Augmented-COMBO 76.0 37.0 13.3 26.0 19.0 23.0 6.33 5.67 3.0 0.0 1.33 1.0
DT-CORL 83.3 76.7 40.0 65.3 62.0 32.0 1.33 2.33 2.33 0.0 0.33 0.67

Stochastic

DBPT-SAC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Augmented-BC 60.3 55.7 24.7 59.7 51.7 40.7 1.33 2.33 2.0 0.0 0.67 0.0
Augmented-CQL 61.3 37.0 12.7 29.3 17.3 13.3 8.0 9.67 5.67 1.33 1.0 0.33
Augmented-COMBO 64.7 36.7 13.3 32.7 15.0 12.7 8.67 7.67 3.67 0.67 1.33 1.0
DT-CORL 88.3 88.0 67.3 74.0 58.3 56.0 2.00 2.67 3.33 0.0 1.67 1.67

read directly from the dataset, so no separate reward model is required (cf. Eq. (3), Eq. (4), and
Remark 4.4).

Online Adaptation. At deployment time, we maintain a circular action buffer of length ∆, initial-
ized with random actions drawn from A. At timestep t the agent receives the delayed observation ot
from the plant, appends the most recent action at−1 to the buffer, and forms the augmented input
xt = {ot, at−∆, . . . , at−1}. This sequence is passed to the trained belief transformer, which returns
a delay-compensated state estimate ŝt. The policy π(· | ŝt) then selects the next action at. During
the first ∆ steps (and symmetrically near episode termination), the buffer is not yet full. We handle
these boundary conditions by inserting a special [MASK] token for missing actions and enabling
the transformer’s built-in masking mechanism, ensuring consistent state prediction throughout the
episode. Detailed neural network structures and hyper-parameters can be found in App. D.

5 EXPERIMENTS

To evaluate the effectiveness of our approach, we conduct experiments on the standard D4RL
benchmark suite, including both MuJoCo locomotion and AntMaze goal-conditioned tasks. Our
experimental analysis highlights two primary advantages of DT-CORL. First, we demonstrate that
our method significantly outperforms both traditional offline RL algorithms with state augmentation
adaptation and the SOTA Online delay-robust RL algorithm. Second, we show that DT-CORL
surpasses hybrid approaches that combine separately trained delay-belief models with existing
offline RL algorithms, underscoring the benefit of belief-involved policy evaluation. In our ablation
studies, we examine how trajectory availability impacts performance and compare alternative belief
architectures, including ensemble MLPs and diffusion-based predictors, to validate the choice of the
transformer-based belief model.

5.1 ANTMAZE

We benchmark DT-CORL on the AntMaze goal-conditioned tasks from the D4RL offline RL suite (Fu
et al., 2020; Todorov et al., 2012). Since no existing method is designed to learn a delay-robust policy
solely from delay-free offline data, we construct two baseline methods for comparison: (i) Augmented-
BC, which applies standard behavioral cloning (Torabi et al., 2018) in a ∆-step augmented state space;
and (ii) Augmented-CQL, which runs Conservative Q-Learning (Kumar et al., 2020) on the same
augmented state representation. Additionally, we compare DT-CORL against a model-based offline
RL baseline, Augmented-COMBO (Yu et al., 2021), and the state-of-the-art delay-robust RL algorithm
DBPT-SAC (Wu et al., 2025). We evaluate all methods on four standard AntMaze environments:
medium-play, large-play, umaze-diverse, and umaze. For both deterministic and
stochastic delay settings, we test on 4, 8, and 16 steps of delay respectively. For stochastic delay,
it means that the delay at each step follows a uniform distribution, ∆ ∈ U(1, k), k ∈ {4, 8, 16}.
From Table 1, online delayed RL methods such as DBPT-SAC collapse under the offline setting,
confirming online methods’ incompatibility with offline setting. In umaze and umaze-diverse,
DT-CORL consistently outperforms all baselines and shows far less degradation as delay length
increases, whereas augmentation-based methods deteriorate sharply. On the harder medium-play
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Table 2: DT-CORL vs. belief-based baselines (Belief-CQL, Belief-IQL) on D4RL MuJoCo tasks.
Normalized returns (%). Delays: deterministic ∆ ∈ {4, 8, 16}, stochastic ∆ ∼ U(1, k), k ∈
{4, 8, 16}. Best results per column are shown in bold with light blue background.

Task Method medium med-expert med-replay expert
4 8 16 4 8 16 4 8 16 4 8 16

Deterministic Delays

Hopper
IQL 5.3 5.8 4.8 5.5 6.4 5.3 5.8 6.4 2.4 4.5 9.0 5.6
CQL 8.2 4.3 4.3 7.3 3.4 5.9 8.6 4.4 6.1 7.9 3.9 4.1
Belief-IQL 27.7 29.3 25.4 26.7 26.6 24.7 24.7 25.5 23.4 18.7 17.4 15.9
Belief-CQL 75.4 56.8 42.9 92.9 39.5 35.2 110.1 99.7 96.6 81.1 43.3 45.9
DT-CORL 79.4 85.0 71.8 113.0 112.2 109.9 99.4 100.8 100.2 112.9 113.1 112.2

HalfCheetah
Belief-IQL 30.8 10.6 5.3 24.8 6.1 3.3 23.3 13.8 9.7 6.8 4.8 3.6
Belief-CQL 49.2 8.9 3.0 22.7 6.5 1.5 36.1 14.4 6.4 1.5 1.5 1.5
DT-CORL 47.4 27.8 6.4 44.7 21.3 8.7 43.6 27.1 7.9 20.6 5.1 5.2

Walker2d
Belief-IQL 33.4 25.7 24.6 49.6 17.3 16.4 28.2 20.6 18.3 25.5 19.9 16.7
Belief-CQL 87.0 64.1 39.2 105.8 99.5 51.0 93.3 93.5 61.0 111.1 110.8 97.7
DT-CORL 87.4 87.6 86.8 112.1 112.0 118.1 93.6 90.5 88.1 110.9 111.2 110.5

Stochastic Delays

Hopper
IQL 8.3 6.0 12.9 9.4 6.4 10.4 8.6 4.0 2.9 11.4 3.1 11.6
CQL 8.9 4.3 11.1 7.4 6.0 11.5 6.1 5.3 9.1 6.9 3.4 4.2
Belief-IQL 27.4 27.4 28.4 28.3 27.9 23.8 25.0 24.5 26.0 18.6 16.7 16.9
Belief-CQL 80.8 67.8 74.3 91.8 48.9 57.5 100.8 99.8 99.2 72.3 35.4 20.1
DT-CORL 78.5 72.1 79.3 113.6 112.7 85.4 99.4 100.1 98.8 113.2 112.8 113.1

HalfCheetah
Belief-IQL 33.4 31.2 21.6 31.1 16.3 8.2 24.9 20.0 15.3 13.1 9.2 4.3
Belief-CQL 52.6 46.6 16.2 48.0 22.1 3.6 47.1 41.4 19.7 6.5 2.8 1.7
DT-CORL 48.2 47.5 38.4 70.0 44.3 31.7 47.7 43.3 30.4 85.1 12.7 5.8

Walker2d
Belief-IQL 34.6 37.5 36.7 49.4 25.0 20.4 31.4 25.4 24.2 43.1 27.7 20.7
Belief-CQL 84.8 81.7 78.9 112.1 106.5 85.1 94.9 97.7 95.3 111.1 111.1 109.6
DT-CORL 86.8 87.4 87.0 114.1 113.6 111.5 93.0 90.9 91.8 110.9 110.9 110.5

and large-play tasks, overall performance for all methods remains low; the poor results across
methods suggest that additional goal-conditioned modifications may be required. Overall, DT-
CORL demonstrates stronger robustness to increasing delays than augmentation-based baselines.
We also observe that augmentation-based methods degrade more under stochastic delays, as the
additional randomness introduces variance that destabilizes policy learning. In contrast, our belief-
based approaches exhibit the opposite trend: the reduced sample complexity and improved temporal
prediction allow them to benefit from the effectively shorter delays under stochastic settings. We
further justify our method’s superiority under various environments in additional MuJoCo tasks.
Detailed results can be found in Table 7 and Table 8.

5.2 BELIEF-BASED COMPARISON

To justify the effectiveness of incorporating belief estimation in offline policy optimization, we
compare our method DT-CORL with the following baselines: (i) Offline RL, naive implementations
of CQL and IQL without any delayed adaption. (ii) Belief-CQL, which feeds the CQL algorithm
the transformer belief used by DT-CORL instead of raw augmentation. (iii) Belief-IQL, which
runs Implicit Q-Learning Kostrikov et al. (2021) with the same delayed belief above. We test all
methods on D4RL MuJoCo suite following the medium, medium-expert, medium-replay,
and expert trajectory setting. For both deterministic and stochastic delay, we adopt the setting
described in the previous subsection. From Table 2, we can tell the clear performance gap between
other naive belief-based methods and DT-CORL, and the ineffectiveness of naive CQL and IQL
under our delayed setting. Belief-IQL relies heavily on implicit Q-learning updates, which are
sensitive to inaccuracies in the latent belief state. Specifically, IQL’s actor update weights actions by
ω = exp(A/λ), and under delayed/partial observations the same belief state carries noisy Q− V ;
tiny errors explode after the exponential, producing unstable, off-support policy updates. Thus,
without alignment between belief learning and policy training, small belief prediction errors can
lead to large value overestimation or underestimation, which end up with poor performance of
Belief-IQL across all the scenarios. In Belief-CQL, the Q-function is trained on the precomputed
belief embeddings. This decoupling leads to suboptimal value estimates, especially under long delays
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Figure 2: Step-by-step detailed comparison of
prediction accuracy for different models.
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Diffusion (Final: 0.157±0.137)
Transformer (Final: 0.315±1.063)
Ensemble (Final: 11.790±79.995)

Model Total Parameters (M) Inference (ms)

Ensemble MLP 1.80 69.50±2.86
Transformer 7.87 22.27±9.02
Diffusion 3.96 665.21±55.5

Table 3: Comparison of total parameters (M)
and inference speed (ms) for each model up to
16 steps.

Data DT-CORL Belief-CQL Aug-CQL

25% 9.8 3.08 2.47
50% 12.0 3.80 2.80
75% 15.3 4.05 3.89
100% 27.8 8.90 3.80

Table 4: Performance of DT-CORL un-
der different data availability levels for the
HalfCheetah-medium-v2.

where belief inaccuracies compound. This tendency can be spotted across various tasks with different
trajectory settings. DT-CORL aligns the belief prediction with downstream policy evaluation and
optimization, allowing both the transformer and Q-function to co-adapt under delayed feedback.
Besides, by conditioning the policy and critic on belief-derived latent states, DT-CORL mitigates the
delay-induced distribution shift more effectively than purely augmenting state spaces or pretraining
belief models.

5.3 ABLATION STUDIES

Why Transformer? In this subsection, we justify our choice of a transformer-based belief model by
comparing it against two common alternatives—ensemble MLPs and diffusion models. We evaluate
all models in the Hopper-medium setting, measuring (i) multi-step prediction accuracy (MSE up to
16 steps; Figure 2) and (ii) inference speed and parameter count (Table 3). All models are trained for
100 epochs on the same medium dataset and evaluated in the environment; implementation details
appear in App. D. Results (See Figure 2 and Table 3) highlight a clear trade-off: ensemble MLPs
are lightweight but accumulate error rapidly over long horizons, degrading belief quality; diffusion
models achieve strong accuracy but incur high computational cost due to iterative denoising. In
contrast, the transformer model provides the best balance, offering strong multi-step accuracy, stable
long-horizon predictions, and fast inference suitable for online deployment. Additional qualitative
prediction visualizations are included in App. C.1. In addition, we further analyze the impact of
transformer size on sample efficiency and prediction accuracy. Detailed experiments can also be
found in App. C.1 and Table 9.

Trajectories Availability. We next examine how offline data availability influences the performance
of DT-CORL and its baselines. Using the HalfCheetah-medium-v2 environment with a fixed
delay of 8 steps, we vary the proportion of the offline dataset available for training: 25As shown
in Table 4, all methods improve with more data, but DT-CORL consistently achieves the highest
returns across all data levels. Notably, the performance gap between DT-CORL and the belief-based
or augmentation-based baselines widens as more data becomes available, while those baselines show
only mild gains. These results indicate that DT-CORL not only maintains superior performance in
low-data regimes but also scales more effectively with additional data—highlighting the benefit of
jointly learning the belief model and policy within a unified framework.

Joint Training Benefits. To empirically validate this coupling, we compare DT-CORL against a
variant that uses a separately pretrained belief model with no further adaptation during policy learning.
As shown in Table 5, joint training consistently outperforms separate pretraining across all delay
settings in the Hopper suite—yielding significantly higher returns at both small and large delays. This
result confirms that joint optimization reduces offline-to-online distribution mismatch and enables the
belief model to specialize to the value function’s error landscape, providing substantially more stable
delayed-policy learning.

Delay Robustness. To assess DT-CORL’s reliability under challenging latency conditions, we
evaluate two robustness settings: (i) scaling to long-horizon delays (32–64 steps), and (ii) testing
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Table 5: Joint vs. Separate Belief Training

Training Mode 4 8 16
Separate 92.1 / 91.7 81.4 / 87.4 68.3 / 73.1
DT-CORL 101.2 / 101.2 102.8 / 99.4 98.5 / 94.2

Table 6: DT-CORL Across Delay Distributions

Method Uniform Gauss Exp Binom
DT-CORL 79.3 82.1 85.8 77.4

4 8 16 32 64
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Adroit Hand: Performance vs Delay (Mean ± Std)
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(a) Average performance (b) Pen rotation (c) Open door (d) Hammer smash

Figure 3: (a) Describes the average performance of Aug-CQL, Belief-CQL, and DT-CORL across
three dexterous hand manipulation tasks (a)-(c) under various delay setting ranging from 4 to 16.

under alternative delay distributions that share the same expected delay but differ in variance and
temporal structure. All distributional experiments use Hopper-medium-v2, with maximum
delay fixed at 16 and Gaussian, exponential, binomial, and uniform delays parameterized to have
mean 8 for fair comparison. Top right figure shows average normalized return across the three
MuJoCo locomotion tasks as delays increase, averaged over deterministic and stochastic variants.
As expected, performance decreases with larger delays, highlighting the increased difficulty; full
results appear in Table 10 and App. C.1. From Table 6, we also observe that DT-CORL performs
robustly across different delay distributions—even without prior knowledge of the true online delay
process—demonstrating strong generalization of our belief estimation module.

5.4 DEXTEROUS MANIPULATION

To evaluate delay robustness in high-dimensional, contact-rich manipulation, we benchmark all
methods on the Dexterous Hand Manipulation suite (Zhu et al., 2019), using the expert demonstrations
provided and applying standard delay setting as before. These tasks involve discontinuous contacts,
multi-finger coordination, and highly sensitive state-action coupling, making delayed observation
particularly challenging. As shown in Fig. 3, DT-CORL consistently attains the highest performance
across all tested delay levels and exhibits substantially more graceful degradation compared to Aug-
CQL and Belief-CQL. This indicates that our belief model captures fine-grained temporal structure
that is critical for manipulation under latency. Full per-task results for Pen, Door, and Hammer appear
in Table 11, further highlighting DT-CORL’s robustness, particularly under for the Hammer task
where both augmented and belief-based baselines failed.

6 CONCLUSION

We presented DT-CORL, the first framework for offline-to-online delay adaptation that learns delay-
robust policies solely from delay-free data. By combining a transformer-based belief predictor with
conservative, behavior-regularized policy iteration, DT-CORL avoids the dimensional blow-up of
history augmentation while mitigating out-of-distribution errors common in offline RL. Experiments
on various tasks show consistent gains over both augmented-state and belief-based baselines, under
deterministic and stochastic delays. Looking forward, several extensions remain open. First, DT-
CORL currently assumes known, fixed delays; extending it to handle unknown, time-varying, or
heterogeneous delays is an important next step. Notably, such cases remain largely unaddressed in
both online and offline delayed RL. Second, scaling the approach to high-dimensional perceptual
domains such as vision-based manipulation may require spatial attention or structured world models.
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ETHICS STATEMENT

We affirm that all authors have read and adhere to the ICLR Code of Ethics. Our work does not
involve human or animal subjects, sensitive personal data, or privacy risks. The experiments are fully
based on public benchmarks (D4RL), with no proprietary or private datasets, ensuring transparency
and reproducibility. We used Large Language Models only for manuscript writing, formatting, and
routine data-processing; all algorithmic design, theoretical derivations, and experimental evaluations
are solely the work of the authors. There are no known immediate risks of misuse from our method;
however, we recognize that deployment in safety-critical systems under delays might require careful
calibration.

REPRODUCIBLE STATEMENT

To ensure reproducibility of all experimental results, we provide the following supporting mate-
rials and practices. The code implementing DT-CORL, including training scripts, belief model
architectures, and evaluation pipelines, has been made available in an anonymous repository
(https://anonymous.4open.science/status/DT-CORL-E6ED). All algorithmic as-
sumptions, hyperparameters (learning rates, network architectures, regularization weights, transformer
depth, etc.), and training settings are described in detail in Sec. 5 of the main paper, and additional
implementation details are given in App. D. The datasets used are standard benchmarks (D4RL
locomotion and AntMaze tasks). We report performance averaged over multiple random seeds. All
experiment results are listed in Sec. 5 and App. C.
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A LLM USAGE STATEMENT

The usage of LLMs in this work is limited to paper writing support, language refinement, and
experimental data processing. Specifically, LLMs assisted in improving the clarity and coherence of
the manuscript, generating LaTeX tables and formatting results for presentation. Importantly, LLMs
were not involved in the design of algorithms, the development of theoretical results, or the execution
of experiments, ensuring that all core scientific contributions remain entirely the work of the authors.

B BELIEF-BASED POLICY ITERATION

B.1 POLICY ITERATION

To arrive the final derivation, we need the following lemma.
Lemma B.1. (General Delayed Performance Difference (Wu et al., 2024b)) For policies π and µ∆

with any x ∈ X , the performance difference is denoted as I(x)

I(x) = E
ŝ∼b(·|x)

[V (s)]− V∆,β(x)

=
1

1− γ
E

ŝ∼b(·|x)
a∼µ∆(·|x)

x∼D

[V (ŝ)−Q(ŝ, a)]

For next step, we try to cast the above optimization problem back to the ordinary state/action
space with belief function b defined above. To begin with, we can convert Q∆(x, a) back to
Eŝ∼b(·|x) [Q(ŝ, a)] using Lem. 4.1.

E(x,a,x′)∼D
ŝ∼b(·|x)
ŝ′∼b(·|x′)

[Q(ŝ, a)−Q∆(x, a)]

= E(x,a,x′)∼D
ŝ∼b(·|x)

[
r(ŝ, a) + γEŝ′∼b(·|x′) [V (ŝ′)]

]
− E(x,a,x′)∼D [r(x, a) + V∆(x

′)]

= γE(x,a,x′)∼D
ŝ∼b(·|x)

[
Eŝ′∼b(·|x′) [V (ŝ′)]− V (x′)

]
≤ γLQ

1− γ
E(x,a,x′)∼D

ŝ∼b(·|x)
[W1(π(·|ŝ)||µ∆(·|x))]

Similarly, we can extend it to other term in the policy evaluation part.

E x′∼D
ŝ′∼b(·|x′)

a′∼π∆(·|x′)

[Q(ŝ′, a′)−Q∆(x
′, a′)]

= E ŝ′∼b(·|x′)
a′∼π∆(·|x′)

x′∼D

[Q(ŝ′, a′)]− Ea′∼π∆(·|x′)
x′∼D

[Q∆(x
′, a′)]

≤ γLQ

1− γ
E x′∼D
ŝ′∼b(·|x′)

[W1(π(·|ŝ′)||π∆(·|x′))]

Then, we can start to break down the policy evaluation defined above.

E(x,a,x′)∼D

[(
Q̂π
∆(x, a)− r∆(x, a)− γEa′∼πk

∆(·|x′)

[
Q̂π
∆(x

′, a′)
]
+ α1 D

(
πk
∆, µ∆

))2]
⇔ E(x,a,x′)∼D

[(
Eŝ∼b(·|x)

[
Qπ(ŝ, a)− γLQ

1− γ
W1

(
π(·|ŝ), µ∆(·|x)

)]
−
(
Eŝ∼b(·|x)[ r(ŝ, a) ] + γ Eŝ′∼b(·|x′)

[
Qπ(ŝ′, a′)− γLQ

1− γ
W1

(
π(·|ŝ′), π∆(·|x′)

)]
− α1W1

(
π∆, µ∆

)))2]
.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The next step is trying to sort out all the policy divergence term, and convert the expectation term
with respect to π∆ back to π. For simplification, let’s define c =

γLQ

1−γ and hide the policy divergence
term for now. We have the following:

E(x,a,x′)∼D

(Eŝ∼b(·|x) [Q
π(ŝ, a)]−

(
Eŝ∼b(·|x) [r(ŝ, a)] + γ E ŝ′∼b(·|x′)

a′∼π∆(·|x′)

[Qπ(ŝ′, a′)]

))2


According to Lipchitz continuous assumptions on Q functionLiotet et al. (2022), we can derive that
|Ea1∼µ

a2∼ν
[Qπ(s, a1)−Qπ(s, a2)] | ≤ LQW1(µ, ν) ∀s ∈ S. Thus, we can derive the following:

E(x,a,x′)∼D

(Eŝ∼b(·|x) [Q
π(ŝ, a)]−

(
Eŝ∼b(·|x) [r(ŝ, a)] + γ E ŝ′∼b(·|x′)

a′∼π(·|ŝ′)
[Qπ(ŝ′, a′)] + (1− γ)cW1(π, π∆)

))2


(5)
Now, we have the policy evaluation in the original state space format. Let’s take a close look at the
remaining policy divergence terms.

γcW1(π, π∆) + α1W1(π∆, µ∆)− cW1(π, µ∆) + (1− γ)cW1(π, π∆)

=cW1(π, π∆) + α1W1(π∆, µ∆)− cW1(π, µ∆)

The triangle inequality holds for the Wasserstein distance. Specifically, Wp(µ, ρ) ≤ Wp(µ, ν) +
Wp(ν, ρ) for all µ, ν, and ρ in the same metric space and p ≥ 1 (Villani et al., 2008). With the proper
choice of α, it is easy to unify all the 1-Wasserstein terms to π and behavior policy. Besides, since all
the 1-Wasserstein terms are bounded here, it won’t affect the convergence property of policy iteration.

Q̂π ← argmin
Q

E(x,a,x′)∼D

[(
Eŝ∼b(·|x)

[
Qπ(ŝ, a)

]
(
Eŝ∼b(·|x)

[
r(ŝ, a)

]
+ γ E ŝ′∼b(·|x′)

a′∼π(·|ŝ′)

[
Qπ(ŝ′, a′)

]
− α1W1

(
π, µ∆

)))2]
.

Using the derivation above, we can easily reformulate the policy improvement back to the original
state space.

Ex∼D

[
Ea∼π∆(·|x)

[
Q̂π∆

∆ (x, a)
]
− α2 ·D(π∆, µ∆)

]
⇔Ex∼D

[
E ŝ∼b(·|x)
a∼π∆(·|x)

[
Q̂π(ŝ, a)

]
− γLQ

1− γ
W1(π, π∆)− α2W1(π∆, µ∆)

]

⇔Ex∼D

[
E ŝ∼b(·|x)
a∼π(·|ŝ)

[
Q̂π(ŝ, a)

]
+ (1− γ)cW1(π, π∆)− cW1(π, π∆)− α2W1(π∆, µ∆)

]

⇔Ex∼D

[
E ŝ∼b(·|x)
a∼π(·|ŝ)

[
Q̂π(ŝ, a)

]
− (γcW1(π, π∆) + α2W1(π∆, µ∆))

]
Using a similar trick mentioned above, with appropriate selection of α2, we can combine the above
two policy divergence terms into one.

Ex∼D

[
E ŝ∼b(·|x)
a∼π(·|ŝ)

[
Q̂π(ŝ, a)

]
− γcW1(π, µ∆)

]

B.2 POLICY IMPROVEMENT

Proof.

πnew = argmax
π

Ex∼D

[
E ŝ∼b(·|x)
a∼π(·|ŝ)

[
Q̂π(ŝ, a)

]
− αW1(π, µ∆)

]
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By following Eq. (4), we can easily have have

Ex∼D

[
E ŝ∼b(·|x)
a∼πnew(·|ŝ)

[
Q̂π

new(ŝ, a)
]
− αW1(πnew, µ∆)

]

≥Ex∼D

[
E ŝ∼b(·|x)
a∼πold(·|ŝ)

[
Q̂π

old(ŝ, a)
]
− αW1(πold, µ∆)

]

Q̂π
new(ŝ, a

′) = E(x,a,x′)∼D

[
Eŝ∼b(·|x) [r(ŝ, a)] + γ E ŝ′∼b(·|x′)

a′∼πnew(·|ŝ′)
[Qπ

new(ŝ
′, a′)]− αW1(πnew, µ∆)

]

≥ E(x,a,x′)∼D

[
Eŝ∼b(·|x) [r(ŝ, a)] + γ E ŝ′∼b(·|x′)

a′∼πold(·|ŝ′)
[Qπ

old(ŝ
′, a′)]− αW1(πold, µ∆)

]
= Q̂π

old(ŝ, a
′)
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C EXPERIMENTS DETAILS

C.1 ADDITIONAL RESULTS

In this part, we provide visualization of the delay belief prediction over a 16-step trajectory rollout
in the HOPPER environment. Each frame corresponds to a simulation step under a delayed control
setting. The agent executes actions conditioned on the predicted belief state rather than the true current
observation. The sequence illustrates how the learned delayed belief model tracks and reconstructs
the latent state dynamics despite observation–action delays. Accurate belief predictions enable the
agent to maintain coherent behavior across all steps.

Step 0 Step 1 Step 2 Step 3

Step 4 Step 5 Step 6 Step 7

Step 8 Step 9 Step 10 Step 11

Step 12 Step 13 Step 14 Step 15

Figure 4: Ground Truth

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Step 0 Step 1 Step 2 Step 3

Step 4 Step 5 Step 6 Step 7

Step 8 Step 9 Step 10 Step 11

Step 12 Step 13 Step 14 Step 15

Figure 5: Ensemble MLP
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Step 0 Step 1 Step 2 Step 3

Step 4 Step 5 Step 6 Step 7

Step 8 Step 9 Step 10 Step 11

Step 12 Step 13 Step 14 Step 15

Figure 6: Diffusion
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Step 0 Step 1 Step 2 Step 3

Step 4 Step 5 Step 6 Step 7

Step 8 Step 9 Step 10 Step 11

Step 12 Step 13 Step 14 Step 15

Figure 7: Transformer
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Method HalfCheetah Hopper Walker2d

4 8 16 4 8 16 4 8 16

medium
Aug-BC 23.1± 1.5 5.0± 0.9 3.6± 0.8 65.3± 1.8 52.1± 1.6 46.5± 2.1 66.1± 1.7 51.6± 1.9 14.0± 2.5

Aug-CQL 24.2± 1.4 3.8± 0.8 3.7± 0.7 67.7± 1.5 66.2± 1.8 21.1± 2.0 75.8± 2.3 31.2± 2.1 13.0± 2.6

Belief-CQL 49.2± 1.5 8.9± 1.2 3.0± 0.7 75.4± 1.3 56.8± 2.1 42.9± 2.6 87.0± 1.6 64.1± 2.3 39.2± 2.8

Belief-IQL 30.8± 1.5 10.6± 1.0 5.3± 0.8 27.7± 1.3 29.3± 1.4 25.4± 1.5 33.4± 1.6 25.7± 1.4 24.6± 1.3

DT-CORL 47.4± 1.2 27.8± 1.9 6.4± 0.8 79.4± 1.5 85.0± 1.2 71.8± 2.2 87.4± 1.0 87.6± 1.4 86.8± 2.3

expert
Aug-BC 6.9± 0.6 5.0± 0.5 4.2± 0.4 110.9± 0.7 103.6± 1.0 68.7± 1.5 108.6± 0.6 95.4± 0.9 12.1± 1.3

Aug-CQL 3.6± 0.4 3.7± 0.4 3.6± 0.3 112.9± 0.4 83.5± 1.2 8.5± 0.8 108.7± 0.5 34.8± 1.0 6.6± 0.6

Belief-CQL 1.5± 0.3 1.5± 0.3 1.5± 0.2 81.1± 0.8 43.3± 1.0 45.9± 1.1 111.1± 0.6 110.8± 0.5 97.7± 1.2

Belief-IQL 6.8± 0.5 4.8± 0.5 3.6± 0.4 18.7± 0.9 17.4± 0.8 15.9± 0.7 25.5± 1.0 19.9± 0.9 16.7± 0.8

DT-CORL 20.6± 0.6 5.1± 0.4 5.2± 0.3 112.9± 0.5 113.1± 0.4 112.2± 0.4 110.9± 0.4 111.2± 0.5 110.5± 0.5

medium-expert
Aug-BC 20.5± 1.4 5.4± 0.9 5.1± 1.0 93.3± 1.6 89.5± 1.7 49.2± 2.2 105.7± 1.5 53.3± 2.2 12.2± 1.9

Aug-CQL 7.4± 0.9 2.8± 0.8 1.3± 0.6 101.7± 1.0 60.9± 2.1 17.1± 1.4 84.4± 2.2 27.7± 1.9 1.4± 0.5

Belief-CQL 22.7± 1.7 6.5± 1.1 1.5± 0.4 92.9± 1.6 39.5± 1.7 35.2± 2.0 105.8± 1.3 99.5± 1.4 51.0± 1.6

Belief-IQL 24.8± 1.4 6.1± 1.1 3.3± 0.7 26.7± 1.3 26.6± 1.3 24.7± 1.2 49.6± 1.7 17.3± 1.2 16.4± 1.1

DT-CORL 44.7± 2.5 21.3± 2.2 8.7± 0.9 113.0± 0.8 112.2± 0.7 109.9± 0.9 112.1± 0.7 112.0± 0.6 118.1± 1.1

medium-replay
Aug-BC 21.7± 1.9 4.2± 1.0 5.2± 1.2 25.8± 2.6 28.0± 2.4 21.7± 2.2 26.1± 2.1 13.5± 2.5 7.5± 1.9

Aug-CQL 9.2± 1.5 2.0± 0.9 3.0± 1.0 85.7± 1.8 5.1± 1.2 4.0± 1.4 48.5± 2.3 8.0± 1.6 3.1± 1.1

Belief-CQL 36.1± 2.5 14.4± 2.0 6.4± 1.5 110.1± 2.8 99.7± 2.4 96.6± 2.1 93.3± 3.1 93.5± 2.8 61.0± 2.5

Belief-IQL 23.3± 1.3 13.8± 1.1 9.7± 1.0 24.7± 1.2 25.5± 1.1 23.4± 1.1 28.2± 1.4 20.6± 1.2 18.3± 1.1

DT-CORL 43.6± 3.0 27.1± 2.0 7.9± 1.0 99.4± 2.5 100.8± 1.9 100.2± 1.5 93.6± 2.4 90.5± 1.9 88.1± 2.0

Table 7: Normalized returns (%) on D4RL MuJoCo locomotion tasks with deterministic observation
delays of 4, 8, and 16 steps. All results are shown as mean ± std over 3 seeds.

Method HalfCheetah Hopper Walker2d

4 8 16 4 8 16 4 8 16

medium
Aug-BC 25.4± 1.6 5.2± 1.0 4.0± 1.0 60.1± 2.0 52.5± 1.8 49.1± 2.2 65.9± 1.9 49.9± 2.0 15.0± 2.5

Aug-CQL 23.6± 1.5 5.1± 1.1 4.2± 1.2 67.8± 1.7 65.8± 2.0 22.5± 2.2 73.5± 2.3 30.8± 2.2 9.2± 2.5

Belief-CQL 52.6± 1.5 46.6± 2.0 16.2± 2.4 80.8± 1.6 67.8± 2.1 74.3± 2.6 84.8± 1.9 81.7± 1.8 78.9± 2.2

Belief-IQL 33.4± 1.6 31.2± 1.5 21.6± 1.8 27.4± 1.3 27.4± 1.3 28.4± 1.4 34.6± 1.7 37.5± 1.6 36.7± 1.6

DT-CORL 48.2± 1.6 47.5± 2.0 38.4± 3.1 78.5± 1.8 72.1± 1.6 79.3± 2.2 86.8± 1.2 87.4± 1.4 87.0± 1.9

expert
Aug-BC 7.8± 0.7 5.6± 0.6 4.7± 0.5 112.0± 0.6 104.6± 1.0 72.4± 1.6 108.7± 0.8 98.7± 0.9 10.2± 1.2

Aug-CQL 3.2± 0.4 3.9± 0.4 3.7± 0.3 112.5± 0.5 77.5± 1.2 6.8± 0.9 108.8± 0.6 36.5± 1.1 7.4± 0.7

Belief-CQL 6.5± 0.5 2.8± 0.4 1.7± 0.3 72.3± 0.9 35.4± 1.2 20.1± 1.4 111.1± 0.5 111.1± 0.6 109.6± 0.8

Belief-IQL 13.1± 0.8 9.2± 0.7 4.3± 0.5 18.6± 0.9 16.7± 0.8 16.9± 0.8 43.1± 1.1 27.7± 1.0 20.7± 0.9

DT-CORL 85.1± 1.2 12.7± 1.0 5.8± 0.4 113.2± 0.5 112.8± 0.6 113.1± 0.6 110.9± 0.5 110.9± 0.6 110.5± 0.5

medium-expert
Aug-BC 19.9± 1.5 5.4± 1.0 4.8± 0.9 95.2± 1.7 91.6± 1.8 55.5± 2.3 83.8± 1.5 54.6± 2.2 11.4± 2.0

Aug-CQL 6.5± 0.8 3.3± 0.6 0.6± 0.4 112.9± 0.5 61.3± 1.8 18.0± 1.6 82.2± 2.3 28.8± 2.0 1.8± 0.6

Belief-CQL 48.0± 2.0 22.1± 1.8 3.6± 1.0 91.8± 1.5 48.9± 1.8 57.5± 2.2 112.1± 1.4 106.5± 1.6 85.1± 2.0

Belief-IQL 31.1± 1.5 16.3± 1.2 8.2± 0.8 28.3± 1.3 27.9± 1.3 23.8± 1.2 49.4± 1.6 25.0± 1.3 20.4± 1.2

DT-CORL 70.0± 2.2 44.3± 2.1 31.7± 2.8 113.6± 0.8 112.7± 0.7 85.4± 1.5 114.1± 0.7 113.6± 0.6 111.5± 1.0

medium-replay
Aug-BC 17.0± 2.0 4.6± 1.0 4.4± 1.0 23.9± 2.6 27.2± 2.5 21.7± 2.2 24.6± 2.0 14.0± 2.5 9.1± 2.2

Aug-CQL 9.4± 1.6 2.3± 1.0 1.6± 0.8 92.4± 2.0 52.9± 2.4 4.1± 1.2 41.5± 2.4 7.1± 1.8 1.6± 1.0

Belief-CQL 47.1± 2.5 41.4± 2.3 19.7± 2.2 100.8± 2.6 99.8± 2.4 99.2± 2.2 94.9± 2.8 97.7± 2.6 95.3± 2.4

Belief-IQL 24.9± 1.4 20.0± 1.2 15.3± 1.2 25.0± 1.2 24.5± 1.1 26.0± 1.2 31.4± 1.5 25.4± 1.3 24.2± 1.2

DT-CORL 47.7± 2.4 43.3± 2.0 30.4± 2.1 99.4± 2.0 100.1± 1.8 98.8± 2.0 93.0± 2.1 90.9± 1.7 91.8± 1.9

Table 8: Normalized returns (%) on D4RL MuJoCo locomotion tasks with stochastic observation
delays ∆ ∼ U(1, k), k ∈ {4, 8, 16}. Results are shown as mean ± std over 3 seeds.

Transformer Ablation. The ablation in Table 9 reveals a clear relationship between the capacity of
the transformer belief model and its predictive performance under delayed observations. As the num-
ber of parameters decreases both sample efficiency and prediction accuracy degrade substantially. In
particular, smaller models (e.g., latent dimension 64 or shallow 4-layer variants) require significantly
more epochs to fit the offline trajectories and still exhibit higher prediction error (Performance ↑),
indicating difficulty in capturing the temporal dependencies required for belief reconstruction under
long delays.

Conversely, larger models (256-dim with 8–10 layers) achieve the best predictive performance while
converging in far fewer epochs, demonstrating superior representational power and optimization
stability. Notably, the 256×10 model provides the best overall performance and sample efficiency,
confirming that a moderately sized transformer is a favorable balance between predictive accuracy
and computational cost.
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These results highlight a crucial insight: belief estimation under delayed offline RL requires sufficient
sequence modeling capacity, as delay-induced temporal misalignment increases the effective horizon
and dynamics complexity. Models that are too lightweight fail to capture these dependencies, while
overly large models provide diminishing returns relative to their computational cost. Thus, DT-
CORL’s chosen transformer configuration emerges as the most robust and well-calibrated architecture
for belief prediction under realistic delay settings.

Table 9: Ablation on transformer belief model size in Hopper-medium-v2 with delay ∆ = 16.
Results averaged over 3 seeds.

Latent Dim Layers Params (M) Memory (MB) Epochs Converge ≤ 0.01) Performance (MSE)

256 10 7.87 17.5 14.3 0.32
256 8 7.08 14.3 18.0 0.63
256 6 6.28 11.1 29.0 0.95
256 4 5.49 7.96 – 1.24
128 10 4.64 4.56 61.3 1.44
64 10 3.82 1.28 – 2.68

Table 10: Long-delay robustness (32 and 64 steps) across HalfCheetah-, Hopper-, and Walker2d-
medium-v2 tasks. DT-CORL consistently outperforms belief-based baselines in both deterministic
and stochastic delay settings.

Method HalfCheetah-med-v2 Hopper-med-v2 Walker2d-med-v2
32 (Det/Stoch) 64 (Det/Stoch) 32 (Det/Stoch) 64 (Det/Stoch) 32 (Det/Stoch) 64 (Det/Stoch)

Belief-IQL 5.14 / 9.31 4.92 / 7.17 11.1 / 22.6 2.70 / 6.26 12.0 / 20.9 10.5 / 13.9
Belief-CQL 3.53 / 5.61 4.09 / 4.32 9.05 / 20.4 2.71 / 4.57 7.45 / 18.3 5.30 / 8.71
DT-CORL 6.36 / 11.1 5.81 / 7.63 13.8 / 26.1 2.77 / 6.48 60.0 / 85.4 21.4 / 41.3
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Figure 8: Performance degradation under increasing delay across HalfCheetah-, Hopper-, and
Walker2d-medium-v2 tasks. Curves show the average return across deterministic and stochastic delay
settings.

D IMPLEMENTATION AND REPRODUCIBILITY DETAILS

The implementation of Augmented-CQL, Augmented-BC and our DT-CORL is based on
CORL (Tarasov et al., 2023b) and CleanRL (Huang et al., 2022). The implementation of DBT-SAC
and AD-SAC can be found in the original paper (Wu et al., 2025; 2024b). And the implementation of
Model-based Offline RL(MOPO and COMBO) is based on the OfflineRL-Kit Library (Sun, 2023).
We detail the hyperparameter settings of Transformer Belief and DT-CORL in Table 12 and Table 15,
respectively. All the experiments are conduct on the server equipped with NVIDIA A5000 GPU and
AMD EPYC 7H12 64-Core CPU. The training time depends on state/action dimensions, offline data
size, and max delay horizon, which determines the training time of belief predictions. To give an
approximate range, training on Hopper-medium-v2 with 4 delay steps take up around 2 hours,
and training on Adroit-Pen task with 16 delay steps take up around 7 hours.
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Table 11: Performance on Adroit Hand tasks (Pen-expert-v1, Door-expert-v1, Hammer-expert-v1)
under deterministic and stochastic delays ∆ ∈ {4, 8, 16}. Best per column is shown in bold with
light blue background.

Setting Method Pen-expert-v1 Door-expert-v1 Hammer-expert-v1

4 8 16 4 8 16 4 8 16

Deterministic
Aug-CQL 20.11 4.38 -0.65 78.96 61.74 40.12 0.25 0.23 0.21
Belief-CQL 50.43 26.57 19.43 97.61 83.35 67.91 0.27 0.29 0.22
DT-CORL 86.44 77.51 66.38 102.57 100.65 93.04 114.51 110.12 105.20

Stochastic
Aug-CQL 15.15 6.17 -0.72 67.80 49.88 25.84 0.27 0.26 0.24
Belief-CQL 64.68 27.42 22.51 97.59 85.92 69.73 0.28 0.29 0.24
DT-CORL 90.56 79.33 74.85 102.97 101.47 97.43 122.13 112.22 112.33

Table 12: Hyper-parameters table of Transformer
Belief.

Hyper-parameter Value
Epoch 1e2

Batch Size 256
Attention Heads Num 4

Layers Num 10
Hidden Dim 256

Attention Dropout Rate 0.1
Residual Dropout Rate 0.1
Hidden Dropout Rate 0.1

Learning Rate 1e-4
Optimizer AdamW

Weight Decay 1e-4
Betas (0.9, 0.999)

Table 13: Hyper-parameters table of Ensemble
Belief.

Hyper-parameter Value
Epoch 1e2

Batch Size 256
Attention Heads Num 4

Layers Num 10
Hidden Dim 256

Attention Dropout Rate 0.1
Residual Dropout Rate 0.1
Hidden Dropout Rate 0.1

Learning Rate 1e-4
Optimizer AdamW

Weight Decay 1e-4
Betas (0.9, 0.999)

Table 14: Hyper-parameters table of Diffusion
Belief.

Parameter Value
Model Dimension 32
Embedding Dimension 32
Dimension Multipliers [1, 2, 2, 2]
EMA Rate 0.9999
Diffusion Steps 20
Predict Noise True
State Loss Weight 10.0
Action Loss Weight 10.0
Classifier Guidance (w_cg) 0.3
Timestep Embedding Positional
Kernel Size 5
Solver DDPM
Sampling Steps 20
Temperature 1.0

Table 15: Hyper-parameters table of DT-CORL.

Hyper-parameter Value
Learning Rate (Actor) 3e-4
Learning Rate (Critic) 1e-3

Learning Rate (Entropy) 1e-3
Train Frequency (Actor) 2
Train Frequency (Critic) 1

Soft Update Factor (Critic) 5e-3
Batch Size 256
Neurons [256, 256]

Action Noise 0.2
Layers 3

Hidden Dim 256
Activation ReLU
Optimizer Adam
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