
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BELIEF-BASED OFFLINE REINFORCEMENT LEARNING
FOR DELAY-ROBUST POLICY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline-to-online deployment of reinforcement learning (RL) agents often stumbles
over two fundamental gaps: (1) the sim-to-real gap, where real-world systems
exhibit latency and other physical imperfections not captured in simulation; and (2)
the interaction gap, where policies trained purely offline face out-of-distribution
(OOD) issues during online execution, as collecting new interaction data is costly
or risky. As a result, agents must generalize from static, delay-free datasets into
dynamic, delay-prone environments. In this work, we propose DT-CORL (Delay-
Transformer belief policy Constrained Offline RL), a novel framework for learning
delay-robust policies solely from static, delay-free offline data. DT-CORL intro-
duces a transformer-based belief model to infer latent states from delayed obser-
vations and jointly trains this belief with a constrained policy objective, ensuring
that value estimation and belief representation remain aligned throughout learning.
Crucially, our method does not require access to delayed transitions during training
and outperforms naive history-augmented baselines, state-of-the-art delayed RL
methods, and existing belief-based approaches. Empirically, we demonstrate that
DT-CORL achieves strong delay-robust generalization across both locomotion and
goal-conditioned tasks in the D4RL benchmark under varying delay regimes. Our
results highlight that joint belief-policy optimization is essential for bridging the
sim-to-real latency gap and achieving stable performance in delayed environments.

1 INTRODUCTION

Real-world autonomy, ranging from embodied assistants to autonomous robots (Jiao et al., 2024;
Wang et al., 2023a;b; Wei et al., 2017; Zhan et al., 2024), routinely faces observation and actuation
delays, where sensing lags and control commands arrive late due to computation or communica-
tion (Cao et al., 2020; Mahmood et al., 2018; Sun et al., 2022). Such delays violate the Markov
assumption and cause severe performance degeneration. Existing solutions often approximate the
problem with Delayed Differential Equations (DDEs) (Bellen & Zennaro, 2013; Zhu et al., 2021) or
augmented MDPs (Altman & Nain, 1992).

Collecting online interaction data under delayed dynamics is unsafe, costly, or impractical (Li et al.,
2023; Yang et al., 2024; Zou et al., 2015). In contrast, many systems already provide large delay-
free datasets from simulators or legacy controllers (Fu et al., 2020; Mu et al., 2021), which omit
deployment-time latencies. This mismatch is especially pronounced in various applications: simula-
tions and idealized hardware logs (Makoviychuk et al., 2021; Krishnan et al., 2021) are delay-free,
whereas real platforms, such as drones, warehouse manipulators, cloud-robot systems, or even high-
frequency trading pipelines, inevitably suffer delays from computation and communication (Gupta &
Chow, 2009). Since collecting trajectories with realistic delays is infeasible, the key challenge is to
leverage delay-free data while ensuring robustness to delayed dynamics at deployment. Consequently,
we investigate the following question:

How can we train a robust policy offline—using only pre-collected, delay-
free trajectories—so that it performs reliably when executed in a delayed
real-world environment?

This question extends to two pressing needs: (i) leveraging static offline data without further interac-
tion with the environment (offline RL), and (ii) robustly coping with latency at online deployment

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(delayed RL). Achieving both simultaneously promises safer development cycles, reduced sample
complexity, and smoother sim-to-real transfer for latency-sensitive robotic and autonomous systems.

Delayed RL arises when perceptual or actuation latencies break the Markov property, forcing agents
to reason over the gap between true system states and delayed observations. Existing solutions fall
into two categories. State augmentation methods (Kim et al., 2023; Liotet et al., 2022; Wu et al.,
2024b;a) extend the state with stacked histories, but incur severe sample inefficiency as dimensionality
grows. Belief-state methods (Chen et al., 2021; Karamzade et al., 2024; Wu et al., 2025) compress
histories into latent beliefs, yet are prone to compounding prediction errors and distribution mismatch
when deployed. In parallel, offline RL (Levine et al., 2020) trains policies from static datasets
without online interaction, but struggles to balance conservatism against effective generalization,
often yielding cautious or suboptimal behavior. When delay handling is combined with offline
training, these difficulties intensify. Naive augmentation produces artificial delay distributions that
are poorly covered by static data, leading to extreme sample inefficiency and dimensional blow-
up. Meanwhile, policies and belief models trained separately offline lack corrective feedback: at
deployment, even minor distribution shifts force the policy to query unseen state–action pairs, where
the frozen belief module must extrapolate. Errors then accumulate step by step, compounding over
long horizons and causing rapid performance collapse.

In this work, we propose DT-CORL (Delay-aware Transformer-belief Constrained Offline RL), a
novel belief-based framework explicitly designed to tackle the compounded challenges arising in the
offline delayed RL setting. By employing a transformer to infer compact belief states, DT-CORL
reformulates policy-constrained offline learning in delayed MDPs as standard MDP optimization,
enabling delay-robust policies to be trained directly from delay-free data. This end-to-end formulation
both improves sample efficiency and belief model expectation during training, thereby sidestepping
the distribution-mismatch and compounding-error issues that plague original belief-state pipelines.
Empirically, comprehensive experiments on the D4RL suite (Fu et al., 2020) across various delay
scenarios—including varying delay lengths, deterministic delays, and stochastic delays—consistently
confirm the superiority of DT-CORL over baseline methods, encompassing SOTA online delayed RL
methods, augmented-state approaches, and belief-based methods (i.e., direct integration of pretrained
belief models with offline RL algorithms).

In Sec. 2,we review related literature. In Sec. 3, we introduce the necessary background and
assumptions on delayed Markov decision processes (MDPs). In Eq. (1), we explicitly define the offline
delayed RL problem and the corresponding policy-iteration constrained optimization formulation in
the augmented delayed MDP. In Sec. 4.1, we provide theoretical connection between the above policy
optimization formulation and belief-based constrained policy iteration. Then, in Sec. 4.2, we present
our proposed DT-CORL framework, illustrating practical implementation details of our algorithm.
Comprehensive empirical evaluations are presented in Sec. 5. Finally, we conclude with a discussion
of findings and implications in Sec. 6.

2 RELATED WORK

Delayed RL. Delayed reinforcement learning arises in domains such as high-frequency trad-
ing (Hasbrouck & Saar, 2013) and transportation (Cao et al., 2020). While reward delay has been
extensively analyzed (Arjona-Medina et al., 2019; Han et al., 2022; Zhang et al., 2023), we focus
on the more challenging observation/action delay. Existing solutions follow two main strategies.
Augmentation-based methods restore the Markov property by stacking the past ∆ actions (and
sometimes states), then learning policies in the enlarged state space. Examples include DIDA (Liotet
et al., 2022), DC/AC (Bouteiller et al., 2020), ADRL and BPQL (Kim et al., 2023; Wu et al., 2024b),
which bootstrap from small-delay tasks, and VDPO (Wu et al., 2024a), which frames delayed control
as a variational inference problem. Their weakness is structural: the augmented dimension grows
linearly with ∆, causing sample inefficiency and poor scalability. Belief-based methods instead
compress histories into latent states and act in the original space. DATS performs Gaussian filter-
ing (Chen et al., 2021), D-Dreamer builds recurrent world models (Karamzade et al., 2024), D!-SAC
uses causal-transformer attention (Liotet et al., 2021), and DFBT applies sequence-to-sequence
transformers to reduce compounding error (Wu et al., 2025). These approaches are more compact,
but still accumulate belief error over long rollouts and face distribution mismatch when deployed.
All of the above methods assume online interaction with a delayed environment. Aside from some
imitation-style studies that pre-train on delay-free logs and then fine-tune online (Liotet et al., 2022;

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Chen et al., 2021), we are unaware of any work that learns delay-robust policies offline using only
delay-free data.

Offline RL and Online Adaptation. Offline reinforcement learning seeks to train high-performing
policies from fixed datasets without further interaction, addressing safety and data-collection con-
straints in domains such as robotics, healthcare, and recommendation systems (Levine et al., 2020).
Early approaches emphasized value conservatism—for instance, CQL (Kumar et al., 2020) and
IQL (Kostrikov et al., 2021) penalize Q-values of out-of-distribution (OOD) actions to prevent
overestimation. Complementary policy-constraint methods such as BRAC (Wu et al., 2019) and
TD3,+BC (Fujimoto & Gu, 2021) regularize the learned policy toward the behavior policy to remain
within dataset support. While these strategies reduce OOD failure, they can still yield suboptimal
policies if the dataset lacks trajectories near the optimum. To address this, offline-to-online (hybrid)
methods bootstrap from an offline policy and fine-tune with limited online data, e.g., AWAC (Nair
et al., 2020), Conservative Fine-Tuning (Nakamoto et al., 2023), and Hy-Q (Song et al., 2022).
Other work seeks to bridge mismatches between simulators and the real world (Feng et al., 2023;
Niu et al., 2022; Tiboni et al., 2023), but none address the equally important challenge of delay
gaps—when offline data is delay-free while deployment involves delayed dynamics. This challenge
echoes classic control theory, where time-delay compensation has been studied for decades. The
Smith Predictor (Smith, 1957), for example, optimizes a controller on a delay-free internal model and
predicts the “present” plant output to counteract runtime delays (Normey-Rico & Camacho, 2007;
Grimholt & Skogestad, 2018). Such techniques are widely used in industry precisely because they
leverage delay-free models to operate reliably under delayed dynamics (Thomas et al., 2020; Mejía
et al., 2022; Moraes et al., 2024). In a similar spirit, our setting seeks to learn from delay-free offline
data while ensuring robustness at deployment in delayed environments.

3 PRELIMINARIES AND PROBLEM FORMULATION

MDP. An RL problem is typically formulated as a finite-horizon Markov Decision Process (MDP),
defined by the tuple ⟨S,A,P, r,H, γ, ρ0⟩(Sutton et al., 1998). Here, S denotes the state space, A the
action space, P : S ×A× S → [0, 1] the probabilistic transition kernel, r : S ×A → R the reward
function, H the horizon length, γ ∈ (0, 1) the discount factor, and ρ0 the initial state distribution. At
each timestep t, given the current state st ∈ S, the agent selects an action at ∼ π(·|st) according to
policy π : S × A → [0, 1]. Subsequently, the MDP transitions to the next state st+1 ∼ P(·|st, at),
and the agent receives a scalar reward rt := r(st, at). We further introduce several mild assumptions
commonly adopted in the RL literature (Liotet et al., 2022; Rachelson & Lagoudakis, 2010):
Definition 3.1 (Lipschitz Continuous Policy (Rachelson & Lagoudakis, 2010)). A stationary
Markovian policy π is Lπ-LC if for all s1, s2 ∈ S,

W1 (π(·|s1), π(·|s2)) ≤ Lπ dS(s1, s2).

Definition 3.2 (Lipschitz Continuous MDP (Rachelson & Lagoudakis, 2010)). An MDP is
(LP , LR)-Lipschitz Continuous (LC) if for all (s1, a1), (s2, a2) ∈ S ×A,

W1 (P(·|s1, a1), P(·|s2, a2)) ≤ LP (dS(s1, s2) + dA(a1, a2)) ,

|r(s1, a1)− r(s2, a2)| ≤ LR (dS(s1, s2) + dA(a1, a2)) ,

whereW1 is L1-Wasserstein distance.
Definition 3.3 (Lipschitz Continuous Q-function (Rachelson & Lagoudakis, 2010)). Consider an
(LP , LR)-LC MDP and an Lπ-LC policy π. If the discount factor γ satisfies γLP(1 + Lπ) < 1,
then the action-value function Qπ is LQ-Lipschitz continuous for some finite constant LQ > 0.

Delayed MDP. A delayed RL problem can be reformulated as a delayed MDP with Markov prop-
erty based on the augmentation approaches (Altman & Nain, 1992). Assuming the delay being
∆, the delayed MDP is denoted as a tuple ⟨X ,A,P∆, r∆, H, γ, ρ∆⟩, where the augmented state
space is defined as X := S × A∆ (e.g., an augmented state xt = {st−∆, at−∆, · · · , at−1} ∈
X), A is the action space, the delayed transition function is defined as P∆(xt+1|xt, at) :=

P(st−∆+1|st−∆, at−∆)δat(a
′
t)
∏∆−1

i=1 δat−i(a
′
t−i) where δ is the Dirac distribution, the delayed

reward function is defined as r∆(xt, at) := Est∼b(·|xt) [r(st, at)] where b is the belief function de-
fined as b∆(st|xt) :=

∫
S∆

∏∆−1
i=0 P(st−∆+i+1|st−∆+i, at−∆+i)dst−∆+i+1, the initial augmented

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

state distribution is defined as ρ∆ = ρ
∏∆

i=1 δa−i
. Noted that delayed RL is not necessarily only

observational delay, there could be action delay as well. However, it has been proved that action-
delay formulated delay RL problem is a subset of observation-delay RL problem (Katsikopoulos &
Engelbrecht, 2003). Thus, without loss of generality, we only consider the general observation delay
in the remainder of the paper.

Problem Formulation. We consider the offline delayed RL setting in which the agent learns
solely from a pre-collected static dataset, D = {(sit, ait, rit, sit+1)}Ht=0, i = 1, . . . ,K}, consisting of
K trajectories collected by the behavior policy µ in a delay-free environment (e.g., a simulator or
other idealized demonstration system). At deployment, however, the policy operates under delayed
feedback, where observations and rewards arrive after either a fixed latency of ∆ steps, or a variable
latency bounded by ∆, which we treat as an effective fixed delay–a common simplification in
control settings. In offline learning under this delayed MDP formulation, the agent must construct
augmented state–action pairs from the delay-free dataset D, enabling training in the delayed setting
without new environment interaction. However, standard offline RL methods suffer from out-of-
distribution (OOD) generalization issues when the learned policy queries actions not well-covered in
D (Levine et al., 2020). To address this, policy-constrained approaches such as BRAC (Wu et al.,
2019) and ReBRAC (Tarasov et al., 2023a) enforce similarity between the learned policy and the
dataset’s behavior policy, often by bounding a divergence measure D(π, µ). This motivates the
policy-constrained learning objective under the delayed MDP:

Q̂π∆

∆ ← argmin
Q∆

E(x,a,x′)∼D

[(
Q∆(x, a)−

(
r∆(x, a) + γEa′∼π∆(·|x′)Q∆(x

′, a′)
))2]

(1)

πk+1
∆ ← argmax

π∆

Ex∼D

[
Ea∼π∆(·|x)[Q̂

π∆

∆ (x, a)]
]

s.t. D(π∆, µ∆) ≤ ϵ (2)

Here, Q∆ is the action-value function defined over augmented states, and µ∆ is the dataset’s behavior
policy lifted to the augmented space. The constraint margin ϵ controls the allowable divergence
between the learned policy π∆ and µ∆, mitigating OOD queries in the offline setting.

4 OUR APPROACH

We now present the DT-CORL, a novel offline RL framework for adapting online delayed feedback.
DT-CORL integrates transformer-based belief modeling with policy-constrained offline learning to
address the challenges outlined in previous sections. This section describes how we construct delay-
compensated belief representations, train a policy using belief prediction, and incorporate policy
regularization to ensure effective deployment under delay. Specifically, we introduce a belief-based
policy-iteration framework that infers latent, delay-compensated states through a belief function,
providing a compact and semantically grounded alternative. Then, we provide detailed algorithmic
implementations. We further support this approach with a learning efficiency discussion to explain its
efficiency benefits compared with the augmented approach.

4.1 BELIEF-BASED POLICY ITERATION

While the augmented-state formulation restores the Markov property in delayed MDPs, applying
policy iteration in this space introduces key drawbacks, particularly under the offline setting. First, the
effective state dimension grows from |S| to |S||A|∆, increasing sample complexity and demanding
significantly more data for reliable learning. Second, augmented trajectories reconstructed from
delay-free datasets may not reflect the true delayed trajectories possibly happened online, leading to
distribution mismatch and unstable value estimates. Lastly, treating action-history sequences as part
of distinct augmented state inputs potentially discards some possible temporal order info, reducing
sample efficiency and increasing overfitting risk. Therefore, trying to mitigate above problems, we
propose our belief-based policy iteration framework, which essentially cast original augmented state
space problem back into original state space via belief estimation to preserve temporal alignment
introduce by potential online delay. Following the BRAC framework (Wu et al., 2019), we first
convert previously-defined constrained optimization to the unconstrained formulation for ease of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

optimization, where α1 and α2 are regularized constant.

Q̂π∆

∆ ← argmin
Q∆

E(x,a,x′)∼D

[
(Qπ∆

∆ (x, a)− (r∆(x, a) + γEa′∼πk
∆(·|x) [Q

π∆

∆ (x′, a′)]− α1 ·D(πk
∆, µ∆)))

2
]

πk+1
∆ ← argmax

π∆

Ex∼D

[
Ea∼π∆(·|x)

[
Q̂π∆

∆ (x, a)
]
− α2 ·D(π∆, µ∆)

]
Moving forward, we need to map the delayed policy π∆ and its Q function Q̂π

∆ back to the delay-free
counterparts π and Qπ via the belief distribution b∆(s |x) introduced in Sec. 3. This requires (i)
quantifying the performance gap between π∆ and its belief-induced policy π, and (ii) relating the
augmented value Q̂π

∆(x, a) to the Qπ(ŝ, a) with ŝ ∼ b∆(·|x). Noted, throughout the remainder of
this section we measure these discrepancies with the 1-Wasserstein distance (Villani et al., 2008).
Lemma 4.1 (Delayed Performance Difference Bound (Wu et al., 2024b)). For policies π∆τ and π∆,
with ∆τ < ∆. Given any x ∈ X , if Q∆τ is LQ-LC, the performance difference between policies can
be bounded as follows:

E
x̂τ∼b∆(·|x)

a∼π∆(·|x)

[V∆τ (x̂τ)−Q∆τ (x̂τ , a)] ≤ LQ E
x̂τ∼b∆(·|x)

[W1(π∆τ (·|x̂τ)||π∆(·|x))]

Lemma 4.2 (Delayed Q-value Difference Bound(Wu et al., 2024b)). For policies π∆τ and π∆, with
∆τ < ∆. Given any x ∈ X , if Q∆τ is LQ-LC, the corresponding Q-value difference can be bounded
as follows:

E
a∼π∆(·|x)

x̂τ∼b∆(·|x)

[Q∆τ (x̂τ , a)−Q∆(x, a)] ≤
γLQ

1− γ
E

x̂τ∼b∆(·|x)
x′∼P∆(·|x,a)
a∼π∆(·|x)

[W1(π∆τ (·|x̂τ)||π∆(·|x))]

Above two lemmas provide the exact quantification required. Moving along, we can convert π∆

and Qπ∆

∆ back to π and Qπ. And, we can arrive the new policy-iteration framework in the original
state space bridging by the belief function b∆ as follows, where λ1 and λ2 are constants and µ∆

is the behavior policy after data augmentation. Specific derivation from augmented offline PI to
belief-based PI in Eq. (3) and Eq. (4) can be found in App. B.1.

Q̂π ← argmin
Q

E(x,a,x′)∼D

[(
Eŝ∼b∆(·|x)

[
Qπ(ŝ, a)

]
−(

Eŝ∼b∆(·|x)
[
r(ŝ, a)

]
+ γ Eŝ′∼b∆(·|x′)

a′∼π(·|ŝ′)

[
Qπ(ŝ′, a′)

]
− λ1W1

(
π, µ∆

)))2]
(3)

πk+1 ← argmax
π

Ex∼D

[
Eŝ∼b∆(·|x)

a∼π(·|ŝ)

[
Q̂π(ŝ, a)

]
− λ2W1(π, µ∆)

]
(4)

Proposition 4.3. Let the policy before and after the update in Eq. (4) be πold and πnew. Then after
each policy evaluation in Eq. (3), we have Eā∼πnew [Qπnew(s, ā)] ≥ Eâ∼πold

[Qπold(s, â)].

Above proposition proves that iteratively applying Eq. (3) and Eq. (4) will monotonically increase Q
value after update. Detailed proof can be found in App. B.2.
Remark 4.4. For deterministic MDP, b∆ is also deterministic, meaning that Eŝ∼b∆(·|x) [r(ŝ, a)] =
r∆(x, a) and Eŝ∼b∆(·|x) [Q

π(ŝ, a)] = Qπ∆

∆ (x, a). Since b∆ becomes an injection mapping under
this setting, Eŝ∼b∆(·|x) [r(ŝ, a)] = r(s, a) should also hold. Thus, we can directly leverage existing
offline delay-free data tuples for update, except for the policy related terms.
A seemingly simpler alternative is a two–stage pipeline: (i) train a belief model offline; (ii) freeze
it and apply any delay-free offline-RL algorithm to the original delay-free samples, deploying the
resulting policy with that fixed belief function. This strategy, however, suffers from several drawbacks
that DT-CORL avoids. (i) Biased value targets. In DT-CORL, the Bellman target in Eq. (3) is
computed through the belief b∆(·|x), so the critic learns on exactly the latent states the policy will
later encounter. By contrast, the two–stage method treats the filter as error-free; residual belief error
becomes unmodelled noise, forcing the critic to fit a moving target and biasing the learned Q-values.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Delayed
Environment

Online Adaption

Agent

𝑎!

Transformer
Belief 𝑠̂!"△$%

Policy Inference
𝑠̂!"%

Prediction

…

Delayed Feedback

𝑠̂!"△$%

𝑠̂!"%

…

𝑠!"△

𝑎!"%

…

Offline Training

Trajectory
Buffer

Belief Pretrain

Belief PI

Actor Critic

Figure 1: Overall pipeline of DT-CORL. In the Offline Training phase, trajectory data are augmented
to train the transformer belief, and with the trained transformer belief, we conduct belief-based PI in
the offline setting. In the Online Adaptation, we utilize the transformer belief to predict the current
state from delayed observation, and adapt with offline-trained policy.

(ii) Distribution mismatch. Because the critic of the two-stage baseline is trained under (s, a)∼D
while the policy, evaluated through the frozen belief, quickly drifts to new action choices, the training
and deployment distributions diverge. This mismatch is magnified in delayed environments and
leads to sub-optimal returns, a phenomenon confirmed in our experiments (see Sec. 5). (iii) Inferior
sample efficiency in stochastic MDPs. For stochastic dynamics, each offline tuple (s, a, r, s′) reveals
only a single next state, whereas DT-CORL reuses the same transition to generate ∆ latent states
along the belief rollout, extracting richer supervision. Similar gains from “multiple synthetic samples
per transition” have been observed in model-based offline RL (Kidambi et al., 2020; Yu et al., 2020).
In short, embedding belief prediction inside the policy-iteration loop both contains model error and
keeps the critic, policy, and belief model aligned—benefits a frozen two-stage pipeline cannot match,
in addition to avoiding the dimensional explosion of raw state augmentation.
Remark 4.5. Existing work has compared the sample-complexity of augmentation- and belief-based
methods in the online delayed-RL setting (Wu et al., 2024a;b). The same intuition should carry over
to offline learning, but a formal analysis would require assumptions—e.g., uniform data-coverage,
linear value realizability, and bounded rewards—that are standard in statistical offline-RL theory (Bai
et al., 2022; Shi et al., 2022; Xie et al., 2021) yet do not hold in our setting. Establishing tight offline
bounds without these restrictive conditions is therefore an open problem that we leave for future.

4.2 PRACTICAL IMPLEMENTATION

Belief Prediction. The belief prediction can be taken as a dynamic modeling problem. With a given
offline trajectory {(st, at, rt, st+1)}Ht=0, we can manually create the augmented state by stacking
states and actions in ∆ steps from start to end, where xt = {st−∆, at−∆, at−∆+1, · · · , at−1} and
the true state is st. Thus, the problem becomes training a belief function b∆ which takes in xt and
predict st. To reduce the potential compounding loss from belief prediction, we employ a transformer
structure (Vaswani et al., 2017; Wu et al., 2025), where with the given augmented state xt transformer
predicts a sequence from ŝt−∆+1 to ŝt. Based on the deterministic or stochastic nature of MDP,
the transformer belief is updated with either MSE or MLE objectives. We validate the choice of
transformer architecture in Sec. 5.3.

Belief-based Policy Optimization. Although many offline RL methods regularize the policy
with KL, MMD, or Wasserstein distances (Levine et al., 2020; Wu et al., 2019), computing these
divergences exactly is costly. Following the pragmatic approach of TD3 +BC and ReBRAC (Fujimoto
& Gu, 2021; Tarasov et al., 2023a), we approximate the policy-behavior divergence by the mean-
squared error between actions sampled from the learned policy and the augmented behavior policy.
The policy-improvement step therefore, becomes

πk+1 = argmax
π

E(x,a)∼D

[
Eŝ∼b∆(·|x)

â∼π(·|ŝ)

[
Q̂πk

(ŝ, â)
]
− α

∥∥a− â
∥∥2
2

]
where α > 0 trades off exploitation and conservatism. This surrogate avoids training an explicit
delay-augmented behavior model while retaining a simple quadratic penalty that is trivial to compute
in continuous control. Besides, for deterministic MDPs the immediate reward r(st, at) can be

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Normalized returns (%) on D4RL AntMaze tasks under deterministic and stochastic observa-
tion delays ∆ ∈ {4, 8, 16}. Results are averaged over 3 seeds. Best per column (including ties) is
shown in bold with a light blue background.

Setting Method umaze umaze-diverse medium-play large-play

4 8 16 4 8 16 4 8 16 4 8 16

Deterministic

DBPT-SAC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Augmented-BC 60.7 62.3 31.0 69.0 58.7 30.0 0.0 1.67 1.0 0.0 0.3 0.0
Augmented-CQL 72.3 44.0 12.7 27.7 23.7 22.0 0.33 1.67 4.67 0.0 1.33 0.67
Augmented-COMBO 76.0 37.0 13.3 26.0 19.0 23.0 6.33 5.67 3.0 0.0 1.33 1.0
DT-CORL 83.3 76.7 40.0 65.3 62.0 32.0 1.33 2.33 2.33 0.0 0.33 0.67

Stochastic

DBPT-SAC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Augmented-BC 60.3 55.7 24.7 59.7 51.7 40.7 1.33 2.33 2.0 0.0 0.67 0.0
Augmented-CQL 61.3 37.0 12.7 29.3 17.3 13.3 8.0 9.67 5.67 1.33 1.0 0.33
Augmented-COMBO 64.7 36.7 13.3 32.7 15.0 12.7 8.67 7.67 3.67 0.67 1.33 1.0
DT-CORL 88.3 88.0 67.3 74.0 58.3 56.0 2.00 2.67 3.33 0.0 1.67 1.67

read directly from the dataset, so no separate reward model is required (cf. Eq. (3), Eq. (4), and
Remark 4.4).

Online Adaptation. At deployment time, we maintain a circular action buffer of length ∆, initial-
ized with random actions drawn from A. At timestep t the agent receives the delayed observation ot
from the plant, appends the most recent action at−1 to the buffer, and forms the augmented input
xt = {ot, at−∆, . . . , at−1}. This sequence is passed to the trained belief transformer, which returns
a delay-compensated state estimate ŝt. The policy π(· | ŝt) then selects the next action at. During
the first ∆ steps (and symmetrically near episode termination), the buffer is not yet full. We handle
these boundary conditions by inserting a special [MASK] token for missing actions and enabling
the transformer’s built-in masking mechanism, ensuring consistent state prediction throughout the
episode. Detailed neural network structures and hyper-parameters can be found in App. D.

5 EXPERIMENTS

To evaluate the effectiveness of our approach, we conduct experiments on the standard D4RL
benchmark suite, including both MuJoCo locomotion and AntMaze goal-conditioned tasks. Our
experimental analysis highlights two primary advantages of DT-CORL. First, we demonstrate that
our method significantly outperforms both traditional offline RL algorithms with state augmentation
adaptation and the SOTA Online delay-robust RL algorithm. Second, we show that DT-CORL
surpasses hybrid approaches that combine separately trained delay-belief models with existing
offline RL algorithms, underscoring the benefit of belief-involved policy evaluation. In our ablation
studies, we examine how trajectory availability impacts performance and compare alternative belief
architectures, including ensemble MLPs and diffusion-based predictors, to validate the choice of the
transformer-based belief model.

5.1 ANTMAZE

We benchmark DT-CORL on the AntMaze goal-conditioned tasks from the D4RL offline RL suite (Fu
et al., 2020; Todorov et al., 2012). Since no existing method is designed to learn a delay-robust policy
solely from delay-free offline data, we construct two baseline methods for comparison: (i) Augmented-
BC, which applies standard behavioral cloning (Torabi et al., 2018) in a ∆-step augmented state space;
and (ii) Augmented-CQL, which runs Conservative Q-Learning (Kumar et al., 2020) on the same
augmented state representation. Additionally, we compare DT-CORL against a model-based offline
RL baseline, Augmented-COMBO (Yu et al., 2021), and the state-of-the-art delay-robust RL algorithm
DBPT-SAC (Wu et al., 2025). We evaluate all methods on four standard AntMaze environments:
medium-play, large-play, umaze-diverse, and umaze. For both deterministic and
stochastic delay settings, we test on 4, 8, and 16 steps of delay respectively. For stochastic delay,
it means that the delay at each step follows a uniform distribution, ∆ ∈ U(1, k), k ∈ {4, 8, 16}.
From Table 1, online delayed RL methods such as DBPT-SAC collapse under the offline setting,
confirming online methods’ incompatibility with offline setting. In umaze and umaze-diverse,
DT-CORL consistently outperforms all baselines and shows far less degradation as delay length
increases, whereas augmentation-based methods deteriorate sharply. On the harder medium-play

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: DT-CORL vs. belief-based baselines (Belief-CQL, Belief-IQL) on D4RL MuJoCo tasks.
Normalized returns (%). Delays: deterministic ∆ ∈ {4, 8, 16}, stochastic ∆ ∼ U(1, k), k ∈
{4, 8, 16}. Best results per column are shown in bold with light blue background.

Task Method medium med-expert med-replay expert
4 8 16 4 8 16 4 8 16 4 8 16

Deterministic Delays

Hopper
IQL 5.3 5.8 4.8 5.5 6.4 5.3 5.8 6.4 2.4 4.5 9.0 5.6
CQL 8.2 4.3 4.3 7.3 3.4 5.9 8.6 4.4 6.1 7.9 3.9 4.1
Belief-IQL 27.7 29.3 25.4 26.7 26.6 24.7 24.7 25.5 23.4 18.7 17.4 15.9
Belief-CQL 75.4 56.8 42.9 92.9 39.5 35.2 110.1 99.7 96.6 81.1 43.3 45.9
DT-CORL 79.4 85.0 71.8 113.0 112.2 109.9 99.4 100.8 100.2 112.9 113.1 112.2

HalfCheetah
Belief-IQL 30.8 10.6 5.3 24.8 6.1 3.3 23.3 13.8 9.7 6.8 4.8 3.6
Belief-CQL 49.2 8.9 3.0 22.7 6.5 1.5 36.1 14.4 6.4 1.5 1.5 1.5
DT-CORL 47.4 27.8 6.4 44.7 21.3 8.7 43.6 27.1 7.9 20.6 5.1 5.2

Walker2d
Belief-IQL 33.4 25.7 24.6 49.6 17.3 16.4 28.2 20.6 18.3 25.5 19.9 16.7
Belief-CQL 87.0 64.1 39.2 105.8 99.5 51.0 93.3 93.5 61.0 111.1 110.8 97.7
DT-CORL 87.4 87.6 86.8 112.1 112.0 118.1 93.6 90.5 88.1 110.9 111.2 110.5

Stochastic Delays

Hopper
IQL 8.3 6.0 12.9 9.4 6.4 10.4 8.6 4.0 2.9 11.4 3.1 11.6
CQL 8.9 4.3 11.1 7.4 6.0 11.5 6.1 5.3 9.1 6.9 3.4 4.2
Belief-IQL 27.4 27.4 28.4 28.3 27.9 23.8 25.0 24.5 26.0 18.6 16.7 16.9
Belief-CQL 80.8 67.8 74.3 91.8 48.9 57.5 100.8 99.8 99.2 72.3 35.4 20.1
DT-CORL 78.5 72.1 79.3 113.6 112.7 85.4 99.4 100.1 98.8 113.2 112.8 113.1

HalfCheetah
Belief-IQL 33.4 31.2 21.6 31.1 16.3 8.2 24.9 20.0 15.3 13.1 9.2 4.3
Belief-CQL 52.6 46.6 16.2 48.0 22.1 3.6 47.1 41.4 19.7 6.5 2.8 1.7
DT-CORL 48.2 47.5 38.4 70.0 44.3 31.7 47.7 43.3 30.4 85.1 12.7 5.8

Walker2d
Belief-IQL 34.6 37.5 36.7 49.4 25.0 20.4 31.4 25.4 24.2 43.1 27.7 20.7
Belief-CQL 84.8 81.7 78.9 112.1 106.5 85.1 94.9 97.7 95.3 111.1 111.1 109.6
DT-CORL 86.8 87.4 87.0 114.1 113.6 111.5 93.0 90.9 91.8 110.9 110.9 110.5

and large-play tasks, overall performance for all methods remains low; the poor results across
methods suggest that additional goal-conditioned modifications may be required. Overall, DT-
CORL demonstrates stronger robustness to increasing delays than augmentation-based baselines.
We also observe that augmentation-based methods degrade more under stochastic delays, as the
additional randomness introduces variance that destabilizes policy learning. In contrast, our belief-
based approaches exhibit the opposite trend: the reduced sample complexity and improved temporal
prediction allow them to benefit from the effectively shorter delays under stochastic settings. We
further justify our method’s superiority under various environments in additional MuJoCo tasks.
Detailed results can be found in Table 7 and Table 8.

5.2 BELIEF-BASED COMPARISON

To justify the effectiveness of incorporating belief estimation in offline policy optimization, we
compare our method DT-CORL with the following baselines: (i) Offline RL, naive implementations
of CQL and IQL without any delayed adaption. (ii) Belief-CQL, which feeds the CQL algorithm
the transformer belief used by DT-CORL instead of raw augmentation. (iii) Belief-IQL, which
runs Implicit Q-Learning Kostrikov et al. (2021) with the same delayed belief above. We test all
methods on D4RL MuJoCo suite following the medium, medium-expert, medium-replay,
and expert trajectory setting. For both deterministic and stochastic delay, we adopt the setting
described in the previous subsection. From Table 2, we can tell the clear performance gap between
other naive belief-based methods and DT-CORL, and the ineffectiveness of naive CQL and IQL
under our delayed setting. Belief-IQL relies heavily on implicit Q-learning updates, which are
sensitive to inaccuracies in the latent belief state. Specifically, IQL’s actor update weights actions by
ω = exp(A/λ), and under delayed/partial observations the same belief state carries noisy Q− V ;
tiny errors explode after the exponential, producing unstable, off-support policy updates. Thus,
without alignment between belief learning and policy training, small belief prediction errors can
lead to large value overestimation or underestimation, which end up with poor performance of
Belief-IQL across all the scenarios. In Belief-CQL, the Q-function is trained on the precomputed
belief embeddings. This decoupling leads to suboptimal value estimates, especially under long delays

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: Step-by-step detailed comparison of
prediction accuracy for different models.

2 4 6 8 10 12 14 16
Timestep

0

2

4

6

8

10

M
SE

 E
rr

or

Diffusion (Final: 0.157±0.137)
Transformer (Final: 0.315±1.063)
Ensemble (Final: 11.790±79.995)

Model Total Parameters (M) Inference (ms)

Ensemble MLP 1.80 69.50±2.86
Transformer 7.87 22.27±9.02
Diffusion 3.96 665.21±55.5

Table 3: Comparison of total parameters (M)
and inference speed (ms) for each model up to
16 steps.

Data DT-CORL Belief-CQL Aug-CQL

25% 9.8 3.08 2.47
50% 12.0 3.80 2.80
75% 15.3 4.05 3.89
100% 27.8 8.90 3.80

Table 4: Performance of DT-CORL un-
der different data availability levels for the
HalfCheetah-medium-v2.

where belief inaccuracies compound. This tendency can be spotted across various tasks with different
trajectory settings. DT-CORL aligns the belief prediction with downstream policy evaluation and
optimization, allowing both the transformer and Q-function to co-adapt under delayed feedback.
Besides, by conditioning the policy and critic on belief-derived latent states, DT-CORL mitigates the
delay-induced distribution shift more effectively than purely augmenting state spaces or pretraining
belief models.

5.3 ABLATION STUDIES

Why Transformer? In this subsection, we justify our choice of a transformer-based belief model by
comparing it against two common alternatives—ensemble MLPs and diffusion models. We evaluate
all models in the Hopper-medium setting, measuring (i) multi-step prediction accuracy (MSE up to
16 steps; Figure 2) and (ii) inference speed and parameter count (Table 3). All models are trained for
100 epochs on the same medium dataset and evaluated in the environment; implementation details
appear in App. D. Results (See Figure 2 and Table 3) highlight a clear trade-off: ensemble MLPs
are lightweight but accumulate error rapidly over long horizons, degrading belief quality; diffusion
models achieve strong accuracy but incur high computational cost due to iterative denoising. In
contrast, the transformer model provides the best balance, offering strong multi-step accuracy, stable
long-horizon predictions, and fast inference suitable for online deployment. Additional qualitative
prediction visualizations are included in App. C.1. In addition, we further analyze the impact of
transformer size on sample efficiency and prediction accuracy. Detailed experiments can also be
found in App. C.1 and Table 9.

Trajectories Availability. We next examine how offline data availability influences the performance
of DT-CORL and its baselines. Using the HalfCheetah-medium-v2 environment with a fixed
delay of 8 steps, we vary the proportion of the offline dataset available for training: 25As shown
in Table 4, all methods improve with more data, but DT-CORL consistently achieves the highest
returns across all data levels. Notably, the performance gap between DT-CORL and the belief-based
or augmentation-based baselines widens as more data becomes available, while those baselines show
only mild gains. These results indicate that DT-CORL not only maintains superior performance in
low-data regimes but also scales more effectively with additional data—highlighting the benefit of
jointly learning the belief model and policy within a unified framework.

Joint Training Benefits. To empirically validate this coupling, we compare DT-CORL against a
variant that uses a separately pretrained belief model with no further adaptation during policy learning.
As shown in Table 5, joint training consistently outperforms separate pretraining across all delay
settings in the Hopper suite—yielding significantly higher returns at both small and large delays. This
result confirms that joint optimization reduces offline-to-online distribution mismatch and enables the
belief model to specialize to the value function’s error landscape, providing substantially more stable
delayed-policy learning.

Delay Robustness. To assess DT-CORL’s reliability under challenging latency conditions, we
evaluate two robustness settings: (i) scaling to long-horizon delays (32–64 steps), and (ii) testing

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Joint vs. Separate Belief Training

Training Mode 4 8 16
Separate 92.1 / 91.7 81.4 / 87.4 68.3 / 73.1
DT-CORL 101.2 / 101.2 102.8 / 99.4 98.5 / 94.2

Table 6: DT-CORL Across Delay Distributions

Method Uniform Gauss Exp Binom
DT-CORL 79.3 82.1 85.8 77.4

4 8 16 32 64
Delay Steps

10

20

30

40

50

60

70

No
rm

al
ize

d
Re

tu
rn

 (%
)

Average Performance Across Tasks
Belief-IQL
Belief-CQL
DT-CORL

4 8 16
Delay Steps

0

20

40

60

80

100

Av
er

ag
e

No
rm

al
ize

d
Re

tu
rn

 (%
)

Adroit Hand: Performance vs Delay (Mean ± Std)
Aug-CQL
Belief-CQL
DT-CORL

(a) Average performance (b) Pen rotation (c) Open door (d) Hammer smash

Figure 3: (a) Describes the average performance of Aug-CQL, Belief-CQL, and DT-CORL across
three dexterous hand manipulation tasks (a)-(c) under various delay setting ranging from 4 to 16.

under alternative delay distributions that share the same expected delay but differ in variance and
temporal structure. All distributional experiments use Hopper-medium-v2, with maximum
delay fixed at 16 and Gaussian, exponential, binomial, and uniform delays parameterized to have
mean 8 for fair comparison. Top right figure shows average normalized return across the three
MuJoCo locomotion tasks as delays increase, averaged over deterministic and stochastic variants.
As expected, performance decreases with larger delays, highlighting the increased difficulty; full
results appear in Table 10 and App. C.1. From Table 6, we also observe that DT-CORL performs
robustly across different delay distributions—even without prior knowledge of the true online delay
process—demonstrating strong generalization of our belief estimation module.

5.4 DEXTEROUS MANIPULATION

To evaluate delay robustness in high-dimensional, contact-rich manipulation, we benchmark all
methods on the Dexterous Hand Manipulation suite (Zhu et al., 2019), using the expert demonstrations
provided and applying standard delay setting as before. These tasks involve discontinuous contacts,
multi-finger coordination, and highly sensitive state-action coupling, making delayed observation
particularly challenging. As shown in Fig. 3, DT-CORL consistently attains the highest performance
across all tested delay levels and exhibits substantially more graceful degradation compared to Aug-
CQL and Belief-CQL. This indicates that our belief model captures fine-grained temporal structure
that is critical for manipulation under latency. Full per-task results for Pen, Door, and Hammer appear
in Table 11, further highlighting DT-CORL’s robustness, particularly under for the Hammer task
where both augmented and belief-based baselines failed.

6 CONCLUSION

We presented DT-CORL, the first framework for offline-to-online delay adaptation that learns delay-
robust policies solely from delay-free data. By combining a transformer-based belief predictor with
conservative, behavior-regularized policy iteration, DT-CORL avoids the dimensional blow-up of
history augmentation while mitigating out-of-distribution errors common in offline RL. Experiments
on various tasks show consistent gains over both augmented-state and belief-based baselines, under
deterministic and stochastic delays. Looking forward, several extensions remain open. First, DT-
CORL currently assumes known, fixed delays; extending it to handle unknown, time-varying, or
heterogeneous delays is an important next step. Notably, such cases remain largely unaddressed in
both online and offline delayed RL. Second, scaling the approach to high-dimensional perceptual
domains such as vision-based manipulation may require spatial attention or structured world models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We affirm that all authors have read and adhere to the ICLR Code of Ethics. Our work does not
involve human or animal subjects, sensitive personal data, or privacy risks. The experiments are fully
based on public benchmarks (D4RL), with no proprietary or private datasets, ensuring transparency
and reproducibility. We used Large Language Models only for manuscript writing, formatting, and
routine data-processing; all algorithmic design, theoretical derivations, and experimental evaluations
are solely the work of the authors. There are no known immediate risks of misuse from our method;
however, we recognize that deployment in safety-critical systems under delays might require careful
calibration.

REPRODUCIBLE STATEMENT

To ensure reproducibility of all experimental results, we provide the following supporting mate-
rials and practices. The code implementing DT-CORL, including training scripts, belief model
architectures, and evaluation pipelines, has been made available in an anonymous repository
(https://anonymous.4open.science/status/DT-CORL-E6ED). All algorithmic as-
sumptions, hyperparameters (learning rates, network architectures, regularization weights, transformer
depth, etc.), and training settings are described in detail in Sec. 5 of the main paper, and additional
implementation details are given in App. D. The datasets used are standard benchmarks (D4RL
locomotion and AntMaze tasks). We report performance averaged over multiple random seeds. All
experiment results are listed in Sec. 5 and App. C.

REFERENCES

Eitan Altman and Philippe Nain. Closed-loop control with delayed information. ACM sigmetrics
performance evaluation review, 20(1):193–204, 1992.

Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brand-
stetter, and Sepp Hochreiter. Rudder: Return decomposition for delayed rewards. Advances in
Neural Information Processing Systems, 32, 2019.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. arXiv
preprint arXiv:2202.11566, 2022.

Alfredo Bellen and Marino Zennaro. Numerical methods for delay differential equations. Numerical
Mathematics and Scie, 2013.

Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, Christopher Pal, and Jonathan Binas. Rein-
forcement learning with random delays. In International conference on learning representations,
2020.

Zhiguang Cao, Hongliang Guo, Wen Song, Kaizhou Gao, Zhenghua Chen, Le Zhang, and Xuexi
Zhang. Using reinforcement learning to minimize the probability of delay occurrence in trans-
portation. IEEE transactions on vehicular technology, 69(3):2424–2436, 2020.

Baiming Chen, Mengdi Xu, Liang Li, and Ding Zhao. Delay-aware model-based reinforcement
learning for continuous control. Neurocomputing, 450:119–128, 2021.

Yunhai Feng, Nicklas Hansen, Ziyan Xiong, Chandramouli Rajagopalan, and Xiaolong Wang.
Finetuning offline world models in the real world. arXiv preprint arXiv:2310.16029, 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Chriss Grimholt and Sigurd Skogestad. Should we forget the smith predictor? In IFAC-PapersOnLine
(PID 2018), volume 51, pp. 769–774, Ghent, Belgium, 2018.

11

https://anonymous.4open.science/status/DT-CORL-E6ED

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rachana Ashok Gupta and Mo-Yuen Chow. Networked control system: Overview and research
trends. IEEE transactions on industrial electronics, 57(7):2527–2535, 2009.

Beining Han, Zhizhou Ren, Zuofan Wu, Yuan Zhou, and Jian Peng. Off-policy reinforcement learning
with delayed rewards. In International conference on machine learning, pp. 8280–8303. PMLR,
2022.

Joel Hasbrouck and Gideon Saar. Low-latency trading. Journal of Financial Markets, 16(4):646–679,
2013.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and JoÃG, o GM AraÃšjo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

Ruochen Jiao, Yixuan Wang, Xiangguo Liu, Simon Sinong Zhan, Chao Huang, and Qi Zhu.
Kinematics-aware trajectory generation and prediction with latent stochastic differential mod-
eling. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
565–572. IEEE, 2024.

Armin Karamzade, Kyungmin Kim, Montek Kalsi, and Roy Fox. Reinforcement learning from
delayed observations via world models. arXiv preprint arXiv:2403.12309, 2024.

Konstantinos V Katsikopoulos and Sascha E Engelbrecht. Markov decision processes with delays
and asynchronous cost collection. IEEE transactions on automatic control, 48(4):568–574, 2003.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

Jangwon Kim, Hangyeol Kim, Jiwook Kang, Jongchan Baek, and Soohee Han. Belief projection-
based reinforcement learning for environments with delayed feedback. Advances in Neural
Information Processing Systems, 36:678–696, 2023.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

Srivatsan Krishnan, Behzad Boroujerdian, William Fu, Aleksandra Faust, and Vijay Janapa Reddi.
Air learning: a deep reinforcement learning gym for autonomous aerial robot visual navigation.
Machine Learning, 110(9):2501–2540, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179–1191, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martín-
Martín, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, et al. Behavior-1k: A
benchmark for embodied ai with 1,000 everyday activities and realistic simulation. In Conference
on Robot Learning, pp. 80–93. PMLR, 2023.

Pierre Liotet, Erick Venneri, and Marcello Restelli. Learning a belief representation for delayed
reinforcement learning. In 2021 International Joint Conference on Neural Networks (IJCNN), pp.
1–8. IEEE, 2021.

Pierre Liotet, Davide Maran, Lorenzo Bisi, and Marcello Restelli. Delayed reinforcement learning by
imitation. In International Conference on Machine Learning, pp. 13528–13556. PMLR, 2022.

A Rupam Mahmood, Dmytro Korenkevych, Brent J Komer, and James Bergstra. Setting up a
reinforcement learning task with a real-world robot. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 4635–4640. IEEE, 2018.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Carlos Mejía, Estefanía Salazar, and Oscar Camacho. A comparative experimental evaluation of
various smith predictor approaches for a thermal process with large dead time. Alexandria Engi-
neering Journal, 61(12):9377–9394, 2022. ISSN 1110-0168. doi: https://doi.org/10.1016/j.aej.
2022.03.047. URL https://www.sciencedirect.com/science/article/pii/
S1110016822002216.

Tiago A. Moraes, Moisés T. da Silva, and Thiago A. M. Euzébio. Delay compensation in a
feeder–conveyor system using the smith predictor: A case study in an iron ore processing
plant. Sensors, 24(12), 2024. ISSN 1424-8220. doi: 10.3390/s24123870. URL https:
//www.mdpi.com/1424-8220/24/12/3870.

Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xuanlin Li, Stone Tao, Zhiao Huang, Zhi-
wei Jia, and Hao Su. Maniskill: Generalizable manipulation skill benchmark with large-scale
demonstrations. arXiv preprint arXiv:2107.14483, 2021.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning.
Advances in Neural Information Processing Systems, 36:62244–62269, 2023.

Haoyi Niu, Yiwen Qiu, Ming Li, Guyue Zhou, Jianming Hu, Xianyuan Zhan, et al. When to trust
your simulator: Dynamics-aware hybrid offline-and-online reinforcement learning. Advances in
Neural Information Processing Systems, 35:36599–36612, 2022.

Julio E. Normey-Rico and Eduardo F. Camacho. Control of Dead-Time Processes. Springer, London,
2007.

Emmanuel Rachelson and Michail G Lagoudakis. On the locality of action domination in sequential
decision making. 2010.

Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Pessimistic q-learning for offline
reinforcement learning: Towards optimal sample complexity. In International conference on
machine learning, pp. 19967–20025. PMLR, 2022.

O. J. M. Smith. Closer control of loops with dead time. Chemical Engineering Progress, 53(5):
217–219, 1957.

Yuda Song, Yifei Zhou, Ayush Sekhari, J Andrew Bagnell, Akshay Krishnamurthy, and Wen Sun.
Hybrid rl: Using both offline and online data can make rl efficient. arXiv preprint arXiv:2210.06718,
2022.

Wei Sun, Yuwen Chen, Yanjun Chen, Xiaopeng Zhang, Simon Zhan, Yixin Li, Jiecheng Wu, Teng
Han, Haipeng Mi, Jingxian Wang, et al. Microfluid: A multi-chip rfid tag for interaction sensing
based on microfluidic switches. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 6(3):1–23, 2022.

Yihao Sun. Offlinerl-kit: An elegant pytorch offline reinforcement learning library. https:
//github.com/yihaosun1124/OfflineRL-Kit, 2023.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
minimalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems, 36:11592–11620, 2023a.

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov. Corl:
Research-oriented deep offline reinforcement learning library. Advances in Neural Information
Processing Systems, 36:30997–31020, 2023b.

13

https://www.sciencedirect.com/science/article/pii/S1110016822002216
https://www.sciencedirect.com/science/article/pii/S1110016822002216
https://www.mdpi.com/1424-8220/24/12/3870
https://www.mdpi.com/1424-8220/24/12/3870
https://github.com/yihaosun1124/OfflineRL-Kit
https://github.com/yihaosun1124/OfflineRL-Kit

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Christopher Thomas, Sun Yi, Shava Meadows, and Ryan Sherrill. Adaptive smith predictor for
teleoperation of uavs with time-varying internet delay. International Journal of Control, Automation
and Systems, 18(6):1465–1473, 2020.

Gabriele Tiboni, Karol Arndt, and Ville Kyrki. Dropo: Sim-to-real transfer with offline domain
randomization. Robotics and Autonomous Systems, 166:104432, 2023.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2008.

Yixuan Wang, Simon Zhan, Zhilu Wang, Chao Huang, Zhaoran Wang, Zhuoran Yang, and Qi Zhu.
Joint differentiable optimization and verification for certified reinforcement learning. In Proceed-
ings of the ACM/IEEE 14th International Conference on Cyber-Physical Systems (with CPS-IoT
Week 2023), pp. 132–141, 2023a.

Yixuan Wang, Simon Sinong Zhan, Ruochen Jiao, Zhilu Wang, Wanxin Jin, Zhuoran Yang, Zhaoran
Wang, Chao Huang, and Qi Zhu. Enforcing hard constraints with soft barriers: Safe reinforcement
learning in unknown stochastic environments. In International Conference on Machine Learning,
pp. 36593–36604. PMLR, 2023b.

Tianshu Wei, Yanzhi Wang, and Qi Zhu. Deep reinforcement learning for building hvac control. In
Proceedings of the 54th annual design automation conference 2017, pp. 1–6, 2017.

Qingyuan Wu, Simon S Zhan, Yixuan Wang, Yuhui Wang, Chung-Wei Lin, Chen Lv, Qi Zhu, and
Chao Huang. Variational delayed policy optimization. Advances in Neural Information Processing
Systems, 37:54330–54356, 2024a.

Qingyuan Wu, Simon Sinong Zhan, Yixuan Wang, Yuhui Wang, Chung-Wei Lin, Chen Lv, Qi Zhu,
Jürgen Schmidhuber, and Chao Huang. Boosting reinforcement learning with strongly delayed
feedback through auxiliary short delays. In International Conference on Machine Learning, pp.
53973–53998. PMLR, 2024b.

Qingyuan Wu, Yuhui Wang, Simon Sinong Zhan, Yixuan Wang, Chung-Wei Lin, Chen Lv, Qi Zhu,
Jürgen Schmidhuber, and Chao Huang. Directly forecasting belief for reinforcement learning with
delays. arXiv preprint arXiv:2505.00546, 2025.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. Advances in neural information processing systems,
34:6683–6694, 2021.

Frank Yang, Sinong Simon Zhan, Yixuan Wang, Chao Huang, and Qi Zhu. Case study: Runtime
safety verification of neural network controlled system. In International Conference on Runtime
Verification, pp. 205–217. Springer, 2024.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Sinong Zhan, Yixuan Wang, Qingyuan Wu, Ruochen Jiao, Chao Huang, and Qi Zhu. State-wise safe
reinforcement learning with pixel observations. In 6th Annual Learning for Dynamics & Control
Conference, pp. 1187–1201. PMLR, 2024.

Yuyang Zhang, Runyu Zhang, Yuantao Gu, and Na Li. Multi-agent reinforcement learning with
reward delays. In Learning for Dynamics and Control Conference, pp. 692–704. PMLR, 2023.

Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash Kumar. Dexterous ma-
nipulation with deep reinforcement learning: Efficient, general, and low-cost. In 2019 International
Conference on Robotics and Automation (ICRA), pp. 3651–3657. IEEE, 2019.

Qunxi Zhu, Yao Guo, and Wei Lin. Neural delay differential equations. arXiv preprint
arXiv:2102.10801, 2021.

Liang Zou, Martin Fränzle, Naijun Zhan, and Peter Nazier Mosaad. Automatic verification of
stability and safety for delay differential equations. In International Conference on Computer
Aided Verification, pp. 338–355. Springer, 2015.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

The usage of LLMs in this work is limited to paper writing support, language refinement, and
experimental data processing. Specifically, LLMs assisted in improving the clarity and coherence of
the manuscript, generating LaTeX tables and formatting results for presentation. Importantly, LLMs
were not involved in the design of algorithms, the development of theoretical results, or the execution
of experiments, ensuring that all core scientific contributions remain entirely the work of the authors.

B BELIEF-BASED POLICY ITERATION

B.1 POLICY ITERATION

To arrive the final derivation, we need the following lemma.
Lemma B.1. (General Delayed Performance Difference (Wu et al., 2024b)) For policies π and µ∆

with any x ∈ X , the performance difference is denoted as I(x)

I(x) = E
ŝ∼b(·|x)

[V (s)]− V∆,β(x)

=
1

1− γ
E

ŝ∼b(·|x)
a∼µ∆(·|x)

x∼D

[V (ŝ)−Q(ŝ, a)]

For next step, we try to cast the above optimization problem back to the ordinary state/action
space with belief function b defined above. To begin with, we can convert Q∆(x, a) back to
Eŝ∼b(·|x) [Q(ŝ, a)] using Lem. 4.1.

E(x,a,x′)∼D
ŝ∼b(·|x)
ŝ′∼b(·|x′)

[Q(ŝ, a)−Q∆(x, a)]

= E(x,a,x′)∼D
ŝ∼b(·|x)

[
r(ŝ, a) + γEŝ′∼b(·|x′) [V (ŝ′)]

]
− E(x,a,x′)∼D [r(x, a) + V∆(x

′)]

= γE(x,a,x′)∼D
ŝ∼b(·|x)

[
Eŝ′∼b(·|x′) [V (ŝ′)]− V (x′)

]
≤ γLQ

1− γ
E(x,a,x′)∼D

ŝ∼b(·|x)
[W1(π(·|ŝ)||µ∆(·|x))]

Similarly, we can extend it to other term in the policy evaluation part.

E x′∼D
ŝ′∼b(·|x′)

a′∼π∆(·|x′)

[Q(ŝ′, a′)−Q∆(x
′, a′)]

= E ŝ′∼b(·|x′)
a′∼π∆(·|x′)

x′∼D

[Q(ŝ′, a′)]− Ea′∼π∆(·|x′)
x′∼D

[Q∆(x
′, a′)]

≤ γLQ

1− γ
E x′∼D
ŝ′∼b(·|x′)

[W1(π(·|ŝ′)||π∆(·|x′))]

Then, we can start to break down the policy evaluation defined above.

E(x,a,x′)∼D

[(
Q̂π
∆(x, a)− r∆(x, a)− γEa′∼πk

∆(·|x′)

[
Q̂π
∆(x

′, a′)
]
+ α1 D

(
πk
∆, µ∆

))2]
⇔ E(x,a,x′)∼D

[(
Eŝ∼b(·|x)

[
Qπ(ŝ, a)− γLQ

1− γ
W1

(
π(·|ŝ), µ∆(·|x)

)]
−
(
Eŝ∼b(·|x)[r(ŝ, a)] + γ Eŝ′∼b(·|x′)

[
Qπ(ŝ′, a′)− γLQ

1− γ
W1

(
π(·|ŝ′), π∆(·|x′)

)]
− α1W1

(
π∆, µ∆

)))2]
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The next step is trying to sort out all the policy divergence term, and convert the expectation term
with respect to π∆ back to π. For simplification, let’s define c =

γLQ

1−γ and hide the policy divergence
term for now. We have the following:

E(x,a,x′)∼D

(Eŝ∼b(·|x) [Q
π(ŝ, a)]−

(
Eŝ∼b(·|x) [r(ŝ, a)] + γ E ŝ′∼b(·|x′)

a′∼π∆(·|x′)

[Qπ(ŝ′, a′)]

))2


According to Lipchitz continuous assumptions on Q functionLiotet et al. (2022), we can derive that
|Ea1∼µ

a2∼ν
[Qπ(s, a1)−Qπ(s, a2)] | ≤ LQW1(µ, ν) ∀s ∈ S. Thus, we can derive the following:

E(x,a,x′)∼D

(Eŝ∼b(·|x) [Q
π(ŝ, a)]−

(
Eŝ∼b(·|x) [r(ŝ, a)] + γ E ŝ′∼b(·|x′)

a′∼π(·|ŝ′)
[Qπ(ŝ′, a′)] + (1− γ)cW1(π, π∆)

))2


(5)
Now, we have the policy evaluation in the original state space format. Let’s take a close look at the
remaining policy divergence terms.

γcW1(π, π∆) + α1W1(π∆, µ∆)− cW1(π, µ∆) + (1− γ)cW1(π, π∆)

=cW1(π, π∆) + α1W1(π∆, µ∆)− cW1(π, µ∆)

The triangle inequality holds for the Wasserstein distance. Specifically, Wp(µ, ρ) ≤ Wp(µ, ν) +
Wp(ν, ρ) for all µ, ν, and ρ in the same metric space and p ≥ 1 (Villani et al., 2008). With the proper
choice of α, it is easy to unify all the 1-Wasserstein terms to π and behavior policy. Besides, since all
the 1-Wasserstein terms are bounded here, it won’t affect the convergence property of policy iteration.

Q̂π ← argmin
Q

E(x,a,x′)∼D

[(
Eŝ∼b(·|x)

[
Qπ(ŝ, a)

]
(
Eŝ∼b(·|x)

[
r(ŝ, a)

]
+ γ E ŝ′∼b(·|x′)

a′∼π(·|ŝ′)

[
Qπ(ŝ′, a′)

]
− α1W1

(
π, µ∆

)))2]
.

Using the derivation above, we can easily reformulate the policy improvement back to the original
state space.

Ex∼D

[
Ea∼π∆(·|x)

[
Q̂π∆

∆ (x, a)
]
− α2 ·D(π∆, µ∆)

]
⇔Ex∼D

[
E ŝ∼b(·|x)
a∼π∆(·|x)

[
Q̂π(ŝ, a)

]
− γLQ

1− γ
W1(π, π∆)− α2W1(π∆, µ∆)

]

⇔Ex∼D

[
E ŝ∼b(·|x)
a∼π(·|ŝ)

[
Q̂π(ŝ, a)

]
+ (1− γ)cW1(π, π∆)− cW1(π, π∆)− α2W1(π∆, µ∆)

]

⇔Ex∼D

[
E ŝ∼b(·|x)
a∼π(·|ŝ)

[
Q̂π(ŝ, a)

]
− (γcW1(π, π∆) + α2W1(π∆, µ∆))

]
Using a similar trick mentioned above, with appropriate selection of α2, we can combine the above
two policy divergence terms into one.

Ex∼D

[
E ŝ∼b(·|x)
a∼π(·|ŝ)

[
Q̂π(ŝ, a)

]
− γcW1(π, µ∆)

]

B.2 POLICY IMPROVEMENT

Proof.

πnew = argmax
π

Ex∼D

[
E ŝ∼b(·|x)
a∼π(·|ŝ)

[
Q̂π(ŝ, a)

]
− αW1(π, µ∆)

]

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

By following Eq. (4), we can easily have have

Ex∼D

[
E ŝ∼b(·|x)
a∼πnew(·|ŝ)

[
Q̂π

new(ŝ, a)
]
− αW1(πnew, µ∆)

]

≥Ex∼D

[
E ŝ∼b(·|x)
a∼πold(·|ŝ)

[
Q̂π

old(ŝ, a)
]
− αW1(πold, µ∆)

]

Q̂π
new(ŝ, a

′) = E(x,a,x′)∼D

[
Eŝ∼b(·|x) [r(ŝ, a)] + γ E ŝ′∼b(·|x′)

a′∼πnew(·|ŝ′)
[Qπ

new(ŝ
′, a′)]− αW1(πnew, µ∆)

]

≥ E(x,a,x′)∼D

[
Eŝ∼b(·|x) [r(ŝ, a)] + γ E ŝ′∼b(·|x′)

a′∼πold(·|ŝ′)
[Qπ

old(ŝ
′, a′)]− αW1(πold, µ∆)

]
= Q̂π

old(ŝ, a
′)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C EXPERIMENTS DETAILS

C.1 ADDITIONAL RESULTS

In this part, we provide visualization of the delay belief prediction over a 16-step trajectory rollout
in the HOPPER environment. Each frame corresponds to a simulation step under a delayed control
setting. The agent executes actions conditioned on the predicted belief state rather than the true current
observation. The sequence illustrates how the learned delayed belief model tracks and reconstructs
the latent state dynamics despite observation–action delays. Accurate belief predictions enable the
agent to maintain coherent behavior across all steps.

Step 0 Step 1 Step 2 Step 3

Step 4 Step 5 Step 6 Step 7

Step 8 Step 9 Step 10 Step 11

Step 12 Step 13 Step 14 Step 15

Figure 4: Ground Truth

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Step 0 Step 1 Step 2 Step 3

Step 4 Step 5 Step 6 Step 7

Step 8 Step 9 Step 10 Step 11

Step 12 Step 13 Step 14 Step 15

Figure 5: Ensemble MLP

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Step 0 Step 1 Step 2 Step 3

Step 4 Step 5 Step 6 Step 7

Step 8 Step 9 Step 10 Step 11

Step 12 Step 13 Step 14 Step 15

Figure 6: Diffusion

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Step 0 Step 1 Step 2 Step 3

Step 4 Step 5 Step 6 Step 7

Step 8 Step 9 Step 10 Step 11

Step 12 Step 13 Step 14 Step 15

Figure 7: Transformer

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Method HalfCheetah Hopper Walker2d

4 8 16 4 8 16 4 8 16

medium
Aug-BC 23.1± 1.5 5.0± 0.9 3.6± 0.8 65.3± 1.8 52.1± 1.6 46.5± 2.1 66.1± 1.7 51.6± 1.9 14.0± 2.5

Aug-CQL 24.2± 1.4 3.8± 0.8 3.7± 0.7 67.7± 1.5 66.2± 1.8 21.1± 2.0 75.8± 2.3 31.2± 2.1 13.0± 2.6

Belief-CQL 49.2± 1.5 8.9± 1.2 3.0± 0.7 75.4± 1.3 56.8± 2.1 42.9± 2.6 87.0± 1.6 64.1± 2.3 39.2± 2.8

Belief-IQL 30.8± 1.5 10.6± 1.0 5.3± 0.8 27.7± 1.3 29.3± 1.4 25.4± 1.5 33.4± 1.6 25.7± 1.4 24.6± 1.3

DT-CORL 47.4± 1.2 27.8± 1.9 6.4± 0.8 79.4± 1.5 85.0± 1.2 71.8± 2.2 87.4± 1.0 87.6± 1.4 86.8± 2.3

expert
Aug-BC 6.9± 0.6 5.0± 0.5 4.2± 0.4 110.9± 0.7 103.6± 1.0 68.7± 1.5 108.6± 0.6 95.4± 0.9 12.1± 1.3

Aug-CQL 3.6± 0.4 3.7± 0.4 3.6± 0.3 112.9± 0.4 83.5± 1.2 8.5± 0.8 108.7± 0.5 34.8± 1.0 6.6± 0.6

Belief-CQL 1.5± 0.3 1.5± 0.3 1.5± 0.2 81.1± 0.8 43.3± 1.0 45.9± 1.1 111.1± 0.6 110.8± 0.5 97.7± 1.2

Belief-IQL 6.8± 0.5 4.8± 0.5 3.6± 0.4 18.7± 0.9 17.4± 0.8 15.9± 0.7 25.5± 1.0 19.9± 0.9 16.7± 0.8

DT-CORL 20.6± 0.6 5.1± 0.4 5.2± 0.3 112.9± 0.5 113.1± 0.4 112.2± 0.4 110.9± 0.4 111.2± 0.5 110.5± 0.5

medium-expert
Aug-BC 20.5± 1.4 5.4± 0.9 5.1± 1.0 93.3± 1.6 89.5± 1.7 49.2± 2.2 105.7± 1.5 53.3± 2.2 12.2± 1.9

Aug-CQL 7.4± 0.9 2.8± 0.8 1.3± 0.6 101.7± 1.0 60.9± 2.1 17.1± 1.4 84.4± 2.2 27.7± 1.9 1.4± 0.5

Belief-CQL 22.7± 1.7 6.5± 1.1 1.5± 0.4 92.9± 1.6 39.5± 1.7 35.2± 2.0 105.8± 1.3 99.5± 1.4 51.0± 1.6

Belief-IQL 24.8± 1.4 6.1± 1.1 3.3± 0.7 26.7± 1.3 26.6± 1.3 24.7± 1.2 49.6± 1.7 17.3± 1.2 16.4± 1.1

DT-CORL 44.7± 2.5 21.3± 2.2 8.7± 0.9 113.0± 0.8 112.2± 0.7 109.9± 0.9 112.1± 0.7 112.0± 0.6 118.1± 1.1

medium-replay
Aug-BC 21.7± 1.9 4.2± 1.0 5.2± 1.2 25.8± 2.6 28.0± 2.4 21.7± 2.2 26.1± 2.1 13.5± 2.5 7.5± 1.9

Aug-CQL 9.2± 1.5 2.0± 0.9 3.0± 1.0 85.7± 1.8 5.1± 1.2 4.0± 1.4 48.5± 2.3 8.0± 1.6 3.1± 1.1

Belief-CQL 36.1± 2.5 14.4± 2.0 6.4± 1.5 110.1± 2.8 99.7± 2.4 96.6± 2.1 93.3± 3.1 93.5± 2.8 61.0± 2.5

Belief-IQL 23.3± 1.3 13.8± 1.1 9.7± 1.0 24.7± 1.2 25.5± 1.1 23.4± 1.1 28.2± 1.4 20.6± 1.2 18.3± 1.1

DT-CORL 43.6± 3.0 27.1± 2.0 7.9± 1.0 99.4± 2.5 100.8± 1.9 100.2± 1.5 93.6± 2.4 90.5± 1.9 88.1± 2.0

Table 7: Normalized returns (%) on D4RL MuJoCo locomotion tasks with deterministic observation
delays of 4, 8, and 16 steps. All results are shown as mean ± std over 3 seeds.

Method HalfCheetah Hopper Walker2d

4 8 16 4 8 16 4 8 16

medium
Aug-BC 25.4± 1.6 5.2± 1.0 4.0± 1.0 60.1± 2.0 52.5± 1.8 49.1± 2.2 65.9± 1.9 49.9± 2.0 15.0± 2.5

Aug-CQL 23.6± 1.5 5.1± 1.1 4.2± 1.2 67.8± 1.7 65.8± 2.0 22.5± 2.2 73.5± 2.3 30.8± 2.2 9.2± 2.5

Belief-CQL 52.6± 1.5 46.6± 2.0 16.2± 2.4 80.8± 1.6 67.8± 2.1 74.3± 2.6 84.8± 1.9 81.7± 1.8 78.9± 2.2

Belief-IQL 33.4± 1.6 31.2± 1.5 21.6± 1.8 27.4± 1.3 27.4± 1.3 28.4± 1.4 34.6± 1.7 37.5± 1.6 36.7± 1.6

DT-CORL 48.2± 1.6 47.5± 2.0 38.4± 3.1 78.5± 1.8 72.1± 1.6 79.3± 2.2 86.8± 1.2 87.4± 1.4 87.0± 1.9

expert
Aug-BC 7.8± 0.7 5.6± 0.6 4.7± 0.5 112.0± 0.6 104.6± 1.0 72.4± 1.6 108.7± 0.8 98.7± 0.9 10.2± 1.2

Aug-CQL 3.2± 0.4 3.9± 0.4 3.7± 0.3 112.5± 0.5 77.5± 1.2 6.8± 0.9 108.8± 0.6 36.5± 1.1 7.4± 0.7

Belief-CQL 6.5± 0.5 2.8± 0.4 1.7± 0.3 72.3± 0.9 35.4± 1.2 20.1± 1.4 111.1± 0.5 111.1± 0.6 109.6± 0.8

Belief-IQL 13.1± 0.8 9.2± 0.7 4.3± 0.5 18.6± 0.9 16.7± 0.8 16.9± 0.8 43.1± 1.1 27.7± 1.0 20.7± 0.9

DT-CORL 85.1± 1.2 12.7± 1.0 5.8± 0.4 113.2± 0.5 112.8± 0.6 113.1± 0.6 110.9± 0.5 110.9± 0.6 110.5± 0.5

medium-expert
Aug-BC 19.9± 1.5 5.4± 1.0 4.8± 0.9 95.2± 1.7 91.6± 1.8 55.5± 2.3 83.8± 1.5 54.6± 2.2 11.4± 2.0

Aug-CQL 6.5± 0.8 3.3± 0.6 0.6± 0.4 112.9± 0.5 61.3± 1.8 18.0± 1.6 82.2± 2.3 28.8± 2.0 1.8± 0.6

Belief-CQL 48.0± 2.0 22.1± 1.8 3.6± 1.0 91.8± 1.5 48.9± 1.8 57.5± 2.2 112.1± 1.4 106.5± 1.6 85.1± 2.0

Belief-IQL 31.1± 1.5 16.3± 1.2 8.2± 0.8 28.3± 1.3 27.9± 1.3 23.8± 1.2 49.4± 1.6 25.0± 1.3 20.4± 1.2

DT-CORL 70.0± 2.2 44.3± 2.1 31.7± 2.8 113.6± 0.8 112.7± 0.7 85.4± 1.5 114.1± 0.7 113.6± 0.6 111.5± 1.0

medium-replay
Aug-BC 17.0± 2.0 4.6± 1.0 4.4± 1.0 23.9± 2.6 27.2± 2.5 21.7± 2.2 24.6± 2.0 14.0± 2.5 9.1± 2.2

Aug-CQL 9.4± 1.6 2.3± 1.0 1.6± 0.8 92.4± 2.0 52.9± 2.4 4.1± 1.2 41.5± 2.4 7.1± 1.8 1.6± 1.0

Belief-CQL 47.1± 2.5 41.4± 2.3 19.7± 2.2 100.8± 2.6 99.8± 2.4 99.2± 2.2 94.9± 2.8 97.7± 2.6 95.3± 2.4

Belief-IQL 24.9± 1.4 20.0± 1.2 15.3± 1.2 25.0± 1.2 24.5± 1.1 26.0± 1.2 31.4± 1.5 25.4± 1.3 24.2± 1.2

DT-CORL 47.7± 2.4 43.3± 2.0 30.4± 2.1 99.4± 2.0 100.1± 1.8 98.8± 2.0 93.0± 2.1 90.9± 1.7 91.8± 1.9

Table 8: Normalized returns (%) on D4RL MuJoCo locomotion tasks with stochastic observation
delays ∆ ∼ U(1, k), k ∈ {4, 8, 16}. Results are shown as mean ± std over 3 seeds.

Transformer Ablation. The ablation in Table 9 reveals a clear relationship between the capacity of
the transformer belief model and its predictive performance under delayed observations. As the num-
ber of parameters decreases both sample efficiency and prediction accuracy degrade substantially. In
particular, smaller models (e.g., latent dimension 64 or shallow 4-layer variants) require significantly
more epochs to fit the offline trajectories and still exhibit higher prediction error (Performance ↑),
indicating difficulty in capturing the temporal dependencies required for belief reconstruction under
long delays.

Conversely, larger models (256-dim with 8–10 layers) achieve the best predictive performance while
converging in far fewer epochs, demonstrating superior representational power and optimization
stability. Notably, the 256×10 model provides the best overall performance and sample efficiency,
confirming that a moderately sized transformer is a favorable balance between predictive accuracy
and computational cost.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

These results highlight a crucial insight: belief estimation under delayed offline RL requires sufficient
sequence modeling capacity, as delay-induced temporal misalignment increases the effective horizon
and dynamics complexity. Models that are too lightweight fail to capture these dependencies, while
overly large models provide diminishing returns relative to their computational cost. Thus, DT-
CORL’s chosen transformer configuration emerges as the most robust and well-calibrated architecture
for belief prediction under realistic delay settings.

Table 9: Ablation on transformer belief model size in Hopper-medium-v2 with delay ∆ = 16.
Results averaged over 3 seeds.

Latent Dim Layers Params (M) Memory (MB) Epochs Converge ≤ 0.01) Performance (MSE)

256 10 7.87 17.5 14.3 0.32
256 8 7.08 14.3 18.0 0.63
256 6 6.28 11.1 29.0 0.95
256 4 5.49 7.96 – 1.24
128 10 4.64 4.56 61.3 1.44
64 10 3.82 1.28 – 2.68

Table 10: Long-delay robustness (32 and 64 steps) across HalfCheetah-, Hopper-, and Walker2d-
medium-v2 tasks. DT-CORL consistently outperforms belief-based baselines in both deterministic
and stochastic delay settings.

Method HalfCheetah-med-v2 Hopper-med-v2 Walker2d-med-v2
32 (Det/Stoch) 64 (Det/Stoch) 32 (Det/Stoch) 64 (Det/Stoch) 32 (Det/Stoch) 64 (Det/Stoch)

Belief-IQL 5.14 / 9.31 4.92 / 7.17 11.1 / 22.6 2.70 / 6.26 12.0 / 20.9 10.5 / 13.9
Belief-CQL 3.53 / 5.61 4.09 / 4.32 9.05 / 20.4 2.71 / 4.57 7.45 / 18.3 5.30 / 8.71
DT-CORL 6.36 / 11.1 5.81 / 7.63 13.8 / 26.1 2.77 / 6.48 60.0 / 85.4 21.4 / 41.3

4 8 16 32 64
Delay Steps

10

20

30

40

50

No
rm

al
ize

d
Re

tu
rn

 (%
)

HalfCheetah-medium-v2

4 8 16 32 64
Delay Steps

0

10

20

30

40

50

60

70

80
Hopper-medium-v2

4 8 16 32 64
Delay Steps

10

20

30

40

50

60

70

80

90
Walker2d-medium-v2

Belief-IQL Belief-CQL DT-CORL

Figure 8: Performance degradation under increasing delay across HalfCheetah-, Hopper-, and
Walker2d-medium-v2 tasks. Curves show the average return across deterministic and stochastic delay
settings.

D IMPLEMENTATION AND REPRODUCIBILITY DETAILS

The implementation of Augmented-CQL, Augmented-BC and our DT-CORL is based on
CORL (Tarasov et al., 2023b) and CleanRL (Huang et al., 2022). The implementation of DBT-SAC
and AD-SAC can be found in the original paper (Wu et al., 2025; 2024b). And the implementation of
Model-based Offline RL(MOPO and COMBO) is based on the OfflineRL-Kit Library (Sun, 2023).
We detail the hyperparameter settings of Transformer Belief and DT-CORL in Table 12 and Table 15,
respectively. All the experiments are conduct on the server equipped with NVIDIA A5000 GPU and
AMD EPYC 7H12 64-Core CPU. The training time depends on state/action dimensions, offline data
size, and max delay horizon, which determines the training time of belief predictions. To give an
approximate range, training on Hopper-medium-v2 with 4 delay steps take up around 2 hours,
and training on Adroit-Pen task with 16 delay steps take up around 7 hours.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 11: Performance on Adroit Hand tasks (Pen-expert-v1, Door-expert-v1, Hammer-expert-v1)
under deterministic and stochastic delays ∆ ∈ {4, 8, 16}. Best per column is shown in bold with
light blue background.

Setting Method Pen-expert-v1 Door-expert-v1 Hammer-expert-v1

4 8 16 4 8 16 4 8 16

Deterministic
Aug-CQL 20.11 4.38 -0.65 78.96 61.74 40.12 0.25 0.23 0.21
Belief-CQL 50.43 26.57 19.43 97.61 83.35 67.91 0.27 0.29 0.22
DT-CORL 86.44 77.51 66.38 102.57 100.65 93.04 114.51 110.12 105.20

Stochastic
Aug-CQL 15.15 6.17 -0.72 67.80 49.88 25.84 0.27 0.26 0.24
Belief-CQL 64.68 27.42 22.51 97.59 85.92 69.73 0.28 0.29 0.24
DT-CORL 90.56 79.33 74.85 102.97 101.47 97.43 122.13 112.22 112.33

Table 12: Hyper-parameters table of Transformer
Belief.

Hyper-parameter Value
Epoch 1e2

Batch Size 256
Attention Heads Num 4

Layers Num 10
Hidden Dim 256

Attention Dropout Rate 0.1
Residual Dropout Rate 0.1
Hidden Dropout Rate 0.1

Learning Rate 1e-4
Optimizer AdamW

Weight Decay 1e-4
Betas (0.9, 0.999)

Table 13: Hyper-parameters table of Ensemble
Belief.

Hyper-parameter Value
Epoch 1e2

Batch Size 256
Attention Heads Num 4

Layers Num 10
Hidden Dim 256

Attention Dropout Rate 0.1
Residual Dropout Rate 0.1
Hidden Dropout Rate 0.1

Learning Rate 1e-4
Optimizer AdamW

Weight Decay 1e-4
Betas (0.9, 0.999)

Table 14: Hyper-parameters table of Diffusion
Belief.

Parameter Value
Model Dimension 32
Embedding Dimension 32
Dimension Multipliers [1, 2, 2, 2]
EMA Rate 0.9999
Diffusion Steps 20
Predict Noise True
State Loss Weight 10.0
Action Loss Weight 10.0
Classifier Guidance (w_cg) 0.3
Timestep Embedding Positional
Kernel Size 5
Solver DDPM
Sampling Steps 20
Temperature 1.0

Table 15: Hyper-parameters table of DT-CORL.

Hyper-parameter Value
Learning Rate (Actor) 3e-4
Learning Rate (Critic) 1e-3

Learning Rate (Entropy) 1e-3
Train Frequency (Actor) 2
Train Frequency (Critic) 1

Soft Update Factor (Critic) 5e-3
Batch Size 256
Neurons [256, 256]

Action Noise 0.2
Layers 3

Hidden Dim 256
Activation ReLU
Optimizer Adam

25

	Introduction
	Related Work
	Preliminaries and Problem Formulation
	Our Approach
	Belief-based Policy Iteration
	Practical Implementation

	Experiments
	AntMaze
	Belief-based Comparison
	Ablation Studies
	Dexterous Manipulation

	Conclusion
	LLM Usage Statement
	Belief-based Policy Iteration
	Policy Iteration
	Policy Improvement

	Experiments Details
	Additional Results

	Implementation and Reproducibility Details

