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Abstract

While large-scale training data is fundamen-
tal for developing capable large language mod-
els (LLMs), strategically selecting high-quality
data has emerged as a critical approach to en-
hance training efficiency and reduce computa-
tional costs. Current data selection methodologies
predominantly rely on static, training-agnostic cri-
teria, failing to account for the dynamic model
training and data interactions. In this paper, we
propose a new Data Weighting Model (DWM)
to adjust the weight of selected data within each
batch to achieve a dynamic data utilization dur-
ing LLM training. Specially, to better capture the
dynamic data preference of the trained model, a
bi-level optimization framework is implemented
to update the weighting model. Our experiments
demonstrate that DWM enhances the performance
of models trained with randomly-selected data,
and the learned weighting model can be trans-
ferred to enhance other data selection methods
and models of different sizes. Moreover, we
further analyze how a model’s data preferences
evolve throughout training, providing new in-
sights into the data preference of the model during
training.

1. Introduction
The success of modern language models has demonstrated
the critical role that large-scale pre-training data plays in
shaping their performance (Brown et al., 2020; Touvron
et al., 2023a). The diversity and scale of the training data
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are essential for enabling the model to generalize across
various tasks and domains (Bai et al., 2024; Xia et al., 2024;
Zhou et al., 2024). As the scale of the pre-training data
increases, language models exhibit a remarkable capacity
to perform downstream tasks with minimal task-specific
tuning, showcasing the power of data-driven approaches in
natural language processing (Kaplan et al., 2020).

Though the power of large language models rises with the
use of enormous and ever-growing datasets for pre-training,
naively training a model on all available data may not be op-
timal, as the quality of available data varies, and the training
increases the carbon footprint and financial costs. Recently,
there is increasing evidence that choosing the right training
data is more essential for producing state-of-the-art large
language models (Albalak et al., 2024; Zhao et al., 2023),
and researchers have focused on studying data selection, the
mechanism to determine which candidate data to include
in the training, to improve the training efficiency of model
pre-training. Specially, these data selection methods usually
utilize referring data or referring models for an effective
selection process. For example, in DSIR (Xie et al., 2023),
Wikipedia and books are used as the high-quality data to
help data classification. In DsDM (Engstrom et al., 2024)
and MATES (Yu et al., 2024), LAMBADA dataset (Paperno
et al., 2016) is used as the target dataset to help evaluate
the influence of the candidate data, i.e., the decrease of the
loss in the target dataset when the model is trained with
and without the candidate data. Besides, referring models
are also utilized to help evaluate the quality of the data.
The relationship between the perplexity of reference models
(e.g., Llama) applied to candidate datasets and data quality
is examined, with perplexity proposed as a potential met-
ric for assessing data quality (Ankner et al., 2024). And
QuRating (Wettig et al., 2024) utilizes the data preference
of GPT-3.5-turbo to train the data rating model.

Though these methods filter out data and decrease the train-
ing cost, they merely focus on the data selection isolatedly
without considering the dynamic training process of LLMs.
On the one hand, most of the previous methods selected
data before model training, ignoring the dynamic data pref-
erence of the model during training. On the other hand, the
data samples in existing methods are selected separately and
utilized within a batch indiscriminately, without considering
the joint effects between different samples. In fact, the data
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samples interact with each other, and the combination of
them determines the model update direction together. Hence,
the existing methods which select data separately and ignore
the data utilization will limit the potential performance of
the trained LLMs with selected data.

In this paper, to improve the data utilization for large lan-
guage models training with selected data, we propose a
bi-level optimization framework to capture the dynamic
data preference of the model, and the joint effects of differ-
ent data samples. In the framework, a plug-and-play Data
Weighting Model (DWM) is introduced to weigh the data
samples within each batch during model training, and there-
fore focuses on the joint effects of selected data. Specifically,
to guarantee the weighting model knows the data preference
of the trained model, we introduce a bi-level optimization
to help learn the weighting model. The lower level will
first optimized the trained model with data weighted by
the weighting model, and the upper level will optimized
the trained model updated by the lower-lever optimization,
where the weighting model can be optimized with the help
of the chain rule. Furthermore, to better capture the dy-
namic data preference of the trained model, we learn the
DWM via the above bi-level optimization at different stages
during model training, and hence learn the data preference
dynamically and adaptively.

We conduct extensive experiments to validate the effective-
ness of DWM. First, using randomly-selected data from
SlimPajama, we pre-train a 370M model from scratch. The
model trained with DWM and randomly selected data out-
performs both models trained with randomly-selected data
and those with carefully selected data. We then transfer
DWM to a larger LLM (i.e., 1.3B) and other data selection
methods, which also achieve a consistent performance im-
provement. Finally, we further analyze how the weighting
model preferences evolve during training to provide more
insights about the model data preference.

2. Related Work
We review existing data selection methods for large lan-
guage models and analyze their relevance to our proposed
approach.

Categories of Data Selection Methods As discussed in
RegMix (Liu et al., 2024), existing data selection methods
for LLM pre-training can be categorized into three cate-
gories: (1) Token-level selection deals with the filtering of
tokens, like Rho-1(Lin et al., 2024); (2) Group-level selec-
tion groups data into pools and focuses on the pool-mixing,
like RegMix (Liu et al., 2024); (3) Sample-level selection is
about choosing individual training examples. The category
of sample-level selection methods can be further divided
into two types: referring data-based methods and referring

model-based methods. Our Method also belongs to sample-
level data selection.

Sample-Level Data Selection Sample-level data selec-
tion methods can be classified into two sub-types: reference
data-based and reference model-based approaches. Refer-
ring data-based methods mainly select data samples with the
help of other data. For example, in DSIR (Xie et al., 2023),
Wikipedia and books are utilized as high-quality reference
data to facilitate data classification. In DsDM (Engstrom
et al., 2024) and MATES (Yu et al., 2024), the LAMBADA
dataset (Paperno et al., 2016) serves as the target dataset to
assess the impact of candidate data—specifically, by mea-
suring the reduction in loss on the target dataset when the
model is trained with versus without the candidate data.
Additionally, a line of research investigates leveraging ref-
erence models to guide data selection, i.e., referring model-
based methods. For instance, the relationship between the
perplexity of reference models (e.g., LLaMA) on candidate
datasets and data quality has been analyzed, with perplexity
proposed as an effective metric (Ankner et al., 2024). An-
other approach, QuRating (Wettig et al., 2024), leverages
the implicit data preferences of the referring model GPT-
3.5-turbo to train a model for data rating. However, most
data selection methods remain isolated and fail to consider
the dynamic training process of the model. While MATE
partially accounts for the multi-stage training process of the
model, it still overlooks the joint effects of selected data, as
the chosen data is used indiscriminately during training. In
contrast, our method focuses more on data utilization and
proposed DWM to capture the dynamic data preference of
the model, and the joint effects of different data samples
during model training.

3. Approach
3.1. Motivation

The performance of large language models is strongly in-
fluenced by the scale and diversity of pre-training data,
and data selection mitigates the inefficiency of model pre-
training caused by the variations of data quality and data
redundancy. Despite these advances, existing methods typ-
ically focus on pre-training data selection without consid-
ering the nature of model training. Most approaches select
data in isolation before training and use data indiscrimi-
nately during training, overlooking the interactions between
data points and the shifty data preference of the trained
model.

In this paper, to better utilize selected data for model pre-
training, and capture the nature of model training, we pro-
pose a novel plug-and-play Data Weighting Model (DWM)
to assist model training. DWM will be used to weigh the
data in a batch, and hence adapt to the joint interaction
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Figure 1. The framework of the proposed bi-level optimization process with DWM, where the LLM model and the weighting model are
trained alternated. During model training, the weighting model is frozen and the pre-training loss is the weighted sum of the loss of each
data sample in one batch. Besides, to capture the data preference of the trained model, the weighting model is updated to minimize the
validation loss of the model trained with the weighting model with the chain rule.

between data during training. And in order to capture the
dynamic data preference of the trained model, a bi-level
optimization framework is introduced to help update the
weighting model by stages. The framework of DWM is
shown in Figure 1, where the model training and the weight-
ing model update are alternated by stages. In the following,
we will present the bi-level optimization process and the
details of the update of the trained LLM model and the
weighting model.

3.2. Dynamic Bi-level Optimization

To jointly optimize both the LLM and the importance of the
training data (i.e., DWM), while accounting for the dynamic
nature of LLM training, we propose a dynamic bi-level
optimization framework for iterative improvement. This
framework involves updating both the trained model and
the weighting model to capture the evolving data prefer-
ences. The weighting model learns the data preferences of
the current LLM based on the interactions within a single
batch and provides better update directions by assigning
different weights to the data samples. The challenge lies in
effectively optimizing this weighting model. A straightfor-
ward approach is to evaluate the weighting model using the
standard auto-regressive loss on the training data. However,
since the pre-training loss is also dependent on the output
of the weighting model, updating the weighting model with
this loss may lead to sub-optimal solutions—such as set-
ting the weight of all data or easily predicted data points to
zero in an attempt to minimize training loss. This, however,

does not contribute to the performance improvement of the
trained model.

To achieve a better optimization of the weighting model
and help the training of the trained model, in this work we
propose a novel weighting model evaluation metric called
weight influence, which is defined as:

The performance of the trained LLM model in
the validation dataset when optimized with the
weighting model.

Then we can optimize the weighting model by maximizing
its weight influence. Concretely, the process of jointly con-
sidering the trained model θ and the weighting model θw for
updating can be viewed as a bi-level optimization problem:

max
θw

Rval(θ
∗(θw))

s.t. θ∗(θw) = argmin
θ

Ltrain(θ, θw),
(1)

where the first term is to optimize θw by maximising the
reward performance Rval (e.g., accuracy) on validation set,
while the second term is the LLM training based on training
data re-weighted by the data weight model. And therefore,
when optimizing the upper level object, i.e., the performance
of the trained LLM model in the validation set, the weighting
model can be optimized with the help of the chain rule. Via
this bi-level optimization, the weighting model learns how
to weigh sampled data to improve the generalization of the
trained model, which is of benefit to the model pre-training.
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In the following, we’ll describe the details of the bi-level
optimization of each part.

3.3. LLM Training

In DWM, model pre-training is similar to the normal pre-
training process except for the utilization of the weighting
model, where data in one batch will be weighted instead
of used indiscriminately. The contribution weight of each
sample Xi to the training of LLM can be obtained by the
introduced DWM:

ωi = θw(X1, X2, · · · , Xbs)i, (2)

where i = 1, 2, · · · , bs is the sample index and bs is the
total number of data samples in one batch. Here DWM
will consider the data interaction in one batch to weigh the
contribution of each sample.

Here we use the output of the weighting model θω to weigh
the training loss of each data sample, and therefore, the loss
during pre-training stage is:

Ltrain(θ, θω) =

bs∑
i

ωiLtrain,i(θ). (3)

The training loss Ltrain,i is the normal auto-regressive loss
for LLM training. It is important to note that DWM remains
fixed during LLM training for improving data utilization and
ensuring stable learning dynamics, allowing the model to fo-
cus on optimizing the LLM parameters without interference
from fluctuating data weights.

3.4. Data Weighting Model Training

As discussed above, the weighting model is optimized to
maximize the trained model performance in the validation
dataset. Similar to the motivation behind meta-learning, the
goal of learning the weighting model is to capture a more
effective data weighting mechanism, thereby improving the
generalization of the trained model in later stages of training.

Referring to Eq. 1, it is worth noting that the trained model
is updated with the output of the weighting model, and the
updated model is evaluated in the validation set. There-
fore we could optimize the weighting model directly by the
trained model performance in the validation dataset with
the chain rule. Concretely, we will first record the updated
trained model parameters explicitly, which is:

θ∗ = θ − α

bs∑
i

ωi∇θi

= θ − α

bs∑
i

ωi
∂Ltrain,i(θ)

∂θ
,

(4)

where α is the learning rate of the model and ∇θi is the
gradient by training the model with data sample Xi. Then

the updated trained model will be used to calculate the
validation performance:

Rval(θ
∗) =

M∑
i

Rval,i(θ
∗)

=

M∑
i

Rval,i(θ − α

bs∑
i

ωi∇θi),

(5)

where M is the number of data samples in the validation
set.

Consequently, the weighting model can be updated by opti-
mizing the validation performance of the trained model in
chained:

∂Rval(θ
∗)

∂θw
=

∂Rval(θ
∗)

∂θ∗
∂θ∗

∂θw

=

M∑
i

∂Rval,i(θ
∗)

∂θ∗
· (−α

bs∑
j

∂ωj

∂θω
∇θj)

=− α

M∑
i

∂Rval,i(θ
∗)

∂θ∗
·

bs∑
j

∂ωj

∂θω
∇θj .

(6)

Hence the weighting model can be optimized to improve the
performance of the trained model. The LLM is kept fixed
while updating DWM to prevent any potential leakage of
validation data.

3.5. Multi-stage Alternative Iteration

As discussed above, we update the trained model or the
weighting model and keep the other fixed to ensure the
stability of training or avoid the knowledge leakage. In order
to capture the dynamic data preference of the trained model,
here we employ a multi-stage alternative iteration process to
jointly optimize the trained model and the weighting model.
In this iteration process, the trained model parameters θ and
weighting model parameters θw are updated in a stage-wise
manner. Concretely, starting from parameters θt−1 and θt−1

w

inherited from stage t− 1, the iteration proceeds at stage t
as follows:

1. Weighting Model Update. Fixing the trained model,
we first update θw referring to Eq. 6:

θtw = θt−1
w + η∇θwRval

(
θt−1,∗(θw)

)
. (7)

2. Trained Model Update. With the updated weighting
model θtw, we then optimize the trained model by mini-
mizing the training loss referring to Eq. 3 in this stage:

θt = argmin
θ

Ltrain(θ, θ
t
w). (8)

Each stage t ∈ {1, 2, · · · , T} strictly enforces an alternating
update order to resolve the interdependence between θ and
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θw. This iterative process ensures that both models mutu-
ally enhance each other’s performance through progressive
refinement.

In summary, the proposed method effectively optimizes
data utilization during training by dynamically adjusting
data weights through DWM. By capturing and leveraging
the model’s evolving data preferences, DWM improves both
the training effectiveness and generalization of the model.
This approach allows for better utilization of selected data,
leading to enhanced performance even with randomly se-
lected data. Additionally, the trained weighting model can
be transferred to larger models or applied to other data se-
lection strategies, making it a robust solution for optimizing
LLM training across various scenarios.

4. Experiment Setup
Implementation Details To evaluate different data selec-
tion methods, we utilize the training data selected from the
popular dataset SlimPajama (Soboleva et al., 2023), which
is the largest multi-corpora, open-source dataset for train-
ing large language models. SlimPajama is a cleaned and
deduplicated version of the RedPajama dataset (Weber et al.,
2024), includes 627 billion tokens and provides the meta-
data about the domain information for each sample. To
verify the performance of different data selection methods
for model pre-training, we adopt the model architecture
from Llama-2 (Touvron et al., 2023b) at the scale of 370
million and 1.3 billion parameters separately to do the model
pre-training. Following the principles of the scaling law and
the QuRating (Wettig et al., 2024) framework, a total of 30
billion tokens are selected by different methods to train the
model. As for the weighting model, we adopt the architec-
ture from Llama-2 with 370 million parameters to learn the
sample embedding, with additionally one attention block
and two linear layers to generate the data weights consid-
ering the combination of the data in a batch. We set the
sequence length to 1024 and the batch size to 4096, with a
micro batch size (bs) as 8 to balance the effectiveness of the
weighting model and the GPU memory constraints. Follow-
ing DSDM and MATES, we adopt LAMBADA (Paperno
et al., 2016) as the validation set, which is a widely-used
language modeling task and often serves as a validation
task for language model pre-training, and split the training
process into 5 stages to learn the dynamic data preference.
At the first stage, the trained model learns from scratch and
weighs sampled data uniformly, and in the second stage,
the weighting model will be partially initialized from the
previous trained model and be continued trained in the later
stage. More details can be found in Appendix A.

Baselines It is worth noting that our method DWM aims
to improve the training data utilization of model pre-training,

and is orthogonal to existing data selection methods. In this
paper, to verify the effect of DWM, we first compare DWM
using random-selected data to naive random selection, as
well as state-of-the-art data selection baselines including
DSIR (Xie et al., 2023) and QuRating (Wettig et al., 2024).
Here DSIR uses Wikipedia and books as target data dis-
tribution and selects data classified in the target distribu-
tion. QuRating first uses the model GPT-3.5-turbo (OpenAI,
2023) as the referring model to judge the data samples in dif-
ferent dimensions, then uses the model’s preference data to
train data quality rating models to select data. Moreover, we
also provide results of DWM transferred to the data selected
by DSIR or QuRating to justify its scalability.

Evaluation Benchmarks To evaluate the effectiveness of
DWM, we compared the performance of the pre-trained
models trained with DWM and different data selection
baselines on the widely-used lm-evaluation-harness frame-
work 1. Following Wettig et al. (2024) and Xie et al.
(2023), we perform a holistic evaluation of pre-trained mod-
els across 9 downstream tasks (ARC-easy/challenge (Clark
et al., 2018), SciQA (Auer et al., 2023), LogiQA (Liu et al.,
2020), BoolQ (Clark et al., 2019), OBQA (Mihaylov et al.,
2018), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al.,
2020), and WinoGrande (Sakaguchi et al., 2021)), compris-
ing reading comprehension tasks, commonsense reasoning
and knowledge question answering. To assess both inherent
knowledge and in-context learning capabilities, we evaluate
the models under zero-shot and two-shot settings referring
to MATES (Yu et al., 2024). For each evaluation task, nor-
malized accuracy is reported when available; otherwise,
standard accuracy is adopted as the evaluation metric.
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Figure 2. Multi-stage performance of the 370M model using
randomly-selected data with and without DWM.

5. Evaluation Results
In this section, we want to evaluate the effect of the proposed
DWM. We conduct experiments to answer the following
questions: 1) Is it necessary to consider the data utilization
in model pre-training with data selection? 2) What is the
transferring performance of the DWM to larger models or
other selected datasets? 3) How does the data preference
change of the trained model during training? 4) What is

1https://github.com/EleutherAI/
lm-evaluation-harness
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Table 1. Zero-shot performance of 370M pre-trained models using random-selected data with and without DWM
STAGES ARC-C ARC-E BOOLQ H.S. LOQIQA OBQA PIQA SCIQ W.G. AVERAGE

STAGE 2 W/O 22.0 39.3 53.2 33.2 25.2 28.8 63.8 65.2 51.1 42.4
W/ 23.2 40.4 55.6 33.2 26.1 28.2 62.5 63.1 52.4 42.7

STAGE 3 W/O 23.8 41.0 58.1 35.0 26.4 27.2 64.4 64.7 51.5 43.6
W/ 22.5 41.6 50.3 34.5 26.3 30.2 64.4 66.9 52.3 43.2

STAGE 4 W/O 24.0 40.7 52.9 36.1 25.8 27.6 64.6 69.7 49.3 43.4
W/ 22.8 41.9 58.4 35.8 25.4 30.0 65.9 66.5 52.6 44.4

STAGE 5 W/O 24.1 41.2 52.7 36.8 26.6 28.0 65.2 70.9 50.8 44.0
W 24.3 42.5 59.9 36.4 26.4 29.8 65.3 68.1 52.7 45.0

Table 2. Two-shot performance of 370M pre-trained models using random-selected data with and without DWM
STAGES ARC-C ARC-E BOOLQ H.S. LOQIQA OBQA PIQA SCIQ W.G. AVERAGE

STAGE 2 W/O 22.9 41.5 48.3 33.0 26.6 27.2 63 75.9 50.9 43.3
W/ 22.9 41.9 55.0 32.9 25.2 25.4 63.4 73.1 51.8 43.5

STAGE 3 W/O 24.8 44.0 41.8 34.9 25.8 28.2 64.3 76.2 51.7 43.5
W/ 23.8 44.4 49.3 34.9 24.7 28.4 63.8 78.3 52.2 44.4

STAGE 4 W/O 24.1 45.3 53.7 35.9 22.3 28.2 64.6 76.4 50.8 44.6
W/ 23.3 45.4 53.9 35.9 24.4 28.0 64.3 80.6 51.8 45.3

STAGE 5 W/O 25.5 46.6 51.6 36.6 22.9 28.4 65.0 78.9 50.8 45.1
W 24.7 46.8 56.6 36.5 25.8 28.2 65.0 80.5 53.4 46.4

affecting the effect of DWM? In the following, we will
answer the questions above one by one.

5.1. Effectiveness of DWM

To evaluate the impact of data utilization in addition to data
selection, we compare the performance of the 370M model
with and without the weighting model, using randomly se-
lected data from the SlimPajama dataset. Since we split
the whole training process into 5 stages, here we provide
the performance of these two approaches in the end of each
stage.

Results are shown in Table 1, 2 and Figure 2, where the zero-
shot and two-shot performance in the downstream tasks
mentioned above are provided. Results demonstrate that the
model trained with DWM (RANDOM+DWM) is better than
that trained without weighting model but only randomly-
selected data (RANDOM), illustrating the importance of
considering data utilization. Specially, in Figure 2, we found
that the weighting model generally has a more pronounced
effect on model performance in the later stages of training.
In contrast, during the early stages of training, the difference
in performance between using and not using the weighting
model is relatively minor. Additionally, the DWM not only
enhances the model’s performance on reading comprehen-
sion tasks, such as SciQA and BoolQ, but also improves
its performance on commonsense reasoning tasks, such as
the WinoGrande. Moreover, we found that compared to
the model’s direct generalization capability (zero-shot per-
formance), DWM primarily enhances the model’s few-shot
ability. Its performance under the few-shot testing setting
consistently outperforms models trained without the weight-
ing model. We speculate that this may be because the vali-
dation set used to train the weighting model is LAMBADA,

which mainly helps improve the model’s text understanding
and prediction ability and is thus more suitable for such
in-context learning settings.

5.2. Transferability of DWM

Note that in Sec. 5.1, we evaluate the effect of DWM in a
370M model and random-selected data. However, we want
to emphasize that DWM is agnostic to the model size or data
selection methods, operating in an orthogonal manner with
respect to these factors. Hence, in the following, we aim
to justify the generalization ability of the weighting model,
and we transfer the weighting model trained before based
on the randomly-selected data and 370M models to other
data selection methods or larger models. Specially, here we
apply DWM to the data selected by DSIR and QuRating,
and transfer DWM to a larger Llama2-style model with
1.3B parameters. Note that the model with 1.3B parameters
is commonly studied to verify the effect of different data
selection methods (Wettig et al., 2024; Yu et al., 2024; Xie
et al., 2023).

Firstly, we provide the zero-shot and two-shot performance
of DWM when transferred to different data-selection meth-
ods, and results are shown in Table 8 and Table 3. Results
demonstrate that the DWM achieves consistent performance
improvements, whether applied to randomly selected data
or carefully curated data like DSIR.

Moreover, to investigate the effectiveness of DWM in larger
models, we transfer the weighting model trained in the
370M model to a larger model with 1.3B parameters di-
rectly. We provide the comparison in Table 9 and 4, where
the zero-shot and two-shot ability of the model trained with
DWM and different data-selection methods are provided. To
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Table 3. Two-Shot performance of 370M pre-trained models using different selected data with and without DWM.
METHOD ARC-C ARC-E BOOLQ H.S. LOQIQA OBQA PIQA SCIQ W.G. AVG

RANDOM 25.5 46.6 51.6 36.6 22.9 28.4 65.0 78.9 50.8 45.1
RANDOM+DWM 24.7 46.8 56.6 36.5 25.8 28.2 65.0 80.5 53.4 46.4

DSIR 23.6 45.7 58.6 35.9 24.9 26.4 65.2 74.9 52.3 45.3
DSIR+DWM 24.9 46.3 60.0 36.0 25.8 29.2 65.3 78.4 51.5 46.4

QURATING 27.9 56.6 58.6 38.1 25.0 32.0 63.6 82.3 52.5 48.5
QURATING+DWM 28.1 55.6 59.7 37.7 24.1 31.2 63.3 84.6 53.1 48.6

Table 4. Two-Shot performance of 1.3B pre-trained models using different selected data with and without DWM. Unless otherwise
specified, the data size is 30B tokens.

METHOD ARC-C ARC-E BOOLQ H.S. LOQIQA OBQA PIQA SCIQ W.G. AVG

RANDOM 60B 28.7 55.9 58.9 48.7 23.7 30.8 70.8 89.9 54.9 51.4

RANDOM 25.1 48.9 56.0 40.7 26.6 28.0 67.3 81.4 54.2 47.6
RANDOM+DWM 25.1 53.3 51.1 44.8 25.7 30.8 68.7 85.7 53.0 48.7

DSIR 27.7 53.6 49.7 44.1 24.6 31.4 68.8 85.5 52.8 48.7
DSIR+DWM 28.2 54.3 51.0 43.3 26.7 30.6 67.4 82.9 54.1 48.7

QURATING 33.3 60.8 61.7 39.3 25.4 32.6 61.9 86.9 50.7 50.3
QURATING+DWM 32.0 62.2 54.5 43.5 27.7 32.4 65.9 88.0 53.0 51.0

verify the method’s improvement in model pre-training effi-
ciency, we also provide the performance of models trained
on the dataset that is twice the size (60B tokens), i.e., RAN-
DOM 60B. Firstly, results justify that DWM trained in small
models can be transferred to the larger model directly, which
helps improve the pre-training efficiency effectively. More-
over, we also present results for the 1.3B model trained on
data selected by SOTA baselines, such as DSIR and QuRat-
ing, both with and without the DWM module. Results
illustrate that the improvement of DWM when applied to
different kinds of selected data is consistent across different
model scales.

Specially, we found that, in 370M models shown in Tale
3, the improvement of DWM when applied to QuRating is
minor, while applied to DSIR is more significant. However,
in the 1.3B model shown in Table 4, the opposite trend is
observed. And the marginal average improvements in these
transfer settings result in mixed task-wise outcomes. We sus-
pect this is due to the incompatibility between the model and
the high-quality reasoning data during training. Here, we
use data selected by QuRating along the educational dimen-
sion, which includes a significant amount of high-quality
step-by-step reasoning data. For smaller models, such high-
quality data can quickly lead to training saturation, leaving
limited room for further performance gains through DWM.
In contrast, larger models have a greater capacity to absorb
high-quality data, enabling DWM to further exploit the po-
tential advantages of such data for model training when
applied on QuRating’s high-quality selections. Similarly,
since DSIR selects data based on its similarity to Wikipedia
and books, the chosen data may contain fewer high-quality

reasoning examples. As a result, its direct application to
larger models provides limited performance improvements
compared to randomly selected data, leaving less room for
DWM to further optimize the data selected by DSIR in the
context of larger models.

It is worth noting that in DWM, a bi-level optimization
strategy is employed on the 370M model to separately train
the weighting model and the language model. Once the
training is completed, the learned weighting model can
be directly transferred to larger models without additional
training. Besides, using a trained data weighting model
for model training does introduce additional computational
overhead. Referring to (Hoffmann et al., 2022), the training
cost in FLOPs can be approximated as:

Training FLOPs ≈ C×Model Parameters×Token Count,
(9)

where the constant C depends on whether back propagation
is performed. In our case, since the weighting model only
performs forward inference when assisting the training of
larger models, C can be approximated as 2 (compared to 6
for full back propagation). Therefore, when transferring the
370M weighting model to the 1.3B model, the additional
training overhead is roughly 9%, and this overhead contin-
ues to decrease as the size of the target model increases.

5.3. Analysis of Model Dynamic Data Preference

In normal large language models training, the training
data are often pro-collected and treated equally important,
with little attention given to selectively emphasizing or de-
emphasizing specific data based on its value for improving

7



LLM Data Selection and Utilization via Dynamic Bi-level Optimization

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 3. Preferred (red) and unpreferred (blue) data of the weight-
ing model in different training stages, considering properties of
writing, expertise, facts and educational values.

generalization, reducing bias, or enhancing specific capabil-
ities. On the contrary, DWM aims to capture the dynamic
data preference during model training, which focuses on the
interaction of data as well as the shifty data preference of
model during training. Therefore, in this portion, we want
to analyze the change of the model’s data preference, and
provide more insights in the role of different kinds of data
during model training.

Here we analyze the preferred and unpreferred data of DWM
during different stages of training, and provide the results in
Figure 3 and Figure 5. Specially, to investigate the proper-
ties of data preferred by the weighting model, we utilize the
open-source scoring model from QuRating to analyze the
scores of preferred (and non-preferred) data across different
dimensions. Concretely, we choose a batch size of 4096
data samples, and use weighting model obtained by DWM
in different training stages to weigh these data, and split
the data into two sections, preferred data and unpreferred
data according to their weights. Then we evaluate the pros-
perity of these two kinds of data, including their writing
style, required expertise, facts and trivia included, as well
as educational values. Results in Figure 3 demonstrate that
after initial training stages like stage 1, the weighting model
prefers to favor data that performs well across all these four
dimensions (preferred data consistently scores positively in
these dimensions), and data requiring expertise or possess-
ing educational value is not prioritized as highly. However,
counter-intuitively, during the later stages of training, data
with a better writing style is less preferred and data required
expertise are more preferred, which provides new insights
for data selection strategies.

Specially, we also note that the weighting model after the
stage 2 is inconsistent with those of the weighting model
in subsequent stages, which also leads to a performance
drop compared to uniformly utilizing randomly-selected
data (as shown in the bottom-left corner of the Figure 3).
This demonstrates that data preferences during training are

Table 5. Comparison of using different validation tasks in DWM.
DWM VAL means using the held-out validation dataset.

SETTING METHOD READING REASONING QA AVG

ZERO-SHOT
RANDOM 43.1 50.9 28.0 44.0
R+DWM VAL 43.7 51.0 29.5 44.6
R+DWM 44.2 51.5 29.8 45.0

TWO-SHOT
RANDOM 45.1 50.8 28.4 45.1
R+DWM VAL 46.8 50.8 28.2 46.1
R+DWM 46.9 51.6 28.2 46.4

indeed closely tied to the model performance. And in this
work, we primarily aim to highlight the importance of lever-
aging data during model training, as well as the effectiveness
of transferring the trained weighting model. How to better
obtain a weighting model that consistently improves perfor-
mance throughout the entire training stages remains a topic
for future research. The analysis of the preferred data of the
weighting model across different data domains is provided
in Figure 5 in Appendix B.2.
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Figure 4. Comparison of static and dynamic weighting model.
DWM w1 means only using the weighting model of the first stage.
DWM w4 means using the weighting model in the last stage.

5.4. Ablation Study

Note that DWM emphasizes to learn the data preference
dynamically, and uses a bi-level optimization framework
to help the weighting model training. In this portion, we
will evaluate the importance of these two factors. Firstly,
since DWM learns data preference by multi-stage alter-
native iterations, we compare DWM with models trained
with fixed weighting model. Here we present the result
of models trained with only the weighting model after
the first stage (RANDOM+DWM w1) or in the last stage
(RANDOM+DWM w4). Results are shown in Figure 4.
Referring to Figure 3, in the early training stages (RAN-
DOM+DWM w1), the weighting model distributes its atten-
tion more evenly across different kinds of data, which limits
the model’s potential in later stages. In contrast, the weight-
ing model in the last stages (RANDOM+DWM w4) focuses
more on high-quality reasoning or expertise data. While
this approach significantly boosts performance in the early
stages of training, its bias toward high-quality data reduces
the exploration of diverse data, ultimately leading to a per-
formance gap compared to methods that dynamically learn
data preferences throughout training (RANDOM+DWM).
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Table 6. Two-Shot performance of 370M pre-trained models with different numbers of training stages.
METHOD ARC-C ARC-E BOOLQ H.S. LOQIQA OBQA PIQA SCIQ W.G. AVG

RANDOM 25.5 46.6 51.6 36.6 22.9 28.4 65.0 78.9 50.8 45.1
DWM 2 STAGES 24.5 43.9 57.5 35.1 25.0 27.6 64.7 76.5 52.9 45.3
DWM 24.7 46.8 56.6 36.5 25.8 28.2 65.0 80.5 53.4 46.4
DWM 8 STAGES 25.5 46.3 60.1 36.4 25.2 28.8 64.9 77.2 53.7 46.5

More details are shown in Table 10 and 11 in the Appendix.

Moreover, considering that DWM uses the bi-level opti-
mization framework and relates the weighting model’s opti-
mization to the performance in the validation set, here we
justify the rationality of this objective. Here we replace the
validation task LAMBADA used in DWM with the valida-
tion dataset held-out in SlimPajama (DWM VAL) to justify
the importance of the choice of the validation task. The
performance of the ablation is shown in Table 5. Results
demonstrate that using a validation set independent and
identically distributed (i.i.d.) with the training data is less
effective than using LAMBADA, a task designed to encour-
age text understanding and prediction. This highlights the
importance of validation task selection.

In DWM, the training process is divided into five stages. To
validate this design choice, we conduct ablation studies on
the number of stages. Table 14 and Table 6 report the zero-
shot and two-shot performance under different stage settings.
Increasing the number of stages helps DWM better capture
the model’s dynamic data preferences, but also introduces
additional training overhead for the weighting model. The
results suggest that using five stages strikes a favorable
balance between performance and efficiency, implying that
the model’s preferences remain relatively stable within each
stage.

6. Conclusion
In this paper, we proposed a novel bi-level optimization
framework with a data weighting model, designed to im-
prove data utilization during the training of LLMs. By
dynamically adjusting the weight of selected data within
each batch, DWM enables more effective data usage and
enhances model performance. Our experimental results
demonstrate that DWM not only improves the performance
of models trained with carefully selected data but also en-
ables models trained with randomly selected data to achieve
competitive results. Additionally, we show that transferring
DWM to larger models yields consistent performance im-
provements, and we provide insights into how a model’s data
preferences evolve throughout training. This work opens
new avenues for optimizing data selection and utilization
in LLM training, providing a promising direction for more
efficient and cost-effective model training.
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A. Training Details
The architecture details of the pre-training models with 370M and 1.3B parameters are presented in Table 7.

Table 7. Architecture of pre-training models with 370M and 1.3B parameters.

Hyperparameter 1.3B Model Value 370M Model Value

Vocabulary Size 32,000 32,000
Hidden Size 2048 1024
FFN Hidden Size 5504 2812
Number of Layers 24 24
Number of Attention Heads 16 8
Number of KV Attention Heads 16 8
Maximum Context Window Length 1024 1024
Number of Parameters 1,345,423,360 (1.3B) 373,867,520 (370M)

In the training process, a global batch size of 4 million tokens was utilized. The training was completed in approximately
7500 steps. The learning rate was set at 5× 10−4. The Adam optimizer was used, with the hyperparameters configured as
β1 = 0.9, β2 = 0.95, ϵ = 10−8.

Table 8. Zero-Shot performance of 370M pre-trained models using selected data with and without DWM

METHOD ARC-C ARC-E BOOLQ H.S. LOQIQA OBQA PIQA SCIQ W.G. AVERAGE

RANDOM 24.1 41.2 52.7 36.8 26.6 28.0 65.2 70.9 50.8 44.0
RANDOM+DWM 24.3 42.5 59.9 36.4 26.4 29.8 65.3 68.1 52.7 45.0
DSIR 24.2 40.4 60.2 35.6 26.7 29.0 64.9 65.9 51.5 44.3
DSIR+DWM 23.2 41.2 61.9 35.8 26.6 29.0 65.1 67.5 52.0 44.7
QURATING 26.0 49.3 61.4 38.3 26.6 32.0 63.6 70.5 51.9 46.6
QURATING+DWM 26.2 50.8 57.7 37.5 27.3 33.6 63.7 72.7 52.2 46.9

B. Additional Results
B.1. Transferability of DWM

We provide the zero-shot performance of the trained model with different kinds of selected data and different scales of
parameters. Results are shown in Table 8 and Table 9, where DWM demonstrates consistent performance improvements
across different model sizes and various data selection methods.

B.2. Analysis the Domain of Preferred Data

We provide the domain of the preferred data of the weighting model in different training stages in Figure 5, where our
weighting model also exhibits a stronger focus on expertise data, such as arXiv, and reasoning-intensive code data, such as
StackExchange, during the later stages of training. Due to the significant variance in data quality within domains and the
relatively weak correlation between domain and data quality, a more detailed domain analysis will be left for future research.

B.3. Ablation Study

Detailed experimental results of different ablations are provided below. Table 10 and 11 show the comparison of static and
dynamic weighting model learning. Table 12 and 13 show the detailed performance of the weighting model with different
validation tasks. Table 14 shows the zero-shot performance of a 370M model trained with different numbers of training
stages.
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Table 9. Zero-Shot performance of 1.3B pre-trained models using random-selected data with and without DWM

METHOD ARC-C ARC-E BOOLQ H.S. LOQIQA OBQA PIQA SCIQ W.G. AVERAGE

RANDOM 25.3 44.8 59.5 40.6 27.0 30.2 66.9 69.3 52.5 46.2
RANDOM+DWM 25.1 46.6 59.9 44.8 26.9 31.6 68.3 73.0 53.4 47.7
DSIR 25.9 47.0 56.3 44.2 25.8 30.4 68.4 70.9 52.5 46.8
DSIR+DWM 25.6 45.5 59.1 43.4 26.7 31.0 68.6 68.7 52.9 46.8
QURATING 30.0 55.6 61.1 39.4 25.8 33.8 62.0 76.3 50.9 48.3
QURATING+DWM 30.1 55.9 59.2 43.6 27.3 34.2 66.1 77.1 53.4 49.7

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 5. Preferred (red) and unpreferred (blue) data of the weighting model in different training stages, considering properties of different
data domains.

Table 10. Detailed zero-shot performance of trained models using static and dynamic weighting model

STAGE METHOD ARC-C ARC-E BOOLQ H.S. LOQIQA OBQA PIQA SCIQ W.G. AVG

STAGE 2

RANDOM 22.0 39.3 53.2 33.2 25.2 28.8 63.8 65.2 51.1 42.4
R+DWM W1 23.2 40.4 55.6 33.2 26.1 28.2 62.5 63.1 52.4 42.7
R+DWM W4 23.0 40.2 61.2 33.1 26.9 27.8 64.0 63.3 51.7 43.5
R+DWM 23.2 40.4 55.6 33.2 26.1 28.2 62.5 63.1 52.4 42.7

STAGE 3

RANDOM 23.8 41.0 58.1 35.0 26.4 27.2 64.4 64.7 51.5 43.6
R+DWM W1 23.0 41.2 57.2 35.3 24.6 30.4 65.0 66.6 53.5 44.1
R+DWM W4 23.1 40.2 58.7 34.8 27.3 29.2 64.1 64.4 52.0 43.8
R+DWM 22.5 41.6 50.3 34.5 26.3 30.2 64.4 66.9 52.3 43.2

STAGE 4

RANDOM 24.0 40.7 52.9 36.1 25.8 27.6 64.6 69.7 49.3 43.4
R+DWM W1 22.1 41.5 55.7 36.1 23.7 29.8 65.2 66.3 52.4 43.6
R+DWM W4 23.1 40.6 61.5 35.8 25.5 29.0 64.6 64.0 53.1 44.1
R+DWM 22.8 41.9 58.4 35.8 25.4 30.0 65.9 66.5 52.6 44.4

STAGE 5

RANDOM 24.1 41.2 52.7 36.8 26.6 28.0 65.2 70.9 50.8 44.0
R+DWM W1 22.7 41.5 56.0 36.8 25.0 30.6 65.0 67.7 52.8 44.2
R+DWM W4 23.5 41.3 61.0 36.5 25.5 29.6 65.0 66.8 51.3 44.5
R+DWM 24.3 42.5 59.9 36.4 26.4 29.8 65.3 68.1 52.7 45.0
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Table 11. Detailed two-shot performance of trained models using static and dynamic weighting model

STAGE METHOD ARC-C ARC-E BOOLQ H.S. LOQIQA OBQA PIQA SCIQ W.G. AVG

STAGE 2

RANDOM 22.9 41.5 48.3 33.0 26.6 27.2 63.0 75.9 50.9 43.3
R+DWM W1 22.9 41.9 55.0 32.9 25.2 25.4 63.4 73.1 51.8 43.5
R+DWM W4 23.3 42.6 56.9 32.9 26.4 26.0 63.8 73.4 51.3 44.1
R+DWM 22.9 41.9 55.0 32.9 25.2 25.4 63.4 73.1 51.8 43.5

STAGE 3

RANDOM 24.8 44.0 41.8 34.9 25.8 28.2 64.3 76.2 51.7 43.5
R+DWM W1 23.2 43.4 52.7 34.9 24.7 26.8 64.5 75.0 53.6 44.3
R+DWM W4 23.8 44.0 49.3 35.2 27.5 29.4 64.6 76.9 51.8 44.7
R+DWM 23.8 44.4 49.3 34.9 24.7 28.4 63.8 78.3 52.2 44.4

STAGE 4

RANDOM 24.1 45.3 53.7 35.9 22.3 28.2 64.6 76.4 50.8 44.6
R+DWM W1 24.2 44.6 52.4 36.0 24.1 28.8 64.9 76.5 52.1 44.8
R+DWM W4 23.1 45.1 55.3 36.2 24.0 29.2 64.9 77.2 53.3 45.4
R+DWM 23.3 45.4 53.9 35.9 24.4 28.0 64.3 80.6 51.8 45.3

STAGE 5

RANDOM 25.5 46.6 51.6 36.6 22.9 28.4 65.0 78.9 50.8 45.1
R+DWM W1 24.1 48.7 50.6 36.4 24.7 29.2 65.3 77.4 52.7 45.5
R+DWM W4 24.1 46.3 56.5 36.7 23.4 29.0 65.6 80.1 52.6 46.0
R+DWM 24.7 46.8 56.6 36.5 25.8 28.2 65.0 80.5 53.4 46.4

Table 12. Detailed zero-shot performance of trained models with DWM using different validation tasks

METHOD ARC-C ARC-E BOOLQ H.S. LOQIQA OBQA PIQA SCIQ W.G. AVERAGE

RANDOM 24.1 41.2 52.7 36.8 26.6 28.0 65.2 70.9 50.8 44.0
R+DWM VAL 23.6 42.4 59.9 36.4 25.0 29.5 65.6 67.8 51.1 44.6
RANDOM+DWM 24.3 42.5 59.9 36.4 26.4 29.8 65.3 68.1 52.7 45.0

Table 13. Detailed two-shot performance of trained models with DWM using different validation tasks

METHOD ARC-C ARC-E BOOLQ H.S. LOQIQA OBQA PIQA SCIQ W.G. AVERAGE

RANDOM 25.5 46.6 51.6 36.6 22.9 28.4 65.0 78.9 50.8 45.1
R+DWM VAL 24.8 46.5 57.0 36.5 25.3 28.2 65.1 80.6 50.8 46.1
RANDOM+DWM 24.7 46.8 56.6 36.5 25.8 28.2 65.0 80.5 53.4 46.4

Table 14. Zero-Shot performance of 370M pre-trained models with different numbers of training stages.
METHOD ARC-C ARC-E BOOLQ H.S. LOQIQA OBQA PIQA SCIQ W.G. AVG

RANDOM 24.1 41.2 52.7 36.8 26.6 28.0 65.2 70.9 50.8 44.0
DWM 2 STAGES 23.2 39.9 59.7 35.4 27.1 29.9 65.8 64.6 53.4 44.3
DWM 24.3 42.5 59.9 36.4 26.4 29.8 65.3 68.1 52.7 45.0
DWM 8 STAGES 25.2 41.7 60.6 36.0 27.3 30.6 65.7 67.3 52.6 45.2
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