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ABSTRACT

Large Language Models (LLMs) often experience compounding errors during
long text generation. Early errors could propagate and lead to drift, faulty rea-
soning, or repetition. Self-correction is a promising technique for addressing this
issue. However, the existing main approaches have limitations. Supervised training
methods can build self-correcting behaviours into models, but require training
data collection and lack cross-domain generalizability. Current post-hoc iterative
refinement methods operate only at inference time, but have to wait for substantial
portions of the draft to be generated before providing feedback. Such feedback
can not guarantee effective guidance, and the same error patterns can reappear.
In this paper, we propose Once-More, a model-agnostic post-hoc self-correction
framework that intervenes during generation. Once-More leverages token-level
perplexity and verifier feedback to provide continuous, guided steering of the gener-
ation path through a logit suppression mechanism, and therefore helps accumulate
“more correct” steps throughout the generation process. Evaluation on multiple
benchmarks demonstrates that the proposed Once-More achieves state-of-the-art re-
sults when compared to representative self-correction methods. To our knowledge,
Once-More is the first post-hoc method to leverage token perplexity and external
feedback for continuous, guided self-correction.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in text generation and
complex reasoning tasks (Sun et al., 2025} [Ferrag et al.,|2025). However, their autoregressive nature
poses a fundamental challenge: during generation, LLMs can produce errors or inaccuracies that
further propagate through subsequent tokens, making errors to compound and eventually drive the
generation away from the target (Arbuzov et al., [2025; Wang et al.,|2023)). This error-compounding
issue raises serious concern when deploying LLMs in critical decision-making processes. Many
LLM-based agentic workflows suffer from reliability issues stemming from this concern, which limits
their viability for real-world deployment. (Pan et al.| [2025; \Gabison & Xian, 2025)).

To address such concerns, researchers have developed various self-correction methods which enable
LLMs to modify or revise their outputs at inference (Kamoi et al., 2024} [Pan et al., |2024). Such
methods identify errors during generation and guide models toward better responses through targeted
feedback mechanisms (Paul et al., |2023} [Tyen et al., 2023 |[Shinn et al., |2023)). The feedback on
the final output is provided via external knowledge bases (Gou et al.,|2024; [Zheng et al., |2024) or
by more capable models (e.g., GPT-4) (Koutcheme et al., 2024). However final-output feedback
is too coarse to provide effective steering, and thus these methods often fail to prevent recurring
error patterns and lead to non-convergent refinement loops (Kamoi et al., |[2024; Xu et al., [2024).
Some methods use supervised fine-tuning as an alternative to build self-correction behaviour directly
into models (Yan et al., 2025} [Liu et al. [2025; Wang et al.l [2024a)); however, they are inherently
limited by the distribution of their training data. They are susceptible to performance degradation on
out-of-distribution tasks, where uncorrected errors can cascade through the generation.

Rather than building domain-specific models with built-in self-correction, we believe that itera-
tive refinement remains the most general and practical approach. However, it requires fundamental
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Figure 1: Overview of the proposed Once-More framework (Sec. . The Producer generates
adaptive units, which are checked by Perplexity and Verifier(s). Rejected units trigger regeneration
via the combined feedback and perplexity-driven guidance, creating a continuous self-correction
process that intervenes before errors propagate.
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improvements in guidance granularity. Effective self-correction should function continuously through-
out generation, progressively steering models along better trajectories, and eventually allow “more
correct” incremental decisions to accumulate into better final outputs. Motivated by this vision,
in this paper, we propose an inference-time framework, Once-More, which performs continuous
self-correction on any LLM generation process. It transforms the LLM generation process into a
multi-agent interaction process: a Producer generates content while Verifier(s) evaluate and provide
continuous guidance. Once-More operates at the level of units of generation (e.g., clauses, sentences,
paragraphs, or code blocks). A complete generation is a sequential composition of unit generations.
When the Producer generates a unit, the framework computes its perplexity to assess potential errors.
High perplexity triggers verification for goal alignment, correctness, and consistency. Rejected units
are regenerated using evaluation feedback combined with perplexity-driven logit redistribution until
the Verifier(s) accept the unit. Figure[l|shows the high-level overview of the proposed Once-More.
The framework also supports LLM, non-LLM, or tool-augmented Verifiers.

The proposed Once-More are evaluated on various benchmarks, including Olympiad mathematics
(AIME 2024 (Art of Problem Solving, |2024azb) and 2025 (Art of Problem Solving, 2025agb)),
graduate-level science questions (GPQA) (Rein et al.| 2024)), LiveBench (reasoning) (White et al.,
2024), SVAMP (Patel et al.l [2021), and GSM8K (Cobbe et al.| [2021)). It achieves state-of-the-art
performance when compared to other self-correction methods. Our contributions are as follows:
(1) We propose the Once-More framework to perform continuous, fine-grained self-correction,
which yields State-of-the-Art performance while being more token-efficient than previous iterative
refinement methods; (2) We present a method to uniquely fuse perplexity-based uncertainty signals
with external verifier feedback. It is employed in Once-More to prevent repeated errors while
preserving model beliefs during generation. To our knowledge, the proposed Once-More is the
first post-hoc method to leverage token perplexity and external feedback for continuous, guided
self-correction; (3) Our proposed continuous guidance mechanism in Once-More enables LLMs to
perform reasoning-like corrections dynamically during generation, which helps to detect early errors
and move to better generation trajectories.

2 RELATED WORK

Error accumulation in LLMs. The problem of error propagation in autoregressive models has
been extensively studied. Classical analyses of exposure bias demonstrate that models trained on
teacher-forced prefixes often struggle at test time, leading to error compounding in long generations
(Arora et al.,|2022} [Schmidt, [2019). LLMs also suffer from the error accumulation issue, although
LLM’s error accumulation patterns are more nuanced than simple exponential decay (Arbuzov et al.,
2025). While scaling up LLMs enables the emergence of self-correction behaviours (Liu et al.|
2024; Wang et al.,|2024b), they remain unpredictable and uncontrollable at inference. To address
this concern, we propose making self-correction explicit and controllable through perplexity-guided
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intervention. Our proposed approach is model-agnostic and can be used with smaller-sized LLMs,
making it more practical for local or edge use cases.

Self-correction via iterative refinement. Several approaches can enable LLMs to revise their outputs
through iterative processes. For instance, CRITIC uses external tools to verify model outputs and
provides corrective feedback (Gou et al., 2024), Self-Refine employs models as both generators
and evaluators (Madaan et al.,2023)), and Verify-and-Edit incorporates knowledge bases for factual
correction (Zhao et al.| 2023)). While these approaches can improve response quality, they operate
on completed drafts or coarse-grained steps, and therefore could allow errors to compound before
intervention occurs. The prompt-only feedback also occasionally fails to prevent recurring error
patterns. Our proposed Once-More addresses the above concerns by intervening at a more granular
level with continuous monitoring, enabling more direct and localized feedback that has a more
effective impact on the model’s generation process.

Self-correction via supervised fine-tuning. Another line of work builds self-correction behaviours
directly into the models through training. For instance, S*c-MATH trains spontaneous self-correction
for mathematical reasoning (Yan et al.,[2025), LLaVA-SCo extends this to vision-language models
(Liu et al.l 2025)), and the learning-from-failure approach finetunes models to internalize correction
behaviours (Wang et al., 2024a)). However, their gains remain modest, and these methods require
extensive training data and are susceptible to performance degradation on out-of-distribution tasks.
To tackle such issues, our proposed framework remains model-agnostic and training-free, while
providing continuous guidance for self-correction behaviours.

Multi-agent and role-playing approaches. Formulating generation as a multi-agent interaction has
been shown to be effective for complex tasks. E.g., Reflexion equips agents with verbal feedback and
episodic memory to improve over trials (Shinn et al., 2023)), MAgICoRe combines solver, reviewer,
and refiner roles with reward models for targeted step-wise error correction (Chen et al.,[2024), and
ReAct interleaves reasoning with external actions to reduce hallucinations (Yao et al., 2023). These
methods leverage role specialization to provide feedback in different perspectives, and inspired by
their success, our proposed Once-More adopts this idea in its Producer-Verifier architecture. However,
their coarse-grained feedback and prompt-only interactions cannot guarantee effective steering. We
therefore plan to enhance the multi-agent system with continuous monitoring and direct probability
intervention.

Decoding time steering. The approach that manipulates sampling at inference time offers another
avenue for controlling generation behaviour. E.g., GeDi guides generation toward desired attributes
with discriminative models (Krause et al., |2020), Contrastive Decoding reduces hallucination by
subtracting weaker model logits (Li et al., [2022; |(O’Brien & Lewis| 2023)), and DoLa sharpens
factuality through layer-wise contrast (Chuang et al.,2023)). Recent work on Cautious Next Token
Prediction demonstrates that perplexity-based mechanisms can effectively guide generation decisions
(Wang et al.| [2025b), providing a theoretical basis for our approach. However, existing methods
only operate globally or target high-level attributes, lacking fine-grained control. Inspired by these
methods, our proposed method manipulates sampling at inference time, but also employs localized
logit manipulation to perform a more effective generation steering.

3 ONCE-MORE FRAMEWORK

We now present Once-More, a model-agnostic framework that performs continuous self-correction
during LLM generation. The key idea is simple: rather than waiting for a complete output before
providing feedback, we monitor generation quality at intermediate steps and intervene immediately
when potential errors are detected. This section describes the framework’s architecture (Sec. [3.1),
how it monitors generation quality (Sec. [3.2)), and how it guides corrections (Sec. [3.3).

3.1 FRAMEWORK ARCHITECTURE

As shown in Figure |1} Once-More transforms standard LLM generation into a monitored multi-agent
process with three core components:

Producer. A frozen, pre-trained LLM that generates content incrementally in units (adaptive chunks
such as sentences, paragraphs, or code blocks). The Producer operates at inference time without
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a b ~/ Accepted unit 2 Step 2: The vertical sums
d € f X Rejected unit 3 ‘ atd+b+etc+f=99
Feedback (The vertical sums must involve multi-digit numbers, not single digits. Re-express the vertical sums)
# of combinations that: )
N Regenerated The problem says, “the sum of the three numbers formed by reading top to bottom is 99". That means:
(1) | abc |+ def = 999 X Rejected unit 3 - The first column forms a number: 100a + 104 ... but that would be too large.

integer  integer

Feedback (Clarify how the top-to-bottom numbers are formed (e.g., single-digit numbers or multi-digit).)

2)| ad + be |+ cf |= 99
@ s Assume numbers are formed by single-digit value.

/
%

Accepted unit 3
integer integer  integer v i This is impossible since the maximum sum of three digits is 9 + 9 + 9 = 27. So this interpretation is invalid
The number in box is a multi- v/ Accepted unit 4 Let’s try a different interpretation: numbers are formed as a two-digit number.
digit number
~/  Accepted unit 5 The sum of the three column-wise two-digit numbers is **99*x:
LV

Accepted unit 6 (10a + d) + (10b + e) + (10c + f) = 99

Figure 2: Tllustration example: The proposed Once-More corrects a mathematical interpretation
error on AIME 2024 Problem 83. It rejects an incorrect single-digit interpretation (unit 3), provides
feedback, and guides the model to reconsider. The model then explicitly reasons why the initial is
impossible and pivots to the correct two-digit interpretation, demonstrating intermediate reasoning.

any training or fine-tuning. The only requirement is access to token-level probability scores during
decoding, which many providers already expose through their APIs. This requirement matters only
for our regeneration mechanism and doesn’t constrain the choice of model architecture.

Verifier(s). One or more agents that evaluate each provisional unit against the task Goal and
constraints, returning a binary decision (accept or reject) along with optional feedback F' in natural
language or structured format. Verifiers may be LLMs, non-LLM programs, or tool-augmented
modules as in tool-using agents (Yao et al.,[2023; [Shen et al., [2023} [Shen), 2024).

Generation Units. Rather than working with fixed token windows, Once-More adapts its interven-
tion granularity to the task context. For mathematical reasoning, a unit might be a single equation or
derivation step; for code generation, a function or block; for prose, a sentence or paragraph. Units are
identified using syntactic markers (punctuation, indentation) or learned boundary predictors. This
adaptivity enables intervention at the most appropriate granularity for each task.

The Generation-Verification Loop. The proposed Once-More framework operates through contin-
uous generation, monitoring, and correction loops. Figure [2] demonstrates this on a mathematical
problem, showing how the framework catches and corrects an incorrect interpretation mid-solution.
Let Goal denote the task and Context the generation history that has been verified and accepted. The
framework operates through the following loop:

1. Generate: The Producer generates a provisional unit Y = [y1, .. ., y,] conditioned on (Goal,
Context), where y; is one output token at time 4.

2. Monitor: Compute the unit’s perplexity PPL,(Y) as an uncertainty signal (refsub-
sec:perplexity).
3. Decide:

o If PPLyy(Y) < Pip (low uncertainty), trust the unit and append to Context.
o If PPLyyit(Y) > Piy, (high uncertainty), invoke Verifier for explicit checking.

4. Verify & Correct:

* If accepted: Append to Context and create a checkpoint.

o If rejected: Trigger guided regeneration (Sec. using verifier feedback and probability
adjustments.

* If regeneration also fails: Roll back to the previous checkpoint and regenerate from there, as the
error may have originated earlier.
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Figure 3: Distributions of the mean top-10% perplexity for correct vs. incorrect answers across

benchmarks. Incorrect units consistently exhibit higher perplexity.

This continuous monitoring enables early error detection and correction before mistakes compound
into larger failures.

3.2 MONITORING GENERATION QUALITY VIA PERPLEXITY

To detect potential errors during generation, we need a real-time quality signal that doesn’t require
external verification for every token. We leverage perplexity, which is a standard language modeling
metric that measures prediction uncertainty (Jelinek et al., 1977} |(Christopher Manning| [2021;Hugging
Face, [2025)). Recent work shows that entropy-based metrics provide reliable signals for response
quality (Fu et al., 2025; Yang et al.,|2025b; [Wang et al., [2025a), which motivates our approach.

Intuition. When a model confidently predicts the next token (high probability on one candidate),
perplexity is low. When probability mass spreads across multiple candidates, perplexity increases,
signalling uncertainty. High uncertainty often correlates with potential errors, indicating the model is
likely unsure what to generate next, and it’s probably on the wrong path.

Token-Level Perplexity. At each position ¢, the Producer outputs a probability distribution g;(v)
over the vocabulary V. Rather than computing perplexity over the entire vocabulary (expensive), we
approximate using the top- K most likely tokens .S; = {th, co, U, x } (Holtzman et al., 2018} [Fan
et al.l [2018):

ey

=1

K
1
PPLY) = exp (K Z(—logqt(vt,i))>

This efficiently captures local uncertainty: PPL%K) ~ 1 when one token dominates, and increases as
mass spreads across alternatives.

Unit-Level Aggregation & Verification Trigger.
level perplexities:

ForaunitY = [y1,...,yn], Wwe average token-

PPLyi(Y) = %ZPPLEK) @
t=1

Verification is triggered when PPLy (Y) > P, where Py, is calibrated on a small held-out set

to target a desired verification rate (e.g., check the top 25% most uncertain units). Details of the

calibration procedure are in Appendix Figure [3| empirically validates this approach: on our

benchmarks, incorrect units consistently show substantially higher perplexity than correct ones,

demonstrating clear separation between reliable and problematic generations.

3.3 GUIDED REGENERATION VIA PROBABILITY ADJUSTMENT

When a unit is rejected, simply asking the model to ’try again” often produces the same mistake,
since the model’s learned biases can lead it down the same path (Xu et al.,|2024). The model may
acknowledge the feedback but still sample the same tokens due to strong learned priors. To break this
cycle, Once-More performs guided regeneration: it (1) incorporates verifier feedback into the prompt,
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and (2) directly adjusts the token probability distribution to suppress previously chosen tokens and
explore alternatives.

Overview of the Adjustment Mechanism. The adjustment process operates at the token level
during regeneration:

1. Identify high-uncertainty tokens: Convert the rejected unit’s token-level perplexities into
position-wise suppression strengths; therefore, tokens with higher uncertainty receive stronger
suppression.

2. Align attempts: Match tokens between the rejected attempt and the current regeneration attempt
to determine which tokens to suppress at each position.

3. Redistribute probability mass: At each position, decrease the probability of the previously
chosen token and proportionally increase alternatives, ensuring a valid probability distribution.

We now detail each step.

Step 1: Converting Perplexity to Suppression Strength. Let [z1,...,z,_] denote the rejected
unit with token-level perplexities {PPL; }.—,. We normalize these into suppression weights:

(1) PPL; — min(PPL)

S €[0,1 3

Y max(PPL) — min(PPL) 7= © 1 )
where ¢ is a small constant for numerical stability. This maps perplexity to a [0,1] scale: tokens with
high perplexity (high uncertainty) get suppression weights near 1, while confident tokens get weights
near 0.

Step 2: Aligning Regeneration with Previous Attempt. When regenerating, the new token
sequence [y1, . . ., y,] may differ in length and content from [z1, ..., z,_]. We establish a monotone
alignment to transfer suppression weights: for each position j in the new attempt, find the first
matching token x; from the previous attempt (if any), creating an alignment matrix A € {0, 1}"-*".
This identifies which token should be suppressed at each regeneration position:

taroet. — 4 T if a match exists at position ¢
gl = z;, otherwise (use position-based fallback)

“

To avoid over-suppressing tokens that matched only by coincidence (e.g., common words appearing
at distant positions), we apply distance decay:

i = Ay-exp(= (54) ") -l ®)

where 7 controls the decay rate and v € {1, 2} the decay shape. This reduces suppression strength
for matches far from their original position.

We further apply Gaussian smoothing to prevent over-localization, spreading suppression signals

across nearby positions (details in Appendix [A.3). The final effective suppression at position j is:
aj = a-uf, a€c(0,1) 6)

where u blends the direct and smoothed suppression signals, and « is a global scaling factor.

Step 3: Probability Redistribution. Let q](-Q) (v) denote the Producer’s original next-token distribu-
tion at position j during regeneration. We adjust this distribution to suppress the target token while

boosting alternatives:

1—a;r;(v), v=target; (suppress)
wi(0) = { 75 (v) get, (supp -

1+ kj5r; ()8, wv# target; (boost)
where 7 (v) = qj(?) (v)/ max(e, q_](l) (v)) measures how much the model’s belief about token v has
shifted between attempts. The coefficient ; is computed to preserve probability mass:

oy rj(target;) q](?) (target;)

TS P’

uztarget ;

(®)
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ensuring that the total probability removed from the target equals the total added to alternatives
(derivation in Appendix |A.4). The parameter 5 > 0 controls how redistributed mass is allocated and
is set to 1 for all our experiments.

The final adjusted distribution is:

¢\? (v) 5(v)
S ey @) (w) s;(u)

This is a valid probability distribution (non-negative, sums to 1) that explores alternatives while
respecting the model’s learned beliefs.

gj(v) = &)

Regeneration Process. With the adjusted distribution §;(-), the Producer samples a new unit. The
verifier feedback is also appended to the prompt context, providing semantic guidance alongside
the probability adjustment. If this regenerated unit is accepted, it becomes the new checkpoint. If
rejected again, the framework rolls back to the previous checkpoint (before the problematic unit) and
regenerates from there, recognizing that the error may have originated earlier in the generation. By
combining perplexity-driven uncertainty detection with probability-level intervention, Once-More
achieves continuous, fine-grained self-correction that prevents error accumulation during generation.

4 EXPERIMENTS

4.1 SETUP AND BASELINES

Due to the rapid development of the LLM field, prior self-correction studies employ diverse experi-
mental setups across different models and benchmarks. To establish reproducible comparisons, we
selected the popular open-sourced Qwen3 family of models (4B, 8B, and 14B parameters) as our base
models (non-thinking) (Yang et al.,[2025a)). These model sizes were chosen for three key reasons:
(1) they span small to medium scales, revealing how self-correction scales with capacity; (2) they
represent practical compute-constrained scenarios; (3) Qwen3 offers state-of-the-art performance at
these sizes, ensuring our results are relevant to current practice.

We evaluated Once-More on six benchmarks: AIME 2024 (Art of Problem Solving} 2024 ajb) and
2025 (Art of Problem Solving, 2025azb)) for complex mathematical reasoning, LiveBench (reasoning
subset) (Rein et al.|[2024)) for general reasoning, GPQA Diamond (Rein et al.,[2024) for graduate-level
science questions, and SVAMP (Patel et al.,|2021)) and GSM8K (Cobbe et al., 2021) for arithmetic
word problems. This benchmark selection covers diverse reasoning types and difficulty levels.

We compare the proposed Once-More with four representative baselines:

* Raw: Direct generation without self-correction.

* Self-Refine (Madaan et al., [2023)): The most widely-cited iterative refinement method,
representing prompt-based self-correction approaches.

e CRITIC (Gou et al., 2024): Incorporates external tools for verification, representing tool-
augmented self-correction methods and most recent post-hoc method.

+ S3¢-MATH (Yan et al., 2025): A supervised fine-tuning approach, representing training-
based self-correction methods.

Here, we implemented the Self-Refine and CRITIC baselines according to their references. For
Self-Refine, the number of refinement iterations was set to £ = 3. For CRITIC, since no suitable
resources were specified in the original work, we adapted the method by leaving the external evidence
field empty in math experiments. On the GPQA Diamond benchmark, CRITIC uses the first 1000
words from web search results as external evidence. S?c-MATH results are taken from their published
papers on comparable models. All reported results represent means over three independent runs. For
Once-More’s default configuration, we set i =5 for top-K perplexity calculation, with suppression
factor a = 1.0, redistribution sharpness 5 = 1.0, distance decay 7 = 1, diffusion bandwidth o = 1
and perplexity threshold n = 25% fixed. The verifier feedback is generated from an agent using the
same LLM as the producer agent across all experiments.
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Table 1: Accuracy performance (mean accuracy % =+ std. dev. over 3 runs) comparisons between the
proposed Once-More and baseline self-correction methods across multiple benchmarks. Results are
for Qwen3 models of varying sizes (4B, 8B, 14B parameters). Once-More consistently outperforms
iterative refinement approaches (Self-Refine, CRITIC) and raw generation.

AIME24  AIME25 LiveBench(Reason.) GPQA Diamond

Raw 133 £33 20.0+3.3 203 £1.2 439 1.3

Qwen3 4B SelfRefine  13.3 £3.3  18.9 £3.8 21.0 £0.9 439 +1.0
CRITIC 14.44+19  20.04£3.3 20.7£1.3 48.9+£0.8

ours 16.7+3.4  23.3+34 33.0£1.0 47.5£0.9

Raw 244+19 16.7£3.4 30.5+0.9 45.4+0.9

Qwen3 8B SelfRefine  25.6£3.9  15.5£3.9 31.2+1.3 47.0£1.7
W CRITIC 244+19  18.8+£3.9 31.5+1.3 48.9£1.5
ours 33.3+£33  24.4+£19 39.5£1.3 49.5+£1.7

Raw 26.7£3.3  18.8£3.8 44.0£1.3 48.0£1.5

Qwen3 14B SelfRefine  28.8+£3.8  23.3£3.3 46.5£1.5 49.2£1.0
CRITIC 28.8+£1.9 222439 45.5£1.5 50.5+1.3

ours 36.7£3.3  26.7£3.3 52.5+1.8 55.6£1.6

Table 2: Accuracy performance comparisons with supervised fine-tuning methods on mathematical
benchmarks. Once-More achieves competitive or superior performance without any training.

Llama 3 8B Qwen2 Math 7B
Benchmark  MetaMath ssc s3c o MetaMath ~ S3C s3c o
SFT  w/oR& MathQA -  SFT  w/oR& MathQAa %
SVAMP 81.4 80.5 81.8 820 856 86.7 874  89.0
GSMSK 81.1 81.7 829 79.0  84.1 84.4 848 852

4.2 MAIN RESULTS

Table[T]presents performance comparisons across the AIME24/25, LiveBench (reasoning), and GPQA
Diamond benchmarks. Our proposed Once-More consistently outperforms all baselines across model
sizes and task types. On mathematical reasoning tasks (AIME 2024/2025), Once-More achieves
3.4 to 10 point gains over raw generation, with the 14B model reaching 36.7% on AIME 2024 and
26.7% on AIME 2025. In contrast, Self-Refine and CRITIC show minimal improvements, gaining
at most 2.1 to 4.5 points. For general reasoning (LiveBench), Once-More delivers 9.0 to 12.7 point
improvements, while baselines achieve less than 1 point gain. On GPQA Diamond, all model sizes
show consistent 3.6 to 7.6 point improvements with Once-More.

Tablecompares Once-More against supervised fine-tuning approaches, including MetaMath-SFT
and S°c-MATH. Once-More achieves the best performance on SVAMP across both model families
(82.0% for Llama 3 8B, 89.0% for Qwen2 Math 7B) without any training. While S3c-MATH
outperforms Once-More on GSMS8K for Llama (82.9% vs 79.0%), Once-More leads on Qwen2 Math
(85.2% vs 84.8%). The results demonstrate that Once-More can match or exceed specialized training
methods while maintaining model-agnostic deployment.

4.3  ANALYSIS AND ABLATION STUDY

Scaling effects in self-correction. On AIME 2024, Once-More’s improvements scale progressively:
a 25.6% relative gain for 4B, 36.4% for 8B, and 37.4% for 14B models. This scaling pattern
suggests that self-correction benefits from richer internal representations in larger models. They can
generate more informative feedback and possess more nuanced token distributions for effective logit
redistribution. The same pattern holds across AIME 2025, where gains increase from 16.5% (4B) to
42% (14B). This indicates that Once-More can scale with model capacity, unlike post-hoc methods
that show diminishing returns.
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Figure 4: Run time comparisons across tasks on Qwen3-14B.

Table 3: Ablation study on Once-More components using Qwen3-14B. Both verifier feedback and
logit redistribution contribute substantially, with the best accuracy performance from combining both.

Method AIME24 GPQA
Raw 26.7 48.0
w/o Redistribution 33.3 51.5
w/o Feedback 30.3 48.4
Full Once-more 36.7 55.6

Small models and the feedback quality problem. Existing self-correction methods do not work
on smaller models. Self-Refine shows no improvement on the 4B model for AIME 2024 and actually
degrades performance on AIME 2025 for the 8B model (16.7%—15.5%). CRITIC fares slightly
better but still achieves minimal gains. This is likely due to smaller models’ limited capabilities
to produce meaningful feedback on long outputs. Once-More mitigates this by combining verifier
feedback with logit redistribution, ensuring corrections happen even when feedback quality is low.
The finer unit-level granularity also makes feedback inherently easier for verifiers to provide.

Mathematical reasoning improvement. On AIME24 and AIME2S5, Once-More substantially
outperforms CRITIC and Self-Refine. This is because mathematical errors are unforgiving; a single
misstep can invalidate an entire solution. This makes existing post-hoc methods less reliable as
they must locate the faulty step in a complete solution and regenerate a full answer. In contrast,
Once-More’s continuous monitoring catches mistakes as they occur, enabling correction at the point
of failure rather than after completion.

Efficiency analysis. Figure [ compares wall-clock time and token consumption across methods
on Qwen3 14B. Despite its regeneration cycles, Once-More demonstrates competitive wall-clock
time, matching or outperforming Self-Refine and CRITIC across all tasks while achieving superior
accuracy. For token usage, Once-More consistently achieves the lowest consumption among self-
correction methods, using 17-21% fewer tokens than Self-Refine on AIME tasks. This efficiency
advantage persists across other benchmarks. Notably, GPQA Diamond exhibits shorter generations
across all methods, providing fewer opportunities for continuous intervention and partially explaining
the smaller performance gains on this task. Overall, Once-More achieves superior accuracy without
incurring additional computational costs compared to existing self-correction approaches.

Effects of verifier feedback and logit redistribution Table [3] evaluates the contributions of
feedback and logit redistribution on Qwen3-14B. Removing redistribution but keeping feedback
yields 33.3% on AIME24 (+6.6) and 51.5% on GPQA (+3.5). Removing feedback but keeping
redistribution gives 30.3% (+3.6) and 48.4% (+0.4). The full system reaches 36.7% and 55.6%, which
are gains of +10.0 and +7.6 over raw. The effects are roughly additive on AIME24 and clearly more
than additive on GPQA, suggesting that feedback and redistribution resolve different failure modes:
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Table 4: Unit length ablation study using Qwen3-14B, with mean accuracy (%)
=+ std. dev. over 3 runs.

Unit length (sentences)
Benchmark 1 2 4 32 64 128

AIME24 36.6+33 343+19 355+£19 300+£27 26727 267+27
LiveBench 523 +1.2 521+10 523+12 498+17 503+13 453£0.6
GPQA-D 556+£18 555+13 561+15 497+£10 493+03 500+£0.7

feedback supplies semantic guidance about the error, and redistribution enforces exploration away
from the previously chosen tokens so that the guidance actually changes the trajectory.

Effects of answer unit granularity Table @ evaluates the contributions of answer unit granularity
on Qwen3-14B model under default hyper-parameter setting. The results do not indicate significant
performance differences for small unit lengths (< 4 sentences). This shows that the proposed Once-
More framework is robust under fine-grained segmentation. However, when the unit length increases
significantly (> 32 sentences), performance drops across all three benchmarks and converges to the
performance of the raw model (without Once-More) at a unit length of 128.

Table 5: Accuracy (%) results under different Producer—Verifier configurations and raw output.

Producer: Qwen-14B ‘ Qwen-4B
Verifier: 14B 8B 4B Raw | 14B 8B 4B Raw

AIME24 36.6 36.6 30.0 266 |333 233 167 133
LiveBench 525 495 465 440 | 410 385 33.0 203
GPQA-D 55.6 515 50.0 48.0 | 540 525 475 439

Asymmetric settings of Producer/Verifier Table 3] presents the results using both configurations
of the strong-producer / weak-verifier and the weak-producer / strong-verifier. Experiments conducted
under default hyperparameters. Results show that, with a strong Producer (Qwen-14B), performance
degrades only mildly with weaker verifiers (4B/8B), remaining substantially better than the raw
baseline. With a weak Producer (Qwen-4B), increasing verifier strength (using 14B) yields massive
improvements across all benchmarks.

Comprehensive ablation study for hyper-parameters suppression «, distance decay factor 7, diffusion
bandwidth o, and perplexity threshold 7 can be found at Appendix.

5 CONCLUSION

We presented Once-More, a model-agnostic, training-free framework for continuous self-correction
during generation, which monitors uncertainty at the unit level, invokes verifier feedback when needed,
and enforces exploration via perplexity-guided logit redistribution. This fine-grained, intervene-as-
you-go design efficiently reduces error propagation and turns incremental improvements at each
unit into stronger end-to-end generations. When tested on diverse benchmarks and model sizes, the
proposed Once-More consistently outperforms post-hoc refinement baselines while remaining token-
efficient, demonstrating that controllable, inference-time steering can yield reliable gains without
additional training. Despite these gains, we acknowledge specific limitations: the framework may
struggle to trace errors rooted deep in the generation history, potentially leading to regeneration loops;
confident errors (false negatives) may occasionally bypass the perplexity trigger; and the system’s
performance ceiling remains influenced by verifier quality. Future work will focus on addressing
these challenges through dynamic rollback mechanisms and adaptive thresholding.

10
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide comprehensive implementation details through-
out the paper and supplementary materials. The Once-More framework’s complete algorithmic
description appears in Appendix with mathematical formulations for perplexity computation
(Section[3.2)) and logit redistribution mechanism (Section [3.3)). Experimental setup details, includ-
ing all hyperparameters (K = 5, a = 1.0, § = 1.0), model specifications (Qwen3 4B/8B/14B),
and benchmark descriptions are provided in Section We also detail our implementation pro-
cedures for Self-Refine and CRITIC, including specific adaptations for mathematical tasks. All
experiments use publicly available models and benchmarks (AIME 2024/2025, LiveBench, GPQA
Diamond, SVAMP, GSM8K) with standard evaluation metrics. We report results averaged over
three independent runs to account for stochastic variation. An anonymous GitHub repository has
been created. It will be used to host the complete implementation of Once-More after this work
is published. It will include the Producer-Verifier architecture, perplexity monitoring system, logit
redistribution algorithm, and scripts to reproduce all experimental results. The repository is available
at: https://anonymous.4open.science/r/once—-more—-F54C/
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A

Al

APPENDIX

ONCE-MORE ALGORITHM

Algorithm 1 Once-More Framework

Require: Producer LLM, Tokenizer, Verifier set R, Goal z, role prompt, max tokens 7y,,x

1:

2:
3:
4:

@R

10:
11:

12:
13:
14:
15:
16:

Init:
Build chat prompt from (role prompt, x);
Encode to token id: step_ids.
Set past < @, Output < 0, tokens < 0. consecutive fails < 0
Initialize ckpt_stack < [(0, step_ids)], supp-stack <— [None], suppression <— None.
for: = 1to T,.x do
Propose: Generate sentence s and update (past, step_ids, suppression).
Monitor:
Compute reliability — (ok, A).
Update supp_stack with (X, 1.1, ¢1.1.).
Update tokens <— tokens + L.
if not ok and ¢ > 1 then
Verify: Verifier judge (accept, F') < Judge(R, z, Output, s).
if not accept and consecutive fails < 4 then
Rollback & Guide:
Restore last checkpoint (k*, ids*);
set suppression from supp_stack;
trim past to £*;
reset step_ids < ids*;
pop stacks;
append feedback F' to step_ids;
consecutive fails += 1
continue.
end if
end if
Commit:
Append s to Output;
push new checkpoints to ckpt_stack and supp_stack;
reset suppression <— None.
reset consecutive <— 0
if last token of step_ids is eos or tokens > T}, then
break
end if
end for
return Output
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A.2 QUANTILE CALIBRATION FOR THE RELIABILITY THRESHOLD

We set the verification trigger by calibrating a unit perplexity threshold from a short, held-out run.

Inputs and unit count. For each calibration prompt ¢ = 1,. .., D, run the Producer once without
verification and compute a unit-level perplexity P,y for every emitted unit (as in Section[3.2). If the
i-th output contains U; units, it contributes U; scalar values. The total number of calibration units is

D
M = ZUi.
=1

Collect all unit perplexities as { P(™ }M_, .
Empirical quantile. Form the empirical distribution by sorting the values themselves in ascending
order (this sorting step ignores the original time order), yielding the order statistics

Pay = Py = -+ = Pany.

Fix a target verification rate ) € (0, 1) so that roughly the largest ) fraction of units will be verified
at run time. Set ¢ = 1 — 7 and compute

h=1+(M-1)q, k= |h], v=h-—Fk,
then define the calibrated threshold
P(l)v h < 1,
P = < Pan, h> M,
(1 =7) Py + v Pu41), otherwise.

At inference time, verify a provisional unit Y whenever Py, (Y) > Pyy,.

A.3 MATHEMATICAL PROPERTIES OF THE FRAMEWORK

We now establish formal properties of the Once-More framework’s perplexity computation and
probability adjustment mechanism.

A.3.1 PROPERTIES OF PERPLEXITY-BASED MONITORING

Property 1 (Perplexity Lower Bound). For any position j and K > 1, the token-level perplexity
satisfies PPL;K) > 1.

Proof. By definition, PPL;K) = exp(ANLLgK)) where

K
1
ANLL{ = = 3 (~log g (1)) (10)

i=1

Since ¢;(v;;) € (0,1] for valid probabilities, we have —logg;(v;;) > 0. The lower bound of
1 is achieved when K = 1 and g; places all mass on a single token (i.e., g;(v;1) = 1), giving
—log(1) = 0 and exp(0) = 1.

Property 2 (Sensitivity Control via K). Larger values of K increase the sensitivity of perplexity
to distribution spread, while smaller values focus on top candidates.

Justification. When K is small, PPLg-K) reflects only the most probable tokens. If the top token has a
high probability, perplexity remains low even if tail probabilities are spread. As K increases, more of
the distribution is captured, increasing sensitivity to uncertainty in lower-ranked alternatives. This
creates a trade-off: larger K detects subtle uncertainties but increases variance; smaller X provides
conservative, stable estimates.
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A.3.2 PROPERTIES OF GUIDED REGENERATION

Property 3 (Mass Balance). Given suppression factors satisfying 0 < a;r; (targetj) < 1 and
redistribution coefficient ~; as defined in Section the probability mass removed from the target
token exactly equals the mass added to alternatives before normalization.

Proof. See Appendix for the complete derivation of «;, which explicitly enforces this constraint.

Property 4 (Valid Probability Distribution). The adjusted distribution ¢ (-) is a valid probability
distribution (non-negative, sums to 1).

Proof. By construction:

1. Non-negativity: For the target token, s;(target;) = 1 — a;r;(target;) > 0 by the constraint
ajrj(target;) < 1. For alternatives, s;(v) = 1+ rirj(v)? > 0 since k; > 0 (as long as
alternatives exist) and r;(v) > 0. Since qj(?)(v) > 0 for all v, we have qJ@)(v)sj (v) > 0.

2. Normalization: The denominator ), _,, q]( )( )s;(u) > 0 by non-negativity and the fact that

qj(?) is a valid distribution. The normalization explicitly ensures > ., ¢;(v) = 1.

Property 5 (Monotone Suppression). For fixed q](?) and importance ratios r;, the adjusted proba-
bility g; (target;) strictly decreases with a; within the admissible range.

Proof. From the definition:

(2)
 (target. ) (1 — ar;(target.
~j(tI' tj) qJ ( 4 _])( J ]( g J)) (11)

> a7 (w)s;(u)

Taking the derivative with respect to «; (applying the quotient rule and using the fact that «; depends
on ), one can show that:

0q; (target .
QJ( 4 ]) <0

Oa; 12)

The key insight is that increasing o; directly reduces the target token’s weight while increasing
alternatives’ weights, creating a double effect.

Property 6 (Controlled Exploration via 5). The tempering exponent /3 controls the distribution
of redistributed mass:

* 3 = 0: Mass spreads uniformly across all alternatives

* 3 = 1: Mass allocates proportionally to importance ratios r;(v)

* 3 > 1: Mass concentrates on tokens with the largest importance ratios

Justification. The boost factor for alternatives is 1 + #;7;(v)”. When 3 = 0, this becomes 1 + &
(constant across all alternatives), distributing mass uniformly. As 3 increases, r; (v)? amplifies
differences: tokens with r;(v) > 1 (model now favours more) receive exponentially more boost,
while tokens with r;(v) < 1 receive less. This creates an exploration-exploitation trade-off controlled

by 5.

Property 7 (Stability of Adjustment). When q](?) remains close to q](l) and § < 1, the KL
divergence between the adjusted and original distributions scales linearly with maximum suppression:

KL(q; | ¢/”) = O(max) (13)

Proof sketch. The KL divergence is:

L(q |l ¢’ qu ) log ”) (14)

¢\ (v)
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When «; is small, s;(v) ~ 1 for all v, making §;(v) ~ q] ( )/Z where Z ~ 1. A Taylor expansion
around a;; = 0 shows that the leading term is linear in c;. The condition 5 < 1 ensures that the
redistribution doesn’t create sharp peaks that would increase divergence. For detailed calculation,
note that:

qj(v)
")

=logs;(v) —logZ = sj(v)—1—(Z—-1) (15)
where both s;(v) — 1 and Z — 1 are O(«;).

Property 8 (Alignment and Diffusion Regularization). The combination of distance-decayed
alignment and Gaussian diffusion prevents both over-localization and excessive spread of suppression
signals.

Justification. The distance decay exp(—(|¢ — j|/7)7) reduces suppression for tokens matched far
from their original position, preventing spurious long-range alignments from causing inappropriate
suppression. The Gaussian diffusion with bandwidth o then smooths the resulting signal:

N (=% .S
Uy = Z—] ;exp< 557 U; (16)

As o0 — 0, this reduces to position-wise suppression (locahzed) As o increases,
suppression spreads to neighboring positions (regularized). The ﬁ]nal blend u} = 0.54;" + 0.5u;
balances both effects, preventing over-fitting to specific positions while mamtammg locallty

A.4 DERIVATION OF THE REDISTRIBUTION CONSTANT

We now derive the formula for «; that ensures probability mass conservation during the adjustment
process.

Setup. At position j, we adjust the original distribution q(-2)

;5 (v) by applying scaling factors s;(v):

COR FO a7
where:

* a; € (0,1) is the suppression strength

e ri(v) = qj( )( )/ max(e, cjgl)(v)) is the importance ratio

* 3 > 0 controls redistribution sharpness

* ; is the redistribution coefficient to be determined

Mass Conservation Constraint. For a valid probability distribution, the total probability mass
before and after adjustment must be equal. Define:

Mass removed from target:

AT = q(42)(targetj) - (-2)(targetj) - 8 (target;) (18)
=4 )(target ) — qj( )(targetj) (1 — ayjry(target;)) (19)
= a;rj(target;) - q (2 )(target ) (20)
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Mass added to alternatives:

at= 3 [dPw s - ¢ w)] @1
u;étargetj
= Y [P @+ ) - P ()] 22
utarget
= @) () - ki1 (w)? 23
Z a; (u) - Kr;(u) (23)
utarget;
=r > a7 (W) ) (24)
u;tlarget
Solving for ;. Setting A~ = A™ for mass conservation:
arj(target;) - ()(target)—nj Z q](?)(u).rj(u)ﬁ (25)
utarget;

Solving for x;:

(2 )(target )

) -7 (u)?

ayr(target; ) q; 26)
D (u

Ry =
Z u #larget q 7

Normalization. After applying the scaling factors, we normalize to obtain the final distribution:

¢\? (v) - 55(v)
G;(v) = J (27)
L ST

By construction (mass conservation) the numerator of the normalization constant equals:

Zq (u) = ¢\ (target;) - s;(target;) + Y g7 (u) - 5;(w) (28)
utarget ;

[”(target) A*}+ 3 P+ At (29)
uFtarget ;

Z @ (u) + (AT — A7) (30)

:1+0:1 31)

Thus, the distribution is properly normalized even before the explicit normalization step, confirming
that our choice of k; correctly preserves mass.

Numerical Safeguards. In practice, we implement several safeguards:

* Use ¢ = 10~ in importance ratios to avoid division by zero
 Clip a7 (targetj) to ensure it remains strictly less than 1

* If the denominator in ; is extremely small (no viable alternatives), either reduce 3 toward O to
spread mass broadly or cap r; and trigger a fresh generation attempt

* Verify that ) _ qj@ (u)s;(u) > 0 before normalization
A.5 ABLATION STUDY

A.5.1 ANALYSIS OF SUPPRESSION STRENGTH «

The ablation study in « (suppression strength) is catried out using the Qwen-14B model on AIME24,
Livebench, and GPQA-Diamond. Results are reported in Table [6l from a single run. All other parame-
ters are chosen as the default value.
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Table 6: Ablation study on suppression strength o using Qwen3 14B. Results from a single run.

a=01 a=05 a=1 a=15 a=2
AIME24 30.0 33.3 36.6 36.6 36.6
LiveBench 49.5 52.5 54.5 54.5 54.0
GPQA-D 50.5 51.5 52.0 52.5 51.0

For all benchmarks, performance is relatively stable for suppression strengths « >1. While a small
suppression strength (a = 0.1) dilutes the effect of our proposed Once-More Framework and achieves
the worst performance in the ablation study.

A.5.2 ANALYSIS OF DISTANCE DECAY FACTOR T

The ablation study on 7 (distance decay factor) is conducted by Qwen-14B model on AIME24,
Livebench and GPQA-Diamond. The granularity of 7 is set to 0.01 (extremely small 7 representing
decay to 0, suppression only works on the target token in this specific position), 0.5, 1, 1.5 and 100
(extremely large 7 representing no decay, the target token will be equally suppressed regardless of its
position). Results are reported in Table [7]from a single run. All other parameters are chosen as the
default value.

Table 7: Ablation on distance decay factor 7. Accuracy from single run.

Benchmark 7=001 7=05 7=1 7=15 7=100
AIME24 233 36.6 36.6 36.6 30.3
LiveBench 43.5 52.5 52.5 52.0 50.5
GPQA-D 45.5 54.5 55.0 55.0 52.5

The ablation results show a very interesting phenomenon. Without distance decay (an extremely
small 7 = 0.01), model performance decreases significantly, becoming even worse than the raw model
baseline. Under this setting, the Once-More framework only suppresses the target token if it is in
the exact same position as in the previously rejected sequence. The model sometimes finds a trick to
regenerate. Assuming this is the previously rejected unit:

[ |
This sequence contains an error and was therefore rejected

Producer first generates a few other words and then repeats exactly the same sequence as the previously
rejected one, just like:

Got it! This sequence contains an error and therefore got

— rejected

Since the position is mismatched by these beginning words, the later regenerated sequence is not
suppressed at all. However, this will be subsequently rejected by the reviewer, causing the model to
get stuck in a loop until the maximum token limit is reached.

Table 8: Ablation on diffusion bandwidth o. Accuracy from a single run.

Benchmark o0=0.1 o=1 oc=5 oc=10
AIME24 33.3 36.3 26.6 30.0
LiveBench 52.5 55.0 48.5 47.5
GPQA-D 50.5 52.5 49.0 49.5
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A.5.3 ANALYSIS OF DIFFUSION BANDWIDTH o

Table Blreports the effect of diffusion bandwidth o which controls how suppression spreads across
neighboring tokens. The results show that a large o(> 5) spreads the suppression too broadly. It dilutes
the suppression effect on the target token and behaves similarly to using a very small suppression
strength («v). Conversely, a very small o restricted suppression only to the current token, making the
adjustment too localized and also degrading accuracy.

A.5.4 ANALYSIS OF PERPLEXITY THRESHOLD 7

Since the parameter K (top-K for perplexity estimation) directly defines unit perplexity and conse-
quently impacts the threshold ratio 7, we conducted a joint ablation study of these two parameters.
Table Q] and Table [[0]show that, for small K (1 or 5), changing 7 primarily impacts runtime rather
than accuracy. A looser threshold (1 = 50%) increases verification calls and computation time, while
a stricter threshold (1 = 12.5%) improves efficiency. Large K values generally degrade accuracy.

Table 9: AIME24 results: accuracy and wall-clock time across perplexity threshold 7 and top-K
settings.

n=125% n = 25% n = 50%
Acc. Time (s) Acc. Time(s) Acc. Time (s)

K=1 366 1693 36.6 3579 36.6 6448
K=5 366 2448 333 4133 36.6 6103
K=10 333 2397 333 3142 36.6 5954
K=15 300 2929 333 2851 333 7088

Table 10: GPQA results: accuracy and wall-clock time across perplexity threshold 7 and top-K
settings.

n=12.5% n = 25% n = 50%
Acc. Time(s) Acc. Time(s) Acc. Time (s)

K=1 510 1987 54.5 3640 61.6 4953
K=5 475 2448 55.5 3848 55.0 4424
K =10 490 2397 49.5 2098 53.5 4244
K =15 484 2473 49.5 2486 55.0 3412

A.6 ADDITIONAL OBSERVATIONS
A.6.1 INTERMEDIATE REASONING BEHAVIOUR

Here is one example that the proposed Once-More framework exhibits intermediate reasoning
behaviour. The following text is the partial output from AIME24 problem 83:

We need to fill the grid such that:
The xxsum of the two numbers formed by reading left to rightx*x
i.e., the top row and bottom row) is **x999x%x.

We are given a 2x3 grid where each cell contains a digit from 0 to
= | 9.

1.

(

[Perplexity acceptable: False]

[Judge] Output accepted.

2. The xxsum of the three numbers formed by reading top to bottom*x*
(i.e., the first column, second column, and third column) is **99x%.

[Perplexity acceptable: True]
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Let’s denote the grid as follows:

$$

\begin{array}{lclclc]|}

\hline

a & b & c\\

\hline

d & e s £ \\

\hline

\end{array}

$$

### Step 1: Understand the horizontal sums
We are told that:

$$

abc + def = 999

$$

Here, $abc$ and $def$ are 3-digit numbers formed by the digits in
the top row and bottom row, respectively.

[Perplexity acceptable: False]
[Judge] Output accepted.

past_cache length: 400
That is:
- $abc = 100a + 10b + c$

- $def = 100d + 10e + f$

So:

$S

(100a + 10b + c) + (100d + 10e + f) = 999 \tag{l}
$S

### Step 2: Understand the vertical sums
We are told that:

$S

a +d+ e = 99 \quad \text{ (first column)} \\
b+ e+ f = 99 \quad \text{ (second column)} \\
c + £ = 99 \quad \text{ (third column) }

$S

[Perplexity acceptable: False]

[Judge] Output rejected.

[Rolling back to the corresponding checkpoint]

[Feedback message to the model]:

(The vertical sums must involve multi-digit numbers, not single
digits. Re-express the vertical sums as $ad + de + ef = 99$, etc.,
or clarify the problem statement.)

Clarifying: the problem says "the sum of the three numbers formed by
reading top to bottom is 99". That means:

— The first column forms a number: $a \times 100 + d \times 10 +
...$, but that would be too large.

[Perplexity acceptable: False]

[Judge] Output rejected.

[Rolling back to the corresponding checkpoint]

[Feedback message to the model]:

(Clarify how the top-to-bottom numbers are formed (e.g.,
single-digit numbers or multi-digit). The current interpretation is
unclear.)
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Let's assume that the top-to-bottom numbers are formed by reading
each of the three columns as a single-digit value (i.e., Jjust the
digit in each column). Then the sum of these three digits is 99,
which is impossible since the maximum sum of three digits is
$94+9+9=27$. So this interpretation is invalid.

[Perplexity acceptable: False]
[Judge] Output accepted.

Let's try a different interpretation: The **top-to-bottomxx numbers
are formed by concatenating the two digits in each column to form a
two-digit number.

[Perplexity acceptable: False]
[Judge] Output accepted.

For example, if the first column has digits $a$ and $b$, then the
number is $10a + b$. Then we can add up the three such numbers for
the three columns, and that total should be 99.

So now we have:

- The top row is a 3-digit number: $100a + 10b + c$
— The bottom row is a 3-digit number: $100d + 10e + £$
— The sum of these two numbers is *%*999xx:
$(100a + 10b + c) + (100d + 10e + f) = 999$% | (Equation 1)

— The sum of the three column-wise two-digit numbers is **99xx*:
$(10a + d) + (10b + e) + (10c + f) = 99$ | (Equation 2)

We are to find the number of such digit arrangements that satisfy
both equations.

This partial output shows how Once-More conducted one successful self-correction.
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A.7 PRACTICAL IMPLEMENTATION NOTES

Length changes and alignment. If the revised unit Y’ = [y, ..., y,,] has m # n:

If m < n, positions j > m do not apply; early stopping may be the correction.
If m > n, positions j > n are generated without suppression (they did not occur previously).

For j < min(m, n) we apply the update above. Optionally, one can align by minimal edit
distance when the new attempt diverges early; our experiments did not require this.

Chunking strategy and context management

Choosing the unit. For prose, we default to sentence boundaries with a max token cap,
splitting very long sentences into clauses; for code, we use syntax-aware spans (function,
block, or diff hunk). Smaller units give finer correction. Larger units preserve coherence.

Boundary overlap. We allow a short overlap window when proposing the next unit and let
the Verifier inspect a sliding window that straddles the boundary to avoid seam artifacts.

Context growth. For long outputs, we keep a rolling buffer of recent accepted text,
optionally with compressed summaries of older content, to stay within context limits.

Multiple verifiers. Factuality, format, and safety checks can run in parallel with conjunctive
acceptance, or in stages (cheap checks first). Tool use follows standard agent patterns.
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A.

Be

8 EXAMPLE PROMPTS

low are the prompts we used in Once-More for the Producer, Verifier A (Formal & Local), Verifier

B (Global/Sanity), and an optional Adjudicator.

Sh

ared verifier SYSTEM (use for both verifiers).

You are a verifier. You judge exactly one CURRENT_SPAN in a partial
solution.
Do not solve the whole task. Be precise and conservative.

Inputs:

— TASK: the problem/question

— ACCEPTED_CONTEXT: the already-accepted prior steps/state

— CURRENT_SPAN: the producer's proposed new step(s) to add now

GPQA-STYLE GRADUATE Q& A (SCIENCE)

Producer (SYSTEM+USER)

L

[SYSTEM]

You are a graduate-level problem solver. Solve the problem step by
step, separated by a period. Your answer should be chosen from
options A, B, C, D and end with:

Final answer: <A/B/C/D>

[USER]
QUESTION:
{{GPQA_QUESTION_STEM_AND_OPTIONS}}

Verifier A (Formal & Local) (USER only; use shared SYSTEM above)

e

RN

[USER]

TASK: {{GPQA_QUESTION_STEM_AND_OPTIONS}}
ACCEPTED_CONTEXT: {{PRIOR_NOTES_OR_NONE}}
CURRENT_SPAN: {{PRODUCER_PARAGRAPH}}

You are a very strict verifier with Rubric:

Rl algebraic legality (no invalid cancellations, correct radical/log
rules),

R2 arithmetic accuracy,

R3 domain/branch/constraints respected and stated,

R4 check carefully for the hold of equations/inequalities,

R5 check the scientific correctness of each claim.

R6 Flag missing premises, leaps, or contradictions.

R7 Counterfactual statement Checking.

Does the input unit in the right track to achieve the goal, given
the context? Verify the input unit with your role and task. Only
reject the answer according to your role.

The input may not necessarily solve the goal directly as there are
more details in the upcoming text. If yes, answer Yes. If no, answer
No and provide repair hints beginning with 'Suggestion' to improve
in no more than 20 words.

Ve

rifier B (Global/Sanity) (USER only; use shared SYSTEM above; optional)

[USER]
TASK: {{GPQA_QUESTION_STEM AND_OPTIONS}}
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ACCEPTED_CONTEXT: {{PRIOR_NOTES_OR_NONE} }
CURRENT_SPAN: {{PRODUCER_PARAGRAPH}}

Perform:

S1 quick alternative micro-derivation or spot-check,
S2 sanity bounds / physical plausibility,

S3 attempt 1-2 counterexamples,

S4 flag hidden assumptions.

Allowed error_tags:
["counterexample", "bounds", "assumption", "consistency"].

AIME-STYLE OLYMPIAD MATHEMATICS

Producer (SYSTEM+USER)
[SYSTEM]
You are an AIME problem solver. Produce one clean step-wise
— |derivation and end with:
Final answer: \boxed{<integer 0-999>}
[USER]
PROBLEM:
{ {AIME_PROBLEM_TEXT} }
Verifier A (Formal & Local) (USER only; use shared SYSTEM above)
[USER]
TASK: {{AIME_PROBLEM_TEXT}}
ACCEPTED_CONTEXT: {{PRIOR_ACCEPTED_STEPS_OR_NONE}}
CURRENT_SPAN: {{PRODUCER_STEPS} }
Rubric:
Rl algebraic legality (no invalid cancellations, correct radical/log
— rules),
R2 arithmetic accuracy,
R3 domain/branch/constraints respected and stated,
R4 local entailment from prior state,
R5 notation/variable hygiene,
R6 if final answer present: integer 0-999 and derived quantity
— |matches.
Does the input unit in the right track to achieve the goal given the
— |context? Verify the input unit with your role and task. Only reject
— |the answer according to your role.
The input may not necessarily solve the goal directly as there are
— |more details in the upcoming text. If yes, answer Yes. If no, answer
— |No and provide repair hints beginning with 'Suggestion' to improve
<~ |in no more than 20 words.
Verifier B (Global/Sanity) (USER only; use shared SYSTEM above; optional)

[USER]

TASK: {{AIME_PROBLEM_ TEXT}}

ACCEPTED_CONTEXT: {{PRIOR_ACCEPTED_STEPS_OR_NONE} }
CURRENT_SPAN: {{PRODUCER_STEPS}}

Perform:

S1 quick recompute of the same claim via a different micro-tactic,
S2 sanity bounds/mod checks (e.g., parity, sign, rough magnitude),
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S3 try 1-2 simple counterexamples consistent with constraints,
S4 flag hidden assumptions (e.g., x != 0).

Allowed error_tags:

— ["counterexample", "bounds", "assumption", "consistency"].
|

LIVENBENCH (REASONING)

Producer (SYSTEM+USER)

[SYSTEM]
You are an problem solver. Solve the problem step by step seperated

U

by period. This problem is guaranteed to have a solution. Should not
exit without finding the exact solution.

The final answer is wrapped as:\n<solution>...</solution>

[USER]

PROBLEM:

{{LIVEBENCH_PROBLEM_TEXT}}

Verifier A (Formal & Local) (USER only; use shared SYSTEM above)

[USER]

TASK: {{LIVEBENCH_PROBLEM_TEXT}}

ACCEPTED_CONTEXT: {{PRIOR_ACCEPTED_STEPS_OR_NONE} }
CURRENT_SPAN: {{PRODUCER_STEPS}}

Rubric (apply all):

R1 factual correctness of claims vs. standard

— |definitions/literature,

R2 local logical entailment (no leaps),

R3 unit/notation hygiene,

R4 current answer matches reasoning,

R5 the current answer is not necessarily complete.

Does the input unit in the right track to achieve the goal given the
context? Verify the input unit with your role and task. Only reject
the answer according to your role.

The input may not necessarily solve the goal directly as there are
— |more details in the upcoming text.

If yes, answer Yes. If no, answer No and provide repair hints

I

I

beginning with 'Suggestion' that can be concatenated to the context
to improve future answer.
The suggestion should no more than 10 words.

SVAMP

Producer (SYSTEM+USER)

[SYSTEM]

You are an problem solver. Solve the problem step by step seperated
by period. This problem is guaranteed to have a solution. Should not
exit without finding the exact solution.

The final answer should be in the format: Final answer:

— |\boxed{<integer 0-999>}

L

[USER]
PROBLEM:
{{SVAMP_PROBLEM_TEXT}}
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Ve

rifier A (Formal & Local) (USER only; use shared SYSTEM above)

il

[USER]

TASK: {{SVAMP_PROBLEM_TEXT}}

ACCEPTED_CONTEXT: {{PRIOR_ACCEPTED_STEPS_OR_NONE} }
CURRENT_SPAN: {{PRODUCER_STEPS}}

Rl algebraic legality (no invalid cancellations, correct radical/log
rules),

R2 arithmetic accuracy,

R3 check carefully for current formulating the real life problem
into math symbols, be very sensitive to negative numbers

R4 check carefully for formulating the real life problem into math
symbols,

R5 check carefully for any unresonable number during the
calculation, which will not happen in real life situation

R6 Check carefully about whether the current answer is overthinking
or too complex to be true in real life situation.

R7 Check carefully about whether the current context model the goal
correctly

Verify the input unit with your role and task. Only reject the
answer according to rubric. Do not reject for other reasons.

The input may not necessarily solve the goal directly as there are
more details in the upcoming text. If yes, answer Yes. If no, answer
No and provide repair hints beginning with 'Suggestion' to improve
in no more than 20 words.

GSMS8K

Pr

oducer (SYSTEM+USER)

I

[SYSTEM]

You are an problem solver. Solve the problem step by step seperated
by period. This problem is guaranteed to have a solution. Should not
exit without finding the exact solution.

Final answer: \boxed{<integer 0-999>}

[USER]
PROBLEM:
{ {GSM8K_PROBLEM_TEXT} }

Ve

rifier A (Formal & Local) (USER only; use shared SYSTEM above)

[USER]

TASK: {{GSM8K_PROBLEM_TEXT}}

ACCEPTED_CONTEXT: {{PRIOR_ACCEPTED_STEPS_OR_NONE}}
CURRENT_SPAN: {{PRODUCER_STEPS}}

Rl algebraic legality (no invalid cancellations, correct radical/log
rules),

R2 arithmetic accuracy,

R3 check carefully for current formulating the real life problem
into math symbols, be very sensitive to negative numbers

R4 check carefully for formulating the real life problem into math
symbols,

R5 check carefully for any unresonable number during the
calculation, which will not happen in real life situation

R6 Check carefully about whether the current answer is overthinking
or too complex to be true in real life situation.
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R7 Check carefully about whether the current context model the goal
— |correctly

Verify the input unit with your role and task. Only reject the

— |answer according to rubric. Do not reject for other reasons.

The input may not necessarily solve the goal directly as there are
more details in the upcoming text. If yes, answer Yes. If no, answer
No and provide repair hints beginning with 'Suggestion' to improve
in no more than 20 words.

el

A.9 USE OF LARGE LANGUAGE MODEL (LLM)

We used an LLM strictly for editorial assistance at the final drafting stage. Specifically, the LLM
was used only to check for grammatical errors, fix typographical mistakes, and enhance sentence
transitions for better readability. All technical content, including ideas, algorithms, proofs/derivations,
experiments, analyses, tables/figures, and conclusions, was authored by the listed authors. The LLM
did not generate, rewrite, or materially alter any scientific claims or results.

All LLM-suggested edits were manually reviewed and accepted or rejected by the authors. We
retained authorship control at all times and ensured that no technical meaning was changed. The
LLM is not an author and bears no responsibility for the paper’s content. The authors assume full
accountability for all claims and results.
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