
Transformers Don’t In-Context Learn Least Squares Regression

Joshua Hill 1 Benjamin Eyre 2 Elliot Creager 1 3

Abstract
In-context learning (ICL) has emerged as a pow-
erful capability of large pretrained transformers,
enabling them to solve new tasks implicit in ex-
ample input–output pairs without any gradient
updates. Despite its practical success, the mech-
anisms underlying ICL remain largely mysteri-
ous. In this work we study synthetic linear re-
gression to probe how transformers implement
learning at inference time. Previous works have
demonstrated that transformers match the perfor-
mance of learning rules such as Ordinary Least
Squares (OLS) regression or gradient descent and
have suggested ICL is facilitated in transform-
ers through the learned implementation of one of
these techniques. In this work, we demonstrate
through a suite of out-of-distribution generaliza-
tion experiments that transformers trained for ICL
fail to generalize after shifts in the prompt distri-
bution, a behaviour that is inconsistent with the
notion of transformers implementing algorithms
such as OLS. Finally, we highlight the role of
the pretraining corpus in shaping ICL behaviour
through a spectral analysis of the learned repre-
sentations in the residual stream. Inputs from
the same distribution as the training data produce
representations with a unique spectral signature:
inputs from this distribution tend to have the same
top two singular vectors. This spectral signature
is not shared by out-of-distribution inputs, and a
metric characterizing the presence of this signa-
ture is highly correlated with low loss.

1. Introduction
Deep learning models, particularly transformers (Vaswani
et al., 2017), have shown impressive performance across
various tasks. In addition to state-of-the-art performance
on tasks on which these models are explicitly trained on,

1University of Waterloo 2Columbia University 3Vector Institute.
Correspondence to: Joshua Hill <jhdhill@uwaterloo.ca>.

Published at ICML 2025 Workshop on Reliable and Responsible
Foundation Models. Copyright 2025 by the author(s).

large transformers trained on variations of the language mod-
elling objective (LLMs) demonstrate the perplexing ability
to perform previously unseen tasks using a small sequence
of input-output pairs as context. This ability, known as
In-Context Learning (ICL), has helped propel LLMs into
popular use by supplying an easy to use interface for a
machine learning system capable of several tasks with no
additional training (Brown et al., 2020; Dong et al., 2024).

Despite its importance to modern machine learning, rela-
tively little is understood about how ICL works and which
aspects of transformer training enable this behavior. This
has prompted recent investigations into the limitations of
this ability, the circumstances in which it can emerge, and
the mechanisms that can facilitate learning at inference time.
Notably, several works have used the problem of in-context
regression using synthetic data as a controlled test bed for de-
veloping and evaluating ICL hypotheses (Garg et al., 2023;
Goddard et al., 2024; Akyürek et al., 2023). Within this
setting, several theories have been posited suggesting that
training a transformer on this task produces a model which
naturally implements known regression learning rules like
Ordinary Least Squares (OLS) or gradient descent, and that
this is the mechanism enabling ICL (Akyürek et al., 2023;
Von Oswald et al., 2023; Garg et al., 2023).

Following recent re-evaluations of these hypotheses (Arora
et al., 2024; Shen et al., 2023), we perform experiments
to critique existing theories and motivate new ones. In
particular, we provide evidence for the following claims:

1. OLS regression, gradient descent, and other similar
regression rules are incapable of explaining the gen-
eralization performance of transformers performing
ICL.

2. The ability for ICL to be performed effectively relies
heavily on the pre-training data and its relation to the
in-context examples, and performance can be predicted
by spectral signatures in the geometry of the residual
stream representation of the prompt.

We support our first claim through out-of-distribution gener-
alization experiments where the transformer is trained on a
series of ICL regression tasks, where the training set bears
a systematic difference from the test set. While traditional

1

Transformers Don’t In-Context Learn Least Squares Regression

regression rules guarantee a reasonable level of generaliza-
tion regardless of the subspace the inputs reside in, we find
that transformers performing ICL are only able to correctly
perform regression on sequences similar to the ones they
trained on. Even more surprisingly, we find that even in the
in-distribution generalization case, transformers performing
ICL achieve an asymptotic error rate orders of magnitude
worse than OLS.

Our second claim proposes that the representation geometry
of a prompt is heavily influenced by the prompt’s similar-
ity to those seen during pre-training. By probing residual-
stream activations before the final readout head, we uncover
distinct patterns in the geometry of the residual stream for
in-distribution versus out-of-distribution (OOD) prompts,
which we call spectral signatures. In-distribution prompts
vary within a stable low-dimensional subspace, evidenced
by rapidly decaying singular-value spectra and consistent
principal directions, while OOD prompts produce flatter,
high-variance spectra with unstable principal directions.
These signatures correlate strongly with performance and
the distributional source of the prompt, and are seen across
different training distributions.

The widespread adoption of foundation models, and ICL
specifically, as a general purpose machine learning pipeline
makes characterizing the shortcomings of these models all
the more important. By moving beyond black-box bench-
marks to analyze internal representations, our study high-
lights how the geometry of the residual stream represen-
tations of ICL prompts can be used to both explain and
anticipate the failure of foundation models to generalize.

2. Related Work
Understanding In-context Learning. The advent of ICL
has revealed not only the potential for a widely applica-
ble ML system stemming from a single training regiment
(Brown et al., 2020) but also the difficulty of understanding
how the model achieves this capability (Olsson et al., 2022;
Elhage et al., 2021). Researchers have focused on in-context
regression (fitting a transformer to linear synthetic data; see
Section 3) as a model organism for ICL (Akyürek et al.,
2023; Garg et al., 2023; Goddard et al., 2024; Raventos
et al., 2023; Shen et al., 2023). Due to the simple nature
of linear regression, a rich empirical and theoretical under-
standing of its traditional solutions can be applied to develop
hypotheses about how transformers solve the task via ICL.

Garg et al. (2023) demonstrated that transformers trained
to perform in-context regression could simulate a number
of different regression models, even when a modest distri-
bution shift was induced between the in-context examples
and the final query example. Akyürek et al. (2023) showed
that gradient descent in a linear regression setting could in

principle be implemented using a simplified transformer
architecture, a necessary theoretical underpinning for the
idea that transformers could learn to implement known re-
gression rules. Finally, Von Oswald et al. (2023) provided
empirical evidence that transformers without MLP layers
do learn a set of weights similar to the handcrafted ones
proposed by Akyürek et al. (2023).

Our work challenges the hypothesis that transformers im-
plement known regression rules when trained on in-context
regression. Our argument will rely heavily on the trained
transformer’s dependence on its training distribution, and
how asymmetries between training and testing performance
cannot be accounted for using typical regression rules.
Other works did not present such an example; Garg et al.
(2023) presented an OOD generalization experiment that
succeeded, but likely due to the fact that the distribution shift
occurred in-context, rather than between the pre-training
and query distributions.

Perhaps most similar to our work is that of Goddard et al.
(2024), which also evaluates the OOD ICL generalization of
transformers pre-trained on linear regression data. Our ap-
proach differs through our use of subspace distribution shifts
during evaluation—going beyond the geometrical span of
the pre-training data—to induce a larger generalization gap,
which underscores the importance of the pre-training data
in ICL capabilities and how these capabilities differ from
classic statistical methods.

Realizing Regression Through Alternate Learning Ob-
jectives. A notable recurring theme within machine learn-
ing research is that a single predictor can often be derived
through multiple distinct training procedures.1 As a rudi-
mentary example, consider that gradient-based updates to
a linear regression model will converge to the closed-form
OLS solution under certain conditions (Goldstein, 1962;
Bach, 2024). A more interesting observation is that gradient-
based linear regression training with additive Gaussian input
noise can be functionally equivalent to the closed-form ridge
regression solution (Bishop, 1995). Works along these lines,
which seek to theoretically characterize how two learning
algorithms arrive at the same solution, help to motivate our
work and prior related work investigating the extent to which
pre-trained transformers match the performance of classic
statistical methods like OLS and ridge regression. A distinct
but complementary line of work examines how regression
solutions differ based on the number of feature dimensions
and training samples; recent work along this direction has
identified and characterized a “double-descent” behavior,
where test risk acts non-monotonically as a function of num-

1The concept of model multiplicity (Marx et al., 2020) in over-
parameterized models highlights the converse problem: that the
same dataset and training procedure can lead to multiple distinct
models.

2

Transformers Don’t In-Context Learn Least Squares Regression

ber of samples for underdetermined linear regression trained
on noisy data (Nakkiran, 2019).

3. Setup
In this section, we describe our training and evaluation
procedures. We follow the framework established by Garg
et al. (2023); Kotha et al. (2024) to generate in-context
linear regression prompts. A GPT-2-style transformer is
then pre-trained over a collection of such prompts with
different ground truth weight vectors, causing the model to
learn an ICL solution. We then compare the transformer’s
performance to that of classical regression techniques on
ICL prompts sampled using held-out ground truth weight
vectors.

3.1. Data Generation and Transformer Training Setup

We train a transformer model Tθ on a collection of in-context
learning (ICL) prompts for linear regression. Each prompt
is drawn from a prompt distribution denoted by D(Pw, Px),
with the generation process as follows:

1. Task Generation: A weight vector is drawn as

w := Pwwg, wg ∼ N (0, Id).

Weights are projected using a projection Pw. We also
refer to this final weight vector w and the regression
problem it induces as a task. The procedure for creating
the projection is outlined in Appendix A .

2. Data Sampling: For each prompt, we independently
sample k + 1 input-target2 pairs of the form:

x := Pxxg, xg ∼ N (0, Id), y := w⊤x.

Inputs are projected by an orthogonal projection Px .

We also consider the impact of adding label noise in
this regime. The results of these experiments are pre-
sented in Appendix B.

3. Prompt Creation: A prompt comprises k labeled in-
context exemplars followed by a single query point:

p =
(
x1, y1, x2, y2, . . . , xk, yk, xk+1

)
.

Tθ predicts each token conditioned on all previous tokens.
For ease of reference, we make this conditioning on the
tokens preceding an input xi in a prompt implicit in our
notation. We do the same thing for generic models M that
are trained on the corresponding context, such as OLS:

2In our implementation, we append 19 zeros to yi to match the
token dimensionality.

Tθ(xi) := Tθ(xi|(x1, y1, ..., xi−1, yi−1)),

M(xi) := M(xi|(x1, y1, ..., xi−1, yi−1)).

For our experiments, we fix the dimensionality at d = 20
and set k = 40. Transformers are randomly initialized and
then trained on a large corpus of prompts from the specified
distribution D(Pw, Px). These pre-trained transformers are
then used to do in-context learning on new prompts coming
from varying distributions

3.2. Regression Baselines

In our experiments we compare against:

Ordinary Least Squares (OLS): We compute the OLS
solution using the pseudoinverse:

β̂OLS = X†y = (X⊤X)−1X⊤y,

MOLS(xi) := β̂
⊤
OLSxi.

To emulate the transformer’s auto-regressive behavior, when
predicting xi+1 we compute β̂OLS using the first i examples
of the corresponding prompt, i.e. X = [x1, . . . xk]

T and
y = [y1, . . . yk]

T .

Ridge Regression: The ridge regression solution is given
by:

β̂Ridge = (X⊤X+ λId)
−1X⊤y,

MRidge(xi) := β̂
⊤
Ridgexi.

where λ is the regularization parameter. This is similarly
trained in an auto-regressive manner.

We also compare the transformer’s behaviour with a
Bayesian regression method as well as a regressor trained
with gradient descent. A thorough description of those addi-
tional methods, evaluation setup and training can be found
in Appendix C

4. Transformers Don’t In-Context Learn Least
Squares

In this section, we present a series of experiments designed
to probe how restricting the diversity of training tasks or
training inputs affects the learned regression behavior. Our
experiments compare transformer performance with several
classical regression baselines in OOD settings.

Figure 1 illustrates a simple case (d = 2) of the induced
distribution shift between pre-training and evaluation.

Two complementary experimental setups are considered. In
both, we consider randomly created orthogonal subspaces
A and B of Rd such that ∀a ∈ A, b ∈ B, a⊤b = 0.

3

Transformers Don’t In-Context Learn Least Squares Regression

Transformer
pre-training

(subspace-restricted
data)

Transformer
deployment

(full space data)

OLS deployment
(full space data)

Figure 1. To examine the generalization of in-context learning in transformers, we pre-train on synthetic regression data with inputs drawn
from a restricted subspace (i.e. the training subspace D∥), then evaluate on the full subspace (i.e. D□ = D∥ ⊕D⊥, where D⊥ is the
orthogonal subspace). Unlike Ordinary Least Squares (OLS) regression, the transformer fails to generalize when deployed on D□, which
includes components outside of its pre-training data.

a) Weight Subspace Restriction: We project the train-
ing weight vectors onto a lower-dimensional subspace.
Specifically, if PA is a projection matrix to A, we
train the transformer on prompts from the distribution
D(Pw = PA, Px = Id).

b) Input Subspace Restriction: We project the prompt
feature vectors onto a lower-dimensional subspace.
Specifically, if PA is a projection matrix to A, we
train the transformer on prompts from the distribution
D(Pw = Id, Px = PA).

In both cases, we elect for A and B to be 10 dimensional sub-
spaces, exactly half of our chosen dimensionality of d = 20.
We detail how we sample these matrices in Appendix A. We
vary the dimensionality of the training subspace in Appendix
F, where we find similar results.

4.1. Results

We train transformers to perform in-context regression in
both of these settings and present the results for input sub-
space restriction below. We found very similar results
for weight subspace restriction, and so we defer those re-
sults to Appendix G as the analysis and insights are identi-
cal. To simplify the notation, we introduce the shorthand
D(P = PA) := D(Pw = Id, Px = PA).

After training a transformer on prompts from the distribution

D(P = PA), which we refer to as the training subspace D∥,
we evaluate the transformer and our regression baselines
on prompts from the training subspace as well as two other
distributions, which we refer to as the orthogonal subspace
D⊥ and full space D□, respectively:

D∥ := D(P = PA), D⊥ := D(P = PB), (1)

D□ := D(P = Id).

PB is a projection matrix to B, the subspace orthogonal to
the subspace A. We present the results of these evaluations
in Figure 2. The transformer performs well when w lies
in the training subspace, similar to OLS. However, its per-
formance degrades heavily when w falls in the orthogonal
subspace.

To further characterize this behavior, Figure 3 presents the
error as the test example is formed by a convex combination:

xi = t(PAxi) + (1− t)(PBxi), t ∈ [0, 1]. (2)

The gradual increase in error as t decreases confirms that
the transformer’s learned ICL solution is biased toward the
training subspace.

In addition to the notable disparities in OOD performance
between the regression baselines and the input restricted
transformer, the in-distribution performance is also vastly

4

Transformers Don’t In-Context Learn Least Squares Regression

Figure 2. Prediction error of transformers trained on prompts with an input projection, shown for prompts with inputs in the training
subspace, orthogonal complement, and entire space. Note that OLS transitions from underdetermined to overdetermined more quickly in
the training/orthogonal subspace compared with the full space, as the former have half the rank of the latter.

Figure 3. Prediction error as we blend an in-distribution inputs
with OOD inputs (Equation 2). The “Least Square (proj inputs)”
baseline corresponds to running OLS on the test prompt after pro-
jecting it onto the training subspace (which incurs error because
it ignores some features of the test prompt). Note the the perfor-
mance discrepancy between the transformer T∥ and the projected
OLS baseline reveals that the transformer is not simply performing
OLS on the components of the input within the training subspace.

different between the two sets of models. Notably, for pre-
dictions corresponding to i < d (where the regression prob-
lem is underdetermined), all models exhibit similar perfor-
mance. However, once we enter the overdetermined regime,
the OLS baseline achieves an error that is several orders of
magnitude lower than that of the transformer models or the
Ridge baseline.

This result, observed under a basic in-distribution setting,
clearly demonstrates transformers do not emulate the op-
timal least-squares solution, even in-distribution. In other
words, our initial experiments on out-of-distribution settings
are underpinned by a more fundamental disparity: OLS
consistently outperforms transformer-based in-context re-
gression in-distribution. This challenges previous claims
that transformers can inherently learn regression rules on

par with OLS.

5. Identifying ICL Generalization Through
Spectral Signatures

5.1. Measuring Distribution Shift in the Transformer
Residual Stream

So far we have shown that successful ICL generalization
in transformers depends implicitly on where the prompt
lies relative to the pre-training data. Next we examine why
such sensitivities to distribution shift occur. Our strategy
is to trace the internal representations that the transformer
assigns to each token and compare those representations
between test prompts from D∥, D⊥, and D□.

In this analysis, we consider the two transformer models:
one transformer T∥ trained on input-restricted prompts from
D∥, and another T□ trained on unrestricted prompts from
D□.

Collecting representations. Because the transformer op-
erates auto-regressively, it processes the prompt p =
(x1, y1, x2, y2, . . . , xk, yk, xk+1) one token at a time. As
each token ti ∈ p passes through the network, it ac-
quires its own residual-stream representation and produces
a corresponding prediction. Let z(ti) ∈ Rm denote the
residual-stream vector of ti immediately before the final
readout head.

We collect the representations for the tokens in a prompt
into a matrix and denote it as:

5

Transformers Don’t In-Context Learn Least Squares Regression

Zp =


z(x1)
z(x2)

...
z(xk+1)

 ∈ R(k+1)×d (3)

For every prompt distribution, we collect a batch of b = 128
prompts to create:

S∥ = {Zpi
; pi ∼ D∥}bi=1, S⊥ = {Zpi

; pi ∼ D⊥}bi=1,
(4)

S□ = {Zpi ; pi ∼ D□}bi=1.

Finally, for every representation matrix Zp we can compute
its singular value decomposition (SVD) as Zp = UpΣpV

⊤
p .

Spectral distribution. Figure 4(a) plots the singular-value
spectra for each prompt distribution described in Equation 4
for the transformer T∥. The spectra corresponding to S∥
exhibits a steep drop, and the leading 2 singular values
dominate, in addition to the low variance of the singular
values. OOD prompts lack this structure, their spectra are
flatter and have a much higher variance across the batches,
and higher values in general.

5.2. Spectral Signatures Vary by Distribution

To measure the stability of the directions of maximal vari-
ance, we choose a ‘canonical’ set of right singular vectors
for each distribution listed in Equation 4 by taking a batch
of 20 prompts, pooling their representations into a matrix
Z∗, and extracting the right singular vector matrix V ∗⊤.

We then compute cosine similarities index-wise of the right
singular vectors for every representation matrix Zp with the
corresponding canonical singular vectors from p’s distribu-
tion:

Cp := diag(V ∗⊤Vp). (5)

Mean values for the indices of Cp are shown in Figure 5(a)
for T∥. For D∥’s representations from T∥, the restricted
transformer, the first two singular vectors are almost iden-
tical across prompts, indicating that the representation for
these prompts present the same pattern of high variance
along two fixed directions. For D□ and D⊥ the principal
directions vary, reinforcing the view that the model has no
reliable final representation for those inputs. We denote the
presence of these two fixed principal directions as a spec-
tral signature, as they distinguish in-distribution and OOD
prompts.

We now consider the baseline transformer T□. As shown
in Figure 4(b) and Figure 5(b), T□ demonstrates this spec-
tral signature in the representation for prompts both in and
outside of D∥, as it was trained on D□. We demonstrate

. S∥ S⊥
T∥ 94.45%± 4.29% 19.39%± 12.46%
T□ 91.48%± 3.63% 92.9%± 1.54%

Table 1. Mean ± standard deviation of the % of prompts within
the 95% confidence region defined by a Gaussian fit to the Cp

projection vectors of representations from S∥.

. ∥PiZ∥
∥Z∥ MSE(Zf, PiZf)

T∥ 0.985 0.195
T□ 0.97 0.09

Table 2. Magnitude of the projection of Z onto the top two canon-
ical subspace and MSE between predictions from projected and
original embeddings.

the presence of this signature in other training regimes in
Appendix G.

Finally, we demonstrate that the distribution of the first
two values of Cp can reliably differentiate in-distribution
representations from OOD representations. Specifically,
we calculate Cp on a subset of the prompts from S∥ and
fit a bivariate Gaussian to the first two indices of each Cp.
We then determine whether hold-out projections Cp from
prompts either from D∥ or D⊥ lie in the 95% confidence
region defined by that Gaussian. Further details are provided
in Appendix H.

Results are presented in Table 1, where we see that represen-
tations derived from prompts from the training distribution
are within the 95% confidence region of the Gaussian far
more than representations from S⊥. This further demon-
strates how the spectral signature can characterize the distri-
bution data is sampled from.

5.3. Spectral Signatures Impact Prediction

We next probe at how the fixed representation subspace de-
fined by the two fixed ‘canonical’ singular vectors affects
prediction for the transformers T∥ and T□. Taking f as
the transformer’s readout head we compare Zf and PiZf
where Pi is the orthogonal projection onto the subspace de-
fined by the respective model’s first two canonical singular
vectors.

Table 2 shows:

a) Canonical subspace dominance: For both T∥ and T□,
most of the final-layer representation’s norm lies in the
span of their respective canonical singular vectors.

b) Prediction preservation: As a result, projecting onto
either the respective canonical subspace preserves
nearly all of the model’s prediction.

6

Transformers Don’t In-Context Learn Least Squares Regression

(a) Singular-value spectrum of representations for the input-
restricted transformer T∥.

(b) Singular-value spectrum of representations for the baseline
transformer T□.

Figure 4. Singular-value spectra of residual-stream embeddings for training subspace, orthogonal subspace and full space prompts.

(a) Cosine similarity between singular vectors of residual rep-
resentations from model T∥ and its ‘canonical’ set of singular
vectors.

(b) Cosine similarity between singular vectors of residual rep-
resentations from model T□ and its canonical set of singular
vectors.

Figure 5. Alignment of singular-vector directions across prompts. For each distribution, we compute cosine similarities between each
prompt’s singular vectors and a fixed reference (‘canonical’) set, showing that in-distribution prompts yield highly consistent first two
components, whereas OOD prompts exhibit greater variability.

.
||(V ⊤

p f):2||22
||f ||22

||(V ⊤
p f)2:10||22
||f ||22

S∥ 0.897± 0.012 0.008± 0.005
S⊥ 0.352± 0.205 0.388± 0.182

Table 3. Mean ± standard deviation of normalized T∥ readout head
projections.

In Table 3, we plot average normalized squared dot prod-
ucts of the singular vectors of representation matrices from
S∥ and S⊥ with the readout head of the transformer T∥.
Specifically, for readout head f , we calculate V ⊤

p f , and
index into its first two coordinates as (V ⊤

p f):2 and the third
through tenth coordinates as (V ⊤

p f)2:10. We see that for the
representations coming from S∥, the first two vectors tend
to constitute around 90% of the magnitude of the readout

vector, while the next eight singular vectors constitute less
than 1 percent on average. Meanwhile, for S∥, (V ⊤

p f):2
and (V ⊤

p f)2:10 both constitute just over a third of the total
magnitude of f . This demonstrates that the dependency
of predictions on the spectral signature is not determined
simply because the majority of representational variance is
along the first two singular vectors.

Additionally, we demonstrate a relationship between the
vector Cp from Equation 5 and the average loss of the trans-
former on a given prompt. Specifically, if we denote the first
two indices of Cp as Cp,:2, we will correlate ||Cp,:2||22 with
the average mean squared error across token positions. We
see in Figure 6 that there is a clear, statistically significant
relationship between ||Cp,:2||22 and the average loss when
considering prompts from both D∥ and D⊥.

7

Transformers Don’t In-Context Learn Least Squares Regression

0 5 10 15 20 25 30
Loss

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

||C
:2

||2 2
Correlation between Spectral Signature and Loss

Training Subspace
Orthogonal Subspace
r = -0.557 (p = 1.92E-41)

Figure 6. Scatter plot of ||Cp,:2||22 vs MSE over all token positions
for prompts from D∥ and D⊥. Line of best fit is depicted along
with associated Pearson correlation.

6. Conclusion
Limitations. Our experiments focus on synthetic linear-
regression prompts and GPT-2–style architectures; the ex-
tent to which these findings generalize to richer, real-world
ICL tasks (e.g. language-translation, code generation) re-
mains an open question. We provide a preliminary analysis
of spectral signatures in pre-trained LLMs in Appendix I.
Moreover, while our spectral signature serves as a useful
diagnostic and OOD detector, we have not yet fully charac-
terized how it emerges during pretraining or how it interacts
with specific architectural components (e.g. layer normal-
ization, attention heads, MLP layers).

Discussion. We have demonstrated that transformers’ in-
context regression abilities hinge on a tight coupling be-
tween pretraining data and representation geometry, rather
than on an emulation of known learning rules like OLS.
Our out-of-distribution experiments reveal that small, but
structured, shifts in input or weight subspaces can cause
large degradations in performance. This is a critical concern
for any foundation model deployed in complex, real-world
environments.

By uncovering a spectral signature for this task, stable vari-
ance within a low-dimensional subspace and structured sin-
gular value spectra, we identify a promising indicator of
when a transformer may be operating outside its training
distribution. While further work is needed to establish ro-
bust thresholds and characterize the spectral signature of
other tasks, this geometric cue could inform real-time mon-
itoring or trigger human review when a model encounters
atypical prompts.

We see several promising avenues for future work regarding
this formulation and the spectral signature:

1. Training Dynamics of the spectral signature to track
how it evolves and stabilizes over training. This could
involve examining gradient-updates and how they re-

late to the residual-stream representation of the in-
distribution and OOD subspaces.

2. Empirical validation of spectral-signature thresholds
on richer, real-world ICL tasks (e.g. language, multi-
modal settings).

3. Integration of this indicator into monitoring pipelines,
exploring how it combines with other reliability signals
to guide fallback strategies.

By moving beyond benchmarks to the underlying mecha-
nisms of failure and identifying concrete metrics for further
study, our work lays groundwork for more reliable and re-
sponsible deployment of foundation models.

Acknowledgements
The resources used in preparing this research were pro-
vided, in part, by the Province of Ontario, the Govern-
ment of Canada through CIFAR, and companies sponsor-
ing the Vector Institute www.vectorinstitute.ai/
partnerships/. Joshua Hill was supported in part by
an NSERC Undergraduate Student Research Award.

References
Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and

Zhou, D. What learning algorithm is in-context learn-
ing? investigations with linear models. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=0g0X4H8yN4I.

Arora, A., Jurafsky, D., Potts, C., and Goodman, N. D.
Bayesian scaling laws for in-context learning. arXiv
preprint arXiv:2410.16531, 2024.

Bach, F. Learning theory from first principles. MIT press,
2024.

Bishop, C. M. Training with noise is equivalent to tikhonov
regularization. Neural computation, 7(1):108–116, 1995.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners, 2020. URL https://
arxiv.org/abs/2005.14165.

Dong, Q., Li, L., Dai, D., Zheng, C., Ma, J., Li, R., Xia,
H., Xu, J., Wu, Z., Chang, B., et al. A survey on in-
context learning. In Proceedings of the 2024 Conference

8

www.vectorinstitute.ai/partnerships/
www.vectorinstitute.ai/partnerships/
https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165

Transformers Don’t In-Context Learn Least Squares Regression

on Empirical Methods in Natural Language Processing,
pp. 1107–1128, 2024.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T.,
et al. A mathematical framework for transformer circuits.
Transformer Circuits Thread, 1(1):12, 2021.

Garg, S., Tsipras, D., Liang, P., and Valiant, G. What can
transformers learn in-context? a case study of simple
function classes, 2023. URL https://arxiv.org/
abs/2208.01066.

Goddard, C., Smith, L. M., Ngampruetikorn, V., and
Schwab, D. J. Specialization-generalization transition
in exemplar-based in-context learning. In NeurIPS 2024
Workshop on Scientific Methods for Understanding Deep
Learning, 2024. URL https://openreview.net/
forum?id=D1ui5QwHqF.

Goldstein, A. A. Cauchy’s method of minimization. Nu-
merische Mathematik, 4(1):146–150, 1962.

Kotha, S., Springer, J. M., and Raghunathan, A. Understand-
ing catastrophic forgetting in language models via im-
plicit inference, 2024. URL https://arxiv.org/
abs/2309.10105.

Marx, C., Calmon, F., and Ustun, B. Predictive multiplicity
in classification. In International conference on machine
learning, pp. 6765–6774. PMLR, 2020.

McCoy, R. T., Yao, S., Friedman, D., Hardy, M., and Grif-
fiths, T. L. Embers of autoregression: Understanding
large language models through the problem they are
trained to solve. arXiv preprint arXiv:2309.13638, 2023.

Nakkiran, P. More data can hurt for linear regression:
Sample-wise double descent, 2019. URL https://
arxiv.org/abs/1912.07242.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

Raventos, A., Paul, M., Chen, F., and Ganguli, S. Pretrain-
ing task diversity and the emergence of non-bayesian
in-context learning for regression. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=BtAz4a5xDg.

Shen, L., Mishra, A., and Khashabi, D. Do pretrained
transformers really learn in-context by gradient descent?
arXiv preprint arXiv:2310.08540, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need, 2017. URL https://arxiv.org/
abs/1706.03762.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent.
In International Conference on Machine Learning, pp.
35151–35174. PMLR, 2023.

Yang, A., Li, A., Yang, B., Zhang, B., Hui, B., Zheng,
B., Yu, B., Gao, C., Huang, C., Lv, C., Zheng, C., Liu,
D., Zhou, F., Huang, F., Hu, F., Ge, H., Wei, H., Lin,
H., Tang, J., Yang, J., Tu, J., Zhang, J., Yang, J., Yang,
J., Zhou, J., Zhou, J., Lin, J., Dang, K., Bao, K., Yang,
K., Yu, L., Deng, L., Li, M., Xue, M., Li, M., Zhang,
P., Wang, P., Zhu, Q., Men, R., Gao, R., Liu, S., Luo,
S., Li, T., Tang, T., Yin, W., Ren, X., Wang, X., Zhang,
X., Ren, X., Fan, Y., Su, Y., Zhang, Y., Zhang, Y., Wan,
Y., Liu, Y., Wang, Z., Cui, Z., Zhang, Z., Zhou, Z., and
Qiu, Z. Qwen3 technical report, 2025. URL https:
//arxiv.org/abs/2505.09388.

9

https://arxiv.org/abs/2208.01066
https://arxiv.org/abs/2208.01066
https://openreview.net/forum?id=D1ui5QwHqF
https://openreview.net/forum?id=D1ui5QwHqF
https://arxiv.org/abs/2309.10105
https://arxiv.org/abs/2309.10105
https://arxiv.org/abs/1912.07242
https://arxiv.org/abs/1912.07242
https://openreview.net/forum?id=BtAz4a5xDg
https://openreview.net/forum?id=BtAz4a5xDg
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388

Transformers Don’t In-Context Learn Least Squares Regression

A. Projection Matrix Details
To create the projection matrix P , we first take a (d, q) random Gaussian matrix V , and compute Q,U = QR(V). We then
take the first q columns of Q, and compute P as the matrix product of these columns multiplied with itself. The projection
matrix Porth to the orthogonal space is computed as Porth = I − P .

B. Adding Label Noise
To complement the original experiments, we train a transformer T ⋆

□ on prompts from the distribution D(Pw = Id, Px = Id)
where the prompt’s labels are replaced by:

yi = w⊤xi + ϵ, ϵ ∼ N (0, σ2Id).

We evaluate models on D□ which does not have noise added to the labels. In Figure 7 we plot the performance of several
models, most notably transformers trained with and without noisy labels (T□ and T ⋆

□, respectively). We observe that in the
noiseless test set, T ⋆

□ achieves performance similar to ridge regression and poorer than OLS and T□. This result further
demonstrates how the learned mechanism, and therefore generalization, of transformers trained on this task is closely linked
to the pre-training distribution of the model.

Figure 7. Prediction error of several models (Section C), including transformers trained on prompts with and without noisy labels and
tested on prompts without label noise.

We also experiment with a transformer trained on a variant of the distribution D∥ with added label noise, and test it on
prompts from D⊥. In Figure 8, we see that this model also struggles with this distribution shift.

C. Experimental Details
In our experiments we compare against:

Ordinary Least Squares (OLS): We compute the OLS solution using the pseudoinverse:

β̂OLS = X†y = (X⊤X)−1X⊤y.

To emulate the transformer’s auto-regressive behavior, when predicting xi+1 we compute β̂OLS using the first i examples.

Note in Section 4, we make use of a projected input OLS baseline, where each xi is orthogonally projected into the trainign
subspace, in order to provide evidence against the claim T∥ is performing OLS on the components of xi in the training
subspace (with the corresponding non-projected labels).

10

Transformers Don’t In-Context Learn Least Squares Regression

Figure 8. Prediction error of a transformer trained on a noisy variant of D∥ and tested on noiseless prompts from D⊥.

Ridge Regression: The ridge regression solution is given by:

β̂Ridge = (X⊤X+ λId)
−1X⊤y,

where λ is the regularization parameter. This is similarly updated in an auto-regressive manner.

Bayesian Linear Regression: Bayes’ rule, given by p(β | X, y) ∝ p(β)p(y | X,β), updates a prior distribution using a
likelihood distribution to produce a posterior distribution, capturing the process of updating a prior ’belief’ when given new
evidence. For linear regression, we encode a belief about the model parameters β, and update it according to the context
examples X, y. Assuming a Gaussian prior on the weights,

p(β) = N (0, τ2Id),

where we set τ = 1 to match the base distribution, and a Gaussian likelihood,

p(y | X,β) = N (Xβ, σ2I),

Bayes’ rule yields the posterior distribution over β, which is also Gaussian:

p(β | X, y) = N (β̂posterior,Σposterior).

With:

Σposterior =

(
1

σ2
X⊤X+

1

τ2
Id

)−1

,

β̂posterior = Σposterior

(
1

σ2
X⊤y

)
.

In our experiments, the prediction for a new input xi+1 is obtained by averaging the predictions made by m weight vectors
drawn from the posterior distribution.

Kernel Ridge Regression: We also compare against kernel ridge regression, which extends ridge regression via the
Representer Theorem (Bach, 2024). Given a context of k in-context examples {(xi, yi)}ki=1, define the Gram matrix

K ∈ Rk×k, Kij = κ(xi, xj),

for a positive-definite kernel κ, and let

y =

y1...
yk

 .

11

Transformers Don’t In-Context Learn Least Squares Regression

The dual coefficients α ∈ Rk are given in closed form by

α = (K + λIk)
−1 y,

where λ > 0 is the regularization parameter. A prediction at a new query point xk+1 is then

ŷk+1 =

k∑
i=1

αi κ(xi, xk+1) = k(xk+1)
⊤(K + λIk)

−1 y,

with

k(xk+1) =

κ(x1, xk+1)
...

κ(xk, xk+1)

 .

In our experiments, we use the Gaussian (RBF) kernel

κ(x, x′) = exp
(
−∥x−x′∥2

2σ2

)
.

Gradient Descent: In this baseline, we iteratively update the weight vector using gradient descent. Starting with a random
normally distributed initial weight β(0), the update rule for each iteration t is:

β(t+1) = β(t) − η∇βL(β
(t)),

where η is the learning rate and the loss is given by

L(β) = ∥Xβ − y∥2.

In an autoregressive setting, we initialize and update β using the first i examples to predict xi+1.

Evaluation: We assess a model M ’s performance by evaluating predictions on a prompt p = (x1, y1, ..., xk, yk, xk+1)
with associated weight vector wp. We define the squared error as:

SquaredError(M,p)i =
(
M(xi)− w⊤

p xi

)2 ∀i ∈ [1, k + 1].

When evaluating over a batch of test prompts Stest = {p1, ..., pN}, we compute the mean squared error (MSE) for each
index i:

MeanSquaredError(M,Stest)i =
1

|Stest|
∑

p∈Stest

SquaredError(M,p)i.

For each p ∈ Stest, p ∼ D(Pw, Px), where the distribution D(Pw, Px) varies over evaluation experiments.

Training: We use a GPT-2-style transformer with 12 layers, 8 attention heads per layer, a hidden dimension of 256, and no
dropout. To yield a scalar output, we append a final linear layer that projects the token embedding down to one dimension,
following Garg et al. (2023). Models are trained for 500 000 steps with the AdamW optimizer (learning rate 1× 10−4);
extending to 1 000 000 or 1 500 000 steps or applying weight decay of 0 versus 1× 10−6 produced no appreciable change
in performance.

Each prompt is tokenized as follows: each xi is a 20-dimensional vector, and each yi is a 20-dimensional vector, where the
first entry contains the scalar value yi = w⊤xi and the 19 other dimensions are 0.

We also adopt the curriculum schedule from Garg et al. (2023): initially the last dstart = 15 dimensions of each input xi are
zeroed and only kstart = 11 context pairs are presented. Every 2 000 steps we decrease dstart by 1 and increase kstart by 2,
until dstart = 0 and kstart = k.

All training runs were performed on an NVIDIA RTX A4500 GPU, taking roughly 9 hours each.

12

Transformers Don’t In-Context Learn Least Squares Regression

Figure 9. Comparing last-token prediction error versus input scale.

D. Scaling Prompts Experiments
To further investigate the importance of the pre-training distribution for ICL regression, we probe how sensitive ICL is to
input magnitude. We define, for each scale factor s, a prompt distribution

Ds = D(Pw = Id, Px = sId),

where s ∈ {0.5, 0.75, 1.0, 1.25, 1.5, 2, 5, 10}. In other words, for a prompt p ∼ Ds, each input xi ∼ N (0, Id) is scaled to
sxi.

Figure 9 plots the final-token mean-squared error of each model as a function of s. The OLS and ridge baselines remain
essentially flat across all s, whereas transformers trained on a single scale incur rapidly growing errors as s moves out-
of-distribution. Garg et al. (2023) ran a similar experiment where they scaled only the final token, and kept the context
in-distribution, showing similar results.

We expand upon this experiment and examine the effect of training data diversity on this behavior. This is in contrast to the
aforementioned experiment by Garg et al. (2023), which focused on a transformer trained without scaled task vectors. We
train a new transformer T ◦

□, trained on prompts drawn from:

D◦
train = {Ds : s ∈ {1, 2, 3}}

(i.e. each batch uniformly samples s ∈ {1, 2, 3} then draws prompts under Ds).

Figure 9 demonstrates that incorporating multiple input scales into the pre-training distribution can substantially reduce
OOD degradation. This finding underscores that unlike classical regressors, transformers’ ICL performance hinges crucially
on matching the scale statistics seen during training.

E. Determining Implicit Weight Vectors

To facilitate a more direct comparison with the regression baselines, we extract the implicitly learned weight vector β̂ from a
transformer T ◦

□ that was trained on the distribution D(Pw = PA, Px = Id) as described in Section G. Given a fixed context
prompt p̂ (with more than d examples) generated by wj , we predict on a set of query points Xq and obtain:

ŷi = T ◦
□(xi; p̂), ∀xi ∈ Xq.

Let ŷ be the vector of predictions ŷi and Xq be the matrix of query inputs. We then estimate the weight vector as:

β̂ = X†
qŷ.

13

Transformers Don’t In-Context Learn Least Squares Regression

. PAβ̂ PBβ̂
Avg. Norm 0.35 0.04

Variance of Norm 0.83 0.04

Table 4. Average norm, variance of norm post projection of implicitly learned weight vector β̂.

Figure 10. Prediction error of transformers trained on 3 different task-vector subspace dimensions, shown for in-distribution prompts
(projected into respective training subspace, full 20-dimensional space for ridge and OLS) versus out-of-distribution prompts (full
20-dimensional task vector).

We then examine this best-fit weight vector β̂’s dependence on the subspace spanned by weight vectors used during training
and those from the corresponding orthogonal subspace. Following the notation from Section 4, we specifically analyze PAβ̂
for the training subspace and PAβ̂ for the orthogonal subspace. In Table 4 we calculate the average norm across multiple
prompts of these two projected vectors as well as the variance of the norm. We observe that the implicit weight vector has
a much greater average norm, and that the norm has greater variance, when projected into the training subspace than the
orthogonal subspace. This further demonstrates that the predictive behaviour of the transformer is reliant on the pretraining
distribution.

F. Varying Training Subspace Dimension
In Section 4, we describe a projection scheme for task vectors and inputs. Throughout the paper we primarily focus on
projection into subspaces of dimension 10. However, we can just as easily project into a subspace of any dimensionality.
To explore the effect of subspace dimensionality, we also train models with weight vector projections PA,5 and PA,15,
which project into 5 and 15 dimensional subspaces, respectively. This describes a corresponding orthogonal subspace for
evaluation that is 15 and 5 dimensional, respectively. Figure 10 illustrates that the error plateaus at the dimensionality q
of the training subspace, consistent with the intuitive notion that the model needs to determine the coefficients of the task
vector w used in the prompt, which has q degrees of freedom. We also observe that each of these transformers struggle to
generalize out of distribution, regardless of their training subspace dimensionality.

G. Weight Subspace Restriction
In this section, we report results for experiments analogous to those presented in Section 4 with the exception that the
distribution shift takes place in the weight space, rather than in the input space . Specifically, we train a transformer on
prompts from the distribution D(Pw = PA, Px = Id) and test on prompts from the distribution D(Pw = PB , Px = Id).
We present performance in Figure 11, where we observe nearly identical trends the results presented in Figure 2: the
transformer cannot reach the ID performance of OLS, and also performs significantly worse on OOD prompts.

14

Transformers Don’t In-Context Learn Least Squares Regression

Figure 11. Performance on prompts from D(Pw = PA, Px = Id) (In-Distribution) and D(Pw = PB , Px = Id) (OOD) for several
methods.

Figure 12. Singular-value spectrum of representations for the weight-space restricted transformer.

To further characterize this behavior, Figure 14 presents the error as the test weight ŵ is formed by a convex combination:

ŵ = t (PAw) + (1− t) (PBw), t ∈ [0, 1].

Again, we see nearly identical behaviour to that presented in Figure 3: the MSE becomes gradually larger as the vector’s
orthogonal subspace component becomes larger. Both of these results demonstrate the sensitivity of transformers to their
pretraining distribution. These results also demonstrate that even distribution shifts in the weight vectors, which are never
explicitly presented to the model, can also lead to poor generalization.

Moreover, we note the presence of the spectral signature shown in Section 5 under these training conditions as well. Notably,
the singular-value spectrum for in distribution prompts has a sharp descent after the first two singular values, and more
singular vectors are fixed across prompts. This supports the claim that this spectral signature occurs across many training
distributions, and is not unique to a single trained task.

H. Gaussian Distribution Test for Out-of-Distribution Spectral Signatures
Here we detail our statistical test that leverages the spectral signature to detect OOD data when a transformer is deployed.
Let V ∗⊤

S||
be the canonical singular vectors from the training subspace. We start by calculating Cp on a subset of the

15

Transformers Don’t In-Context Learn Least Squares Regression

Figure 13. Cosine similarity between singular vectors of residual representations of the weight-space restricted transformer and its
canonical set of singular vectors.

Figure 14. Prediction error as we blend an in-distribution task with an OOD task. The horizontal axis is the convex combination coefficient
t, and the vertical axis shows the resulting regression error.

prompts from S∥, Ŝ∥. We collect the first two indices of this subset into the set Ĉ:2 := {C:2|Cp := diag(V ∗⊤
S||

Vp), Zp =

UpΣpV
⊤
p , Zp ∈ Ŝ∥} and fit a bivariate Gaussian to these values:

µ̂:2 :=
1

|Ĉ:2|

∑
C:2∈|Ĉ:2|

C:2, Σ̂:2 :=
1

|Ĉ:2|

∑
C:2∈|Ĉ:2|

(C:2 − µ̂:2)(C:2 − µ̂:2)
⊤. (6)

Once fit, we determine whether a new sample C̃:2 is within the 95% confidence region defined by the Gaussian with these
moments.

The values presented in Table 1 are the percent of projections in a set VS that were within the specified confidence region, as
determined using the following expression, where χ2

2(0.95) is the quantile function for a Chi-squared distribution with two
degrees of freedom:

1

|VS |
∑

C̃:2∈VS

⊮[(C̃:2 − µ̂:2)Σ̂:2

−1
(C̃:2 − µ̂:2)

⊤ ≤ χ2
2(0.95)]. (7)

We repeat this experiment 20 times and take the mean and standard deviation of this percent across trials.

16

Transformers Don’t In-Context Learn Least Squares Regression

Figure 15. Comparison of singular-value spectrum between representations for 4-shifted (OOD) prompts and 13-shifted (in-distribution)
prompts.

Figure 16. Comparison of cosine similarity between singular vectors of residual representations for 4-shifted (OOD) prompts and 13-
shifted (in-distribution) prompts.

I. Preliminary Spectral Signatures in Language Models
Building on the results from McCoy et al. (2023), we extend our synthetic analysis to a real-world task: decoding rotational
Caesar ciphers.

Our experimental setup uses the Qwen3-4B model (Yang et al., 2025). Prompts are constructed according to the following
template:

Here are some Caesar cipher examples (shift={shift}): {examples}.
Please decode the following cipher text: {test}
Output your final answer as: <answer>decoded_word</answer>

Here, ‘{shift}’ is the integer specifying the cipher rotation amount; ‘{examples}’ is a comma-separated list of example
plaintext-ciphertext pairs (e.g. uryyb → hello, ovt → big); ‘{test}’ is the target text for decoding.

By contrasting a frequently seen shift (e.g. 13) with a rarer shift (e.g. 4), we probe how out-of-distribution inputs manifest in
the model’s internal representations. With a batch of 150 prompts per shift amount, the transformer achieves an accuracy of

17

Transformers Don’t In-Context Learn Least Squares Regression

43% for 13-shifted prompts, and 10% for 4-shifted prompts, demonstraing a generalization gap to OOD data. Figures 15
and 16 plot the singular value spectra and the alignment consistency of the top singular vectors for batches of 13-shifted
versus 4-shifted prompts. Consistent with our synthetic results, the OOD (4-shifted) prompts exhibit both higher initial
singular values and reduced cosine similarity among singular vectors, whereas the in-distribution (13-shifted) prompts show
lower-magnitude spectra and stronger vector alignment.

18

