

000 001 002 003 004 005 006 007 008 009 010 011 012 ONCE-MORE: CONTINUOUS SELF-CORRECTION FOR 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LARGE LANGUAGE MODELS VIA PERPLEXITY-GUIDED INTERVENTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) often experience compounding errors during long text generation. Early errors could propagate and lead to drift, faulty reasoning, or repetition. Self-correction is a promising technique for addressing this issue. However, the existing main approaches have limitations. Supervised training methods can build self-correcting behaviours into models, but require training data collection and lack cross-domain generalizability. Current post-hoc iterative refinement methods operate only at inference time, but have to wait for substantial portions of the draft to be generated before providing feedback. Such feedback can not guarantee effective guidance, and the same error patterns can reappear. In this paper, we propose Once-More, a model-agnostic post-hoc self-correction framework that intervenes during generation. Once-More leverages token-level perplexity and verifier feedback to provide continuous, guided steering of the generation path through a logit suppression mechanism, and therefore helps accumulate “more correct” steps throughout the generation process. Evaluation on multiple benchmarks demonstrates that the proposed Once-More achieves state-of-the-art results when compared to representative self-correction methods. To our knowledge, Once-More is the first post-hoc method to leverage token perplexity and external feedback for continuous, guided self-correction.

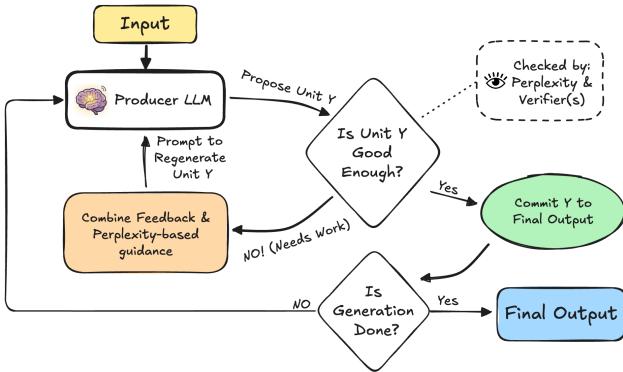
1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in text generation and complex reasoning tasks (Sun et al., 2025; Ferrag et al., 2025). However, their autoregressive nature poses a fundamental challenge: during generation, LLMs can produce errors or inaccuracies that further propagate through subsequent tokens, making errors to compound and eventually drive the generation away from the target (Arbuzov et al., 2025; Wang et al., 2023). This error-compounding issue raises serious concern when deploying LLMs in critical decision-making processes. Many LLM-based agentic workflows suffer from reliability issues stemming from this concern, which limits their viability for real-world deployment. (Pan et al., 2025; Gabison & Xian, 2025).

To address such concerns, researchers have developed various self-correction methods which enable LLMs to modify or revise their outputs at inference (Kamoi et al., 2024; Pan et al., 2024). Such methods identify errors during generation and guide models toward better responses through targeted feedback mechanisms (Paul et al., 2023; Tyen et al., 2023; Shinn et al., 2023). The feedback on the final output is provided via external knowledge bases (Gou et al., 2024; Zheng et al., 2024) or by more capable models (e.g., GPT-4) (Koutcheme et al., 2024). However final-output feedback is too coarse to provide effective steering, and thus these methods often fail to prevent recurring error patterns and lead to non-convergent refinement loops (Kamoi et al., 2024; Xu et al., 2024). Some methods use supervised fine-tuning as an alternative to build self-correction behaviour directly into models (Yan et al., 2025; Liu et al., 2025; Wang et al., 2024a); however, they are inherently limited by the distribution of their training data. They are susceptible to performance degradation on out-of-distribution tasks, where uncorrected errors can cascade through the generation.

Rather than building domain-specific models with built-in self-correction, we believe that iterative refinement remains the most general and practical approach. However, it requires fundamental

054
055
056
057
058
059
060
061
062
063
064
065
066



067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Overview of the proposed Once-More framework (Sec. 3.1). The Producer generates adaptive units, which are checked by Perplexity and Verifier(s). Rejected units trigger regeneration via the combined feedback and perplexity-driven guidance, creating a continuous self-correction process that intervenes before errors propagate.

improvements in guidance granularity. Effective self-correction should function continuously throughout generation, progressively steering models along better trajectories, and eventually allow “more correct” incremental decisions to accumulate into better final outputs. Motivated by this vision, in this paper, we propose an inference-time framework, **Once-More**, which performs continuous self-correction on any LLM generation process. It transforms the LLM generation process into a multi-agent interaction process: a Producer generates content while Verifier(s) evaluate and provide continuous guidance. Once-More operates at the level of units of generation (e.g., clauses, sentences, paragraphs, or code blocks). A complete generation is a sequential composition of unit generations. When the Producer generates a unit, the framework computes its perplexity to assess potential errors. High perplexity triggers verification for goal alignment, correctness, and consistency. Rejected units are regenerated using evaluation feedback combined with perplexity-driven logit redistribution until the Verifier(s) accept the unit. Figure 1 shows the high-level overview of the proposed Once-More. The framework also supports LLM, non-LLM, or tool-augmented Verifiers.

The proposed Once-More are evaluated on various benchmarks, including Olympiad mathematics (AIME 2024 (Art of Problem Solving, 2024a;b) and 2025 (Art of Problem Solving, 2025a;b)), graduate-level science questions (GPQA) (Rein et al., 2024), LiveBench (reasoning) (White et al., 2024), SVAMP (Patel et al., 2021), and GSM8K (Cobbe et al., 2021). It achieves state-of-the-art performance when compared to other self-correction methods. Our contributions are as follows: (1) We propose the Once-More framework to perform continuous, fine-grained self-correction, which yields State-of-the-Art performance while being more token-efficient than previous iterative refinement methods; (2) We present a method to uniquely fuse perplexity-based uncertainty signals with external verifier feedback. It is employed in Once-More to prevent repeated errors while preserving model beliefs during generation. To our knowledge, the proposed Once-More is the first post-hoc method to leverage token perplexity and external feedback for continuous, guided self-correction; (3) Our proposed continuous guidance mechanism in Once-More enables LLMs to perform reasoning-like corrections dynamically during generation, which helps to detect early errors and move to better generation trajectories.

2 RELATED WORK

Error accumulation in LLMs. The problem of error propagation in autoregressive models has been extensively studied. Classical analyses of exposure bias demonstrate that models trained on teacher-forced prefixes often struggle at test time, leading to error compounding in long generations (Arora et al., 2022; Schmidt, 2019). LLMs also suffer from the error accumulation issue, although LLM’s error accumulation patterns are more nuanced than simple exponential decay (Arbuzov et al., 2025). While scaling up LLMs enables the emergence of self-correction behaviours (Liu et al., 2024; Wang et al., 2024b), they remain unpredictable and uncontrollable at inference. To address this concern, we propose making self-correction explicit and controllable through perplexity-guided

108 intervention. Our proposed approach is model-agnostic and can be used with smaller-sized LLMs,
 109 making it more practical for local or edge use cases.
 110

111 **Self-correction via iterative refinement.** Several approaches can enable LLMs to revise their outputs
 112 through iterative processes. For instance, CRITIC uses external tools to verify model outputs and
 113 provides corrective feedback (Gou et al., 2024), Self-Refine employs models as both generators
 114 and evaluators (Madaan et al., 2023), and Verify-and-Edit incorporates knowledge bases for factual
 115 correction (Zhao et al., 2023). While these approaches can improve response quality, they operate
 116 on completed drafts or coarse-grained steps, and therefore could allow errors to compound before
 117 intervention occurs. The prompt-only feedback also occasionally fails to prevent recurring error
 118 patterns. Our proposed Once-More addresses the above concerns by intervening at a more granular
 119 level with continuous monitoring, enabling more direct and localized feedback that has a more
 120 effective impact on the model’s generation process.

121 **Self-correction via supervised fine-tuning.** Another line of work builds self-correction behaviours
 122 directly into the models through training. For instance, S³c-MATH trains spontaneous self-correction
 123 for mathematical reasoning (Yan et al., 2025), LLaVA-SCo extends this to vision-language models
 124 (Liu et al., 2025), and the learning-from-failure approach finetunes models to internalize correction
 125 behaviours (Wang et al., 2024a). However, their gains remain modest, and these methods require
 126 extensive training data and are susceptible to performance degradation on out-of-distribution tasks.
 127 To tackle such issues, our proposed framework remains model-agnostic and training-free, while
 128 providing continuous guidance for self-correction behaviours.

129 **Multi-agent and role-playing approaches.** Formulating generation as a multi-agent interaction has
 130 been shown to be effective for complex tasks. E.g., Reflexion equips agents with verbal feedback and
 131 episodic memory to improve over trials (Shinn et al., 2023), MAgICoRe combines solver, reviewer,
 132 and refiner roles with reward models for targeted step-wise error correction (Chen et al., 2024), and
 133 ReAct interleaves reasoning with external actions to reduce hallucinations (Yao et al., 2023). These
 134 methods leverage role specialization to provide feedback in different perspectives, and inspired by
 135 their success, our proposed Once-More adopts this idea in its Producer-Verifier architecture. However,
 136 their coarse-grained feedback and prompt-only interactions cannot guarantee effective steering. We
 137 therefore plan to enhance the multi-agent system with continuous monitoring and direct probability
 138 intervention.

139 **Decoding time steering.** The approach that manipulates sampling at inference time offers another
 140 avenue for controlling generation behaviour. E.g., GeDi guides generation toward desired attributes
 141 with discriminative models (Krause et al., 2020), Contrastive Decoding reduces hallucination by
 142 subtracting weaker model logits (Li et al., 2022; O’Brien & Lewis, 2023), and DoLa sharpens
 143 factuality through layer-wise contrast (Chuang et al., 2023). Recent work on Cautious Next Token
 144 Prediction demonstrates that perplexity-based mechanisms can effectively guide generation decisions
 145 (Wang et al., 2025b), providing a theoretical basis for our approach. However, existing methods
 146 only operate globally or target high-level attributes, lacking fine-grained control. Inspired by these
 147 methods, our proposed method manipulates sampling at inference time, but also employs localized
 148 logit manipulation to perform a more effective generation steering.

3 ONCE-MORE FRAMEWORK

149 We now present Once-More, a model-agnostic framework that performs continuous self-correction
 150 during LLM generation. The key idea is simple: rather than waiting for a complete output before
 151 providing feedback, we monitor generation quality at intermediate steps and intervene immediately
 152 when potential errors are detected. This section describes the framework’s architecture (Sec. 3.1),
 153 how it monitors generation quality (Sec. 3.2), and how it guides corrections (Sec. 3.3).
 154

3.1 FRAMEWORK ARCHITECTURE

155 As shown in Figure 1, Once-More transforms standard LLM generation into a monitored multi-agent
 156 process with three core components:
 157

158 **Producer.** A frozen, pre-trained LLM that generates content incrementally in *units* (adaptive chunks
 159 such as sentences, paragraphs, or code blocks). The Producer operates at inference time without
 160

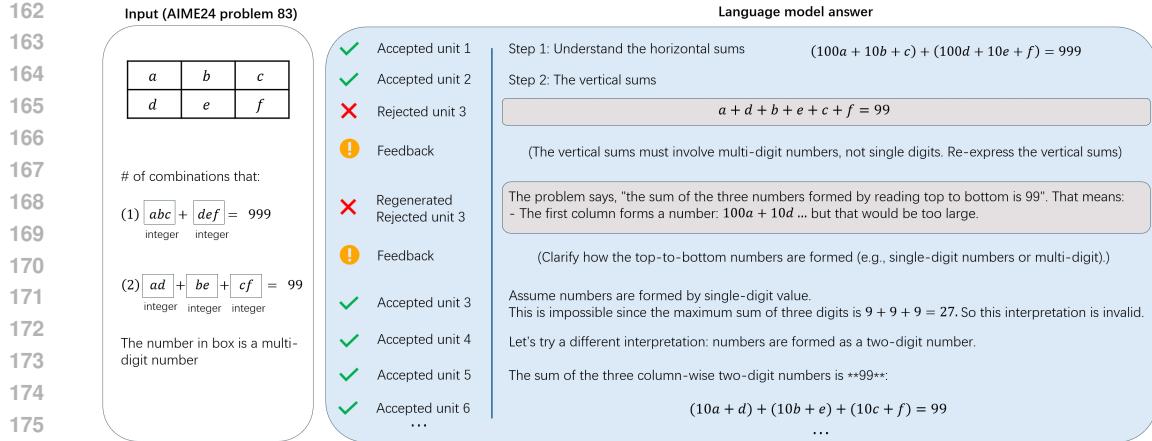


Figure 2: Illustration example: The proposed Once-More corrects a mathematical interpretation error on AIME 2024 Problem 83. It rejects an incorrect single-digit interpretation (unit 3), provides feedback, and guides the model to reconsider. The model then explicitly reasons why the initial is impossible and pivots to the correct two-digit interpretation, demonstrating intermediate reasoning.

any training or fine-tuning. The only requirement is access to token-level probability scores during decoding, which many providers already expose through their APIs. This requirement matters only for our regeneration mechanism and doesn't constrain the choice of model architecture.

Verifier(s). One or more agents that evaluate each provisional *unit* against the task **Goal** and constraints, returning a binary decision (accept or reject) along with optional feedback *F* in natural language or structured format. Verifiers may be LLMs, non-LLM programs, or tool-augmented modules as in tool-using agents (Yao et al., 2023; Shen et al., 2023; Shen, 2024).

Generation Units. Rather than working with fixed token windows, Once-More adapts its intervention granularity to the task context. For mathematical reasoning, a unit might be a single equation or derivation step; for code generation, a function or block; for prose, a sentence or paragraph. Units are identified using syntactic markers (punctuation, indentation) or learned boundary predictors. This adaptivity enables intervention at the most appropriate granularity for each task.

The Generation-Verification Loop. The proposed Once-More framework operates through continuous generation, monitoring, and correction loops. Figure 2 demonstrates this on a mathematical problem, showing how the framework catches and corrects an incorrect interpretation mid-solution. Let **Goal** denote the task and **Context** the generation history that has been verified and accepted. The framework operates through the following loop:

1. **Generate:** The Producer generates a provisional unit $Y = [y_1, \dots, y_n]$ conditioned on (Goal, Context), where y_i is one output token at time i .
2. **Monitor:** Compute the unit's perplexity $\text{PPL}_{\text{unit}}(Y)$ as an uncertainty signal (refsubsec:perplexity).
3. **Decide:**
 - If $\text{PPL}_{\text{unit}}(Y) \leq P_{\text{th}}$ (low uncertainty), trust the unit and append to Context.
 - If $\text{PPL}_{\text{unit}}(Y) > P_{\text{th}}$ (high uncertainty), invoke Verifier for explicit checking.
4. **Verify & Correct:**
 - If accepted: Append to Context and create a checkpoint.
 - If rejected: Trigger guided regeneration (Sec. 3.3) using verifier feedback and probability adjustments.
 - If regeneration also fails: Roll back to the previous checkpoint and regenerate from there, as the error may have originated earlier.

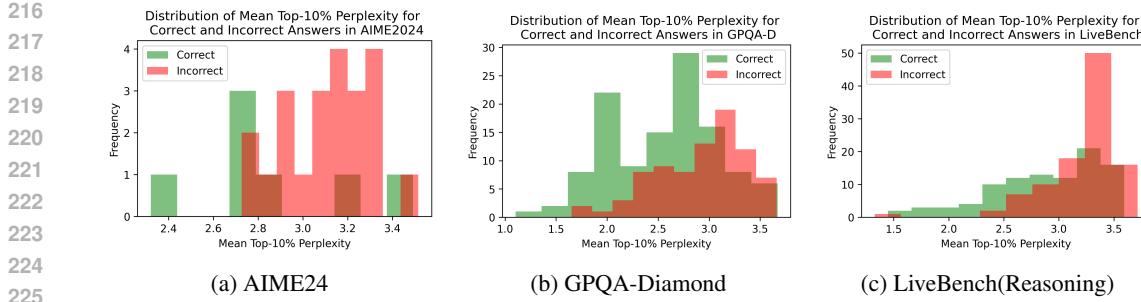


Figure 3: **Distributions of the mean top-10% perplexity for correct vs. incorrect answers across benchmarks. Incorrect units consistently exhibit higher perplexity.**

This continuous monitoring enables early error detection and correction before mistakes compound into larger failures.

3.2 MONITORING GENERATION QUALITY VIA PERPLEXITY

To detect potential errors during generation, we need a real-time quality signal that doesn't require external verification for every token. We leverage *perplexity*, which is a standard language modeling metric that measures prediction uncertainty (Jelinek et al., 1977; Christopher Manning, 2021; Hugging Face, 2025). Recent work shows that entropy-based metrics provide reliable signals for response quality (Fu et al., 2025; Yang et al., 2025b; Wang et al., 2025a), which motivates our approach.

Intuition. When a model confidently predicts the next token (high probability on one candidate), perplexity is low. When probability mass spreads across multiple candidates, perplexity increases, signalling uncertainty. High uncertainty often correlates with potential errors, indicating the model is likely unsure what to generate next, and it's probably on the wrong path.

Token-Level Perplexity. At each position t , the Producer outputs a probability distribution $q_t(v)$ over the vocabulary \mathcal{V} . Rather than computing perplexity over the entire vocabulary (expensive), we approximate using the top- K most likely tokens $S_t = \{v_{t,1}, \dots, v_{t,K}\}$ (Holtzman et al., 2018; Fan et al., 2018):

$$\text{PPL}_t^{(K)} = \exp\left(\frac{1}{K} \sum_{i=1}^K (-\log q_t(v_{t,i}))\right) \quad (1)$$

This efficiently captures local uncertainty: $\text{PPL}_t^{(K)} \approx 1$ when one token dominates, and increases as mass spreads across alternatives.

Unit-Level Aggregation & Verification Trigger. For a unit $Y = [y_1, \dots, y_n]$, we average token-level perplexities:

$$\text{PPL}_{\text{unit}}(Y) = \frac{1}{n} \sum_{t=1}^n \text{PPL}_t^{(K)} \quad (2)$$

Verification is triggered when $\text{PPL}_{\text{unit}}(Y) > P_{\text{th}}$, where P_{th} is calibrated on a small held-out set to target a desired verification rate (e.g., check the top 25% most uncertain units). Details of the calibration procedure are in Appendix A.2. Figure 3 empirically validates this approach: on our benchmarks, incorrect units consistently show substantially higher perplexity than correct ones, demonstrating clear separation between reliable and problematic generations.

3.3 GUIDED REGENERATION VIA PROBABILITY ADJUSTMENT

When a unit is rejected, simply asking the model to "try again" often produces the same mistake, since the model's learned biases can lead it down the same path (Xu et al., 2024). The model may acknowledge the feedback but still sample the same tokens due to strong learned priors. To break this cycle, Once-More performs *guided regeneration*: it (1) incorporates verifier feedback into the prompt,

270 and (2) directly adjusts the token probability distribution to suppress previously chosen tokens and
 271 explore alternatives.
 272

273 **Overview of the Adjustment Mechanism.** The adjustment process operates at the token level
 274 during regeneration:
 275

- 276 1. **Identify high-uncertainty tokens:** Convert the rejected unit’s token-level perplexities into
 277 position-wise suppression strengths; therefore, tokens with higher uncertainty receive stronger
 278 suppression.
- 279 2. **Align attempts:** Match tokens between the rejected attempt and the current regeneration attempt
 280 to determine which tokens to suppress at each position.
- 281 3. **Redistribute probability mass:** At each position, decrease the probability of the previously
 282 chosen token and proportionally increase alternatives, ensuring a valid probability distribution.

283 We now detail each step.
 284

285 **Step 1: Converting Perplexity to Suppression Strength.** Let $[x_1, \dots, x_{n-}]$ denote the rejected
 286 unit with token-level perplexities $\{\text{PPL}_i\}_{i=1}^{n-}$. We normalize these into suppression weights:
 287

$$288 \hat{u}_i^{(1)} = \frac{\text{PPL}_i - \min(\text{PPL})}{\max(\text{PPL}) - \min(\text{PPL}) + \varepsilon} \in [0, 1] \quad (3)$$

290 where ε is a small constant for numerical stability. This maps perplexity to a $[0, 1]$ scale: tokens with
 291 high perplexity (high uncertainty) get suppression weights near 1, while confident tokens get weights
 292 near 0.

293 **Step 2: Aligning Regeneration with Previous Attempt.** When regenerating, the new token
 294 sequence $[y_1, \dots, y_n]$ may differ in length and content from $[x_1, \dots, x_{n-}]$. We establish a monotone
 295 alignment to transfer suppression weights: for each position j in the new attempt, find the first
 296 matching token x_i from the previous attempt (if any), creating an alignment matrix $A \in \{0, 1\}^{n- \times n}$.
 297 This identifies which token should be suppressed at each regeneration position:
 298

$$299 \text{target}_j = \begin{cases} x_i, & \text{if a match exists at position } i \\ x_j, & \text{otherwise (use position-based fallback)} \end{cases} \quad (4)$$

301 To avoid over-suppressing tokens that matched only by coincidence (e.g., common words appearing
 302 at distant positions), we apply distance decay:
 303

$$304 \hat{u}_j^\rightarrow = A_{ij} \cdot \exp\left(-\left(\frac{|i-j|}{\tau}\right)^\gamma\right) \cdot \hat{u}_i^{(1)} \quad (5)$$

305 where τ controls the decay rate and $\gamma \in \{1, 2\}$ the decay shape. This reduces suppression strength
 306 for matches far from their original position.
 307

308 We further apply Gaussian smoothing to prevent over-localization, spreading suppression signals
 309 across nearby positions (details in Appendix A.3). The final effective suppression at position j is:
 310

$$311 \alpha_j = \alpha \cdot u_j^*, \quad \alpha \in (0, 1) \quad (6)$$

312 where u_j^* blends the direct and smoothed suppression signals, and α is a global scaling factor.
 313

314 **Step 3: Probability Redistribution.** Let $q_j^{(2)}(v)$ denote the Producer’s original next-token distribution
 315 at position j during regeneration. We adjust this distribution to suppress the target token while
 316 boosting alternatives:
 317

$$318 s_j(v) = \begin{cases} 1 - \alpha_j r_j(v), & v = \text{target}_j \quad (\text{suppress}) \\ 1 + \kappa_j r_j(v)^\beta, & v \neq \text{target}_j \quad (\text{boost}) \end{cases} \quad (7)$$

319 where $r_j(v) = q_j^{(2)}(v) / \max(\varepsilon, \bar{q}_j^{(1)}(v))$ measures how much the model’s belief about token v has
 320 shifted between attempts. The coefficient κ_j is computed to preserve probability mass:
 321

$$322 \kappa_j = \frac{\alpha_j r_j(\text{target}_j) q_j^{(2)}(\text{target}_j)}{\sum_{u \neq \text{target}_j} q_j^{(2)}(u) r_j(u)^\beta} \quad (8)$$

324 ensuring that the total probability removed from the target equals the total added to alternatives
 325 (derivation in Appendix A.4). The parameter $\beta \geq 0$ controls how redistributed mass is allocated and
 326 is set to 1 for all our experiments.

327 The final adjusted distribution is:

$$329 \quad \tilde{q}_j(v) = \frac{q_j^{(2)}(v) s_j(v)}{\sum_{u \in \mathcal{V}} q_j^{(2)}(u) s_j(u)} \quad (9)$$

332 This is a valid probability distribution (non-negative, sums to 1) that explores alternatives while
 333 respecting the model’s learned beliefs.

335 **Regeneration Process.** With the adjusted distribution $\tilde{q}_j(\cdot)$, the Producer samples a new unit. The
 336 verifier feedback is also appended to the prompt context, providing semantic guidance alongside
 337 the probability adjustment. If this regenerated unit is accepted, it becomes the new checkpoint. If
 338 rejected again, the framework rolls back to the previous checkpoint (before the problematic unit) and
 339 regenerates from there, recognizing that the error may have originated earlier in the generation. By
 340 combining perplexity-driven uncertainty detection with probability-level intervention, Once-More
 341 achieves continuous, fine-grained self-correction that prevents error accumulation during generation.

343 4 EXPERIMENTS

345 4.1 SETUP AND BASELINES

347 Due to the rapid development of the LLM field, prior self-correction studies employ diverse exper-
 348 imental setups across different models and benchmarks. To establish reproducible comparisons, we
 349 selected the popular open-sourced Qwen3 family of models (4B, 8B, and 14B parameters) as our base
 350 models (non-thinking) (Yang et al., 2025a). These model sizes were chosen for three key reasons:
 351 (1) they span small to medium scales, revealing how self-correction scales with capacity; (2) they
 352 represent practical compute-constrained scenarios; (3) Qwen3 offers state-of-the-art performance at
 353 these sizes, ensuring our results are relevant to current practice.

354 We evaluated Once-More on six benchmarks: AIME 2024 (Art of Problem Solving, 2024a;b) and
 355 2025 (Art of Problem Solving, 2025a;b) for complex mathematical reasoning, LiveBench (reasoning
 356 subset) (Rein et al., 2024) for general reasoning, GPQA Diamond (Rein et al., 2024) for graduate-level
 357 science questions, and SVAMP (Patel et al., 2021) and GSM8K (Cobbe et al., 2021) for arithmetic
 358 word problems. This benchmark selection covers diverse reasoning types and difficulty levels.

359 We compare the proposed Once-More with four representative baselines:

- 361 • **Raw:** Direct generation without self-correction.
- 362 • **Self-Refine** (Madaan et al., 2023): The most widely-cited iterative refinement method,
 363 representing prompt-based self-correction approaches.
- 364 • **CRITIC** (Gou et al., 2024): Incorporates external tools for verification, representing tool-
 365 augmented self-correction methods and most recent post-hoc method.
- 366 • **S³c-MATH** (Yan et al., 2025): A supervised fine-tuning approach, representing training-
 367 based self-correction methods.

369 Here, we implemented the Self-Refine and CRITIC baselines according to their references. For
 370 Self-Refine, the number of refinement iterations was set to $k = 3$. For CRITIC, since no suitable
 371 resources were specified in the original work, we adapted the method by leaving the external evidence
 372 field empty in math experiments. On the GPQA Diamond benchmark, CRITIC uses the first 1000
 373 words from web search results as external evidence. S³c-MATH results are taken from their published
 374 papers on comparable models. All reported results represent means over three independent runs. For
 375 Once-More’s default configuration, we set $K = 5$ for top- K perplexity calculation, with suppression
 376 factor $\alpha = 1.0$, redistribution sharpness $\beta = 1.0$, distance decay $\tau = 1$, diffusion bandwidth $\sigma = 1$
 377 and perplexity threshold $\eta = 25\%$ fixed. The verifier feedback is generated from an agent using the
 same LLM as the producer agent across all experiments.

378
 379 Table 1: Accuracy performance (mean accuracy % \pm std. dev. over 3 runs) comparisons between the
 380 proposed Once-More and baseline self-correction methods across multiple benchmarks. Results are
 381 for Qwen3 models of varying sizes (4B, 8B, 14B parameters). Once-More consistently outperforms
 382 iterative refinement approaches (Self-Refine, CRITIC) and raw generation.
 383

		AIME24	AIME25	LiveBench(Reason.)	GPQA Diamond
385 386 387 388	Qwen3 4B	Raw	13.3 \pm 3.3	20.0 \pm 3.3	43.9 \pm 1.3
		SelfRefine	13.3 \pm 3.3	18.9 \pm 3.8	43.9 \pm 1.0
		CRITIC	14.4 \pm 1.9	20.0 \pm 3.3	48.9 \pm 0.8
		ours	16.7 \pm 3.4	23.3 \pm 3.4	47.5 \pm 0.9
389 390 391 392	Qwen3 8B	Raw	24.4 \pm 1.9	16.7 \pm 3.4	45.4 \pm 0.9
		SelfRefine	25.6 \pm 3.9	15.5 \pm 3.9	47.0 \pm 1.7
		CRITIC	24.4 \pm 1.9	18.8 \pm 3.9	48.9 \pm 1.5
		ours	33.3 \pm 3.3	24.4 \pm 1.9	49.5 \pm 1.7
393 394 395 396	Qwen3 14B	Raw	26.7 \pm 3.3	18.8 \pm 3.8	48.0 \pm 1.5
		SelfRefine	28.8 \pm 3.8	23.3 \pm 3.3	49.2 \pm 1.0
		CRITIC	28.8 \pm 1.9	22.2 \pm 3.9	50.5 \pm 1.3
		ours	36.7 \pm 3.3	26.7 \pm 3.3	55.6 \pm 1.6

397 Table 2: Accuracy performance comparisons with supervised fine-tuning methods on mathematical
 398 benchmarks. Once-More achieves competitive or superior performance without any training.
 399

401 402 403 404 405 406	Benchmark	Llama 3 8B				Qwen2 Math 7B			
		MetaMath	S ³ C w/o R&I	S ³ C MathQA	Ours	MetaMath	S ³ C w/o R&I	S ³ C MathQA	Ours
		SFT				SFT			
407	SVAMP	81.4	80.5	81.8	82.0	85.6	86.7	87.4	89.0
408	GSM8K	81.1	81.7	82.9	79.0	84.1	84.4	84.8	85.2

4.2 MAIN RESULTS

410 Table 1 presents performance comparisons across the AIME24/25, LiveBench (reasoning), and GPQA
 411 Diamond benchmarks. Our proposed Once-More consistently outperforms all baselines across model
 412 sizes and task types. On mathematical reasoning tasks (AIME 2024/2025), Once-More achieves
 413 3.4 to 10 point gains over raw generation, with the 14B model reaching 36.7% on AIME 2024 and
 414 26.7% on AIME 2025. In contrast, Self-Refine and CRITIC show minimal improvements, gaining
 415 at most 2.1 to 4.5 points. For general reasoning (LiveBench), Once-More delivers 9.0 to 12.7 point
 416 improvements, while baselines achieve less than 1 point gain. On GPQA Diamond, all model sizes
 417 show consistent 3.6 to 7.6 point improvements with Once-More.

418 Table 2 compares Once-More against supervised fine-tuning approaches, including MetaMath-SFT
 419 and S³c-MATH. Once-More achieves the best performance on SVAMP across both model families
 420 (82.0% for Llama 3 8B, 89.0% for Qwen2 Math 7B) without any training. While S³c-MATH
 421 outperforms Once-More on GSM8K for Llama (82.9% vs 79.0%), Once-More leads on Qwen2 Math
 422 (85.2% vs 84.8%). The results demonstrate that Once-More can match or exceed specialized training
 423 methods while maintaining model-agnostic deployment.

4.3 ANALYSIS AND ABLATION STUDY

424 **Scaling effects in self-correction.** On AIME 2024, Once-More’s improvements scale progressively:
 425 a 25.6% relative gain for 4B, 36.4% for 8B, and 37.4% for 14B models. This scaling pattern
 426 suggests that self-correction benefits from richer internal representations in larger models. They can
 427 generate more informative feedback and possess more nuanced token distributions for effective logit
 428 redistribution. The same pattern holds across AIME 2025, where gains increase from 16.5% (4B) to
 429 42% (14B). This indicates that Once-More can scale with model capacity, unlike post-hoc methods
 430 that show diminishing returns.
 431

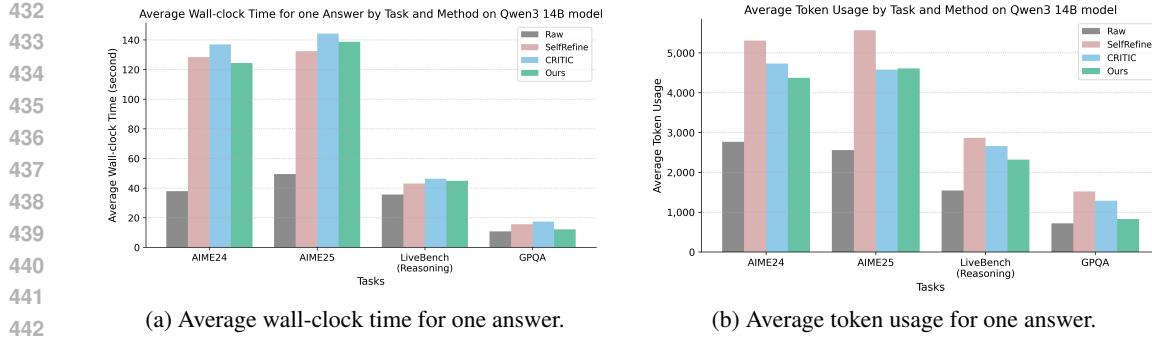


Figure 4: Run time comparisons across tasks on Qwen3-14B.

Table 3: Ablation study on Once-More components using Qwen3-14B. Both verifier feedback and logit redistribution contribute substantially, with the best accuracy performance from combining both.

Method	AIME24	GPQA
Raw	26.7	48.0
w/o Redistribution	33.3	51.5
w/o Feedback	30.3	48.4
Full Once-more	36.7	55.6

Small models and the feedback quality problem. Existing self-correction methods do not work on smaller models. Self-Refine shows no improvement on the 4B model for AIME 2024 and actually degrades performance on AIME 2025 for the 8B model (16.7% → 15.5%). CRITIC fares slightly better but still achieves minimal gains. This is likely due to smaller models’ limited capabilities to produce meaningful feedback on long outputs. Once-More mitigates this by combining verifier feedback with logit redistribution, ensuring corrections happen even when feedback quality is low. The finer unit-level granularity also makes feedback inherently easier for verifiers to provide.

Mathematical reasoning improvement. On AIME24 and AIME25, Once-More substantially outperforms CRITIC and Self-Refine. This is because mathematical errors are unforgiving; a single misstep can invalidate an entire solution. This makes existing post-hoc methods less reliable as they must locate the faulty step in a complete solution and regenerate a full answer. In contrast, Once-More’s continuous monitoring catches mistakes as they occur, enabling correction at the point of failure rather than after completion.

Efficiency analysis. Figure 4 compares wall-clock time and token consumption across methods on Qwen3 14B. Despite its regeneration cycles, Once-More demonstrates competitive wall-clock time, matching or outperforming Self-Refine and CRITIC across all tasks while achieving superior accuracy. For token usage, Once-More consistently achieves the lowest consumption among self-correction methods, using 17-21% fewer tokens than Self-Refine on AIME tasks. This efficiency advantage persists across other benchmarks. Notably, GPQA Diamond exhibits shorter generations across all methods, providing fewer opportunities for continuous intervention and partially explaining the smaller performance gains on this task. Overall, Once-More achieves superior accuracy without incurring additional computational costs compared to existing self-correction approaches.

Effects of verifier feedback and logit redistribution Table 3 evaluates the contributions of feedback and logit redistribution on Qwen3-14B. Removing redistribution but keeping feedback yields 33.3% on AIME24 (+6.6) and 51.5% on GPQA (+3.5). Removing feedback but keeping redistribution gives 30.3% (+3.6) and 48.4% (+0.4). The full system reaches 36.7% and 55.6%, which are gains of +10.0 and +7.6 over raw. The effects are roughly additive on AIME24 and clearly more than additive on GPQA, suggesting that feedback and redistribution resolve different failure modes:

486 Table 4: Unit length ablation study using Qwen3-14B, with mean accuracy (%)
 487 \pm std. dev. over 3 runs.

Benchmark	Unit length (sentences)					
	1	2	4	32	64	128
AIME24	36.6 \pm 3.3	34.3 \pm 1.9	35.5 \pm 1.9	30.0 \pm 2.7	26.7 \pm 2.7	26.7 \pm 2.7
LiveBench	52.3 \pm 1.2	52.1 \pm 1.0	52.3 \pm 1.2	49.8 \pm 1.7	50.3 \pm 1.3	45.3 \pm 0.6
GPQA-D	55.6 \pm 1.8	55.5 \pm 1.3	56.1 \pm 1.5	49.7 \pm 1.0	49.3 \pm 0.3	50.0 \pm 0.7

495
 496 feedback supplies semantic guidance about the error, and redistribution enforces exploration away
 497 from the previously chosen tokens so that the guidance actually changes the trajectory.
 498

499 **Effects of answer unit granularity** Table 4 evaluates the contributions of answer unit granularity
 500 on Qwen3-14B model under default hyper-parameter setting. The results do not indicate significant
 501 performance differences for small unit lengths (≤ 4 sentences). This shows that the proposed Once-
 502 More framework is robust under fine-grained segmentation. However, when the unit length increases
 503 significantly (≥ 32 sentences), performance drops across all three benchmarks and converges to the
 504 performance of the raw model (without Once-More) at a unit length of 128.
 505

506 Table 5: Accuracy (%) results under different Producer–Verifier configurations and raw output.

Producer:	Qwen-14B				Qwen-4B				
	Verifier:	14B	8B	4B	Raw	14B	8B	4B	Raw
AIME24	36.6	36.6	30.0	26.6	33.3	23.3	16.7	13.3	
LiveBench	52.5	49.5	46.5	44.0	41.0	38.5	33.0	20.3	
GPQA-D	55.6	51.5	50.0	48.0	54.0	52.5	47.5	43.9	

515 **Asymmetric settings of Producer/Verifier** Table 5 presents the results using both configurations
 516 of the strong-producer / weak-verifier and the weak-producer / strong-verifier. Experiments conducted
 517 under default hyperparameters. Results show that, with a strong Producer (Qwen-14B), performance
 518 degrades only mildly with weaker verifiers (4B/8B), remaining substantially better than the raw
 519 baseline. With a weak Producer (Qwen-4B), increasing verifier strength (using 14B) yields massive
 520 improvements across all benchmarks.
 521

522 Comprehensive ablation study for hyper-parameters suppression α , distance decay factor τ , diffusion
 523 bandwidth σ , and perplexity threshold η can be found at Appendix. A.5.

525 CONCLUSION

527 We presented Once-More, a model-agnostic, training-free framework for continuous self-correction
 528 during generation, which monitors uncertainty at the unit level, invokes verifier feedback when needed,
 529 and enforces exploration via perplexity-guided logit redistribution. This fine-grained, intervene-as-
 530 you-go design efficiently reduces error propagation and turns incremental improvements at each
 531 unit into stronger end-to-end generations. When tested on diverse benchmarks and model sizes, the
 532 proposed Once-More consistently outperforms post-hoc refinement baselines while remaining token-
 533 efficient, demonstrating that controllable, inference-time steering can yield reliable gains without
 534 additional training. Despite these gains, we acknowledge specific limitations: the framework may
 535 struggle to trace errors rooted deep in the generation history, potentially leading to regeneration loops;
 536 confident errors (false negatives) may occasionally bypass the perplexity trigger; and the system’s
 537 performance ceiling remains influenced by verifier quality. Future work will focus on addressing
 538 these challenges through dynamic rollback mechanisms and adaptive thresholding.
 539

540 REPRODUCIBILITY STATEMENT
541

542 To ensure the reproducibility of our work, we provide comprehensive implementation details through-
543 out the paper and supplementary materials. The Once-More framework’s complete algorithmic
544 description appears in Appendix A.1, with mathematical formulations for perplexity computation
545 (Section 3.2) and logit redistribution mechanism (Section 3.3). Experimental setup details, includ-
546 ing all hyperparameters ($K = 5$, $\alpha = 1.0$, $\beta = 1.0$), model specifications (Qwen3 4B/8B/14B),
547 and benchmark descriptions are provided in Section 4.1. We also detail our implementation pro-
548 cedures for Self-Refine and CRITIC, including specific adaptations for mathematical tasks. All
549 experiments use publicly available models and benchmarks (AIME 2024/2025, LiveBench, GPQA
550 Diamond, SVAMP, GSM8K) with standard evaluation metrics. We report results averaged over
551 three independent runs to account for stochastic variation. An anonymous GitHub repository has
552 been created. It will be used to host the complete implementation of Once-More after this work
553 is published. It will include the Producer-Verifier architecture, perplexity monitoring system, logit
554 redistribution algorithm, and scripts to reproduce all experimental results. The repository is available
555 at: <https://anonymous.4open.science/r/once-more-F54C/>

556 REFERENCES
557

558 Mikhail L Arbuzov, Alexey A Shvets, and Sisong Beir. Beyond exponential decay: Rethinking error
559 accumulation in large language models. *arXiv preprint arXiv:2505.24187*, 2025.

560 Kushal Arora, Layla El Asri, Hareesh Bahuleyan, and Jackie Cheung. Why exposure bias matters: An
561 imitation learning perspective of error accumulation in language generation. In Smaranda Muresan,
562 Preslav Nakov, and Aline Villavicencio (eds.), *Findings of the Association for Computational
563 Linguistics: ACL 2022*, pp. 700–710, Dublin, Ireland, May 2022. Association for Computational
564 Linguistics. doi: 10.18653/v1/2022.findings-acl.58. URL <https://aclanthology.org/2022.findings-acl.58/>.

565 Art of Problem Solving. 2024 aime i. https://artofproblemsolving.com/wiki/index.php/2024_AIME_I, 2024a. Accessed: 2025.

566 Art of Problem Solving. 2024 aime ii. https://artofproblemsolving.com/wiki/index.php/2024_AIME_II, 2024b. Accessed: 2025.

567 Art of Problem Solving. 2025 aime i. https://artofproblemsolving.com/wiki/index.php/2025_AIME_I, 2025a. Accessed: 2025.

568 Art of Problem Solving. 2024 aime ii. https://artofproblemsolving.com/wiki/index.php/2025_AIME_II, 2025b. Accessed: 2025.

569 Justin Chih-Yao Chen, Archiki Prasad, Swarnadeep Saha, Elias Stengel-Eskin, and Mohit Bansal.
570 Magicore: Multi-agent, iterative, coarse-to-fine refinement for reasoning. *arXiv preprint
571 arXiv:2409.12147*, 2024.

572 Christopher Manning. Natural language processing with deep learning cs224n/ling284, lecture
573 6. <https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture06-fancy-rnn.pdf>, 2021. Accessed: 2025.

574 Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James Glass, and Pengcheng He. Dola:
575 Decoding by contrasting layers improves factuality in large language models. *arXiv preprint
576 arXiv:2309.03883*, 2023.

577 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
578 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
579 math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

580 Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. *arXiv preprint
581 arXiv:1805.04833*, 2018.

582 Mohamed Amine Ferrag, Norbert Tihanyi, and Merouane Debbah. From llm reasoning to autonomous
583 ai agents: A comprehensive review. *arXiv preprint arXiv:2504.19678*, 2025.

594 Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence, 2025. URL
 595 <https://arxiv.org/abs/2508.15260>.

596

597 Garry A Gabison and R Patrick Xian. Inherent and emergent liability issues in llm-based agentic
 598 systems: a principal-agent perspective. *arXiv preprint arXiv:2504.03255*, 2025.

599

600 Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
 601 CRITIC: Large language models can self-correct with tool-interactive critiquing. In *The Twelfth
 602 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Sx038qxjek>.

603

604 Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut, David Golub, and Yejin Choi. Learning
 605 to write with cooperative discriminators. *arXiv preprint arXiv:1805.06087*, 2018.

606

607 Hugging Face. Perplexity of fixed-length models. <https://huggingface.co/docs/transformers/en/perplexity>, 2025. Accessed: 2025.

608

609 Fred Jelinek, Robert L Mercer, Lalit R Bahl, and James K Baker. Perplexity—a measure of the
 610 difficulty of speech recognition tasks. *The Journal of the Acoustical Society of America*, 62(S1):
 611 S63–S63, 1977.

612

613 Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, and Rui Zhang. When can llms actually correct
 614 their own mistakes? a critical survey of self-correction of llms. *Transactions of the Association for
 615 Computational Linguistics*, 12:1417–1440, 2024.

616

617 Charles Koutcheme, Nicola Dainese, Sami Sarsa, Arto Hellas, Juho Leinonen, and Paul Denny. Open
 618 source language models can provide feedback: Evaluating llms’ ability to help students using
 619 gpt-4-as-a-judge. In *Proceedings of the 2024 on Innovation and Technology in Computer Science
 620 Education V. 1*, pp. 52–58. Association for Computing Machinery, 2024.

621

622 Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
 623 Socher, and Nazneen Fatema Rajani. Gedi: Generative discriminator guided sequence generation.
 624 *arXiv preprint arXiv:2009.06367*, 2020.

625

626 Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
 627 Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization.
 628 *arXiv preprint arXiv:2210.15097*, 2022.

629

630 Dancheng Liu, Amir Nassereldine, Ziming Yang, Chenhui Xu, Yuting Hu, Jiajie Li, Utkarsh Kumar,
 631 Changjae Lee, Ruiyang Qin, Yiyu Shi, et al. Large language models have intrinsic self-correction
 632 ability. *arXiv preprint arXiv:2406.15673*, 2024.

633

634 Zixuan Liu, Guangkai Jiang, and Siavash Khajavi. Llava-sco: Teach vision language models to self-
 635 correct. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
 636 (CVPR) Workshops*, pp. 3415–3424, June 2025.

637

638 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 639 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 640 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.

641

642 Sean O’Brien and Mike Lewis. Contrastive decoding improves reasoning in large language models.
 643 *arXiv preprint arXiv:2309.09117*, 2023.

644

645 Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang.
 646 Automatically correcting large language models: Surveying the landscape of diverse automated
 647 correction strategies. *Transactions of the Association for Computational Linguistics*, 12:484–506,
 648 2024.

649

650 Melissa Z Pan, Mert Cemri, Lakshya A Agrawal, Shuyi Yang, Bhavya Chopra, Rishabh Tiwari,
 651 Kurt Keutzer, Aditya Parameswaran, Kannan Ramchandran, Dan Klein, Joseph E. Gonzalez,
 652 Matei Zaharia, and Ion Stoica. Why do multiagent systems fail? In *ICLR 2025 Workshop on
 653 Building Trust in Language Models and Applications*, 2025. URL <https://openreview.net/forum?id=wM521FqPvI>.

648 Arkil Patel, Satwik Bhattacharya, and Navin Goyal. Are NLP models really able to solve sim-
 649 ple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
 650 Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
 651 (eds.), *Proceedings of the 2021 Conference of the North American Chapter of the Association*
 652 *for Computational Linguistics: Human Language Technologies*, pp. 2080–2094, Online, June
 653 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL
 654 <https://aclanthology.org/2021.naacl-main.168/>.

655 Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West,
 656 and Boi Faltings. Refiner: Reasoning feedback on intermediate representations. *arXiv preprint*
 657 *arXiv:2304.01904*, 2023.

658 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 659 Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
 660 *First Conference on Language Modeling*, 2024.

661 Florian Schmidt. Generalization in generation: A closer look at exposure bias. *arXiv preprint*
 662 *arXiv:1910.00292*, 2019.

663 Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueteng Zhuang. Hugginggpt:
 664 Solving ai tasks with chatgpt and its friends in hugging face. *Advances in Neural Information*
 665 *Processing Systems*, 36:38154–38180, 2023.

666 Zhuocheng Shen. Llm with tools: A survey. *arXiv preprint arXiv:2409.18807*, 2024.

667 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 668 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing*
 669 *Systems*, 36:8634–8652, 2023.

670 Jiankai Sun, Chuanyang Zheng, Enze Xie, Zhengying Liu, Ruihang Chu, Jianing Qiu, Jiaqi Xu,
 671 Mingyu Ding, Hongyang Li, Mengzhe Geng, et al. A survey of reasoning with foundation models:
 672 Concepts, methodologies, and outlook. *ACM Computing Surveys*, 57(11):1–43, 2025.

673 Gladys Tyen, Hassan Mansoor, Victor Cărbune, Peter Chen, and Tony Mak. Llms cannot find
 674 reasoning errors, but can correct them given the error location. *arXiv preprint arXiv:2311.08516*,
 675 2023.

676 Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
 677 Math-shepherd: Verify and reinforce llms step-by-step without human annotations. *arXiv preprint*
 678 *arXiv:2312.08935*, 2023.

679 Renxi Wang, Haonan Li, Xudong Han, Yixuan Zhang, and Timothy Baldwin. Learning from failure:
 680 Integrating negative examples when fine-tuning large language models as agents. *arXiv preprint*
 681 *arXiv:2402.11651*, 2024a.

682 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xiong-Hui Chen,
 683 Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
 684 Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
 685 effective reinforcement learning for LLM reasoning. In *The Thirty-ninth Annual Conference on*
 686 *Neural Information Processing Systems*, 2025a. URL <https://openreview.net/forum?id=yfcpdY4gMP>.

687 Yifei Wang, Yuyang Wu, Zeming Wei, Stefanie Jegelka, and Yisen Wang. A theoretical understanding
 688 of self-correction through in-context alignment. *Advances in Neural Information Processing*
 689 *Systems*, 37:89869–89912, 2024b.

690 Yizhou Wang, Lingzhi Zhang, Yue Bai, Mang Tik Chiu, Zhengmian Hu, Mingyuan Zhang, Qihua
 691 Dong, Yu Yin, Sohrab Amirghodsi, and Yun Fu. Cautious next token prediction. In Wanxiang
 692 Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the*
 693 *Association for Computational Linguistics: ACL 2025*, pp. 25685–25697, Vienna, Austria, July
 694 2025b. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/
 695 v1/2025.findings-acl.1318. URL <https://aclanthology.org/2025.findings-acl.1318/>.

702 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
 703 Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, et al. Livebench: A challenging, contamination-
 704 limited llm benchmark. *arXiv preprint arXiv:2406.19314*, 2024.

705

706 Wenda Xu, Guanglei Zhu, Xuandong Zhao, Liangming Pan, Lei Li, and William Wang. Pride and
 707 prejudice: Llm amplifies self-bias in self-refinement. In *ACL (1)*, pp. 15474–15492, 2024. URL
 708 <https://doi.org/10.18653/v1/2024.acl-long.826>.

709

710 Yuchen Yan, Jin Jiang, Yang Liu, Yixin Cao, Xin Xu, Mengdi Zhang, Xunliang Cai, and Jian Shao.
 711 S3c-math: spontaneous step-level self-correction makes large language models better mathematical
 712 reasoners. In *Proceedings of the Thirty-Ninth AAAI Conference on Artificial Intelligence and Thirty-
 713 Seventh Conference on Innovative Applications of Artificial Intelligence and Fifteenth Symposium
 714 on Educational Advances in Artificial Intelligence, AAAI’25/IAAI’25/EAAI’25*. AAAI Press,
 715 2025. ISBN 978-1-57735-897-8. doi: 10.1609/aaai.v39i24.34749. URL <https://doi.org/10.1609/aaai.v39i24.34749>.

716

717 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 718 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 719 2025a.

720

721 Zhen Yang, Mingyang Zhang, Feng Chen, Ganggui Ding, Liang Hou, Xin Tao, Pengfei Wan, and
 722 Ying-Cong Chen. Less is more: Improving llm reasoning with minimal test-time intervention,
 723 2025b. URL <https://arxiv.org/abs/2510.13940>.

724

725 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 726 React: Synergizing reasoning and acting in language models. In *International Conference on
 727 Learning Representations (ICLR)*, 2023.

728

729 Ruochen Zhao, Xingxuan Li, Shafiq Joty, Chengwei Qin, and Lidong Bing. Verify-and-edit: A
 730 knowledge-enhanced chain-of-thought framework. *arXiv preprint arXiv:2305.03268*, 2023.

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A APPENDIX
757758 A.1 ONCE-MORE ALGORITHM
759760 **Algorithm 1** Once-More Framework
761762 **Require:** Producer LLM, Tokenizer, Verifier set \mathcal{R} , Goal x , role prompt, max tokens T_{\max} 763 1: **Init:**764 Build chat prompt from (role prompt, x);765 Encode to token id: step_ids .766 Set $\text{past} \leftarrow \emptyset$, $\text{Output} \leftarrow \emptyset$, $\text{tokens} \leftarrow 0$, consecutive fails $\leftarrow 0$ 767 Initialize $\text{ckpt_stack} \leftarrow [(0, \text{step_ids})]$, $\text{supp_stack} \leftarrow [\text{None}]$, suppression $\leftarrow \text{None}$.768 2: **for** $i = 1$ to T_{\max} **do**769 3: **Propose:** Generate sentence s and update $(\text{past}, \text{step_ids}, \text{suppression})$.770 4: **Monitor:**771 Compute reliability $\rightarrow (ok, \lambda)$.772 Update supp_stack with $(\lambda, t_{1:L}, \ell_{1:L})$.773 Update $\text{tokens} \leftarrow \text{tokens} + L$.774 5: **if** not ok and $i > 1$ **then**775 6: **Verify:** Verifier judge $(\text{accept}, F) \leftarrow \text{Judge}(\mathcal{R}, x, \text{Output}, s)$.776 7: **if** not accept **and** consecutive fails < 4 **then**777 8: **Rollback & Guide:**778 Restore last checkpoint (k^*, ids^*) ;779 set suppression from supp_stack ;780 trim past to k^* ;781 reset $\text{step_ids} \leftarrow \text{ids}^*$;

782 pop stacks;

783 append feedback F to step_ids ;784 consecutive fails \leftarrow 1785 **continue.**786 9: **end if**787 10: **end if**788 11: **Commit:**789 Append s to Output ;790 push new checkpoints to ckpt_stack and supp_stack ;791 reset suppression $\leftarrow \text{None}$.792 reset consecutive $\leftarrow 0$ 793 12: **if** last token of step_ids is eos **or** $\text{tokens} > T_{\max}$ **then**794 13: **break**795 14: **end if**796 15: **end for**797 16: **return** Output

798

799

800

801

802

803

804

805

806

807

808

809

810 A.2 QUANTILE CALIBRATION FOR THE RELIABILITY THRESHOLD
811812 We set the verification trigger by calibrating a *unit perplexity* threshold from a short, held-out run.
813814 **Inputs and unit count.** For each calibration prompt $i = 1, \dots, D$, run the Producer once *without*
815 verification and compute a unit-level perplexity P_{unit} for every emitted unit (as in Section 3.2). If the
816 i -th output contains U_i units, it contributes U_i scalar values. The total number of calibration units is
817

818
$$M = \sum_{i=1}^D U_i.$$

819

820 Collect all unit perplexities as $\{P^{(m)}\}_{m=1}^M$.
821823 **Empirical quantile.** Form the empirical distribution by *sorting the values themselves* in ascending
824 order (this sorting step ignores the original time order), yielding the order statistics
825

826
$$P_{(1)} \leq P_{(2)} \leq \dots \leq P_{(M)}.$$

827 Fix a target verification rate $\eta \in (0, 1)$ so that roughly the largest η fraction of units will be verified
828 at run time. Set $q = 1 - \eta$ and compute
829

830
$$h = 1 + (M - 1)q, \quad k = \lfloor h \rfloor, \quad \gamma = h - k,$$

831 then define the calibrated threshold
832

833
$$P_{\text{th}} = \begin{cases} P_{(1)}, & h \leq 1, \\ P_{(M)}, & h \geq M, \\ (1 - \gamma) P_{(k)} + \gamma P_{(k+1)}, & \text{otherwise.} \end{cases}$$

834

835 At inference time, verify a provisional unit Y whenever $P_{\text{unit}}(Y) > P_{\text{th}}$.
836839 A.3 MATHEMATICAL PROPERTIES OF THE FRAMEWORK
840841 We now establish formal properties of the Once-More framework’s perplexity computation and
842 probability adjustment mechanism.
843844 A.3.1 PROPERTIES OF PERPLEXITY-BASED MONITORING
845846 **Property 1 (Perplexity Lower Bound).** For any position j and $K \geq 1$, the token-level perplexity
847 satisfies $\text{PPL}_j^{(K)} \geq 1$.
848849 *Proof.* By definition, $\text{PPL}_j^{(K)} = \exp(\text{ANLL}_j^{(K)})$ where
850

851
$$\text{ANLL}_j^{(K)} = \frac{1}{K} \sum_{i=1}^K (-\log q_j(v_{j,i})) \tag{10}$$

852

853 Since $q_j(v_{j,i}) \in (0, 1]$ for valid probabilities, we have $-\log q_j(v_{j,i}) \geq 0$. The lower bound of
854 1 is achieved when $K = 1$ and q_j places all mass on a single token (i.e., $q_j(v_{j,1}) = 1$), giving
855 $-\log(1) = 0$ and $\exp(0) = 1$.
856857 **Property 2 (Sensitivity Control via K).** Larger values of K increase the sensitivity of perplexity
858 to distribution spread, while smaller values focus on top candidates.
859860 *Justification.* When K is small, $\text{PPL}_j^{(K)}$ reflects only the most probable tokens. If the top token has a
861 high probability, perplexity remains low even if tail probabilities are spread. As K increases, more of
862 the distribution is captured, increasing sensitivity to uncertainty in lower-ranked alternatives. This
863 creates a trade-off: larger K detects subtle uncertainties but increases variance; smaller K provides
864 conservative, stable estimates.
865

864 A.3.2 PROPERTIES OF GUIDED REGENERATION
865866 **Property 3 (Mass Balance).** Given suppression factors satisfying $0 \leq \alpha_j r_j(\text{target}_j) < 1$ and
867 redistribution coefficient κ_j as defined in Section 3.3, the probability mass removed from the target
868 token exactly equals the mass added to alternatives before normalization.869 *Proof.* See Appendix A.4 for the complete derivation of κ_j , which explicitly enforces this constraint.
870871 **Property 4 (Valid Probability Distribution).** The adjusted distribution $\tilde{q}_j(\cdot)$ is a valid probability
872 distribution (non-negative, sums to 1).873 *Proof.* By construction:874 1. **Non-negativity:** For the target token, $s_j(\text{target}_j) = 1 - \alpha_j r_j(\text{target}_j) > 0$ by the constraint
875 $\alpha_j r_j(\text{target}_j) < 1$. For alternatives, $s_j(v) = 1 + \kappa_j r_j(v)^\beta > 0$ since $\kappa_j > 0$ (as long as
876 alternatives exist) and $r_j(v) \geq 0$. Since $q_j^{(2)}(v) \geq 0$ for all v , we have $q_j^{(2)}(v)s_j(v) \geq 0$.
877 2. **Normalization:** The denominator $\sum_{u \in \mathcal{V}} q_j^{(2)}(u)s_j(u) > 0$ by non-negativity and the fact that
878 $q_j^{(2)}$ is a valid distribution. The normalization explicitly ensures $\sum_{v \in \mathcal{V}} \tilde{q}_j(v) = 1$.
879880 **Property 5 (Monotone Suppression).** For fixed $q_j^{(2)}$ and importance ratios r_j , the adjusted proba-
881 bility $\tilde{q}_j(\text{target}_j)$ strictly decreases with α_j within the admissible range.
882883 *Proof.* From the definition:

884
$$\tilde{q}_j(\text{target}_j) = \frac{q_j^{(2)}(\text{target}_j)(1 - \alpha_j r_j(\text{target}_j))}{\sum_u q_j^{(2)}(u)s_j(u)} \quad (11)$$

885

886 Taking the derivative with respect to α_j (applying the quotient rule and using the fact that κ_j depends
887 on α_j), one can show that:

888
$$\frac{\partial \tilde{q}_j(\text{target}_j)}{\partial \alpha_j} < 0 \quad (12)$$

889

890 The key insight is that increasing α_j directly reduces the target token’s weight while increasing
891 alternatives’ weights, creating a double effect.
892893 **Property 6 (Controlled Exploration via β).** The tempering exponent β controls the distribution
894 of redistributed mass:895 • $\beta = 0$: Mass spreads uniformly across all alternatives
896 • $\beta = 1$: Mass allocates proportionally to importance ratios $r_j(v)$
897 • $\beta > 1$: Mass concentrates on tokens with the largest importance ratios
898899 *Justification.* The boost factor for alternatives is $1 + \kappa_j r_j(v)^\beta$. When $\beta = 0$, this becomes $1 + \kappa_j$
900 (constant across all alternatives), distributing mass uniformly. As β increases, $r_j(v)^\beta$ amplifies
901 differences: tokens with $r_j(v) > 1$ (model now favours more) receive exponentially more boost,
902 while tokens with $r_j(v) < 1$ receive less. This creates an exploration-exploitation trade-off controlled
903 by β .
904905 **Property 7 (Stability of Adjustment).** When $q_j^{(2)}$ remains close to $q_j^{(1)}$ and $\beta \leq 1$, the KL
906 divergence between the adjusted and original distributions scales linearly with maximum suppression:
907

908
$$\text{KL}(\tilde{q}_j \parallel q_j^{(2)}) = O(\alpha_{\max}) \quad (13)$$

909

910 *Proof sketch.* The KL divergence is:
911

912
$$\text{KL}(\tilde{q}_j \parallel q_j^{(2)}) = \sum_v \tilde{q}_j(v) \log \frac{\tilde{q}_j(v)}{q_j^{(2)}(v)} \quad (14)$$

913

918 When α_j is small, $s_j(v) \approx 1$ for all v , making $\tilde{q}_j(v) \approx q_j^{(2)}(v)/Z$ where $Z \approx 1$. A Taylor expansion
 919 around $\alpha_j = 0$ shows that the leading term is linear in α_j . The condition $\beta \leq 1$ ensures that the
 920 redistribution doesn't create sharp peaks that would increase divergence. For detailed calculation,
 921 note that:

$$923 \log \frac{\tilde{q}_j(v)}{q_j^{(2)}(v)} = \log s_j(v) - \log Z \approx s_j(v) - 1 - (Z - 1) \quad (15)$$

926 where both $s_j(v) - 1$ and $Z - 1$ are $O(\alpha_j)$.

928 **Property 8 (Alignment and Diffusion Regularization).** The combination of distance-decayed
 929 alignment and Gaussian diffusion prevents both over-localization and excessive spread of suppression
 930 signals.

931 *Justification.* The distance decay $\exp(-(|i - j|/\tau)^\gamma)$ reduces suppression for tokens matched far
 932 from their original position, preventing spurious long-range alignments from causing inappropriate
 933 suppression. The Gaussian diffusion with bandwidth σ then smooths the resulting signal:

$$935 \bar{u}_j = \frac{1}{Z_j} \sum_{i=1}^n \exp\left(-\frac{(j-i)^2}{2\sigma^2}\right) \hat{u}_i^\rightarrow \quad (16)$$

939 As $\sigma \rightarrow 0$, this reduces to position-wise suppression $\bar{u}_j \rightarrow \hat{u}_j^\rightarrow$ (localized). As σ increases,
 940 suppression spreads to neighboring positions (regularized). The final blend $u_j^* = 0.5\hat{u}_j^\rightarrow + 0.5\bar{u}_j$
 941 balances both effects, preventing over-fitting to specific positions while maintaining locality.

943 A.4 DERIVATION OF THE REDISTRIBUTION CONSTANT

945 We now derive the formula for κ_j that ensures probability mass conservation during the adjustment
 946 process.

948 **Setup.** At position j , we adjust the original distribution $q_j^{(2)}(v)$ by applying scaling factors $s_j(v)$:

$$951 s_j(v) = \begin{cases} 1 - \alpha_j r_j(v), & v = \text{target}_j \\ 1 + \kappa_j r_j(v)^\beta, & v \neq \text{target}_j \end{cases} \quad (17)$$

954 where:

- 956 • $\alpha_j \in (0, 1)$ is the suppression strength
- 958 • $r_j(v) = q_j^{(2)}(v) / \max(\varepsilon, \bar{q}_j^{(1)}(v))$ is the importance ratio
- 960 • $\beta \geq 0$ controls redistribution sharpness
- 962 • κ_j is the redistribution coefficient to be determined

963 **Mass Conservation Constraint.** For a valid probability distribution, the total probability mass
 964 before and after adjustment must be equal. Define:

966 **Mass removed from target:**

$$968 \Delta^- = q_j^{(2)}(\text{target}_j) - q_j^{(2)}(\text{target}_j) \cdot s_j(\text{target}_j) \quad (18)$$

$$970 = q_j^{(2)}(\text{target}_j) - q_j^{(2)}(\text{target}_j) \cdot (1 - \alpha_j r_j(\text{target}_j)) \quad (19)$$

$$971 = \alpha_j r_j(\text{target}_j) \cdot q_j^{(2)}(\text{target}_j) \quad (20)$$

972 **Mass added to alternatives:**

973
$$\Delta^+ = \sum_{u \neq \text{target}_j} \left[q_j^{(2)}(u) \cdot s_j(u) - q_j^{(2)}(u) \right] \quad (21)$$

974
$$= \sum_{u \neq \text{target}_j} \left[q_j^{(2)}(u) \cdot (1 + \kappa_j r_j(u)^\beta) - q_j^{(2)}(u) \right] \quad (22)$$

975
$$= \sum_{u \neq \text{target}_j} q_j^{(2)}(u) \cdot \kappa_j r_j(u)^\beta \quad (23)$$

976
$$= \kappa_j \sum_{u \neq \text{target}_j} q_j^{(2)}(u) \cdot r_j(u)^\beta \quad (24)$$

977 **Solving for κ_j .** Setting $\Delta^- = \Delta^+$ for mass conservation:

978
$$\alpha_j r_j(\text{target}_j) \cdot q_j^{(2)}(\text{target}_j) = \kappa_j \sum_{u \neq \text{target}_j} q_j^{(2)}(u) \cdot r_j(u)^\beta \quad (25)$$

979 Solving for κ_j :

980
$$\kappa_j = \frac{\alpha_j r_j(\text{target}_j) \cdot q_j^{(2)}(\text{target}_j)}{\sum_{u \neq \text{target}_j} q_j^{(2)}(u) \cdot r_j(u)^\beta} \quad (26)$$

981 **Normalization.** After applying the scaling factors, we normalize to obtain the final distribution:

982
$$\tilde{q}_j(v) = \frac{q_j^{(2)}(v) \cdot s_j(v)}{\sum_{u \in \mathcal{V}} q_j^{(2)}(u) \cdot s_j(u)} \quad (27)$$

983 By construction (mass conservation), the numerator of the normalization constant equals:

984
$$\sum_u q_j^{(2)}(u) \cdot s_j(u) = q_j^{(2)}(\text{target}_j) \cdot s_j(\text{target}_j) + \sum_{u \neq \text{target}_j} q_j^{(2)}(u) \cdot s_j(u) \quad (28)$$

985
$$= \left[q_j^{(2)}(\text{target}_j) - \Delta^- \right] + \left[\sum_{u \neq \text{target}_j} q_j^{(2)}(u) + \Delta^+ \right] \quad (29)$$

986
$$= \sum_u q_j^{(2)}(u) + (\Delta^+ - \Delta^-) \quad (30)$$

987
$$= 1 + 0 = 1 \quad (31)$$

988 Thus, the distribution is properly normalized even before the explicit normalization step, confirming
989 that our choice of κ_j correctly preserves mass.990 **Numerical Safeguards.** In practice, we implement several safeguards:

- Use $\varepsilon = 10^{-8}$ in importance ratios to avoid division by zero
- Clip $\alpha_j r_j(\text{target}_j)$ to ensure it remains strictly less than 1
- If the denominator in κ_j is extremely small (no viable alternatives), either reduce β toward 0 to spread mass broadly or cap κ_j and trigger a fresh generation attempt
- Verify that $\sum_u q_j^{(2)}(u) s_j(u) > 0$ before normalization

1000

A.5 ABLATION STUDY

1001

A.5.1 ANALYSIS OF SUPPRESSION STRENGTH α

1002 The ablation study in α (suppression strength) is carried out using the Qwen-14B model on AIME24,
1003 Livebench, and GPQA-Diamond. Results are reported in Table 6 from a single run. All other parameters
1004 are chosen as the default value.

1026 Table 6: Ablation study on suppression strength α using Qwen3 14B. Results from a single run.
1027

	$\alpha = 0.1$	$\alpha = 0.5$	$\alpha = 1$	$\alpha = 1.5$	$\alpha = 2$
AIME24	30.0	33.3	36.6	36.6	36.6
LiveBench	49.5	52.5	54.5	54.5	54.0
GPQA-D	50.5	51.5	52.0	52.5	51.0

1034 For all benchmarks, performance is relatively stable for suppression strengths $\alpha \geq 1$. While a small
1035 suppression strength ($\alpha = 0.1$) dilutes the effect of our proposed Once-More Framework and achieves
1036 the worst performance in the ablation study.
1037

1038 A.5.2 ANALYSIS OF DISTANCE DECAY FACTOR τ

1040 The ablation study on τ (distance decay factor) is conducted by Qwen-14B model on AIME24,
1041 Livebench and GPQA-Diamond. The granularity of τ is set to 0.01 (extremely small τ representing
1042 decay to 0, suppression only works on the target token in this specific position), 0.5, 1, 1.5 and 100
1043 (extremely large τ representing no decay, the target token will be equally suppressed regardless of its
1044 position). Results are reported in Table 7 from a single run. All other parameters are chosen as the
1045 default value.
1046

1047 Table 7: Ablation on distance decay factor τ . Accuracy from single run.
1048

Benchmark	$\tau = 0.01$	$\tau = 0.5$	$\tau = 1$	$\tau = 1.5$	$\tau = 100$
AIME24	23.3	36.6	36.6	36.6	30.3
LiveBench	43.5	52.5	52.5	52.0	50.5
GPQA-D	45.5	54.5	55.0	55.0	52.5

1054 The ablation results show a very interesting phenomenon. Without distance decay (an extremely
1055 small $\tau = 0.01$), model performance decreases significantly, becoming even worse than the raw model
1056 baseline. Under this setting, the Once-More framework only suppresses the target token if it is in
1057 the exact same position as in the previously rejected sequence. The model sometimes finds a trick to
1058 regenerate. Assuming this is the previously rejected unit:
1059

1060 This sequence contains an error and was therefore rejected
1061

1063 Producer first generates a few other words and then repeats exactly the same sequence as the previously
1064 rejected one, just like:
1065

1066 Got it! This sequence contains an error and therefore got
1067 ↳ rejected
1068

1069 Since the position is mismatched by these beginning words, the later regenerated sequence is not
1070 suppressed at all. However, this will be subsequently rejected by the reviewer, causing the model to
1071 get stuck in a loop until the maximum token limit is reached.
1072

1073 Table 8: Ablation on diffusion bandwidth σ . Accuracy from a single run.
1074

Benchmark	$\sigma = 0.1$	$\sigma = 1$	$\sigma = 5$	$\sigma = 10$
AIME24	33.3	36.3	26.6	30.0
LiveBench	52.5	55.0	48.5	47.5
GPQA-D	50.5	52.5	49.0	49.5

1080
1081A.5.3 ANALYSIS OF DIFFUSION BANDWIDTH σ

1082 Table 8 reports the effect of diffusion bandwidth σ which controls how suppression spreads across
 1083 neighboring tokens. The results show that a large $\sigma (\geq 5)$ spreads the suppression too broadly. It dilutes
 1084 the suppression effect on the target token and behaves similarly to using a very small suppression
 1085 strength (α). Conversely, a very small σ restricted suppression only to the current token, making the
 1086 adjustment too localized and also degrading accuracy.

1087

1088

A.5.4 ANALYSIS OF PERPLEXITY THRESHOLD η

1089

1090 Since the parameter K (top- K for perplexity estimation) directly defines unit perplexity and conse-
 1091 quently impacts the threshold ratio η , we conducted a joint ablation study of these two parameters.
 1092 Table 9 and Table 10 show that, for small K (1 or 5), changing η primarily impacts runtime rather
 1093 than accuracy. A looser threshold ($\eta = 50\%$) increases verification calls and computation time, while
 1094 a stricter threshold ($\eta = 12.5\%$) improves efficiency. Large K values generally degrade accuracy.

1095

1096

1097

Table 9: AIME24 results: accuracy and wall-clock time across perplexity threshold η and top- K settings.

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

	$\eta = 12.5\%$		$\eta = 25\%$		$\eta = 50\%$	
	Acc.	Time (s)	Acc.	Time (s)	Acc.	Time (s)
$K = 1$	36.6	1693	36.6	3579	36.6	6448
$K = 5$	36.6	2448	33.3	4133	36.6	6103
$K = 10$	33.3	2397	33.3	3142	36.6	5954
$K = 15$	30.0	2929	33.3	2851	33.3	7088

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

Table 10: GPQA results: accuracy and wall-clock time across perplexity threshold η and top- K settings.

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

	$\eta = 12.5\%$		$\eta = 25\%$		$\eta = 50\%$	
	Acc.	Time (s)	Acc.	Time (s)	Acc.	Time (s)
$K = 1$	51.0	1987	54.5	3640	61.6	4953
$K = 5$	47.5	2448	55.5	3848	55.0	4424
$K = 10$	49.0	2397	49.5	2098	53.5	4244
$K = 15$	48.4	2473	49.5	2486	55.0	3412

A.6 ADDITIONAL OBSERVATIONS

A.6.1 INTERMEDIATE REASONING BEHAVIOUR

Here is one example that the proposed Once-More framework exhibits intermediate reasoning behaviour. The following text is the partial output from AIME24 problem 83:

→ We are given a 2x3 grid where each cell contains a digit from 0 to 9. We need to fill the grid such that:
 1. The **sum of the two numbers formed by reading left to right** (i.e., the top row and bottom row) is **9999**.
 → [Perplexity acceptable: False]
 [Judge] Output accepted.
 2. The **sum of the three numbers formed by reading top to bottom** (i.e., the first column, second column, and third column) is **99**.
 → [Perplexity acceptable: True]

```

1134
1135 Let's denote the grid as follows:
1136 $$
1137 \begin{array}{|c|c|c|} \hline
1138 a & b & c \\ \hline
1139 d & e & f \\ \hline
1140 \end{array}
1141 $$
1142 $$
1143 ### Step 1: Understand the horizontal sums
1144 We are told that:
1145 $$
1146 abc + def = 999
1147 $$
1148 Here,  $\$abc\$$  and  $\$def\$$  are 3-digit numbers formed by the digits in
1149 → the top row and bottom row, respectively.
1150
1151 [Perplexity acceptable: False]
1152 [Judge] Output accepted.
1153
1154 past_cache length: 400
1155 That is:
1156 -  $\$abc = 100a + 10b + c\$$ 
1157 -  $\$def = 100d + 10e + f\$$ 
1158 So:
1159 $$
1160 (100a + 10b + c) + (100d + 10e + f) = 999 \tag{1}
1161 $$
1162 ### Step 2: Understand the vertical sums
1163 We are told that:
1164 $$
1165 a + d + e = 99 \quad \text{(first column)} \\
b + e + f = 99 \quad \text{(second column)} \\
c + f = 99 \quad \text{(third column)}
1166 $$
1167 [Perplexity acceptable: False]
1168 [Judge] Output rejected.
1169 [Rolling back to the corresponding checkpoint]
1170 [Feedback message to the model]:
1171 → (The vertical sums must involve multi-digit numbers, not single
1172 → digits. Re-express the vertical sums as  $\$ad + de + ef = 99\$$ , etc.,
1173 → or clarify the problem statement.)
1174 Clarifying: the problem says "the sum of the three numbers formed by
1175 → reading top to bottom is 99". That means:
1176 → - The first column forms a number:  $\$a \times 100 + d \times 10 + \dots \$$ , but that would be too large.
1177
1178 [Perplexity acceptable: False]
1179 [Judge] Output rejected.
1180 [Rolling back to the corresponding checkpoint]
1181 [Feedback message to the model]:
1182 → (Clarify how the top-to-bottom numbers are formed (e.g.,
1183 → single-digit numbers or multi-digit). The current interpretation is
1184 → unclear.)
1185
1186
1187

```

1188 Let's assume that the top-to-bottom numbers are formed by reading
 1189 each of the three columns as a single-digit value (i.e., just the
 1190 digit in each column). Then the sum of these three digits is 99,
 1191 which is impossible since the maximum sum of three digits is
 1192 $9+9+9=27$. So this interpretation is invalid.
 1193
 1194 [Perplexity acceptable: False]
 1195 [Judge] Output accepted.
 1196 Let's try a different interpretation: The **top-to-bottom** numbers
 1197 are formed by concatenating the two digits in each column to form a
 1198 two-digit number.
 1199
 1200 [Perplexity acceptable: False]
 1201 [Judge] Output accepted.
 1202 For example, if the first column has digits a and b , then the
 1203 number is $10a + b$. Then we can add up the three such numbers for
 1204 the three columns, and that total should be 99.
 1205 So now we have:
 1206
 1207 - The top row is a 3-digit number: $100a + 10b + c$
 1208 - The bottom row is a 3-digit number: $100d + 10e + f$
 1209 - The sum of these two numbers is **999**:
 1210
$$(100a + 10b + c) + (100d + 10e + f) = 999 \quad | \text{ (Equation 1)}$$

 1211
 1212 - The sum of the three column-wise two-digit numbers is **99**:
 1213
$$(10a + d) + (10b + e) + (10c + f) = 99 \quad | \text{ (Equation 2)}$$

 1214 We are to find the number of such digit arrangements that satisfy
 1215 both equations.

1217 This partial output shows how Once-More conducted one successful self-correction.
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242

A.7 PRACTICAL IMPLEMENTATION NOTES

1243

1244

Length changes and alignment. If the revised unit $Y' = [y'_1, \dots, y'_m]$ has $m \neq n$:

1245

1246

1247

1248

1249

1250

1251

Chunking strategy and context management

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296 A.8 EXAMPLE PROMPTS

1297

1298 Below are the prompts we used in Once-More for the *Producer*, *Verifier A* (Formal & Local), *Verifier*
1299 *B* (Global/Sanity), and an optional *Adjudicator*.

1300

1301 **Shared verifier SYSTEM (use for both verifiers).**

1302

1303 You are a verifier. You judge exactly one CURRENT_SPAN in a partial
1304 solution.
1305 Do not solve the whole task. Be precise and conservative.
1306
1307 Inputs:
1308 - TASK: the problem/question
1309 - ACCEPTED_CONTEXT: the already-accepted prior steps/state
1310 - CURRENT_SPAN: the producer's proposed new step(s) to add now

1311 GPQA-STYLE GRADUATE Q&A (SCIENCE)

1312

1313 **Producer (SYSTEM+USER)**

1314

1315 [SYSTEM]
1316 You are a graduate-level problem solver. Solve the problem step by
1317 step, separated by a period. Your answer should be chosen from
1318 options A, B, C, D and end with:
1319 Final answer: <A/B/C/D>
1320
1321 [USER]
1322 QUESTION:
1323 {{GPQA_QUESTION_STEM_AND_OPTIONS}}

1324 **Verifier A (Formal & Local) (USER only; use shared SYSTEM above)**

1325

1326 [USER]
1327 TASK: {{GPQA_QUESTION_STEM_AND_OPTIONS}}
1328 ACCEPTED_CONTEXT: {{PRIOR_NOTES_OR_NONE}}
1329 CURRENT_SPAN: {{PRODUCER_PARAGRAPH}}
1330
1331 You are a very strict verifier with Rubric:
1332 R1 algebraic legality (no invalid cancellations, correct radical/log
1333 rules),
1334 R2 arithmetic accuracy,
1335 R3 domain/branch/constraints respected and stated,
1336 R4 check carefully for the hold of equations/inequalities,
1337 R5 check the scientific correctness of each claim.
1338 R6 Flag missing premises, leaps, or contradictions.
1339 R7 Counterfactual statement Checking.
1340
1341 Does the input unit in the right track to achieve the goal, given
1342 the context? Verify the input unit with your role and task. Only
1343 reject the answer according to your role.
1344 The input may not necessarily solve the goal directly as there are
1345 more details in the upcoming text. If yes, answer Yes. If no, answer
1346 No and provide repair hints beginning with 'Suggestion' to improve
1347 in no more than 20 words.

1348 **Verifier B (Global/Sanity) (USER only; use shared SYSTEM above; optional)**

1349

[USER]
TASK: {{GPQA_QUESTION_STEM_AND_OPTIONS}}

```

1350 ACCEPTED_CONTEXT: {{PRIOR_NOTES_OR_NONE}}
1351 CURRENT_SPAN: {{PRODUCER_PARAGRAPH}}
1352
1353 Perform:
1354 S1 quick alternative micro-derivation or spot-check,
1355 S2 sanity bounds / physical plausibility,
1356 S3 attempt 1-2 counterexamples,
1357 S4 flag hidden assumptions.
1358
1359 Allowed error_tags:
1360 ↳ ["counterexample", "bounds", "assumption", "consistency"].
1361
1362 AIME-STYLE OLYMPIAD MATHEMATICS
1363
1364 Producer (SYSTEM+USER)
1365
1366 [SYSTEM]
1367 ↳ You are an AIME problem solver. Produce one clean step-wise
1368 derivation and end with:
1369 Final answer: \boxed{<integer 0-999>}
1370
1371 [USER]
1372 PROBLEM:
1373 {{AIME_PROBLEM_TEXT}}
1374

```

Verifier A (Formal & Local) (USER only; use shared SYSTEM above)

```

1375 [USER]
1376 TASK: {{AIME_PROBLEM_TEXT}}
1377 ACCEPTED_CONTEXT: {{PRIOR_ACCEPTED_STEPS_OR_NONE}}
1378 CURRENT_SPAN: {{PRODUCER_STEPS}}
1379
1380 Rubric:
1381 ↳ R1 algebraic legality (no invalid cancellations, correct radical/log
1382 rules),
1383 R2 arithmetic accuracy,
1384 R3 domain/branch/constraints respected and stated,
1385 R4 local entailment from prior state,
1386 R5 notation/variable hygiene,
1387 R6 if final answer present: integer 0-999 and derived quantity
1388 matches.
1389
1390 Does the input unit in the right track to achieve the goal given the
1391 ↳ context? Verify the input unit with your role and task. Only reject
1392 ↳ the answer according to your role.
1393 The input may not necessarily solve the goal directly as there are
1394 ↳ more details in the upcoming text. If yes, answer Yes. If no, answer
1395 ↳ No and provide repair hints beginning with 'Suggestion' to improve
1396 ↳ in no more than 20 words.
1397

```

Verifier B (Global/Sanity) (USER only; use shared SYSTEM above; optional)

```

1398 [USER]
1399 TASK: {{AIME_PROBLEM_TEXT}}
1400 ACCEPTED_CONTEXT: {{PRIOR_ACCEPTED_STEPS_OR_NONE}}
1401 CURRENT_SPAN: {{PRODUCER_STEPS}}
1402
1403 Perform:
1404 S1 quick recompute of the same claim via a different micro-tactic,
1405 S2 sanity bounds/mod checks (e.g., parity, sign, rough magnitude),

```

1404 S3 try 1-2 simple counterexamples consistent with constraints,
 1405 S4 flag hidden assumptions (e.g., $x \neq 0$).
 1406
 1407 Allowed error_tags:
 1408 \hookrightarrow ["counterexample", "bounds", "assumption", "consistency"].

1409
 1410 **LIVENBENCH (REASONING)**
 1411

1412 **Producer (SYSTEM+USER)**

1413
 1414 [SYSTEM]
 1415 You are an problem solver. Solve the problem step by step seperated
 1416 by period. This problem is guaranteed to have a solution. Should not
 1417 exit without finding the exact solution.
 1418 The final answer is wrapped as:
 $\backslash n <solution>...</solution>$
 1419
 1420 [USER]
 1421 PROBLEM:
 $\{ \{ LIVENBENCH_PROBLEM_TEXT \} \}$

1422
 1423 **Verifier A (Formal & Local) (USER only; use shared SYSTEM above)**

1424
 1425 [USER]
 1426 TASK: $\{ \{ LIVENBENCH_PROBLEM_TEXT \} \}$
 1427 ACCEPTED_CONTEXT: $\{ \{ PRIOR_ACCEPTED_STEPS_OR_NONE \} \}$
 1428 CURRENT_SPAN: $\{ \{ PRODUCER_STEPS \} \}$
 1429
 1430 Rubric (apply all):
 1431 R1 factual correctness of claims vs. standard
 1432 definitions/literature,
 1433 R2 local logical entailment (no leaps),
 1434 R3 unit/notation hygiene,
 1435 R4 current answer matches reasoning,
 1436 R5 the current answer is not necessarily complete.
 1437
 1438 Does the input unit in the right track to achieve the goal given the
 1439 context? Verify the input unit with your role and task. Only reject
 1440 the answer according to your role.
 1441 The input may not necessarily solve the goal directly as there are
 1442 more details in the upcoming text.
 1443 If yes, answer Yes. If no, answer No and provide repair hints
 1444 beginning with 'Suggestion' that can be concatenated to the context
 1445 to improve future answer.
 1446 The suggestion should no more than 10 words.

1447
 1448 **SVAMP**

1449 **Producer (SYSTEM+USER)**

1450
 1451 [SYSTEM]
 1452 You are an problem solver. Solve the problem step by step seperated
 1453 by period. This problem is guaranteed to have a solution. Should not
 1454 exit without finding the exact solution.
 1455 The final answer should be in the format: Final answer:
 $\backslash boxed{<integer 0-999>}$
 1456
 1457 [USER]
 1458 PROBLEM:
 $\{ \{ SVAMP_PROBLEM_TEXT \} \}$

1458 **Verifier A (Formal & Local) (USER only; use shared SYSTEM above)**
1459
1460 [USER]
1461 TASK: {{SVAMP_PROBLEM_TEXT}}
1462 ACCEPTED_CONTEXT: {{PRIOR_ACCEPTED_STEPS_OR_NONE}}
1463 CURRENT_SPAN: {{PRODUCER_STEPS}}
1464
1465 R1 algebraic legality (no invalid cancellations, correct radical/log
1466 rules),
1467 R2 arithmetic accuracy,
1468 R3 check carefully for current formulating the real life problem
1469 into math symbols, be very sensitive to negative numbers
1470 R4 check carefully for formulating the real life problem into math
1471 symbols,
1472 R5 check carefully for any unresonable number during the
1473 calculation, which will not happen in real life situation
1474 R6 Check carefully about whether the current answer is overthinking
1475 or too complex to be true in real life situation.
1476 R7 Check carefully about whether the current context model the goal
1477 correctly
1478
1479 Verify the input unit with your role and task. Only reject the
1480 answer according to rubric. Do not reject for other reasons.
1481 The input may not necessarily solve the goal directly as there are
1482 more details in the upcoming text. If yes, answer Yes. If no, answer
1483 No and provide repair hints beginning with 'Suggestion' to improve
1484 in no more than 20 words.

1483
1484 **GSM8K**
1485
1486 **Producer (SYSTEM+USER)**
1487
1488 [SYSTEM]
1489 You are an problem solver. Solve the problem step by step seperated
1490 by period. This problem is guaranteed to have a solution. Should not
1491 exit without finding the exact solution.
1492 Final answer: \boxed{<integer 0-999>}
1493
1494 [USER]
1495 PROBLEM:
1496 {{GSM8K_PROBLEM_TEXT}}

1496
1497 **Verifier A (Formal & Local) (USER only; use shared SYSTEM above)**
1498
1499 [USER]
1500 TASK: {{GSM8K_PROBLEM_TEXT}}
1501 ACCEPTED_CONTEXT: {{PRIOR_ACCEPTED_STEPS_OR_NONE}}
1502 CURRENT_SPAN: {{PRODUCER_STEPS}}
1503
1504 R1 algebraic legality (no invalid cancellations, correct radical/log
1505 rules),
1506 R2 arithmetic accuracy,
1507 R3 check carefully for current formulating the real life problem
1508 into math symbols, be very sensitive to negative numbers
1509 R4 check carefully for formulating the real life problem into math
1510 symbols,
1511 R5 check carefully for any unresonable number during the
1512 calculation, which will not happen in real life situation
1513 R6 Check carefully about whether the current answer is overthinking
1514 or too complex to be true in real life situation.

1512
 1513 → R7 Check carefully about whether the current context model the goal
 1514 correctly
 1515
 1516 → Verify the input unit with your role and task. Only reject the
 1517 answer according to rubric. Do not reject for other reasons.
 1518 The input may not necessarily solve the goal directly as there are
 1519 more details in the upcoming text. If yes, answer Yes. If no, answer
 1520 No and provide repair hints beginning with 'Suggestion' to improve
 1521 in no more than 20 words.

1522 **A.9 USE OF LARGE LANGUAGE MODEL (LLM)**

1524 We used an LLM strictly for editorial assistance at the final drafting stage. Specifically, the LLM
 1525 was used only to check for grammatical errors, fix typographical mistakes, and enhance sentence
 1526 transitions for better readability. All technical content, including ideas, algorithms, proofs/derivations,
 1527 experiments, analyses, tables/figures, and conclusions, was authored by the listed authors. The LLM
 1528 did not generate, rewrite, or materially alter any scientific claims or results.

1529 All LLM-suggested edits were manually reviewed and accepted or rejected by the authors. We
 1530 retained authorship control at all times and ensured that no technical meaning was changed. The
 1531 LLM is not an author and bears no responsibility for the paper's content. The authors assume full
 1532 accountability for all claims and results.

1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565