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Abstract

This paper investigates how Large Language
Models (LLMs) represent non-English to-
kens—a question that remains underexplored
despite recent progress. We propose a
lightweight intervention method using repre-
sentation steering, where a learned vector is
added to the residual stream at a single model
layer to enhance multilingual performance.
Through extensive experiments across seven
competitive baselines—including prompt op-
timization, supervised fine-tuning (SFT), in-
context learning, cross-lingual transfer, and
translation-based methods—we show that our
approach consistently outperforms most alter-
natives. In particular, it achieves performance
on par with production-grade translation sys-
tems while requiring far fewer resources. We
further explore the complementarity between
our method and SFT, demonstrating that steer-
ing offers a direct, efficient way to realign inter-
nal representations. These findings underscore
the potential of activation-level interventions as
a powerful tool for improving the multilingual
capabilities of LLMs.

1 Introduction

In recent years, large language models (LLMs)
have demonstrated remarkable capabilities across
a wide range of tasks. However, the majority of
these advancements have been concentrated in En-
glish, often neglecting other languages, particularly
low-resource ones, due to the scarcity of available
data. A common approach to addressing this gap is
translating these languages into English before pro-
cessing them. While this method can be effective,
it is inherently limited by the quality and cost of
translation (Liu et al., 2024). To unlock the full po-
tential of LLMs, integrating multilingual natively
within these models is essential, ensuring robust
performance across diverse languages without rely-
ing solely on translation.

Recent studies have explored various strategies
to enhance the multilingual proficiency of LLMs.
These include cross-lingual fine-tuning (Qin et al.,
2023), instruction alignment via code-switching
(Huang et al., 2023), and chain-of-thought prompt-
ing in multiple languages (Shi et al., 2022). Other
approaches focus on mapping representations be-
tween models, such as MindMerger, which inte-
grates an external LLM’s linguistic knowledge by
learning a mapping between representation spaces
(Huang et al., 2024). Despite these advances, inves-
tigations into the internal mechanisms of multilin-
gual processing remain limited. The few studies in
this area suggest that LLLMs often default to trans-
lating non-English inputs into English represen-
tations within their intermediate layers (Wendler
et al., 2024; Zhao et al., 2024).

Closely related to our work, recent research (Wang
et al., 2024) has used representation steering to
align hidden states between English and a target
language. This was achieved by learning a steer-
ing vector through a least-squares optimization and
applying it across all layers of the model. While
effective, this method modifies the model’s rep-
resentations globally. This leaves a critical ques-
tion unexplored: can multilingual alignment be
achieved more efficiently by targeting only a sin-
gle, specific layer, and what does this reveal about
the model’s internal structure? In this paper, we
investigate this question from a mechanistic inter-
pretability perspective. We propose a method that
first learns a transformation manifold mapping En-
glish representations to a target language. This
mapping is then applied as a steering vector to the
activations of only a single layer during inference,
without any fine-tuning. This lightweight approach
is more efficient and less disruptive to the base
model’s capabilities, as illustrated in Figure 1. By
demonstrating that our single-layer intervention
parallels the effects of full fine-tuning, we provide
new insights into how LLM representations can be



precisely and efficiently optimized for multilingual
tasks. Our key contributions are as follows:

* We propose and validate a method to enhance
the multilingual capabilities of LLMs by steer-
ing the representations of a single layer, using
a learned alignment with English.

* We demonstrate that a single steering vector
can be shared across structurally similar lan-
guages ! , enabling zero-shot cross-linguistic
transfer without language-specific fine-tuning.

* Our method significantly surpasses the per-
formance of the NLLB translation baseline
and achieves results competitive with Google
Translate across multiple datasets.

2 Related Work

Multilingual Progress: Recent research has sig-
nificantly advanced multilingual LLMs, as high-
lighted in a survey by (Qin et al., 2024). Efforts to
enhance multilingual performance primarily focus
on expanding language coverage through cross-
lingual instruction fine tuning. For example, (Zhu
et al., 2023) and (Chen et al., 2023b) propose mul-
tilingual instruction tuning methods to improve rea-
soning across diverse languages, while (Zhu et al.,
2024) integrates mathematical instructions to en-
hance logical processing. Another line of work ex-
plores prompt-based strategies to strengthen cross-
lingual understanding. Studies by (Qin et al., 2023;
Huang et al., 2023) show that strategically de-
signed prompts can significantly enhance model
performance across languages. More recent meth-
ods introduce external modules to supplement the
model’s multilingual capabilities. (Yoon et al.,
2024) propose LangBridge, which integrates a mul-
tilingual encoder with an LLM for improved rea-
soning, though it may underutilize the LLM’s na-
tive multilingual abilities, in contrast, MindMerger
(Huang et al., 2024) aligns representations across
models handling the same prompt, preserving in-
trinsic multilingual features. Despite these ad-
vances, fewer studies focus on how LLMs inter-
nally manage multilingualism. Notably, (Wendler
et al., 2024) and (Zhao et al., 2024) analyze the
internal mechanisms enabling cross-lingual under-
standing, highlighting both strengths and limita-
tions that inform further improvements.
'Structurally similar languages share features—genetic,

geographic, syntactic, phonological, featural, and inventory-
based—as defined by the lang2vec framework.

Representation Engineering has emerged as a
powerful tool for analyzing how concepts are pro-
cessed within LLLMs, addressing challenges such
as truthfulness, fairness, and model editing (Zou
et al., 2023). This approach has been used to en-
hance model alignment and detect vulnerabilities,
including jailbreaking risks in open-source models
(Wang and Shu, 2024; Li et al., 2024). Addition-
ally, studies have leveraged it to investigate how
LLMs internally represent complex concepts (Lu
and Rimsky, 2024). Recent work by (Cao et al.,
2024) presents methods to extract refined steering
vectors through preference optimization, allowing
improved control of model behavior. These find-
ings underscore the significant role of representa-
tion engineering in advancing LLM technology.
Inference Time Intervention: using steering vec-
tors is an established technique in the field of model
editing (Li et al., 2023; Panickssery et al., 2023).
These methods modify model behavior by directly
manipulating internal states; for example, vectors
can be added to a model’s residual stream to im-
prove truthfulness (Wang et al., 2025) or removed
from its hidden states to induce refusal behaviors
(Arditi et al., 2024). However, the application of
these powerful steering techniques in multilingual
settings remains largely unexplored.

3 Background

3.1 Evaluating LLM’s capabilities

Previous studies (Wendler et al., 2024; Zhao
et al., 2024) indicate that LLMs often translate non-
English prompts into English internally, which may
limit their performance. To investigate this, a self-
translation (Etxaniz et al., 2023) process was used
to assess whether LLMs understand non-English
prompts or struggle with mistranslation. Table 1
shows that models like Llama2 (Touvron et al.,
2023) and Aya23 (Aryabumi et al., 2024) can trans-
late non-English tokens into English and that using
this self-translation leads to a 2.4% average im-
provement in Llama2’s performance compared to
native prompts. Aya23 also shows slight improve-
ments for low-resource languages. However, the
models still do not achieve the same level of un-
derstanding with non-English prompts as they do
with English, likely due to representation mapping
limitations.

Problem Formulation. Let a transformer
model process a sequence of input tokens
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Figure 1: Overview of our method: (a) Learn a steering vector v from two language corpora at a specific layer using
DPO or MSE; (b) Apply the learned vector to the residual stream of each token in a prompt at that layer.

Methods ‘ Es Ja Ru Sw Zh Bn Th De Fr Te | Avg
Llama2-7B
Basic Prompt | 20.0 12.8 20.0 .36 19.6 04 048 240 216 04 | 134
Google-Trans | 26.4 244 24.8 26.0 27.6 26.0 24.0 22.4 244 24.0| 25.0
Self-Trans 27.0 17.8 25.6 0.53 22.6 0.51 046 244 233 0.25|1587
Aya23-8B
Basic Prompt | 40.0 25.6 344 0.64 27.6 1.0 13.1 36.0 32.0 0.16 | 22.7
Google-Trans | 40.4 22.0 40.8 39.6 39.2 35.6 33.6 38.0 432 344| 36.9
Self-Trans 33.6 25.6 27.8 0.52 22.0 10.6 16.6 34.6 332 .01 | 21.0

Table 1: Comparison of Google-translated, native, and self-translated prompts on math tasks using LLaMA2-7B
and Aya23-8B. 1 indicates improvement over the native prompt. Self-translation boosts LLaMA?2 -7B by 2.4% and
offers modest gains for Aya23, though both lag behind English performance.

t = (ti,ta,...,ty) € V", producing a se-
quence of output probability distributions
Yy = (yla Yy2,. .. 7yn) S Rnxlvl' Denote by

%@ (t) € RY the residual stream activation at
token position ¢ at the beginning of layer [. The
residual stream is initialized via token embeddings:
acl(l) = Embed(t;).

Each transformer layer updates the residual stream
with attention and MLP components:

7 =

$§l+1)

(l) + Attn® (xgl), .
‘ )+ MLPO (1),

Dy ()

2

After L layers, the model computes the final logits
logits; = Unembed(z; (4D ¢ RV, followed by

softmax to obtain the output distribution:

y; = softmax (logits;) € RV, 3)
Activation Extraction and Alignment. We de-
note the post-layer-L residual activations for En-
glish and a target language as xfmﬂ) and :ct(jgttl ),
respectively. Our goal is to align the target lan-
guage representations with their English counter-

parts by applying an additive transformation:

(L+1)
altered

(L+1)
target

+ U(L),

“)
where v(L) is a learned steering vector specific to
layer L. We propose two methods for learning the
alignment vector v@):



1. Direct Preference Optimization (DPO). In-
spired by recent work, we apply Direct Pref-
erence Optimization (DPO) to learn v(*) by
aligning target language representations with
English ones while explicitly disaligning from
original target activations. Unlike conven-
tional approaches that compute the mean
difference between activations (Panickssery
et al.,, 2024; Wang and Shu, 2024) or use
PCA to extract principal directions (Annah
and shash42, 2023), DPO learns a direction
that better captures the bidirectional prefer-

ence relationship between azgfﬂ) and :ct(igttl ),

This leads to improved multilingual alignment.

See Appendix A for mathematical details.

2. Loss-Based Activation Alignment Follow-
ing the methodology (Park et al., 2023),
which suggests that representations in dif-
ferent languages may be linearly mappable,
we also learn v(%) by minimizing the mean
squared error between the aligned and English
representations:

» “Valtered

Luse = MSE (ngﬂ) x(LH)) NG

Intervention. After learning the steering vector
vP), we apply an activation intervention by modi-
fying the residual stream of a new target-language
prompt at layer L. Specifically, given a new ac-
tivation xt(igttl ) at layer L + 1, we compute the
intervened activation as:

(L+1) _

(L+1)
altered — T

target

+ o), (6)

This altered activation is then propagated through
the remaining layers of the model, allowing us to
observe how the intervention affects the model’s
output distribution. The goal is to steer the model’s
internal representations of the target-language input
to better align with English-like behavior.

4 Experiments

In this section, we outline the experimental setup
necessary for the evaluations presented in Section
4.1 and the corresponding results discussed in Sec-
tion 4.2.

4.1 Experimental Setup

Models: We evaluated five prominent open-source
models with varying levels of multilingual support:

LLama2-7B Chat (Touvron et al., 2023), Aya23-
8B (Aryabumi et al., 2024), Gemma (Team et al.,
2024), Qwenl.5 Chat (Team, 2024), and LLama3-
8B (Grattafiori et al., 2024). For simplicity, the
main discussion focuses on LLama2-7B Chat and
Aya23-8B, while results for the remaining models
are detailed in the appendix.

Training Datasets: To learn the steering vector, we
used two datasets. For multilingual mathematical
reasoning, we employed MSVAMP (Chen et al.,
2023a), which spans 14 languages® across high-,
medium-, and low-resource tiers. For general tasks,
we used the Tatoeba dataset (Tiedemann, 2020),
containing English—target language pairs across
50+ languages. We sampled 1,000 instances per
language and grouped them by resource level to
assess the effectiveness of our approach.

Evaluation Datasets: We evaluated our ap-
proach across five tasks spanning language
understanding, commonsense reasoning, and
mathematical reasoning: MGSM (Shi et al., 2022)
for math, XNLI (Conneau et al., 2018) for natural
language inference, XCOPA (Ponti et al., 2020)
for causal commonsense, MMLU (Hendrycks
et al., 2020) for general knowledge®, and
M3Exam (Zhang et al., 2023), a human exam
benchmark testing comprehensive language
understanding. This diverse suite ensures a robust
evaluation across linguistic competencies.

Baselines: We compared seven baseline ap-
proaches for multilingual task handling:

» Basic Prompt: The vanilla approach uses a
traditional query format without any special-
ized prompting strategies.

* Translate to English: This method leverages
LLMs’ strong English abilities by translat-
ing non-English inputs. Following (Liu et al.,
2024), we used two translation sources:

Google Translate: A commercial service
that translates examples into English.

NLLB (Costa-jussa et al., 2022): An
open-source model supporting over 200 lan-
guages.

%es: Spanish, fr: French, ru: Russian, de: German, ja:
Japanese, zh: Chinese, tr: Turkish, ar: Arabic, vi: Vietnamese,
hi: Hindi, el: Greek, id: Indonesian, it: Italian, pt: Portuguese.

We sampled 1k and 500 records from MMLU and XNLI,
respectively.



* XLT (Huang et al., 2023): A state-of-the-art
prompting strategy that first translates the in-
put question into English, then solves it step
by step, leveraging the model’s stronger rea-
soning abilities in English.

¢ 5-shot Learning (Brown, 2020): Provides
five examples to improve few-shot learning
and multilingual generalization.

* Supervised Fine-Tuning (SFT): This ap-
proach fine-tunes all model parameters on
a non-English dataset and evaluates perfor-
mance on downstream tasks.

4.2 Results

Our evaluation demonstrates in Table 2 that
activation-based steering is a highly efficient
and scalable approach for improving multilin-
gual language models. Unlike resource-intensive
methods such as Supervised Fine-Tuning (SFT),
which require task-specific data, prolonged train-
ing, and careful hyperparameter tuning, our pro-
posed techniques achieve competitive performance
at a fraction of the computational and operational
cost. Notably, DPO yields a substantial 26.7%
improvement over SFT, underscoring the effective-
ness of targeted, activation-level interventions.

The advantages of this lightweight method are evi-
dent across a wide range of open-source baselines.
Both DPO and MSE steering produce marked
improvements over standard prompting strategies
and even advanced cross-lingual transfer (XLT)
prompts. The most significant gains are observed
against a 5-shot in-context learning (ICL) baseline,
where DPO achieves a 38.8% improvement. This
result highlights steering’s ability to correct in-
ternal representational misalignments that ICL,
despite leveraging contextual examples, fails
to resolve. Further, DPO outperforms the open-
source translation model NLLB by 25.4%, demon-
strating that steering is not merely a fine-tuning
shortcut but a viable alternative to full translation
pipelines. It effectively aligns multilingual repre-
sentations internally, without reliance on exter-
nal systems. While steering does not yet exceed
the performance of proprietary systems such as
Google Translate, the margin is surprisingly nar-
row. DPO trails Google Translate by just 3.08%,
illustrating that internal, model-native interven-
tions can approach the performance of large-scale
production-grade translation APIs. This finding

is particularly promising given the simplicity, in-
terpretability, and deployability of the proposed
steering method.

Across all experiments, DPO consistently out-
performs MSE-based steering. We attribute this
superiority to the directional optimization signal
embedded in the DPO framework, which not only
penalizes misalignment but actively guides the
model toward improved representations. In con-
trast, the MSE objective quantifies error magnitude
without providing gradient directionality, making
optimization less efficient and less targeted. This
fundamental distinction explains DPO’s effective-
ness as a principled and robust method for steer-
ing multilingual behavior in pretrained language
models. Moreover, the steering approach yields
performance gains as model size increases, sug-
gesting that larger language models benefit more
from targeted activation interventions. We provide
a detailed analysis of this trend in the Appendix D

5 Analysis

In this section, we analyze the proposed methods
from various perspectives: Can we measure the
quality of translation? What are the Challenges
of steering? How transferable is the direction?
And finally, which languages dominate the model’s
representation space?

5.1 Can we quantify the quality of the
internal translation process?

Our analysis reveals a critical factor in a model’s
multilingual performance: the quality of its inter-
nal translation. When a model fails to accurately
represent a language internally, it leads to infor-
mation loss and significant performance gaps. We
quantify this internal translation quality by mea-
suring how closely a language’s internal represen-
tation aligns with English, a proxy for how well
it has been integrated into the model’s core space.
Unsurprisingly, this alignment is directly tied to
the volume of pre-training data for each language.
Models like LLaMAZ2 clearly illustrate this prin-
ciple: high-resource languages with ample data
(French, German) show strong alignment with
English, while low-resource languages (Thai, Tel-
ugu) exhibit much weaker connections. While spe-
cialized multilingual models like Aya23 improve
this alignment for some under-represented lan-
guages, significant challenges remain see( Fig-
ure 2) In contrast, Qwen1.5 highlights a different



Methods MGSM XCcorA XNLI M3EXAM MMLU
Base 38.1 66.4 54.3 44.9 41.8
Google trans 44.6 75.5 57.1 49.8 48.7
NLLB 38.4 61.2 554 25.2 32.8

5 shot 325 58.9 41.3 29.2 30.2
XLT 30.4 46.1 51.7 37.7 30.1

SFT 34.7 55.2 46.1 39.9 354
DPO-Steer 42.2+(4_1) 71'2+(4.8) 59.5+(5_2) 50.1_‘_(5.2) 44.14_(2.3)
MSE-Steer 39'9+(1.8) 66.9_,_(0.5) 56.0+(1_7) 46.64_(1.7) 44.3_,_(2.5)

Table 2: Average results across five open-source models in 14 languages. *+’ indicates an improvement over the
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Figure 2: Similarity scores between language and En-
glish representations across models. The dashed line
(threshold = 0.5) shows high-resource languages above
and mid-/low-resource languages below it.

risk: its training was so dominated by Chinese data
that it often defaults to translating other languages
into Chinese internally, struggling with alignment
for most other languages. Ultimately, these find-
ings confirm that languages with weaker internal
representations are fundamentally disadvantaged.
This "representational misalignment" is not just a
technical artifact; it is a direct cause of performance
disparities across different language groups.

5.2 Challenges in Steering Vector
Generalization

While effective, the steering vector approach faces
two core limitations: it is distribution-sensitive and
lacks contextual precision.

It is distribution-sensitive because its effectiveness
depends heavily on the training distribution. As
shown in Figure 8, performance drops significantly
on out-of-distribution tasks. It lacks contextual pre-
cision because it applies a single, static correction
across all inputs, ignoring prompt-specific varia-
tions. This uniform adjustment fails to capture the
rich contextual variability inherent in natural lan-

guage. These limitations suggest a clear direction
for future work: developing context-aware steering
mechanisms that adapt dynamically to each prompt,
as explored by (Tran et al., 2025).

5.3 Is the steering vector transferable across
languages?

Building on prior work by (Cao et al., 2024), we
examine whether a steering vector trained on one
language can transfer effectively to another. Our
results indicate that transferability is feasible,
but largely limited to languages within the same
linguistic family, likely due to shared representa-
tional structures. As shown in Figure 3, a vector
trained on a source language consistently improves
performance when applied to a related target lan-
guage. For example, a vector trained on Spanish
(Es) transfers well to German (De), French (Fr),
and Russian (Ru) all Indo-European languages.
Similarly, transfers between Japanese (Ja) and Chi-
nese (Zh) are effective. However, these successes
also expose the method’s limitations. Cross-family
transfers, such as from Spanish to Japanese, are in-
effective, suggesting that while the vector captures
more than language-specific patterns, it lacks the
abstraction needed for generalization across distant
language families.

5.4 High Resource Languages are dominant
in Representation Space

A common assumption is that large language mod-
els "think" in English, merely translating other lan-
guages into English-like representations for pro-
cessing. Our findings challenge this notion, re-
vealing a more nuanced reality: the primary bot-
tleneck is not English per se, but membership in
a broader set of high-resource languages. To in-
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vestigate this, we selected three high-resource lan-
guages—Spanish, German, and French—chosen
for their linguistic proximity and high representa-
tional similarity to English in the model. We then
evaluated model performance on the MGSM rea-
soning task across these languages. Table 3 shows
that : performance in Spanish, German, and French
closely matched that of English, with negligi-
ble differences. These findings suggest that the
“English-centric” view is overly reductive. In-
stead, current models appear to operate within a
privileged set of high-resource languages capable
of supporting complex reasoning. The central chal-
lenge for multilingual modeling is thus not merely
accommodating many languages, but extending
this inner circle to include low-resource languages.

6 Ablation Studies

6.1 Impact of Injection Across Model Layers

Our ablation studies reveal a critical insight: the
optimal layer for steering is not universal. Instead,
it is a direct reflection of a model’s architecture
and training data, as shown by the starkly differ-
ent behaviors of Aya23 and LLaMA2. Aya23, a
model explicitly designed for multilingualism,
benefits most from steering in its early layers.
Its architecture is built to quickly translate different
languages into a shared, language-neutral space.
By correcting errors at this early stage—before
they can cascade through the network—we see
significant performance gains across all tasks, in-
cluding mathematical reasoning (Figure 7). In
contrast, LLaMA?2 presents a more complex pic-
ture. For low-resource languages, steering the
early and middle layers is highly effective, as it
helps these languages "catch up" and align with the
model’s dominant representations. However, for

high-resource languages like English or German,
this same intervention can be disruptive, interfering
with already well-formed representations. Finally,
across both models, steering the final layers yields
little to no improvement. This suggests that by
this late stage, the model has already "committed"
to its interpretation in its internal representation
space. Intervening here is simply too late to have a
meaningful effect. This confirms that to be effec-
tive, steering must happen "upstream," before the
model’s final reasoning process is complete.

6.2 Impact of Steering Vectors on English
Capabilities

To assess the potential impact of steering vectors on
the performance of monolingual English prompts,
we evaluated nine different steering vectors, each
tailored to a specific language and applied at var-
ious layers of the model. This evaluation aims to
determine whether these vectors degrade the per-
formance of English tasks, comparing the perfor-
mance of each language-specific steering vector
against the baseline monolingual results. Results in
Table 4 demonstrate that probing has a negative
impact, which intensifies as the representational
distance between two languages increases. Con-
versely, the negative impact lessens for more sim-
ilar languages. In models like LLaMA?2, this cor-
relation is pronounced, whereas, in Aya-23, which
features more robustly represented languages, the
impact is slightly reduced.

7 Fine-tuning vs. Steering Approach

Our findings suggest that activation steering can
achieve the same internal alignment benefits as
fine-tuning, but does so through a single, targeted
intervention rather than a lengthy training process.
To demonstrate this, we designed an experiment
to visualize how each method forces the model to
align its internal representations with English.

We employed a "logit lens" analysis (nostalgebraist,
2020), a technique that allows us to peek inside
the model. At a specific layer L + 1, we take

the model’s internal state the post-activation output

xELH) 2 and project it back into the vocabulary
space using the unembedding matrix. In simple
terms, we ask the model: ''Based on your cur-
rent state, what English word does this most look

like?"

logits(L+1) = Unembed(x(L+1)) e RV

) %



Models Lang-Rep Fr Ru Ja Es Zh De
Fr - 343 25.6 40.0 27.6 36.0
Es 32.0 34.4 25.6 - 27.6 36.0
Aya23-8B
De 32.0 34.4 25.6 40.0 27.6 -
En 38.0 41.2 34.8 44.4 32.8 40.4
Fr - 23.2 18.4 24.4 20.4 25.2
Es 244 22.8 17.6 - 21.2 26.0
Llama2-7B
De 26.0 21.6 17.6 244 22.0 -
En 25.6 23.2 20.8 25.2 21.6 24.8

Table 3: The table highlights the selection of high-resource languages, such as French, Spanish, and German, as
agnostic languages within the representation space of LLMs. The results indicate that English remains the most
dominant language in this space. Other high-resource languages achieve comparable results, suggesting that their
representations are distributed with similar likelihoods within the shared representation space.

Language Llama2-7B Aya23-8B

Es 31.6 42.0
De 26.8 39.2
Fr 26.4 41.2
Ja 24.8 40.8
Zh 25.6 41.6
Ru 28.0 344
Sw 26.8 -

Bn 30.8 -

Th 28.8 -

En 32.0 43.2

Table 4: Results of MGSM task on Llama2-7B, Aya23-
8B, the Steering vector has a negative impact on English
Prompts.

By applying a softmax function to these logits, we
can generate a probability distribution over the
entire vocabulary, showing us the model’s "best
guess" for the next token.

(L+1)) c RV
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y; = softmax (logits

We then use a language detection tool* on the most
likely tokens to see if the model’s internal state
has successfully aligned with English. We com-
pared three scenarios, with the full results shown
in Figure 6 (Appendix):

1. Base Model: Exhibits weak cross-lingual
alignment; target language representations re-
main distant from English.

2. Fine-Tuned Model: Learns to align target
and English representations after extensive
translation fine-tuning.

*https://github.com/Mimino666/langdetect

3. Steered Model: Matches this alignment in-
stantly using a single steering vector.

Both fine-tuning and steering improve repre-
sentational alignment with English: fine-tuning
achieves this gradually over many steps, while
steering provides an immediate, targeted correc-
tion. This efficiency raises a key question: do mul-
tilingual models still need steering? Logit lens
analysis shows that advanced multilingual mod-
els already exhibit strong alignment with En-
glish, without requiring intervention. Thus, the
need for steering reflects limitations in base model
training. While steering is an effective fix, better
multilingual pretraining may eliminate the issue
entirely. Full details are in Appendix C.

8 Conclusions

In this paper, we advance the study of multilin-
gual processing in LLMs, exploring improvements
across languages with varying resource levels. We
analyzed LLM alignments from a multilingual per-
spective, highlighting how techniques like SFT and
RLHF enhance multilingual capabilities by com-
paring these methods with steering and probing
approaches and identifying limitations in steering
vectors for handling linguistic nuances. Empir-
ical experiments showed that probing inner lay-
ers boosts multilingual task performance but may
hinder monolingual performance. Analysis of
LLM families shows their sensitivity to layer-level
changes, highlighting the importance of careful
tuning and alignment to optimize multilingual per-
formance.



Limitations

We acknowledge that our approach, which involves
probing by sweeping across all model layers, is not
scalable for LLMs and is impractical for real-world
applications. Moreover, the learnable steering vec-
tor is constrained by its fixed linear direction, limit-
ing its capacity to capture the intricate mapping
relationships between languages fully; learning
steering vectors by individual tokens seems more
promising than fixed steering. We leave this for
future work. Additionally, Our experiments were
also intentionally focused, isolating a single layer
and language at a time. This controlled approach
was necessary to establish a clear baseline, but a
truly powerful system must learn to juggle multiple
languages and layers simultaneously through more
advanced, multi-objective training.

Ethics Statement

This research adheres to ethical guidelines in the de-
velopment and application of large language mod-
els (LLMs). We acknowledge the potential risks
associated with multilingual processing, including
biases in language representation, unequal perfor-
mance across high- and low-resource languages,
and the unintended consequences of steering tech-
niques. Efforts were made to ensure transparency
in our methodology and to mitigate biases by eval-
uating models across diverse languages and tasks.
However, we recognize that our work may still re-
flect inherent biases present in the training data or
model architectures. We encourage further research
to address these limitations and promote equitable
performance across all languages. Additionally, we
emphasize the importance of responsible Al prac-
tices, including the careful deployment of LLMs in
real-world applications to avoid harm or misuse.
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A Learning the Steering Vector

In the first scenario, we utilize previous work (Cao et al., 2024) that applied Direct Preference Optimization
(DPO) methods to construct the steering vector. Specifically, Optimizing v increases the probability of
generating responses that align with the desired language behavior (e.g., English) while reducing the
likelihood of responses associated with the opposite behavior (e.g., the target language). In this case, the
contrast is defined between two language pairs: the English response R; and the target language response
Ro.

Tr4+1(rr|AL(g) + dv)
Tr+1(rr|AL(q))

—dplog

mr+1(rolAL(q) + dv))] .

mvin —Egtt,(grrr0)~D [loga <dﬁ log T (rol AL (@)

(7
Where: v is the learnable steering vector, o represents the logistic function.3 controls the deviation from

the original model. 771 (-|AL(q)) denotes the model’s response from layer L + 1, given the activation
Ar(q) at layer L for the input question ¢.The term d flips the optimization direction:

* d = 1, the steering vector is optimized towards the English behavior r.
» If d = —1, the steering vector is optimized towards the opposite behavior 7.

By optimizing this bi-directional objective, the steering vector v is trained to align with either the desired
target behavior or its reverse, depending on the directional coefficient d. This approach ensures that
both language behaviors target and opposite are captured effectively, enhancing the model’s ability to
differentiate between them with precision.

A.1 Algorithms

Algorithm 1 BiPO Steering Vector Learning

Require: Pretrained LLM M, bilingual corpus D = {(g;, ¢{")}, layer L, learning rate 7, epochs T’
Ensure: Steering vector v € R?
1: Initialize v < O
2: fore<1,...,Tdo
3: for all (¢, ¢*") € D do

4 > 1. Extract hidden activations at layer L
5: h < HiddenState(M, g, L)

6: he™ < HiddenState(M, ¢**, L)

7 > 2. Inject steering vector
8 h< h+v

9: > 3. Compute logits from both activations
10: ¢ + Logits(M, h)

11 0" < Logits(M, h")
12: > 4. Direct Preference Optimization (DPO) loss

Lppo = —Eip [log a(ffn — Et)} (see App. A, eq.7)

13: > 5. Gradient-step update
14: VvV — nvvﬁDpo
15: end for
16: end for

17: Return v
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Algorithm 2 MSE Steering Vector Learning

Require: Pretrained LLM M, bilingual corpus D = {(g;, ¢{")}, layer L, learning rate 7, epochs T’
Ensure: Steering vector v € R?

1: Initialize v < O

2: fore < 1,...,T do

3: for all (¢, ¢*") € D do

4: > 1. Extract hidden activations at layer L
5: h < HiddenState(M, g, L)
6: he" + HiddenState(M, ¢*", L)
7: > 2. Inject steering vector
8: h+ h+wv
9: > 3. Compute Mean-Squared Error loss
Luse = 5 [lh — h3
10: > 4. Gradient-step update
11: VvV — anL’MSE
12: end for
13: end for

14: Return v

A.2 Other learning methods

Effectively learning a manifold that encapsulates the feature representations between languages is vital for
bridging the distributional gap across linguistic boundaries. While prior approaches (Cao et al., 2024; Zou
et al., 2023), such as PCA and calculating the mean difference between constructive activations (CAA),
have been shown to shift activation distributions, they fall short in accurately capturing essential features
in multilingual contexts. In contrast, advanced methods like BiPO excel by leveraging a dynamic feedback
loop during the manifold learning process, enabling them to better align multilingual representations. Fig-
ure 4 highlights the performance of various models across diverse tasks, underscoring the effectiveness of
this approach.

B BiPO-steer mmm MSE-steer s PCA B Mean Diff

Aya23-8B LLaMA2-7B

0.0 0.0

XCOPA XLNI M3EXAM MMLU MGSM XCOPA XLNI M3EXAM MMLU MGSM

<
IS

Scores
g

o
o

o
o

Tasks

Figure 4: demonstrate that using learnable steering vectors surpasses PCA and the Mean Difference approaches
across all tasks on two models: Aya32-8B and LLama2-7B.
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B SFT Vs Steering: Problem Setup and Notation

Let M represent the base LLM and M* denote the fine-tuned version trained on an instruction dataset D,
where D = (Q;, Ai);_, consists of question-answer pairs. To analyze the mechanisms of fine-tuning, we
model the transformation of each layer [ as:

Hi(z) = hy(z) + Si(x) (8)
where:
* hy(x) represents the original layer [ activation for input
* Sj(x) € R%is a learnable parameter matrix that modulates the activation in the residual stream
* d is the dimensionality of the hidden state

For each (Q, A) € D, H; is optimized via the loss function:

T
LMQ),A) = = log Par]ay, Q; 0 ©)

t=1
where:
* 0* represents the fine-tuned model parameters
* ay is the ¢-th token in the answer A
* T'is the length of the answer

In contrast, the steering approach learns a single steering vector v € R? that modifies activations across
all layers:
Hi(x) = hy(z) + av (10)

where v is the learned steering direction , « is a scaling coefficient that controls the magnitude of steering
,The same v is applied across different (@), A) pairs

C Hyperparameters

Training Steering Vectors: For all models, we followed the authors’ (Cao et al., 2024) configurations,
setting 3 = 0.1, using the AdamW optimizer with a learning rate of 5 x 10~4, and applying a weight decay
of 0.05. The batch size was set to 1, and we utilized a cosine learning rate scheduler with 100 warmup steps.
The number of epochs was set to 1 for all models, except for certain languages in LLama2 and Aya23-8B,
where it was increased to 3 epochs. For the MSE method, we used a learning rate of 1 x 10~% and varied
the number of epochs in the range [3, 5, 8, 12]. Mean Squared Error (MSE) was used as the loss func-
tion, and cosine similarity was employed to evaluate the similarity between raw activations during training.

For the supervised fine-tuning described in section 7, we trained the models on the same train-
ing datasets for 5 epochs, using a learning rate of 1 x 1073, a weight decay of 0.001, and a warmup ratio
of 0.05. The batch size was set to 16, and we utilized a cosine learning rate scheduler with the AdamW
optimizer.

C.1 High-Capability Models and Inner Translation Behavior

In this section, we investigate the behavior of high-capacity multilingual LLMs, such as
LLama3.1 (Grattafiori et al., 2024) and Aya23-Expanse (Odumakinde et al., 2024), to understand the
factors behind their superior performance across languages. Using the logit lens, we analyze their internal
representations and find that multilingual processing primarily occurs in the initial layers, with minimal
inner translation loss (illustrated in Figure 5). These models map multilingual representations onto an
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MGSM Es Fr Ru De Ja zh Avg

Llama2-13B
Basic Prompt 33.6 30.0 28.0 30.8 18.0 26.4 27.8
Google-Tr 39.2 35.2 36.8 36.4 35.6 36.4 36.6
NLLB 35.2 33.6 32.0 34.0 20.0 28.0 304
5@shots 35.2 32.8 26.8 33.2 18.4 23.6 28.3
XLT 33.6 304 30.8 27.6 25.2 29.6 29.5
SFT 354 35.0 31.8 34.4 26.0 28.1 31.7

Bipo-method 36.8(432) 33.2(432) 31.6(136) 35244) 26.8(188) 29.2(4238) | 32.1(14.3)

MSE-method 324 12) 34.8(148) 34.0(16) 392(344) 244(64) 30.0436) | 31.8(14.0)

Table 5: Results of the MGSM Task Evaluated on the Llama2-13B Model Across Diverse Languages

English-aligned distribution early on, creating a shared, agnostic space. This alignment, enhanced by
techniques like SFT and reinforcement RLHF, explains their effectiveness. For instance, Aya-Expanse
shows significant improvements due to these methods (Dang et al., 2024). Our findings align with prior
studies, confirming that SFT and RLHF substantially boost multilingual performance, consistent with
earlier observations on the impact of SFT on internal representations (Dang et al., 2024).

D Larger LLMs Exhibit Consistent Behavior

To address translation loss misalignment in larger language models, we extended our evaluation of
steering approaches to larger architectures. Due to computational constraints, we tested only LLama2-13B
on the MGSM task. Table 5 indicates that these larger models follow the same trend of performance
improvements across different languages, mirroring the behavior observed in smaller models.
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Figure 5: illustrates the processing of multilingual tokens in models of varying capabilities within the same family.
LLama3.1 demonstrates a strong alignment of tokens into English-aligned representations, whereas LLama2
struggles with this. Similarly, Aya-Expanse exhibits robust token alignment, attributed to RLHF techniques, while
Aya23 shows weaker alignment.

16



10 10 10

08

Language
en

non-en

-00 00 -00

012345678 9101112131415161

Layer Index

012345676 5101112131415161718192021
Layer Index

012345678 9101112131415161

Layer Index

Figure 6: : Distribution of non-English token values across model layers at three different stages: pre-fine-tuning
(base model), post-fine-tuning(SFT), and after applying steering at a specific layer. The results demonstrate that
both fine-tuning and steering exhibit similar behavior, aligning non-token values more closely with English token
distributions.
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Figure 7: illustrates the layers most sensitive to probing across two models. Aya23 demonstrates high sensitivity in
the initial layers but exhibits reduced performance in the middle and later layers. In contrast, LLama2 experiences a
notable drop in performance in the middle layers, with improved results in the later layers. Additionally, the initial
layers of LLama?2 perform better for low- and medium-resource languages.
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Figure 8: The sub-figures illustrate the distribution of the training and testing datasets across various tasks,
emphasizing that steering approaches perform effectively when the testing dataset’s distribution closely aligns with
the training dataset’s distribution but show limited improvement when the two distributions differ significantly.
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Aya32-8B

Methods MGSM XCoPA XNLI M3EXAM MMLU

Basic 32.6 81.6 49.9 46.9 45.3

Google-Tr 37.6 83.9 52.4 494 50.7

NLLB 32.3 73.2 49.9 26.5 34.0

5@Shot 36.1 84.5 59.8 42.5 30.9

XLT 26.9 12.1 52.7 38.8 27.0

SFT 34.4 82.0 49.8 474 46.0

DPO-Steer 38.6 86.1 58.5 52.7 49.0

MSE-steer 35.7 81.6 50.5 47.4 47.6
Llama2-7B

Basic 19.6 47.6 46.9 30.6 31.3

Google-Tr 25.0 51.8 50.9 42.8 41.5

NLLB 22.6 40.4 49.7 20.9 24.5

5@Shot 12.2 29.6 14.7 12.6 24.4

XLT 20.2 47.2 45.8 28.5 23.6

SFT 24.0 49.9 49.4 36.4 34.0

DPO-Steer 22.9 52.2 55.1 38.4 344

MSE-steer 22.8 50.3 48.7 35.1 36.0
Llama3-8B

Basic 62.0 66.7 63.2 51.6 50.7

Google-Tr 70.7 79.3 65.8 54.5 58.2

NLLB 60.0 63.4 63.4 23.9 40.7

5@Shot 55.6 63.5 27.6 24.1 26.0

XLT 26.9 56.9 55.0 39.2 33.7

SFT 64.7 72.2 63.9 53.8 51.6

DPO-Steer 67.0(+5.0) 75.0(48.3) 64.3(41.1) 55.3(43.7) 52.8(42.1)

MSE-steer 6248(4’_0.8) 68.4(.{.1.7) 64.0(_’_0‘8) 5340(4’_1'4) 50.6(_()‘1)
Gemma-7B

Basic 27.3 66.2 46.4 37.3 39.6

Google-Tr 37.4 83.1 51.0 454 47.0

NLLB 29.8 65.4 50.0 23.0 33.8

5@Shot 12.2 42.2 39.6 20.2 22.0

XLT 28.7 49.8 49.9 28.1 26.5

SFT 28.6 67.8 49.2 43.1 40.8

DPO-Steer 30.0(4,2.7) 68.8(4,2'6) 51.9(4,5'5) 45-7(+8.4) 41.1(+1_5>

MSE-steer 27.6(40.3) 68.0(41.8) 47.941.5) 37.5(40.2) 411415
Owenl.5-7B

Basic 49.2 70.1 66.0 58.3 42.1

Google-Tr 52.6 79.3 65.4 57.2 46.1

NLLB 47.4 63.4 64.3 31.8 313

5@Shot 46.8 74.6 65.0 46.7 48.1

XLT 49.4 64.4 55.6 54.2 39.7

SFT 50.6 71.6 67.4 58.2 43.8

DPO-Steer 52.8(+3.6) 73.8(+3'7) 67.8(+1,8) 58.7(+0'4) 42~9(+0.8)

MSE-steer 5045(_;,_1.3) 70.7(_‘_‘7) 68.7(_’_2‘7) 5947(_;,_1,4) 46.4(+4,3)

Table 6: Presents the average accuracy across various tasks for Three models: Llama3-8B , gemma-7Ba and
Qwenl.5-7B . The evaluation spans over 10 languages, covering high, medium, and low-resource levels. (+) symbol
indicates the average improvement compared to the Basic Prompt baseline.
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E Examples of different tasks

Examples of model-generated responses under both original and steered conditions when prompted with
questions in different languages. The correct answers are highlighted in , while incorrect answers
are marked in red for clarity.

Question

CUTARENRAT 4 7 P icSI00f5 0 2 H ) x5 WL B H220R T Ao ZriMBELE LR ey T4 230 Al
TEZET5E HELEXEZT 4 7 Fi2w b 2 IF v TF 42 Let’s think step by step.

Original generation

Mandy borrowed $100 from Benedict with an agreement to pay 2% interest per month.

1. Calculate the total interest due after 3 months:

$100 x 2% x 3 months = $6

So, the total amount Mandy owes Benedict after 3 months is $106 ($100 + $6).

2. Calculate the monthly payment amount:

To find the monthly payment amount, we need to divide the total amount owed by the number of months left to repay the loan. In this
case, there are 3 months left to repay the loan, so:

$106 + 3 months = $35.33

So, Mandy needs to pay $35.33 per month to Benedict.

Steered generation

1. Mandi borrowed $100 from Benedict with an agreement to pay 2% interest per month.

2. The loan is to be repaid 3 months from now.

So, we need to calculate the total amount that Mandi needs to pay to Benedict to settle the loan.
First, let’s calculate the interest for the 3 months:

2% per month x 3 months = 6% interest

Now, let’s calculate the total amount that Mandi needs to pay:

Original amount borrowed: $100

Interest: $6 (6% of $100)

Total amount to be paid: $106

So, Mandi needs to pay to Benedict to settle the loan.

Question

Les canes de Janet pondent 16 ceufs par jour. Chaque matin, elle en mange trois au petit djeuner et en utilise quatre autres pour prparer
des muffins pour ses amis. Ce qui reste, elle le vend quotidiennement au march fermier, au prix de 2 $ 1’ceuf de cane frais. Combien (en
dollars) gagne-t-elle chaque jour au march fermier ? Let’s think step by step.

Original generation

Janet’s chickens lay 16 eggs per day.

She eats 3 eggs for breakfast every day.

She uses 4 eggs to make muffins for her friends.

So, the number of eggs she has left to sell at the farmer’s market is:
16 eggs/day - 3 eggs/day = 13 eggs/day

Since she sells each egg at $2, Janet earns:

13 eggs/day x $2/egg = $26/day

So, Janet earns $26 per day at the farmer’s market.

Steered generation

1. Janet lays 16 eggs per day.

2. She eats 3 eggs for breakfast every day.

3. She uses 4 eggs to make muffins for her friends.

4. So, how many eggs does she have left to sell at the farmer’s market?
16 eggs/day - 3 eggs/day = 13 eggs/day

13 eggs/day - 4 eggs/day (for muffins) = 9 eggs/day

Janet has 9 eggs left to sell at the farmer’s market every day.

Now, let’s calculate how much money she makes from selling those eggs:
9 eggs/day x $2/egg = $18/day

So, Janet makes per day selling eggs at the farmer’s market.
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Question A seguir esto questes de mltipla escolha sobre Linguagens. Por favor, d apenas a opo correta, sem quaisquer outros detalhes ou explicaes.
Por que as formigas no morrem quando postas em forno de micro-ondas?

As micro-ondas so ondas eletromagnticas com frequncia muito alta. Elas causam vibrao nas molculas de gua, e isso que aquece a comida.
Se o prato estiver seco, sua temperatura no se altera. Da mesma maneira, se as formigas tiverem pouca gua em seu corpo, podem sair
inclumes. J um ser humano no se sairia to bem quanto esses insetos dentro de um forno de micro-ondas superdimensionado: a gua que
compe 70% do seu corpo aqueceria. Micro-ondas de baixa intensidade, porm, esto por toda a parte, oriundas da telefonia celular, mas no
h comprovao de que causem problemas para a populao humana.

OKUNO, E. Disponvel em: http:/revistapesquisa.fapesp.br. Acesso em: 11 dez. 2013.

Os textos constroem-se com recursos lingusticos que materializam diferentes propsitos comunicativos. Ao responder pergunta que d
ttulo ao texto, o autor tem como objetivo principal:

A. defender o ponto de vista de que as ondas eletromagnticas so inofensivas.

B. divulgar resultados de recentes pesquisas cientficas para a sociedade.

C. apresentar informaes acerca das ondas eletromagnticas e de seu uso.

D. alertar o leitor sobre os riscos de usar as micro-ondas em seu dia a dia.

E. apontar diferenas fisiolgicas entre formigas e seres humanos.

Responder:

Original generation ‘ A resposta correta a alternativa: E.

Steered generation ‘ The correct answer is
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