
Under review as a conference paper at ICLR 2023

BEYOND DEEP LEARNING: AN EVOLUTIONARY FEA-
TURE ENGINEERING APPROACH TO TABULAR DATA
CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, deep learning has achieved impressive performance in the computer
vision and natural language processing domains. In the tabular data classification
scenario, with the emergence of the transformer architecture, a number of al-
gorithms have been reported to yield better results than conventional tree-based
models. Most of these methods attribute the success of deep learning methods to the
expressive feature construction capability of neural networks. Nonetheless, in real
practice, manually designed high-order features with traditional machine learning
methods are still widely used because neural-network-based features can be easy
to over-fitting. In this paper, we propose an evolution-based feature engineering
algorithm to imitate the manual feature construction process through trial and
improvement. Importantly, the evolutionary method provides an opportunity to op-
timize cross-validation loss, where gradient methods fail to do so. On a large-scale
classification benchmark of 119 datasets, the experimental results demonstrate that
the proposed method outperforms existing fine-tuned state-of-the-art tree-based
and deep-learning-based classification algorithms.

1 INTRODUCTION

Tabular data is a typical way of storing information in a computer system, and the tabular
data learning methodology has been widely employed in recommendation systems (Wang et al.,
2021), advertising (Yang et al., 2021), and the medical industry (Spooner et al., 2020) to auto-
mate the decision process. Formally, tabular data learning techniques capture the association be-
tween some explanatory variables {x1, . . . , xm} and a response variable y for a given dataset
{({x1

1, . . . , x
1
m}, y1), . . . , ({xn

1 , . . . , x
n
m}, yn)}, where n is the number of data items.

There are various machine learning methods that could address the tabular data learning problem, such
as decision trees, linear models, and support vector machines. However, these learning algorithms
have a limited learning capability to fully tackle this problem. For example, the linear model
assumes that the relationship between explanatory variables and response variables is linear, whereas
the decision tree posits that an axis-parallel decision boundary can divide distinct categories of
samples. These assumptions are not always correct in the real world, and thus machine learning
practitioners always employ feature engineering techniques to construct a set of high-order features
{{ϕ1

1 . . . ϕ
1
k}, . . . , {ϕn

1 . . . ϕ
n
k}} to improve the learning capability of existing algorithms.

In real-world applications, many feature engineering methods can be used by industrial practition-
ers to construct high-order features before training a machine learning model. The conventional
feature engineering strategies include manually designed features, dimensionality reduction meth-
ods (Colange et al., 2020), kernel methods (Allen-Zhu & Li, 2019), and so on. However, these
methods have drawbacks. Manual feature construction approaches require a large amount of human
labor, kernel methods are hard to be combined with tree-based methods, and dimensionality reduction
algorithms are insufficient to enhance state-of-the-art learning algorithms, especially for unsupervised
ones (Lensen et al., 2022).

With the success of deep learning, there is a growing interest in using neural networks to build
high-order features automatically, particularly in the field of recommendation systems (Song et al.,
2019; Lian et al., 2018). However, it is debatable whether deep learning techniques can learn high-
order features effectively (Wang et al., 2021). Despite the fact that various neural network-based

1



Under review as a conference paper at ICLR 2023

tabular learning algorithms have shown better predictive accuracy than some tree-based ensemble
models (Arık & Pfister, 2021), most of these methods only validate their algorithms on datasets with
a large number of training samples and homogeneous features. Nowadays, it is still controversial
whether deep learning methods outperform tree-based methods on datasets with heterogeneous
features and a limited amount of data (Gorishniy et al., 2021), and we hope to further explore this
problem in this paper.

In real-world cases, machine learning engineers typically start from some randomly designed features,
and then evaluate these features to get cross-validation loss and feature importance value. The
feedback information can be used by engineers to design better features. To imitate this workflow,
we design a feature engineering method named evolutionary feature engineering automation tool
(EvoFeat)1, which constructs nonlinear features for enhancing an ensemble of decision tree and
logistic regression models, and thus achieving better results than conventional ensemble learning
methods. The three objectives of our paper are summarized as follows:

• Considering cross-validation losses and feature importance values are widely used by
machine learning engineers in the feature engineering process, we propose an evolutionary
feature construction method that uses both information to guide the search process.

• Given that the performance of the constructed features is highly bonded to the base learner,
we propose a mechanism that allows the evolutionary algorithm to automatically determine
whether to use random decision trees or logistic regression models as base learners.

• We conduct experiments on 119 datasets and compare our method to six traditional machine
learning algorithms, four deep learning algorithms and two automated feature construction
methods. Experiment results show that deep learning methods are not silver bullets for
classification tasks.

The remainder of the paper is structured as follows. Section 2 introduces related work of feature
construction. Section 3 discusses the motivation behind our work. Section 4 then explains the details
of the proposed method, followed by the experimental results provided in Section 5. Finally, Section 6
summarizes our paper and recommends some intriguing future avenues.

2 RELATED WORK

Evolutionary feature construction methods have received a lot of attention in the evolutionary learning
domain. Nonetheless, the majority of these methods focus on simple learners, such as a single
decision tree (Tran et al., 2019) or a single support vector machine (Nag & Pal, 2019). Research
on how to apply evolutionary feature construction methods to improve state-of-the-art classification
algorithms is still lacking. In recent years, ensemble-based evolutionary feature construction methods
have produced encouraging results on both the symbolic regression (Zhang et al., 2021) and image
classification (Bi et al., 2020; 2021a) tasks. However, feature construction on these tasks are different
than tabular data classification tasks because domain knowledge for designing primitive functions
are available for these tasks, such as a function named analytical quotient Ni et al. (2012) for
symbolic regression and the histogram of oriented gradients (HOG) Dalal & Triggs (2005) for image
classification.

In addition to the evolution-based method, beam search could also be used to construct high-order
features (Katz et al., 2016; Luo et al., 2019; Shi et al., 2020). The main idea behind these methods is
to start with some low-order features and iteratively generate higher-order features based on important
low-order features. A meta learner (Katz et al., 2016), logistic regression accuracy (Luo et al., 2019),
or XGBoost feature importance (Shi et al., 2020) can be used to determine the feature importance of
each generated feature. However, these methods lack an effective mechanism to prevent over-fitting
and thus may have restricted feature construction capabilities.

In the recommendation system domain, deep learning methods have been shown to be an effective way
to construct high-order features for tabular data classification tasks (Guo et al., 2017). Even though
the feed-forward neural network (FNN) is considered a universal function approximator (Kidger
& Lyons, 2020), its ability to model high-order feature interactions has been questioned (Mudgal
et al., 2018). In order to efficiently construct high-order features, a cross network is designed in
Deep & Cross Network (DCN) to explicitly model the feature interaction (Mudgal et al., 2018).

1Source code: https://tinyurl.com/ICLR2023-EvoFEAT

2

https://tinyurl.com/ICLR2023-EvoFEAT


Under review as a conference paper at ICLR 2023

Figure 1: An example of the feature engineering process.

Following that, xDeepFM employs a field-wise feature cross method to effectively (Lian et al., 2018)
model the feature interaction in a bit-wise manner. AutoInt (Song et al., 2019) goes a step further,
learning feature interaction using the attention mechanism rather than a simple outer product. Due
to useless feature interaction can introduce noise, AutoFIS (Liu et al., 2020) employs a generalized
regularized dual averaging (GRDA) (Chao & Cheng, 2019) method to remove unimportant feature
interaction. With the increasing popularity of the neural network architecture search (NAS) technique,
an algorithm known as AutoPI (Meng et al., 2021) employs the NAS technique to automatically
discover better feature interaction components. This method is inspired by differentiable architecture
search (DARTS) (Liu et al., 2018), and it uses the temperature anneal (Liu et al., 2018) technique to
find the best subnet from a supernet using the gradient descent method. However, the effectiveness of
these feature cross modules over FNN is still debatable (Wang et al., 2021), let alone the lack of a
comprehensive study of whether these approaches can outperform XGBoost on classical classification
problems (Gorishniy et al., 2021).

3 PRELIMINARIES

First of all, let us analyze how a machine learning engineer constructs features for a given dataset
{({x1

1, . . . , x
1
m}, y1), . . . , ({xn

1 , . . . , x
n
m}, yn)} in the absence of domain expertise. Figure 1 depicts

an example of the feature engineering workflow. It is divided into three phases:

• Feature Initialization: First, a machine learning engineer without any domain knowl-
edge can randomly construct some features Φ = {ϕ1 . . . ϕk} based on original features
{x1 . . . xm}.

• Feature Evaluation: Second, using the cross-validation approach, the generated features
{ϕ1 . . . ϕk} are evaluated on the training set and the target learning algorithm. The trained
model produces cross-validation losses and feature importance values to help an engineer
determine useful features.

• Feature Improvement: Finally, the engineer removes some useless features and replaces
them with new features derived from important features.

During the feature construction process, the second and third phases are repeated until the engineer is
satisfied with the result. Formally, if F is a search space of machine learning models and L(f(x), y)
is the loss function of a model f ∈ F , the feature construction process is to find a set of features Φ
that can minimize the objective function minf∗∈F L(f∗(Φ(x)), y).

In real-world applications, some machine learning engineers prefer to only use feature importance
values to detect useful features (Shi et al., 2020). However, this is risky because the feature importance
values do not reflect the generalization performance of the constructed features. In other words, a
feature may play an important role in an over-fitted model, and we must have a strategy to avoid
sticking at this local optima. Constructing numerous sets of features at the same time is a plausible
idea. The engineer can then detect the over-fitting issue based on the cross-validation performance of
multiple sets of features and make a more informed decision.

The feature engineering paradigm depicted in Figure 1 is general. Even for a machine learning
algorithm that does not provide an internal feature importance report, it can still be employed in this
feature engineering method based on some black-box feature importance calculation approaches, such
as SHAP (Lundberg & Lee, 2017). Under this paradigm, the most critical problem is to determine
how to leverage information based on feature importance values and cross-validation loss to generate
better features. Here, we employ tree-based genetic programming (TGP) to do so. TGP is an
evolutionary algorithm that focuses on evolving symbolic trees. Its gradient free nature and variable
length representation that make it suitable to generate expressive features based on non-differentiable
objective values.

3



Under review as a conference paper at ICLR 2023

4 THE PROPOSED ALGORITHM

4.1 FEATURE REPRESENTATION

First of all, unlike the traditional evolutionary algorithm, which utilizes an array to denote a solution,
we employ a set of symbolic trees to represent a set of constructed features. Each symbolic tree
consists of two parts: non-leaf nodes and leaf nodes. Non-leaf nodes are also known as functions,
which can transform or combine basic features, such as {+,−} or {log, sin}. The leaf nodes are
also known as terminals, representing original features, such as {x1, x2}. Each symbolic tree can be
used to construct a feature ϕ, and all symbolic trees in an individual Φ together could form a new
feature space S. In addition to a set of symbolic trees, each individual is also accompanied by a base
learner, which is a decision tree or a linear regression model in this research. This base learner is
used to evaluate the predictive performance of each feature space and also used to give a prediction
of unseen data.

4.2 ALGORITHM FRAMEWORK

The proposed evolutionary algorithm consists of five parts: initialization, evaluation, selection,
generation, and archive update. The pseudocode for our algorithm is shown in Algorithm 1.

Initialization: In the initialization stage, the algorithm randomly initializes N individuals
{Φ1 . . .ΦN} to form the initial population. Each individual consists of k symbolic trees {ϕ1 . . . ϕk},
which could be used to construct a k-dimensional feature space.

Evaluation: At the evaluation stage, we construct training data based on each individual Φ, and
evaluate them on their corresponding base learners f . The fitness value of each individual can
be calculated using the five-fold cross-validation loss, and the fitness value of each feature can be
obtained using the average feature importance values across five folds.

Selection: The selection operator selects promising individuals {ΦA,ΦB} from the population P for
crossover and mutation. In this paper, we use the lexicase selection operator (La Cava et al., 2019) to
select parent individuals based on the cross-validation losses.

Generation: The generation operator generates new individuals based on selected parent features.
We use self-competitive based crossover (Nguyen et al., 2021) and guided mutation operators to
increase search efficiency by leveraging feature importance values.

Archive Update: At the end of each iteration, we dynamically update an archive A to store historically
top-performing models, depending on the performance of archived models A and newly generated
models {f1 . . . fN}. The archive update method employed in this research is a greedy ensemble
selection method named reduce-error pruning (Caruana et al., 2004).

The selection, generation, evaluation and archive update operators are executed repeatedly until the
maximum number of generations is reached. Finally, all base learners in archive A could form an
ensemble model based on the weights assigned by the ensemble selection method.

4.3 FEATURE INITIALIZATION

The proposed evolutionary feature construction method is based on TGP, and thus we use a ramped-
half-and-half (Burke et al., 2003) symbolic tree initialization strategy from TGP to initialize each tree
ϕ. In particular, half of the symbolic trees are built as full symbolic trees, while the other half are
initialized with a random height. In addition, each individual is randomly assigned a random decision
tree (RDT) or logistic regression model (LR) with equal probability. This allows the evolutionary
algorithm to determine the optimal base learner to form an ensemble model.

4.4 FEATURE SELECTION

The main purpose of the feature selection operator is to select two individuals from the population
based on the cross-validation loss. In the existing EA literature, numerous selection operators
are available, such as age-fitness pareto (AFP) (Schmidt & Lipson, 2011), double tournament
selection (Luke & Panait, 2002), lexicase selection (La Cava et al., 2019), and so on. In this research,
we employ lexicase selection as the selection operator because it is helpful to conserve population
diversity, which is advantageous in the ensemble learning scenario (Zhang et al., 2021).

Lexicase Selection: For a given vector of validation losses, the lexicase selection operator constructs a
set of filters based on each loss value across all individuals. Each filter randomly selects one dimension

4



Under review as a conference paper at ICLR 2023

Algorithm 1 Evolutionary Feature Engineering Automation Tool (EvoFeat)

Input: Population Size N , Number of Features k, Number of Generations max_gen
Output: Archive A

1: Randomly initialize N set of features P = {Φ1 . . .ΦN} ▷ Feature Initialization
2: for i = 1, . . . N do ▷ Feature Evaluation
3: fi ← cross-validation(fi,Φi)
4: A← ∅
5: A← archive update ({f1 . . . fN}, A) ▷ Archive Update
6: gen← 0
7: while gen < max_gen do ▷ Main loop
8: P ′ = ∅
9: for i = 1, · · · , N do

10: PLR, PDT ← population division(P )
11: if rand() < 0.25 then ▷ Base Learner Selection
12: ΦA ← lexicase selection(PLR)
13: ΦB ← lexicase selection(PDT )
14: else
15: P ′ ← random selection(PLR, PDT )
16: ΦA,ΦB ← lexicase selection(P ′)

▷ Individual Selection
17: for j = 1, · · · , ⌊k2 ⌋ do ▷ Crossover (Feature Generation)
18: if rand() < pc then
19: ϕa, ϕb ← self-competitive selection(ΦA) ▷ Feature Selection
20: ϕc, ϕd ← self-competitive selection(ΦB)
21: ϕa ← crossover(ϕa, ϕd)
22: ϕc ← crossover(ϕc, ϕb)
23: for j = 1, · · · , k do ▷ Mutation (Feature Generation)
24: if rand() < pm then
25: ϕa ← random selection(ΦA)
26: ϕi ← mutation(ϕi)
27: P ′ = P ′ ∪ {ΦA,ΦB}
28: P = P ′

29: for k = 1, . . . N do ▷ Feature Evaluation
30: fk ← cross-validation(fi,Φk)
31: A← archive update ({f1 . . . fN}, A) ▷ Archive Update
32: gen← gen+ 1

33: return A

j ∈ [1, n] to do filtering, and the threshold τj is dynamically set as τj = min
i

mseij +madj , where

madj = median
i

(|mseij−median
k

(msekj )|) represents the median absolute deviation. Based on this

selection operator, we can select a suitable number of parent individuals for crossover and selection.

Base Learner Selection: We employ either a decision tree or logistic regression model as the base
learner to evaluate each group of features. However, decision trees and logistic regression models
may not produce comparable predictive results. For example, because a single decision tree cannot
produce a categorical distribution, misclassifying only one example will result in an infinite cross-
entropy loss. Thus, we borrow an idea from the multitask evolutionary optimization domain (Wei
et al., 2021) to select two parent individuals from a heterogeneous population. First, we divide the
entire population into two subgroups: one with individuals exclusively using decision trees, and
the other with individuals only using logistic regression. Then we define a hyperparameter called
random mating probability rmp = 0.25, which signifies the probability of selecting two parents from
two subgroups. In the remaining seventy five percent of cases, we select two parents from either
subgroup.

4.5 FEATURE GENERATION

There are two operators for transforming two given parent individuals into new individuals, namely a
self-competitive crossover operator and a guided mutation operator. The self-competitive crossover

5



Under review as a conference paper at ICLR 2023

operator was originally developed to evolve multiple job scheduling rules (Nguyen et al., 2021). It
keeps effective rules and modifies the less effective rules, which imitates the manual rule design
process and is suitable for our feature construction scenario. Guided mutation was proposed to solve
maximum clique problems (Zhang et al., 2005) by eliminating less useful variables, which is also
important for classification problem. Thus, we decide to use these two operators in our algorithm.

Self-Competitive Crossover: First, we utilize the self-competitive crossover operator to exchange
beneficial materials of two parent individuals. In general, the goal of the self-competitive operator is
to move important materials from the best feature to the worst feature while keeping the best feature
intact. For a given set of feature importance values {θ1 . . . θk} provided by the base learner, we
can use a softmax function, P (θi) =

eθi/T∑k
j=1 eθj/T

, where T represents temperature, to determine the

likelihood of selecting each feature θi as the donor, and use a negative softmax function to determine
the acceptor.

Given the preceding probability distribution, we begin by sampling the acceptor individual Φacceptor

negatively proportionate to P (θi), i.e., P (−θi). Then we sample another individual Φdonor as the
donor individual according to the probability P (θi). Thereafter, the crossover operator selects a
subtree from Φdonor at random to replace a subtree of Φacceptor. This crossover operator ensures
that the top-performing features are rarely destroyed, while the worst features have a high probability
of being improved.

Guided Mutation: In addition to the self-competitive operator, the guided mutation operator is
utilized to generate new features. The guided mutation operator is similar to the random mutation
operator in that it replaces a subtree of a parent individual with a randomly generated subtree.
However, the guided mutation operator uses a guided probability vector p to determine the probability
of using each terminal variable in a newly generated subtree.

For each terminal variable x, the guided probability {p1 . . . pm} is defined as the percentage of
occurrences of variable x in all features in the archive, weighted by the feature importance of each
feature. The feature importance values of a decision tree are calculated by counting the total reduction
of Gini impurity with each feature ϕ, whereas the feature importance values in a linear model are
obtained by calculating the absolute value of model coefficients. All features are standardized before
constructing the linear model. This ensures that the magnitude of each feature will not have an impact
on the model coefficient.

4.6 FEATURE EVALUATION

For each group of features, feature evaluation is conducted on its corresponding classification model.
To avoid over-fitting, we validate the effectiveness of each set of features using a cross-validation
approach. For any given training set, we partition it into five subsets, i.e., {X1 . . . X5}. Then, for
each round, we utilize four folds to train a model and the remaining folds to validate the learned
model.

Instead of summing all losses into a scalar, we keep the original loss vector because it contains more
detailed and useful information which the selection operator can exploit and utilize. For each training
instance, we employ cross entropy as the fitness function. If the problem contains C classes, the cross
entropy loss can be defined as

∑
c∈C pc ∗ log(qc), where qc refers to the probability of the model

prediction belonging to a certain class c as qc and the ground truth probability distribution is pc.

5 EXPERIMENTS

We conduct extensive experiments on synthetic and real-world datasets to answer the following three
questions:

• Q1: How does the proposed method perform compared with traditional machine learning
(ML) methods (Section 5.2.1), deep learning-based (DL) methods (Section 5.2.2), and
open-source feature engineering (FE) tools (Section 5.2.3)?

• Q2: How does dynamically selecting base learners during the evolutionary process perform
compared with determining them in advance (Section 5.3.1)?

• Q3: Is it more efficient to use both cross-validation losses and feature importance values to
guide the search than using either one alone (Section 5.3.2)?

6



Under review as a conference paper at ICLR 2023

0.700 0.725 0.750 0.775 0.800 0.825 0.850
Score

EvoFeat
LightGBM
XGBoost

RF
FEW

AutoFeat
FTTransformer

MLP
DT

DCN V2
ResNet

LR
KNN

Figure 2: Comparison of balanced testing ac-
curacy distributions over different algorithms
on 119 PMLB dataset.

Algorithm Mean Imp. ↑
EvoFeat⋆ 0.831899 -
LightGBM† 0.823112 1.07%
XGBoost† 0.819236 1.55%
RF† 0.811038 2.57%
FEW⋄ 0.809664 2.75%
AutoFeat⋄ 0.798939 4.13%
FTTransformer‡ 0.780356 6.60%
MLP‡ 0.778617 6.84%
DT† 0.775535 7.27%
DCN V2‡ 0.772064 7.75%
ResNet‡ 0.770875 7.92%
LR† 0.760355 9.41%
KNN† 0.735761 13.07%

Table 1: Statistical results of balanced test-
ing accuracy for different algorithms on 119
PMLB datasets. (⋆: Our algorithm, †: ML al-
gorithms, ‡: DL algorithms, ⋄: FE algorithms,
Imp. ↑: Relative improvement)

5.1 EXPERIMENTAL SETTINGS

Experimental Datasets: The experimental datasets include all datasets in DIGEN (Orzechowski
& Moore, 2021)2 and all PMLB (Romano et al., 2021) 3 classification datasets between 200 and
10000 instances. DIGEN is a diverse set of datasets synthesized by the genetic programming method,
whereas PMLB includes real-world datasets collected from OpenML (Vanschoren et al., 2014). In
large-scale experiments, we test the performance of our approach against other machine learning
algorithms on all 119 datasets in PMLB with up to 10000 instances. In ablation studies, we use all
datasets in DIGEN and all datasets in PMLB ranging from 200 to 2000 instances due to limited
computational resources.

Evaluation Protocol:For the evaluation protocol, we randomly sample 80% data as the training set to
train a model and use the remaining 20% data as the test set to calculate the testing balanced accuracy
of the trained model. To obtain a reliable result, we repeat all experiments with ten random seeds and
take the average score as the final score. For all baseline algorithms, we tune them by Heteroscedastic
Evolutionary Bayesian Optimization (HEBO) (Cowen-Rivers et al., 2020) or heuristic methods. The
details of the tuning methods and all hyperparameter search spaces are shown in the supplementary
material.

5.2 LARGE-SCALE EXPERIMENT

5.2.1 COMPARISON WITH TRADITIONAL MACHINE LEARNING METHODS

Baseline Algorithms: First of all, we compare our algorithm with traditional machine learning
algorithms to demonstrate how feature construction improves the performance. We compare our
algorithm to six traditional machine learning classification algorithms, including XGBoost (Chen &
Guestrin, 2016), LightGBM (Ke et al., 2017), Random Forest (RF), Decision Tree (DT), Logistic
Regression (LR), and K-Nearest Neighbors (KNN). Among these methods, XGBoost and LightGBM
are regarded as state-of-the-art algorithms (Gorishniy et al., 2021).

Experimental Results: Figure 2 illustrates the testing accuracy distribution of all algorithms across
119 datasets. It is clear that gradient boosting methods, such as XGBoost and LightGBM, are
top-performing classification algorithms. However, our approach achieves a better average accuracy
than these algorithms. The numerical results shown in Table 1 confirm this, as our method achieves
an average accuracy of 83%, which has more than 1% improvement over the average accuracies of
XGBoost and LightGBM. A further analysis shows that EvoFeat ranks first on 51 out of 119 datasets,

2https://github.com/EpistasisLab/digen
3https://github.com/EpistasisLab/pmlb

7

https://github.com/EpistasisLab/digen
https://github.com/EpistasisLab/pmlb


Under review as a conference paper at ICLR 2023

while LightGBM only ranks first on 26 datasets. These results demonstrate that the evolution-based
feature construction method enables an ensemble learning model composed of simple base learners
to outperform state-of-the-art machine learning models. It is worth mentioning that EvoFeat ranks
first does not mean it performs the best on every dataset. Due to space constraints, we discuss this
topic in the supplementary material using the instance space analysis technique.

5.2.2 COMPARISON WITH DEEP LEARNING METHODS

Baseline Algorithms: There are a lot of deep learning-based methods that have been proposed
in recent years for tabular data learning. We select four models from the existing literature for
comparison, i.e., multilayer perceptron (MLP), ResNet, DCN V2 (Wang et al., 2021) and FT-
Transformer (Gorishniy et al., 2021). The first two architectures are commonly used baselines in the
existing literature. The third one is the state-of-the-art model for click-through rate (CTR) prediction,
and the fourth model is the state-of-the-art model for tabular data learning.

Experimental Results: The experimental results in Table 1 reveal that existing deep learning
approaches cannot compete with XGBoost or LightGBM because the best one, FT-Transformer, only
achieves 78% average accuracy. Surprisingly, all deep learning algorithms perform similarly to a
fine-tuned decision tree, which has an average accuracy of 77%. One probable explanation is that
these deep learning algorithms require a large amount of training data and thus fail to learn a robust
feature representation on datasets with less than ten thousand items, which is however typical for
tabular data.

5.2.3 COMPARISON WITH FEATURE CONSTRUCTION METHODS

Baseline Algorithms: In this paper, we compare our method to two open-source feature construction
methods: Feature engineering wrapper (FEW) (La Cava & Moore, 2017b) and AutoFeat (Horn et al.,
2019). FEW is a genetic programming based feature construction method, whereas AutoFeat is an
exhaustive search based feature engineering method. They are used to construct features for the best
model among Extra Trees (ET), RF, XGBoost and LightGBM. The details of experiment settings are
given in the supplementary material.

Experimental Results: Experiment results in Table 1 show that both FEW and AutoFeat cannot
achieve top performance, with accuracy scores of 80% and 79%, respectively. FEW uses the
coefficient of determination and feature importance values to search for high-order features, and
uses the cross-validation loss to determine the historically best set of features. However, generating
features without considering the cross-validation loss may mislead the search process and diminish
the likelihood of uncovering expressive features. AutoFeat employs L1-regularized LR to determine
superfluous high-order features. However, features useful on LR may not work well on RF, and
therefore its feature construction capability is also limited.

5.3 ABLATION STUDIES

5.3.1 BASE LEARNERS

Due to the difficulties of generating a diverse set of linear models, most ensemble learning systems
employ decision trees as base learners rather than linear regression models. However, the construction
of non-linear features may lead to different results. Therefore, we perform an ablation study in which
we only use linear regression models or decision trees during the evolutionary feature construction
process to investigate the benefit of simultaneously constructing features for linear regression models
and decision trees.

Figure 3 illustrates the balanced testing accuracy with various base learners over 20 datasets in PMLB.
The experimental results reveal that there is no free lunch when it comes to addressing classification
problems, and each method has its own set of niching tasks. Nonetheless, the combination of
random decision tree and logistic regression allows our system to automatically select the appropriate
model on the fly, resulting in improved average performance. Table 2 shows the mean accuracy of
different base learners over 89 PMLB datasets and 40 DIGEN datasets. This table illustrates that the
combination of DT and LR achieves an accuracy score of 86%, which is more than 1.2% higher than
dropping either of them, confirming the effectiveness of using heterogeneous base learners.

5.3.2 EVOLUTIONARY ALGORITHMS

In this paper, we propose to use an evolutionary approach to exploit the information provided by
feature importance and cross-validation loss. It is worthwhile investigating whether the evolutionary

8



Under review as a conference paper at ICLR 2023

prnn
_
prof

b
sah

easch
izsola

r
sola

r
son

ar
soy

bespe
ct
spe

ct
thre

etic_
t
toky

o
veh

icvotevow
el
wdb

c
win

e_xd6yea
st

Dataset

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or
e

Base Learner
Random-DT+LR
Random-DT
LR

Figure 3: The balanced testing accuracy of
our algorithm with respect to different base
learners.

dige
n1
dige

n10
dige

n12
dige

n13
dige

n16
dige

n17
dige

n22
dige

n23
dige

n24
dige

n26
dige

n27dige
n3
dige

n32
dige

n35
dige

n36
dige

n37
dige

n39dige
n6
dige

n7
dige

n8

Dataset

0.75

0.80

0.85

0.90

0.95

1.00

Sc
or
e

Operator
Random
AL+SC
SC
AL

Figure 4: The balanced testing accuracy of
our algorithm with respect to different selec-
tion operators.

Base Learner Mean Imp. ↑
Random-DT+LR 0.860044 -
LR 0.849455 1.25%
Random-DT 0.848104 1.41%

Table 2: Comparison of balanced testing ac-
curacy over different base learners.

Selection Operator Mean Imp. ↑
AL+SC 0.860044 -
AL 0.857332 0.32%
SC 0.855892 0.49%
Random 0.841332 2.22%

Table 3: Comparison of balanced testing ac-
curacy over different selection operators.

algorithm effectively uses this information during the search process. Otherwise, random search
would be a preferable option because it is much simpler. Therefore, this section presents an ablation
experiment to demonstrate the efficacy of combined selection operators, which is the driving force of
an evolutionary algorithm.

Four selection operators: random selection, only automatic lexicase selection (AL), only self-
competitive selection (SC), and both AL and SC (AL+SC) are compared in this section. Figure 4
presents the distribution of testing accuracy with respect to three selection mechanisms on 20
DIGEN datasets. From this figure, it is clear that using two selection operators simultaneously
can effectively improve the predictive accuracy of the final searched features. Table 3 displays the
mean testing classification accuracy across 129 datasets for different selection operators. These
results confirm the effectiveness of using both selection operators in the searching process, where
the accuracy score of combining two operators is more than 0.32% higher than that of using only
one of these operators. Therefore, we can conclude that leveraging both cross-validation loss and
feature-importance information is beneficial for obtaining better final results.

6 CONCLUSIONS

Automated feature engineering is a critical component of an automated machine learning system. In
this research, we develop and present an evolution-based feature construction method for augmenting
standard machine learning algorithms. To make the technique applicable to a wide range of tasks, we
simultaneously evolve features for decision trees and linear regression models and form an ensemble
of top-performing models. To increase the search capability of our algorithm, we use both feature
importance values and cross-validation losses to identify promising features. Experimental results on
119 datasets show that the proposed method outperforms both state-of-the-art tree-based ensemble
learning methods and deep learning methods.

For future study, considering the current base learner is confined to decision trees and logistic
regression models, it is worth investigating whether other learners, such as neural networks or
GBDTs, could be added to this framework. Furthermore, exploring how to adapt our algorithm
to large-scale datasets is an intriguing issue; instance selection methods (Bi et al., 2021b) may be
required to reduce computational complexity.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Edesio Alcobaça, Felipe Siqueira, Adriano Rivolli, Luís Paulo F Garcia, Jefferson Tales Oliva,
André CPLF de Carvalho, et al. Mfe: Towards reproducible meta-feature extraction. Journal of
Machine Learning Research, 21(111):1–5, 2020.

Zeyuan Allen-Zhu and Yuanzhi Li. What can resnet learn efficiently, going beyond kernels? Advances
in Neural Information Processing Systems, 32:9015–9025, 2019.

Sercan O Arık and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In AAAI, volume 35,
pp. 6679–6687, 2021.

Ying Bi, Bing Xue, and Mengjie Zhang. Genetic programming with a new representation to
automatically learn features and evolve ensembles for image classification. IEEE Transactions on
Cybernetics, 51(4):1769–1783, 2020.

Ying Bi, Bing Xue, and Mengjie Zhang. A divide-and-conquer genetic programming algorithm
with ensembles for image classification. IEEE Transactions on Evolutionary Computation, 25(6):
1148–1162, 2021a.

Ying Bi, Bing Xue, and Mengjie Zhang. Instance selection-based surrogate-assisted genetic program-
ming for feature learning in image classification. IEEE Transactions on Cybernetics, pp. 1–15,
2021b. doi: 10.1109/TCYB.2021.3105696.

Edmund Burke, Steven Gustafson, and Graham Kendall. Ramped half-n-half initialisation bias in gp.
In Genetic and Evolutionary Computation Conference, pp. 1800–1801. Springer, 2003.

Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble selection from
libraries of models. In Proceedings of the Twenty-First International Conference on Machine
Learning, pp. 18, 2004.

Shih-Kang Chao and Guang Cheng. A generalization of regularized dual averaging and its dynamics.
arXiv preprint arXiv:1909.10072, 2019.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
785–794. ACM, 2016.

Benoît Colange, Jaakko Peltonen, Michaël Aupetit, Denys Dutykh, and Sylvain Lespinats. Steering
distortions to preserve classes and neighbors in supervised dimensionality reduction. Advances in
Neural Information Processing Systems, 33:13214–13225, 2020.

Alexander I Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan Rhys
Griffiths, Alexandre Max Maraval, Hao Jianye, Jun Wang, Jan Peters, et al. An empirical study of
assumptions in bayesian optimisation. arXiv preprint arXiv:2012.03826, 2020.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 1,
pp. 886–893. IEEE, 2005.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in Neural Information Processing Systems, 34:18932–18943,
2021.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pp. 1725–1731, 2017.

Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated feature
engineering and selection. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 111–120. Springer, 2019.

Gilad Katz, Eui Chul Richard Shin, and Dawn Song. Explorekit: Automatic feature generation and
selection. In 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 979–984.
IEEE, 2016.

10



Under review as a conference paper at ICLR 2023

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information
Processing Systems, 30:3146–3154, 2017.

Patrick Kidger and Terry Lyons. Universal approximation with deep narrow networks. In Conference
on Learning Theory, pp. 2306–2327. PMLR, 2020.

William La Cava and Jason Moore. A general feature engineering wrapper for machine learning
using ϵ-lexicase survival. In European Conference on Genetic Programming, pp. 80–95. Springer,
2017a.

William La Cava and Jason H Moore. Ensemble representation learning: an analysis of fitness and
survival for wrapper-based genetic programming methods. In Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 961–968, 2017b.

William La Cava, Thomas Helmuth, Lee Spector, and Jason H Moore. A probabilistic and multi-
objective analysis of lexicase selection and ε-lexicase selection. Evolutionary Computation, 27(3):
377–402, 2019.

Andrew Lensen, Bing Xue, and Mengjie Zhang. Genetic programming for manifold learning:
Preserving local topology. IEEE Transactions on Evolutionary Computation, 26(4):661–675, 2022.
doi: 10.1109/TEVC.2021.3106672.

Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun.
xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 1754–1763, 2018.

Bin Liu, Chenxu Zhu, Guilin Li, Weinan Zhang, Jincai Lai, Ruiming Tang, Xiuqiang He, Zhenguo
Li, and Yong Yu. Autofis: Automatic feature interaction selection in factorization models for
click-through rate prediction. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 2636–2645, 2020.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations, 2018.

Sean Luke and Liviu Panait. Fighting bloat with nonparametric parsimony pressure. In International
conference on parallel problem solving from nature, pp. 411–421. Springer, 2002.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in
Neural Information Processing Systems, 30:4765–4774, 2017.

Yuanfei Luo, Mengshuo Wang, Hao Zhou, Quanming Yao, Wei-Wei Tu, Yuqiang Chen, Wenyuan Dai,
and Qiang Yang. Autocross: Automatic feature crossing for tabular data in real-world applications.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1936–1945, 2019.

Ze Meng, Jinnian Zhang, Yumeng Li, Jiancheng Li, Tanchao Zhu, and Lifeng Sun. A general method
for automatic discovery of powerful interactions in click-through rate prediction. In Proceedings
of the 44th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 1298–1307, 2021.

Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park, Ganesh Krishnan,
Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. Deep learning for entity matching: A design
space exploration. In Proceedings of the 2018 International Conference on Management of Data,
pp. 19–34, 2018.

Mario A Muñoz, Laura Villanova, Davaatseren Baatar, and Kate Smith-Miles. Instance spaces for
machine learning classification. Machine Learning, 107(1):109–147, 2018.

Mario Andrés Muñoz, Tao Yan, Matheus R Leal, Kate Smith-Miles, Ana Carolina Lorena, Gisele L
Pappa, and Rômulo Madureira Rodrigues. An instance space analysis of regression problems.
ACM Transactions on Knowledge Discovery from Data (TKDD), 15(2):1–25, 2021.

11



Under review as a conference paper at ICLR 2023

Kaustuv Nag and Nikhil R Pal. Feature extraction and selection for parsimonious classifiers with
multiobjective genetic programming. IEEE Transactions on Evolutionary Computation, 24(3):
454–466, 2019.

Su Nguyen, Dhananjay Thiruvady, Mengjie Zhang, and Damminda Alahakoon. Automated design
of multipass heuristics for resource-constrained job scheduling with self-competitive genetic
programming. IEEE Transactions on Cybernetics, pp. 1–14, 2021.

Ji Ni, Russ H Drieberg, and Peter I Rockett. The use of an analytic quotient operator in genetic
programming. IEEE Transactions on Evolutionary Computation, 17(1):146–152, 2012.

Patryk Orzechowski and Jason H Moore. Generative and reproducible benchmarks for comprehensive
evaluation of machine learning classifiers. arXiv preprint arXiv:2107.06475, 2021.

Joseph D Romano, Trang T Le, William La Cava, John T Gregg, Daniel J Goldberg, Praneel
Chakraborty, Natasha L Ray, Daniel Himmelstein, Weixuan Fu, and Jason H Moore. Pmlb v1.0:
an open source dataset collection for benchmarking machine learning methods. arXiv preprint
arXiv:2012.00058v2, 2021.

Michael Schmidt and Hod Lipson. Age-fitness pareto optimization. In Genetic Programming Theory
and Practice VIII, pp. 129–146. Springer, 2011.

Qitao Shi, Ya-Lin Zhang, Longfei Li, Xinxing Yang, Meng Li, and Jun Zhou. Safe: Scalable
automatic feature engineering framework for industrial tasks. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE), pp. 1645–1656. IEEE, 2020.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
Autoint: Automatic feature interaction learning via self-attentive neural networks. In Proceedings
of the 28th ACM International Conference on Information and Knowledge Management, pp.
1161–1170, 2019.

Annette Spooner, Emily Chen, Arcot Sowmya, Perminder Sachdev, Nicole A Kochan, Julian Trollor,
and Henry Brodaty. A comparison of machine learning methods for survival analysis of high-
dimensional clinical data for dementia prediction. Scientific reports, 10(1):1–10, 2020.

Binh Tran, Bing Xue, and Mengjie Zhang. Genetic programming for multiple-feature construction
on high-dimensional classification. Pattern Recognition, 93:404–417, 2019.

Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in
machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. Dcn
v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems.
In Proceedings of the Web Conference 2021, pp. 1785–1797, 2021.

Tingyang Wei, Shibin Wang, Jinghui Zhong, Dong Liu, and Jun Zhang. A review on evolutionary
multi-task optimization: Trends and challenges. IEEE Transactions on Evolutionary Computation,
pp. 1–1, 2021. doi: 10.1109/TEVC.2021.3139437.

Haizhi Yang, Tengyun Wang, Xiaoli Tang, Qianyu Li, Yueyue Shi, Siyu Jiang, Han Yu, and Hengjie
Song. Multi-task learning for bias-free joint ctr prediction and market price modeling in online ad-
vertising. In Proceedings of the 30th ACM International Conference on Information & Knowledge
Management, pp. 2291–2300, 2021.

Wei Yang, Kuanquan Wang, and Wangmeng Zuo. Neighborhood component feature selection for
high-dimensional data. Journal of Computers, 7(1):161–168, 2012.

Hengzhe Zhang, Aimin Zhou, and Hu Zhang. An evolutionary forest for regression. IEEE Transac-
tions on Evolutionary Computation, pp. 1–1, 2021. doi: 10.1109/TEVC.2021.3136667.

Mengjie Zhang, Xiaoying Gao, and Weijun Lou. A new crossover operator in genetic programming for
object classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
37(5):1332–1343, 2007.

12



Under review as a conference paper at ICLR 2023

Qingfu Zhang, Jianyong Sun, and Edward Tsang. An evolutionary algorithm with guided mutation
for the maximum clique problem. IEEE Transactions on Evolutionary Computation, 9(2):192–200,
2005.

13


