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Abstract

This paper investigates how Large Language001
Models (LLMs) represent non-English to-002
kens—a question that remains underexplored003
despite recent progress. We propose a004
lightweight intervention method using repre-005
sentation steering, where a learned vector is006
added to the residual stream at a single model007
layer to enhance multilingual performance.008
Through extensive experiments across seven009
competitive baselines—including prompt op-010
timization, supervised fine-tuning (SFT), in-011
context learning, cross-lingual transfer, and012
translation-based methods—we show that our013
approach consistently outperforms most alter-014
natives. In particular, it achieves performance015
on par with production-grade translation sys-016
tems while requiring far fewer resources. We017
further explore the complementarity between018
our method and SFT, demonstrating that steer-019
ing offers a direct, efficient way to realign inter-020
nal representations. These findings underscore021
the potential of activation-level interventions as022
a powerful tool for improving the multilingual023
capabilities of LLMs.024

1 Introduction025

In recent years, large language models (LLMs)026

have demonstrated remarkable capabilities across027

a wide range of tasks. However, the majority of028

these advancements have been concentrated in En-029

glish, often neglecting other languages, particularly030

low-resource ones, due to the scarcity of available031

data. A common approach to addressing this gap is032

translating these languages into English before pro-033

cessing them. While this method can be effective,034

it is inherently limited by the quality and cost of035

translation (Liu et al., 2024). To unlock the full po-036

tential of LLMs, integrating multilingual natively037

within these models is essential, ensuring robust038

performance across diverse languages without rely-039

ing solely on translation.040

Recent studies have explored various strategies 041

to enhance the multilingual proficiency of LLMs. 042

These include cross-lingual fine-tuning (Qin et al., 043

2023), instruction alignment via code-switching 044

(Huang et al., 2023), and chain-of-thought prompt- 045

ing in multiple languages (Shi et al., 2022). Other 046

approaches focus on mapping representations be- 047

tween models, such as MindMerger, which inte- 048

grates an external LLM’s linguistic knowledge by 049

learning a mapping between representation spaces 050

(Huang et al., 2024). Despite these advances, inves- 051

tigations into the internal mechanisms of multilin- 052

gual processing remain limited. The few studies in 053

this area suggest that LLMs often default to trans- 054

lating non-English inputs into English represen- 055

tations within their intermediate layers (Wendler 056

et al., 2024; Zhao et al., 2024). 057

Closely related to our work, recent research (Wang 058

et al., 2024) has used representation steering to 059

align hidden states between English and a target 060

language. This was achieved by learning a steer- 061

ing vector through a least-squares optimization and 062

applying it across all layers of the model. While 063

effective, this method modifies the model’s rep- 064

resentations globally. This leaves a critical ques- 065

tion unexplored: can multilingual alignment be 066

achieved more efficiently by targeting only a sin- 067

gle, specific layer, and what does this reveal about 068

the model’s internal structure? In this paper, we 069

investigate this question from a mechanistic inter- 070

pretability perspective. We propose a method that 071

first learns a transformation manifold mapping En- 072

glish representations to a target language. This 073

mapping is then applied as a steering vector to the 074

activations of only a single layer during inference, 075

without any fine-tuning. This lightweight approach 076

is more efficient and less disruptive to the base 077

model’s capabilities, as illustrated in Figure 1. By 078

demonstrating that our single-layer intervention 079

parallels the effects of full fine-tuning, we provide 080

new insights into how LLM representations can be 081
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precisely and efficiently optimized for multilingual082

tasks. Our key contributions are as follows:083

• We propose and validate a method to enhance084

the multilingual capabilities of LLMs by steer-085

ing the representations of a single layer, using086

a learned alignment with English.087

• We demonstrate that a single steering vector088

can be shared across structurally similar lan-089

guages 1 , enabling zero-shot cross-linguistic090

transfer without language-specific fine-tuning.091

• Our method significantly surpasses the per-092

formance of the NLLB translation baseline093

and achieves results competitive with Google094

Translate across multiple datasets.095

2 Related Work096

Multilingual Progress: Recent research has sig-097

nificantly advanced multilingual LLMs, as high-098

lighted in a survey by (Qin et al., 2024). Efforts to099

enhance multilingual performance primarily focus100

on expanding language coverage through cross-101

lingual instruction fine tuning. For example, (Zhu102

et al., 2023) and (Chen et al., 2023b) propose mul-103

tilingual instruction tuning methods to improve rea-104

soning across diverse languages, while (Zhu et al.,105

2024) integrates mathematical instructions to en-106

hance logical processing. Another line of work ex-107

plores prompt-based strategies to strengthen cross-108

lingual understanding. Studies by (Qin et al., 2023;109

Huang et al., 2023) show that strategically de-110

signed prompts can significantly enhance model111

performance across languages. More recent meth-112

ods introduce external modules to supplement the113

model’s multilingual capabilities. (Yoon et al.,114

2024) propose LangBridge, which integrates a mul-115

tilingual encoder with an LLM for improved rea-116

soning, though it may underutilize the LLM’s na-117

tive multilingual abilities, in contrast, MindMerger118

(Huang et al., 2024) aligns representations across119

models handling the same prompt, preserving in-120

trinsic multilingual features. Despite these ad-121

vances, fewer studies focus on how LLMs inter-122

nally manage multilingualism. Notably, (Wendler123

et al., 2024) and (Zhao et al., 2024) analyze the124

internal mechanisms enabling cross-lingual under-125

standing, highlighting both strengths and limita-126

tions that inform further improvements.127

1Structurally similar languages share features—genetic,
geographic, syntactic, phonological, featural, and inventory-
based—as defined by the lang2vec framework.

Representation Engineering has emerged as a 128

powerful tool for analyzing how concepts are pro- 129

cessed within LLMs, addressing challenges such 130

as truthfulness, fairness, and model editing (Zou 131

et al., 2023). This approach has been used to en- 132

hance model alignment and detect vulnerabilities, 133

including jailbreaking risks in open-source models 134

(Wang and Shu, 2024; Li et al., 2024). Addition- 135

ally, studies have leveraged it to investigate how 136

LLMs internally represent complex concepts (Lu 137

and Rimsky, 2024). Recent work by (Cao et al., 138

2024) presents methods to extract refined steering 139

vectors through preference optimization, allowing 140

improved control of model behavior. These find- 141

ings underscore the significant role of representa- 142

tion engineering in advancing LLM technology. 143

Inference Time Intervention: using steering vec- 144

tors is an established technique in the field of model 145

editing (Li et al., 2023; Panickssery et al., 2023). 146

These methods modify model behavior by directly 147

manipulating internal states; for example, vectors 148

can be added to a model’s residual stream to im- 149

prove truthfulness (Wang et al., 2025) or removed 150

from its hidden states to induce refusal behaviors 151

(Arditi et al., 2024). However, the application of 152

these powerful steering techniques in multilingual 153

settings remains largely unexplored. 154

3 Background 155

3.1 Evaluating LLM’s capabilities 156

Previous studies (Wendler et al., 2024; Zhao 157

et al., 2024) indicate that LLMs often translate non- 158

English prompts into English internally, which may 159

limit their performance. To investigate this, a self- 160

translation (Etxaniz et al., 2023) process was used 161

to assess whether LLMs understand non-English 162

prompts or struggle with mistranslation. Table 1 163

shows that models like Llama2 (Touvron et al., 164

2023) and Aya23 (Aryabumi et al., 2024) can trans- 165

late non-English tokens into English and that using 166

this self-translation leads to a 2.4% average im- 167

provement in Llama2’s performance compared to 168

native prompts. Aya23 also shows slight improve- 169

ments for low-resource languages. However, the 170

models still do not achieve the same level of un- 171

derstanding with non-English prompts as they do 172

with English, likely due to representation mapping 173

limitations. 174

Problem Formulation. Let a transformer 175

model process a sequence of input tokens 176
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English
Corpus

Non English
Corpus

Transformer Block 
Layer L

Steering
Vector

マンディはベネディクトに$100借りがあります。彼らは月2%の利子がつくことに同意しました。マンディが
か月後に返 できるとすると、彼女はベネディクトにいくらえばいいですか？

".التكنولوجيا تغير الطريقة التي نعيش بها ونعمل بها كل يوم
"Технологии меняют наш образ жизни и работы каждый день."

a) Training: DPO/MSE computes v b)Inference: v is added to each token’s
residual stream.

Janet lays 16 eggs daily, uses 3 for breakfast and 4
for baking, leaving 9 eggs to sell. At $2 per egg, she
earns $18 per day from egg sales at the farmer’s
market.

DPO

Transformer Block 
Layer L

Learning Steering
Vectors 

Figure 1: Overview of our method: (a) Learn a steering vector v from two language corpora at a specific layer using
DPO or MSE; (b) Apply the learned vector to the residual stream of each token in a prompt at that layer.

Methods Es Ja Ru Sw Zh Bn Th De Fr Te Avg

Llama2-7B
Basic Prompt 20.0 12.8 20.0 .36 19.6 0.4 0.48 24.0 21.6 0.4 13.4
Google-Trans 26.4 24.4 24.8 26.0 27.6 26.0 24.0 22.4 24.4 24.0 25.0
Self-Trans 27.0 17.8 25.6 0.53 22.6 0.51 0.46 24.4 23.3 0.25 15.8 ↑

Aya23-8B
Basic Prompt 40.0 25.6 34.4 0.64 27.6 1.0 13.1 36.0 32.0 0.16 22.7
Google-Trans 40.4 22.0 40.8 39.6 39.2 35.6 33.6 38.0 43.2 34.4 36.9
Self-Trans 33.6 25.6 27.8 0.52 22.0 10.6 16.6 34.6 33.2 .01 21.0

Table 1: Comparison of Google-translated, native, and self-translated prompts on math tasks using LLaMA2-7B
and Aya23-8B. ↑ indicates improvement over the native prompt. Self-translation boosts LLaMA2 -7B by 2.4% and
offers modest gains for Aya23, though both lag behind English performance.

t = (t1, t2, . . . , tn) ∈ Vn, producing a se-177

quence of output probability distributions178

y = (y1, y2, . . . , yn) ∈ Rn×|V|. Denote by179

x
(l)
i (t) ∈ Rd the residual stream activation at180

token position i at the beginning of layer l. The181

residual stream is initialized via token embeddings:182

x
(1)
i = Embed(ti).183

Each transformer layer updates the residual stream184

with attention and MLP components:185

x̃
(l)
i = x

(l)
i + Attn(l)(x(l)1 , . . . , x(l)n ) (1)186

x
(l+1)
i = x̃

(l)
i + MLP(l)(x̃

(l)
i ). (2)187

After L layers, the model computes the final logits188

logitsi = Unembed(x(L+1)
i ) ∈ R|V|, followed by189

softmax to obtain the output distribution: 190

yi = softmax(logitsi) ∈ R|V|. (3) 191

Activation Extraction and Alignment. We de- 192

note the post-layer-L residual activations for En- 193

glish and a target language as x(L+1)
en and x

(L+1)
target , 194

respectively. Our goal is to align the target lan- 195

guage representations with their English counter- 196

parts by applying an additive transformation: 197

x
(L+1)
altered = x

(L+1)
target + v(L), (4) 198

where v(L) is a learned steering vector specific to 199

layer L. We propose two methods for learning the 200

alignment vector v(L): 201
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1. Direct Preference Optimization (DPO). In-202

spired by recent work, we apply Direct Pref-203

erence Optimization (DPO) to learn v(L) by204

aligning target language representations with205

English ones while explicitly disaligning from206

original target activations. Unlike conven-207

tional approaches that compute the mean208

difference between activations (Panickssery209

et al., 2024; Wang and Shu, 2024) or use210

PCA to extract principal directions (Annah211

and shash42, 2023), DPO learns a direction212

that better captures the bidirectional prefer-213

ence relationship between x
(L+1)
en and x

(L+1)
target .214

This leads to improved multilingual alignment.215

See Appendix A for mathematical details.216

2. Loss-Based Activation Alignment Follow-217

ing the methodology (Park et al., 2023),218

which suggests that representations in dif-219

ferent languages may be linearly mappable,220

we also learn v(L) by minimizing the mean221

squared error between the aligned and English222

representations:223

LMSE = MSE
(
x
(L+1)
en , x

(L+1)
altered

)
. (5)224

Intervention. After learning the steering vector225

v(L), we apply an activation intervention by modi-226

fying the residual stream of a new target-language227

prompt at layer L. Specifically, given a new ac-228

tivation x
(L+1)
target at layer L + 1, we compute the229

intervened activation as:230

x
(L+1)
altered = x

(L+1)
target + v(L). (6)231

This altered activation is then propagated through232

the remaining layers of the model, allowing us to233

observe how the intervention affects the model’s234

output distribution. The goal is to steer the model’s235

internal representations of the target-language input236

to better align with English-like behavior.237

4 Experiments238

In this section, we outline the experimental setup239

necessary for the evaluations presented in Section240

4.1 and the corresponding results discussed in Sec-241

tion 4.2.242

4.1 Experimental Setup243

Models: We evaluated five prominent open-source244

models with varying levels of multilingual support:245

LLama2-7B Chat (Touvron et al., 2023), Aya23- 246

8B (Aryabumi et al., 2024), Gemma (Team et al., 247

2024), Qwen1.5 Chat (Team, 2024), and LLama3- 248

8B (Grattafiori et al., 2024). For simplicity, the 249

main discussion focuses on LLama2-7B Chat and 250

Aya23-8B, while results for the remaining models 251

are detailed in the appendix. 252

253

Training Datasets: To learn the steering vector, we 254

used two datasets. For multilingual mathematical 255

reasoning, we employed MSVAMP (Chen et al., 256

2023a), which spans 14 languages2 across high-, 257

medium-, and low-resource tiers. For general tasks, 258

we used the Tatoeba dataset (Tiedemann, 2020), 259

containing English–target language pairs across 260

50+ languages. We sampled 1,000 instances per 261

language and grouped them by resource level to 262

assess the effectiveness of our approach. 263

264

Evaluation Datasets: We evaluated our ap- 265

proach across five tasks spanning language 266

understanding, commonsense reasoning, and 267

mathematical reasoning: MGSM (Shi et al., 2022) 268

for math, XNLI (Conneau et al., 2018) for natural 269

language inference, XCOPA (Ponti et al., 2020) 270

for causal commonsense, MMLU (Hendrycks 271

et al., 2020) for general knowledge3, and 272

M3Exam (Zhang et al., 2023), a human exam 273

benchmark testing comprehensive language 274

understanding. This diverse suite ensures a robust 275

evaluation across linguistic competencies. 276

277

Baselines: We compared seven baseline ap- 278

proaches for multilingual task handling: 279

• Basic Prompt: The vanilla approach uses a 280

traditional query format without any special- 281

ized prompting strategies. 282

• Translate to English: This method leverages 283

LLMs’ strong English abilities by translat- 284

ing non-English inputs. Following (Liu et al., 285

2024), we used two translation sources: 286

Google Translate: A commercial service 287

that translates examples into English. 288

NLLB (Costa-jussà et al., 2022): An 289

open-source model supporting over 200 lan- 290

guages. 291

2es: Spanish, fr: French, ru: Russian, de: German, ja:
Japanese, zh: Chinese, tr: Turkish, ar: Arabic, vi: Vietnamese,
hi: Hindi, el: Greek, id: Indonesian, it: Italian, pt: Portuguese.

3We sampled 1k and 500 records from MMLU and XNLI,
respectively.
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• XLT (Huang et al., 2023): A state-of-the-art292

prompting strategy that first translates the in-293

put question into English, then solves it step294

by step, leveraging the model’s stronger rea-295

soning abilities in English.296

• 5-shot Learning (Brown, 2020): Provides297

five examples to improve few-shot learning298

and multilingual generalization.299

• Supervised Fine-Tuning (SFT): This ap-300

proach fine-tunes all model parameters on301

a non-English dataset and evaluates perfor-302

mance on downstream tasks.303

4.2 Results304

Our evaluation demonstrates in Table 2 that305

activation-based steering is a highly efficient306

and scalable approach for improving multilin-307

gual language models. Unlike resource-intensive308

methods such as Supervised Fine-Tuning (SFT),309

which require task-specific data, prolonged train-310

ing, and careful hyperparameter tuning, our pro-311

posed techniques achieve competitive performance312

at a fraction of the computational and operational313

cost. Notably, DPO yields a substantial 26.7%314

improvement over SFT, underscoring the effective-315

ness of targeted, activation-level interventions.316

The advantages of this lightweight method are evi-317

dent across a wide range of open-source baselines.318

Both DPO and MSE steering produce marked319

improvements over standard prompting strategies320

and even advanced cross-lingual transfer (XLT)321

prompts. The most significant gains are observed322

against a 5-shot in-context learning (ICL) baseline,323

where DPO achieves a 38.8% improvement. This324

result highlights steering’s ability to correct in-325

ternal representational misalignments that ICL,326

despite leveraging contextual examples, fails327

to resolve. Further, DPO outperforms the open-328

source translation model NLLB by 25.4%, demon-329

strating that steering is not merely a fine-tuning330

shortcut but a viable alternative to full translation331

pipelines. It effectively aligns multilingual repre-332

sentations internally, without reliance on exter-333

nal systems. While steering does not yet exceed334

the performance of proprietary systems such as335

Google Translate, the margin is surprisingly nar-336

row. DPO trails Google Translate by just 3.08%,337

illustrating that internal, model-native interven-338

tions can approach the performance of large-scale339

production-grade translation APIs. This finding340

is particularly promising given the simplicity, in- 341

terpretability, and deployability of the proposed 342

steering method. 343

Across all experiments, DPO consistently out- 344

performs MSE-based steering. We attribute this 345

superiority to the directional optimization signal 346

embedded in the DPO framework, which not only 347

penalizes misalignment but actively guides the 348

model toward improved representations. In con- 349

trast, the MSE objective quantifies error magnitude 350

without providing gradient directionality, making 351

optimization less efficient and less targeted. This 352

fundamental distinction explains DPO’s effective- 353

ness as a principled and robust method for steer- 354

ing multilingual behavior in pretrained language 355

models. Moreover, the steering approach yields 356

performance gains as model size increases, sug- 357

gesting that larger language models benefit more 358

from targeted activation interventions. We provide 359

a detailed analysis of this trend in the Appendix D 360

5 Analysis 361

In this section, we analyze the proposed methods 362

from various perspectives: Can we measure the 363

quality of translation? What are the Challenges 364

of steering? How transferable is the direction? 365

And finally, which languages dominate the model’s 366

representation space? 367

5.1 Can we quantify the quality of the 368

internal translation process? 369

Our analysis reveals a critical factor in a model’s 370

multilingual performance: the quality of its inter- 371

nal translation. When a model fails to accurately 372

represent a language internally, it leads to infor- 373

mation loss and significant performance gaps. We 374

quantify this internal translation quality by mea- 375

suring how closely a language’s internal represen- 376

tation aligns with English, a proxy for how well 377

it has been integrated into the model’s core space. 378

Unsurprisingly, this alignment is directly tied to 379

the volume of pre-training data for each language. 380

Models like LLaMA2 clearly illustrate this prin- 381

ciple: high-resource languages with ample data 382

(French, German) show strong alignment with 383

English, while low-resource languages (Thai, Tel- 384

ugu) exhibit much weaker connections. While spe- 385

cialized multilingual models like Aya23 improve 386

this alignment for some under-represented lan- 387

guages, significant challenges remain see( Fig- 388

ure 2) In contrast, Qwen1.5 highlights a different 389
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Methods MGSM XCOPA XNLI M3EXAM MMLU
Base 38.1 66.4 54.3 44.9 41.8
Google trans 44.6 75.5 57.1 49.8 48.7
NLLB 38.4 61.2 55.4 25.2 32.8
5 shot 32.5 58.9 41.3 29.2 30.2
XLT 30.4 46.1 51.7 37.7 30.1
SFT 34.7 55.2 46.1 39.9 35.4

DPO-Steer 42.2+(4.1) 71.2+(4.8) 59.5+(5.2) 50.1+(5.2) 44.1+(2.3)

MSE-Steer 39.9+(1.8) 66.9+(0.5) 56.0+(1.7) 46.6+(1.7) 44.3+(2.5)

Table 2: Average results across five open-source models in 14 languages. ’+’ indicates an improvement over the
Base Prompts.
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Figure 2: Similarity scores between language and En-
glish representations across models. The dashed line
(threshold = 0.5) shows high-resource languages above
and mid-/low-resource languages below it.

risk: its training was so dominated by Chinese data390

that it often defaults to translating other languages391

into Chinese internally, struggling with alignment392

for most other languages. Ultimately, these find-393

ings confirm that languages with weaker internal394

representations are fundamentally disadvantaged.395

This "representational misalignment" is not just a396

technical artifact; it is a direct cause of performance397

disparities across different language groups.398

5.2 Challenges in Steering Vector399

Generalization400

While effective, the steering vector approach faces401

two core limitations: it is distribution-sensitive and402

lacks contextual precision.403

It is distribution-sensitive because its effectiveness404

depends heavily on the training distribution. As405

shown in Figure 8, performance drops significantly406

on out-of-distribution tasks. It lacks contextual pre-407

cision because it applies a single, static correction408

across all inputs, ignoring prompt-specific varia-409

tions. This uniform adjustment fails to capture the410

rich contextual variability inherent in natural lan-411

guage. These limitations suggest a clear direction 412

for future work: developing context-aware steering 413

mechanisms that adapt dynamically to each prompt, 414

as explored by (Tran et al., 2025). 415

5.3 Is the steering vector transferable across 416

languages? 417

Building on prior work by (Cao et al., 2024), we 418

examine whether a steering vector trained on one 419

language can transfer effectively to another. Our 420

results indicate that transferability is feasible, 421

but largely limited to languages within the same 422

linguistic family, likely due to shared representa- 423

tional structures. As shown in Figure 3, a vector 424

trained on a source language consistently improves 425

performance when applied to a related target lan- 426

guage. For example, a vector trained on Spanish 427

(Es) transfers well to German (De), French (Fr), 428

and Russian (Ru) all Indo-European languages. 429

Similarly, transfers between Japanese (Ja) and Chi- 430

nese (Zh) are effective. However, these successes 431

also expose the method’s limitations. Cross-family 432

transfers, such as from Spanish to Japanese, are in- 433

effective, suggesting that while the vector captures 434

more than language-specific patterns, it lacks the 435

abstraction needed for generalization across distant 436

language families. 437

5.4 High Resource Languages are dominant 438

in Representation Space 439

A common assumption is that large language mod- 440

els "think" in English, merely translating other lan- 441

guages into English-like representations for pro- 442

cessing. Our findings challenge this notion, re- 443

vealing a more nuanced reality: the primary bot- 444

tleneck is not English per se, but membership in 445

a broader set of high-resource languages. To in- 446
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Figure 3: Scores after applying steering vectors trans-
ferred directionally between language pairs (source
→ target), selected based on embedding similar-
ity: Es→De, De→Es, Fr→Es, Ja→Zh, Zh→Ja, and
Ru→Es.

vestigate this, we selected three high-resource lan-447

guages—Spanish, German, and French—chosen448

for their linguistic proximity and high representa-449

tional similarity to English in the model. We then450

evaluated model performance on the MGSM rea-451

soning task across these languages. Table 3 shows452

that : performance in Spanish, German, and French453

closely matched that of English, with negligi-454

ble differences. These findings suggest that the455

“English-centric” view is overly reductive. In-456

stead, current models appear to operate within a457

privileged set of high-resource languages capable458

of supporting complex reasoning. The central chal-459

lenge for multilingual modeling is thus not merely460

accommodating many languages, but extending461

this inner circle to include low-resource languages.462

6 Ablation Studies463

6.1 Impact of Injection Across Model Layers464

Our ablation studies reveal a critical insight: the465

optimal layer for steering is not universal. Instead,466

it is a direct reflection of a model’s architecture467

and training data, as shown by the starkly differ-468

ent behaviors of Aya23 and LLaMA2. Aya23, a469

model explicitly designed for multilingualism,470

benefits most from steering in its early layers.471

Its architecture is built to quickly translate different472

languages into a shared, language-neutral space.473

By correcting errors at this early stage—before474

they can cascade through the network—we see475

significant performance gains across all tasks, in-476

cluding mathematical reasoning (Figure 7). In477

contrast, LLaMA2 presents a more complex pic-478

ture. For low-resource languages, steering the479

early and middle layers is highly effective, as it480

helps these languages "catch up" and align with the481

model’s dominant representations. However, for482

high-resource languages like English or German, 483

this same intervention can be disruptive, interfering 484

with already well-formed representations. Finally, 485

across both models, steering the final layers yields 486

little to no improvement. This suggests that by 487

this late stage, the model has already "committed" 488

to its interpretation in its internal representation 489

space. Intervening here is simply too late to have a 490

meaningful effect. This confirms that to be effec- 491

tive, steering must happen "upstream," before the 492

model’s final reasoning process is complete. 493

6.2 Impact of Steering Vectors on English 494

Capabilities 495

To assess the potential impact of steering vectors on 496

the performance of monolingual English prompts, 497

we evaluated nine different steering vectors, each 498

tailored to a specific language and applied at var- 499

ious layers of the model. This evaluation aims to 500

determine whether these vectors degrade the per- 501

formance of English tasks, comparing the perfor- 502

mance of each language-specific steering vector 503

against the baseline monolingual results. Results in 504

Table 4 demonstrate that probing has a negative 505

impact, which intensifies as the representational 506

distance between two languages increases. Con- 507

versely, the negative impact lessens for more sim- 508

ilar languages. In models like LLaMA2, this cor- 509

relation is pronounced, whereas, in Aya-23, which 510

features more robustly represented languages, the 511

impact is slightly reduced. 512

7 Fine-tuning vs. Steering Approach 513

Our findings suggest that activation steering can 514

achieve the same internal alignment benefits as 515

fine-tuning, but does so through a single, targeted 516

intervention rather than a lengthy training process. 517

To demonstrate this, we designed an experiment 518

to visualize how each method forces the model to 519

align its internal representations with English. 520

We employed a "logit lens" analysis (nostalgebraist, 521

2020), a technique that allows us to peek inside 522

the model. At a specific layer L + 1, we take 523

the model’s internal state the post-activation output 524

x
(L+1)
i 2 and project it back into the vocabulary 525

space using the unembedding matrix. In simple 526

terms, we ask the model: "Based on your cur- 527

rent state, what English word does this most look 528

like?" 529

logits(L+1)
i = Unembed(x(L+1)

i ) ∈ R|V | 530
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Models Lang-Rep Fr Ru Ja Es Zh De

Aya23-8B

Fr - 34.3 25.6 40.0 27.6 36.0

Es 32.0 34.4 25.6 - 27.6 36.0

De 32.0 34.4 25.6 40.0 27.6 -

En 38.0 41.2 34.8 44.4 32.8 40.4

Llama2-7B

Fr - 23.2 18.4 24.4 20.4 25.2

Es 24.4 22.8 17.6 - 21.2 26.0

De 26.0 21.6 17.6 24.4 22.0 -

En 25.6 23.2 20.8 25.2 21.6 24.8

Table 3: The table highlights the selection of high-resource languages, such as French, Spanish, and German, as
agnostic languages within the representation space of LLMs. The results indicate that English remains the most
dominant language in this space. Other high-resource languages achieve comparable results, suggesting that their
representations are distributed with similar likelihoods within the shared representation space.

Language Llama2-7B Aya23-8B

Es 31.6 42.0
De 26.8 39.2
Fr 26.4 41.2
Ja 24.8 40.8
Zh 25.6 41.6
Ru 28.0 34.4
Sw 26.8 -
Bn 30.8 -
Th 28.8 -

En 32.0 43.2

Table 4: Results of MGSM task on Llama2-7B, Aya23-
8B, the Steering vector has a negative impact on English
Prompts.

By applying a softmax function to these logits, we531

can generate a probability distribution over the532

entire vocabulary, showing us the model’s "best533

guess" for the next token.534

yi = softmax(logits(L+1)
i ) ∈ R|V |535

We then use a language detection tool4 on the most536

likely tokens to see if the model’s internal state537

has successfully aligned with English. We com-538

pared three scenarios, with the full results shown539

in Figure 6 (Appendix):540

1. Base Model: Exhibits weak cross-lingual541

alignment; target language representations re-542

main distant from English.543

2. Fine-Tuned Model: Learns to align target544

and English representations after extensive545

translation fine-tuning.546

4https://github.com/Mimino666/langdetect

3. Steered Model: Matches this alignment in- 547

stantly using a single steering vector. 548

Both fine-tuning and steering improve repre- 549

sentational alignment with English: fine-tuning 550

achieves this gradually over many steps, while 551

steering provides an immediate, targeted correc- 552

tion. This efficiency raises a key question: do mul- 553

tilingual models still need steering? Logit lens 554

analysis shows that advanced multilingual mod- 555

els already exhibit strong alignment with En- 556

glish, without requiring intervention. Thus, the 557

need for steering reflects limitations in base model 558

training. While steering is an effective fix, better 559

multilingual pretraining may eliminate the issue 560

entirely. Full details are in Appendix C. 561

8 Conclusions 562

In this paper, we advance the study of multilin- 563

gual processing in LLMs, exploring improvements 564

across languages with varying resource levels. We 565

analyzed LLM alignments from a multilingual per- 566

spective, highlighting how techniques like SFT and 567

RLHF enhance multilingual capabilities by com- 568

paring these methods with steering and probing 569

approaches and identifying limitations in steering 570

vectors for handling linguistic nuances. Empir- 571

ical experiments showed that probing inner lay- 572

ers boosts multilingual task performance but may 573

hinder monolingual performance. Analysis of 574

LLM families shows their sensitivity to layer-level 575

changes, highlighting the importance of careful 576

tuning and alignment to optimize multilingual per- 577

formance. 578
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Limitations579

We acknowledge that our approach, which involves580

probing by sweeping across all model layers, is not581

scalable for LLMs and is impractical for real-world582

applications. Moreover, the learnable steering vec-583

tor is constrained by its fixed linear direction, limit-584

ing its capacity to capture the intricate mapping585

relationships between languages fully; learning586

steering vectors by individual tokens seems more587

promising than fixed steering. We leave this for588

future work. Additionally, Our experiments were589

also intentionally focused, isolating a single layer590

and language at a time. This controlled approach591

was necessary to establish a clear baseline, but a592

truly powerful system must learn to juggle multiple593

languages and layers simultaneously through more594

advanced, multi-objective training.595

Ethics Statement596

This research adheres to ethical guidelines in the de-597

velopment and application of large language mod-598

els (LLMs). We acknowledge the potential risks599

associated with multilingual processing, including600

biases in language representation, unequal perfor-601

mance across high- and low-resource languages,602

and the unintended consequences of steering tech-603

niques. Efforts were made to ensure transparency604

in our methodology and to mitigate biases by eval-605

uating models across diverse languages and tasks.606

However, we recognize that our work may still re-607

flect inherent biases present in the training data or608

model architectures. We encourage further research609

to address these limitations and promote equitable610

performance across all languages. Additionally, we611

emphasize the importance of responsible AI prac-612

tices, including the careful deployment of LLMs in613

real-world applications to avoid harm or misuse.614
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A Learning the Steering Vector864

In the first scenario, we utilize previous work (Cao et al., 2024) that applied Direct Preference Optimization865

(DPO) methods to construct the steering vector. Specifically, Optimizing v increases the probability of866

generating responses that align with the desired language behavior (e.g., English) while reducing the867

likelihood of responses associated with the opposite behavior (e.g., the target language). In this case, the868

contrast is defined between two language pairs: the English response Rt and the target language response869

RO.870

min
v
−Ed∼U ,(q,rT ,rO)∼D

[
log σ

(
dβ log

πL+1(rT |AL(q) + dv)

πL+1(rT |AL(q))
− dβ log

πL+1(rO|AL(q) + dv)

πL+1(rO|AL(q))

)]
.

(7)871

872

Where: v is the learnable steering vector, σ represents the logistic function.β controls the deviation from873

the original model. πL+1(·|AL(q)) denotes the model’s response from layer L+ 1, given the activation874

AL(q) at layer L for the input question q.The term d flips the optimization direction:875

• d = 1, the steering vector is optimized towards the English behavior rT .876

• If d = −1, the steering vector is optimized towards the opposite behavior rO.877

By optimizing this bi-directional objective, the steering vector v is trained to align with either the desired878

target behavior or its reverse, depending on the directional coefficient d. This approach ensures that879

both language behaviors target and opposite are captured effectively, enhancing the model’s ability to880

differentiate between them with precision.881

A.1 Algorithms882

Algorithm 1 BiPO Steering Vector Learning

Require: Pretrained LLM M , bilingual corpus D = {(qi, qeni )}, layer L, learning rate η, epochs T
Ensure: Steering vector v ∈ Rd

1: Initialize v ← 0
2: for e← 1, . . . , T do
3: for all (q, qen) ∈ D do
4: ▷ 1. Extract hidden activations at layer L
5: h← HiddenState(M, q, L)
6: hen ← HiddenState(M, qen, L)
7: ▷ 2. Inject steering vector
8: h̃← h+ v
9: ▷ 3. Compute logits from both activations

10: ℓ← Logits(M, h̃)
11: ℓen ← Logits(M,hen)
12: ▷ 4. Direct Preference Optimization (DPO) loss

LDPO = −Et∼V
[
log σ

(
ℓent − ℓt

)]
(see App. A, eq.7)

13: ▷ 5. Gradient-step update
14: v ← v − η∇v LDPO

15: end for
16: end for
17: Return v
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Algorithm 2 MSE Steering Vector Learning

Require: Pretrained LLM M , bilingual corpus D = {(qi, qeni )}, layer L, learning rate η, epochs T
Ensure: Steering vector v ∈ Rd

1: Initialize v ← 0
2: for e← 1, . . . , T do
3: for all (q, qen) ∈ D do
4: ▷ 1. Extract hidden activations at layer L
5: h← HiddenState(M, q, L)
6: hen ← HiddenState(M, qen, L)
7: ▷ 2. Inject steering vector
8: h̃← h+ v
9: ▷ 3. Compute Mean-Squared Error loss

LMSE =
1

d

∥∥h̃ − hen
∥∥2
2

10: ▷ 4. Gradient-step update
11: v ← v − η∇v LMSE

12: end for
13: end for
14: Return v

A.2 Other learning methods 883

Effectively learning a manifold that encapsulates the feature representations between languages is vital for 884

bridging the distributional gap across linguistic boundaries. While prior approaches (Cao et al., 2024; Zou 885

et al., 2023), such as PCA and calculating the mean difference between constructive activations (CAA), 886

have been shown to shift activation distributions, they fall short in accurately capturing essential features 887

in multilingual contexts. In contrast, advanced methods like BiPO excel by leveraging a dynamic feedback 888

loop during the manifold learning process, enabling them to better align multilingual representations. Fig- 889

ure 4 highlights the performance of various models across diverse tasks, underscoring the effectiveness of 890

this approach.

XCOPA XLNI M3EXAM MMLU MGSM
0.0

0.2

0.4

0.6

0.8

Aya23-8B

XCOPA XLNI M3EXAM MMLU MGSM
0.0

0.1

0.2

0.3

0.4

0.5

LLaMA2-7B

Tasks

Sc
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es

BiPO-steer MSE-steer PCA Mean Diff

Figure 4: demonstrate that using learnable steering vectors surpasses PCA and the Mean Difference approaches
across all tasks on two models: Aya32-8B and LLama2-7B.

891
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B SFT Vs Steering: Problem Setup and Notation892

LetM represent the base LLM andM∗ denote the fine-tuned version trained on an instruction dataset D,893

where D = (Qi, Ai)
n
i=1 consists of question-answer pairs. To analyze the mechanisms of fine-tuning, we894

model the transformation of each layer l as:895

Hl(x) = hl(x) + Sl(x) (8)896

where:897

• hl(x) represents the original layer l activation for input x898

• Sl(x) ∈ Rd is a learnable parameter matrix that modulates the activation in the residual stream899

• d is the dimensionality of the hidden state900

For each (Q,A) ∈ D, Hl is optimized via the loss function:901

L(M(Q), A) = −
T∑
t=1

logP (at|a<t, Q; θ) (9)902

where:903

• θ∗ represents the fine-tuned model parameters904

• at is the t-th token in the answer A905

• T is the length of the answer906

In contrast, the steering approach learns a single steering vector v ∈ Rd that modifies activations across907

all layers:908

Hl(x) = hl(x) + αv (10)909

where v is the learned steering direction , α is a scaling coefficient that controls the magnitude of steering910

,The same v is applied across different (Q,A) pairs911

C Hyperparameters912

Training Steering Vectors: For all models, we followed the authors’ (Cao et al., 2024) configurations,913

setting β = 0.1, using the AdamW optimizer with a learning rate of 5×10−4, and applying a weight decay914

of 0.05. The batch size was set to 1, and we utilized a cosine learning rate scheduler with 100 warmup steps.915

The number of epochs was set to 1 for all models, except for certain languages in LLama2 and Aya23-8B,916

where it was increased to 3 epochs. For the MSE method, we used a learning rate of 1× 10−8 and varied917

the number of epochs in the range [3, 5, 8, 12]. Mean Squared Error (MSE) was used as the loss func-918

tion, and cosine similarity was employed to evaluate the similarity between raw activations during training.919

920

For the supervised fine-tuning described in section 7, we trained the models on the same train-921

ing datasets for 5 epochs, using a learning rate of 1× 10−3, a weight decay of 0.001, and a warmup ratio922

of 0.05. The batch size was set to 16, and we utilized a cosine learning rate scheduler with the AdamW923

optimizer.924

C.1 High-Capability Models and Inner Translation Behavior925

In this section, we investigate the behavior of high-capacity multilingual LLMs, such as926

LLama3.1 (Grattafiori et al., 2024) and Aya23-Expanse (Odumakinde et al., 2024), to understand the927

factors behind their superior performance across languages. Using the logit lens, we analyze their internal928

representations and find that multilingual processing primarily occurs in the initial layers, with minimal929

inner translation loss (illustrated in Figure 5). These models map multilingual representations onto an930

14



MGSM Es Fr Ru De Ja zh Avg

Llama2-13B
Basic Prompt 33.6 30.0 28.0 30.8 18.0 26.4 27.8
Google-Tr 39.2 35.2 36.8 36.4 35.6 36.4 36.6
NLLB 35.2 33.6 32.0 34.0 20.0 28.0 30.4
5@shots 35.2 32.8 26.8 33.2 18.4 23.6 28.3
XLT 33.6 30.4 30.8 27.6 25.2 29.6 29.5
SFT 35.4 35.0 31.8 34.4 26.0 28.1 31.7

Bipo-method 36.8(+3.2) 33.2(+3.2) 31.6(+3.6) 35.2(+4.4) 26.8(+8.8) 29.2(+2.8) 32.1(+4.3)

MSE-method 32.4(−1.2) 34.8(+4.8) 34.0(+6) 35.2(+4.4) 24.4(+6.4) 30.0(+3.6) 31.8(+4.0)

Table 5: Results of the MGSM Task Evaluated on the Llama2-13B Model Across Diverse Languages

English-aligned distribution early on, creating a shared, agnostic space. This alignment, enhanced by 931

techniques like SFT and reinforcement RLHF, explains their effectiveness. For instance, Aya-Expanse 932

shows significant improvements due to these methods (Dang et al., 2024). Our findings align with prior 933

studies, confirming that SFT and RLHF substantially boost multilingual performance, consistent with 934

earlier observations on the impact of SFT on internal representations (Dang et al., 2024). 935

D Larger LLMs Exhibit Consistent Behavior 936

To address translation loss misalignment in larger language models, we extended our evaluation of 937

steering approaches to larger architectures. Due to computational constraints, we tested only LLama2-13B 938

on the MGSM task. Table 5 indicates that these larger models follow the same trend of performance 939

improvements across different languages, mirroring the behavior observed in smaller models. 940
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Figure 5: illustrates the processing of multilingual tokens in models of varying capabilities within the same family.
LLama3.1 demonstrates a strong alignment of tokens into English-aligned representations, whereas LLama2
struggles with this. Similarly, Aya-Expanse exhibits robust token alignment, attributed to RLHF techniques, while
Aya23 shows weaker alignment.
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Figure 6: : Distribution of non-English token values across model layers at three different stages: pre-fine-tuning
(base model), post-fine-tuning(SFT), and after applying steering at a specific layer. The results demonstrate that
both fine-tuning and steering exhibit similar behavior, aligning non-token values more closely with English token
distributions.
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Figure 7: illustrates the layers most sensitive to probing across two models. Aya23 demonstrates high sensitivity in
the initial layers but exhibits reduced performance in the middle and later layers. In contrast, LLama2 experiences a
notable drop in performance in the middle layers, with improved results in the later layers. Additionally, the initial
layers of LLama2 perform better for low- and medium-resource languages.

17



PCA Component 1

PC
A 

Co
m

po
ne

nt
 2

Train
Test

(a) XNLI

PCA Component 1

PC
A 

Co
m

po
ne

nt
 2

Train
Test

(b) MGSM

PCA Component 1

PC
A 

Co
m

po
ne

nt
 2

Train
Test

(c) M3EXAM

PCA Component 1

PC
A 

Co
m

po
ne

nt
 2

Train
Test

(d) MMLU

Figure 8: The sub-figures illustrate the distribution of the training and testing datasets across various tasks,
emphasizing that steering approaches perform effectively when the testing dataset’s distribution closely aligns with
the training dataset’s distribution but show limited improvement when the two distributions differ significantly.
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Aya32-8B

Methods MGSM XCOPA XNLI M3EXAM MMLU
Basic 32.6 81.6 49.9 46.9 45.3
Google-Tr 37.6 83.9 52.4 49.4 50.7
NLLB 32.3 73.2 49.9 26.5 34.0
5@Shot 36.1 84.5 59.8 42.5 30.9
XLT 26.9 12.1 52.7 38.8 27.0
SFT 34.4 82.0 49.8 47.4 46.0

DPO-Steer 38.6 86.1 58.5 52.7 49.0
MSE-steer 35.7 81.6 50.5 47.4 47.6

Llama2-7B

Basic 19.6 47.6 46.9 30.6 31.3
Google-Tr 25.0 51.8 50.9 42.8 41.5
NLLB 22.6 40.4 49.7 20.9 24.5
5@Shot 12.2 29.6 14.7 12.6 24.4
XLT 20.2 47.2 45.8 28.5 23.6
SFT 24.0 49.9 49.4 36.4 34.0

DPO-Steer 22.9 52.2 55.1 38.4 34.4
MSE-steer 22.8 50.3 48.7 35.1 36.0

Llama3-8B

Basic 62.0 66.7 63.2 51.6 50.7
Google-Tr 70.7 79.3 65.8 54.5 58.2
NLLB 60.0 63.4 63.4 23.9 40.7
5@Shot 55.6 63.5 27.6 24.1 26.0
XLT 26.9 56.9 55.0 39.2 33.7
SFT 64.7 72.2 63.9 53.8 51.6

DPO-Steer 67.0(+5.0) 75.0(+8.3) 64.3(+1.1) 55.3(+3.7) 52.8(+2.1)

MSE-steer 62.8(+0.8) 68.4(+1.7) 64.0(+0.8) 53.0(+1.4) 50.6(−0.1)

Gemma-7B

Basic 27.3 66.2 46.4 37.3 39.6
Google-Tr 37.4 83.1 51.0 45.4 47.0
NLLB 29.8 65.4 50.0 23.0 33.8
5@Shot 12.2 42.2 39.6 20.2 22.0
XLT 28.7 49.8 49.9 28.1 26.5
SFT 28.6 67.8 49.2 43.1 40.8

DPO-Steer 30.0(+2.7) 68.8(+2.6) 51.9(+5.5) 45.7(+8.4) 41.1(+1.5)

MSE-steer 27.6(+0.3) 68.0(+1.8) 47.9(+1.5) 37.5(+0.2) 41.1(+1.5)

Qwen1.5-7B

Basic 49.2 70.1 66.0 58.3 42.1
Google-Tr 52.6 79.3 65.4 57.2 46.1
NLLB 47.4 63.4 64.3 31.8 31.3
5@Shot 46.8 74.6 65.0 46.7 48.1
XLT 49.4 64.4 55.6 54.2 39.7
SFT 50.6 71.6 67.4 58.2 43.8

DPO-Steer 52.8(+3.6) 73.8(+3.7) 67.8(+1.8) 58.7(+0.4) 42.9(+0.8)

MSE-steer 50.5(+1.3) 70.7(+.7) 68.7(+2.7) 59.7(+1.4) 46.4(+4.3)

Table 6: Presents the average accuracy across various tasks for Three models: Llama3-8B , gemma-7Ba and
Qwen1.5-7B . The evaluation spans over 10 languages, covering high, medium, and low-resource levels. (+) symbol
indicates the average improvement compared to the Basic Prompt baseline.
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E Examples of different tasks941

Examples of model-generated responses under both original and steered conditions when prompted with942

questions in different languages. The correct answers are highlighted in green, while incorrect answers943

are marked in red for clarity.944

Question マンディはベネディクトに$100借りがあります。彼らは月2%の利子がつくことに同意しました。マンディが3か月後に返
できるとすると、彼女はベネディクトにいくらえばいいですか？ Let’s think step by step.

Original generation Mandy borrowed $100 from Benedict with an agreement to pay 2% interest per month.
1. Calculate the total interest due after 3 months:
$100 x 2% x 3 months = $6
So, the total amount Mandy owes Benedict after 3 months is $106 ($100 + $6).
2. Calculate the monthly payment amount:
To find the monthly payment amount, we need to divide the total amount owed by the number of months left to repay the loan. In this
case, there are 3 months left to repay the loan, so:
$106 ÷ 3 months = $35.33
So, Mandy needs to pay $35.33 per month to Benedict.

Steered generation 1. Mandi borrowed $100 from Benedict with an agreement to pay 2% interest per month.
2. The loan is to be repaid 3 months from now.
So, we need to calculate the total amount that Mandi needs to pay to Benedict to settle the loan.
First, let’s calculate the interest for the 3 months:
2% per month x 3 months = 6% interest
Now, let’s calculate the total amount that Mandi needs to pay:
Original amount borrowed: $100
Interest: $6 (6% of $100)
Total amount to be paid: $106
So, Mandi needs to pay $106 to Benedict to settle the loan.

Question Les canes de Janet pondent 16œufs par jour. Chaque matin, elle en mange trois au petit djeuner et en utilise quatre autres pour prparer
des muffins pour ses amis. Ce qui reste, elle le vend quotidiennement au march fermier, au prix de 2 $ l’œuf de cane frais. Combien (en
dollars) gagne-t-elle chaque jour au march fermier ? Let’s think step by step.

Original generation Janet’s chickens lay 16 eggs per day.
She eats 3 eggs for breakfast every day.
She uses 4 eggs to make muffins for her friends.
So, the number of eggs she has left to sell at the farmer’s market is:
16 eggs/day - 3 eggs/day = 13 eggs/day
Since she sells each egg at $2, Janet earns:
13 eggs/day x $2/egg = $26/day
So, Janet earns $26 per day at the farmer’s market.

Steered generation 1. Janet lays 16 eggs per day.
2. She eats 3 eggs for breakfast every day.
3. She uses 4 eggs to make muffins for her friends.
4. So, how many eggs does she have left to sell at the farmer’s market?
16 eggs/day - 3 eggs/day = 13 eggs/day
13 eggs/day - 4 eggs/day (for muffins) = 9 eggs/day
Janet has 9 eggs left to sell at the farmer’s market every day.
Now, let’s calculate how much money she makes from selling those eggs:
9 eggs/day x $2/egg = $18/day
So, Janet makes $18 per day selling eggs at the farmer’s market.
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Question A seguir esto questes de mltipla escolha sobre Linguagens. Por favor, d apenas a opo correta, sem quaisquer outros detalhes ou explicaes.
Por que as formigas no morrem quando postas em forno de micro-ondas?
As micro-ondas so ondas eletromagnticas com frequncia muito alta. Elas causam vibrao nas molculas de gua, e isso que aquece a comida.
Se o prato estiver seco, sua temperatura no se altera. Da mesma maneira, se as formigas tiverem pouca gua em seu corpo, podem sair
inclumes. J um ser humano no se sairia to bem quanto esses insetos dentro de um forno de micro-ondas superdimensionado: a gua que
compe 70% do seu corpo aqueceria. Micro-ondas de baixa intensidade, porm, esto por toda a parte, oriundas da telefonia celular, mas no
h comprovao de que causem problemas para a populao humana.
OKUNO, E. Disponvel em: http://revistapesquisa.fapesp.br. Acesso em: 11 dez. 2013.
Os textos constroem-se com recursos lingusticos que materializam diferentes propsitos comunicativos. Ao responder pergunta que d
ttulo ao texto, o autor tem como objetivo principal:
A. defender o ponto de vista de que as ondas eletromagnticas so inofensivas.
B. divulgar resultados de recentes pesquisas cientficas para a sociedade.
C. apresentar informaes acerca das ondas eletromagnticas e de seu uso.
D. alertar o leitor sobre os riscos de usar as micro-ondas em seu dia a dia.
E. apontar diferenas fisiolgicas entre formigas e seres humanos.
Responder:

Original generation A resposta correta a alternativa: E.

Steered generation The correct answer is C.
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