
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ONCE-MORE: CONTINUOUS SELF-CORRECTION FOR
LARGE LANGUAGE MODELS VIA PERPLEXITY-GUIDED
INTERVENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) often experience compounding errors during
long text generation. Early errors could propagate and lead to drift, faulty rea-
soning, or repetition. Self-correction is a promising technique for addressing this
issue. However, the existing main approaches have limitations. Supervised training
methods can build self-correcting behaviours into models, but require training
data collection and lack cross-domain generalizability. Current post-hoc iterative
refinement methods operate only at inference time, but have to wait for substantial
portions of the draft to be generated before providing feedback. Such feedback
can not guarantee effective guidance, and the same error patterns can reappear.
In this paper, we propose Once-More, a model-agnostic post-hoc self-correction
framework that intervenes during generation. Once-More leverages token-level
perplexity and verifier feedback to provide continuous, guided steering of the gener-
ation path through a logit suppression mechanism, and therefore helps accumulate
“more correct” steps throughout the generation process. Evaluation on multiple
benchmarks demonstrates that the proposed Once-More achieves state-of-the-art re-
sults when compared to representative self-correction methods. To our knowledge,
Once-More is the first post-hoc method to leverage token perplexity and external
feedback for continuous, guided self-correction.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in text generation and
complex reasoning tasks (Sun et al., 2025; Ferrag et al., 2025). However, their autoregressive nature
poses a fundamental challenge: during generation, LLMs can produce errors or inaccuracies that
further propagate through subsequent tokens, making errors to compound and eventually drive the
generation away from the target (Arbuzov et al., 2025; Wang et al., 2023). This error-compounding
issue raises serious concern when deploying LLMs in critical decision-making processes. Many
LLM-based agentic workflows suffer from reliability issues stemming from this concern, which limits
their viability for real-world deployment. (Pan et al., 2025; Gabison & Xian, 2025).

To address such concerns, researchers have developed various self-correction methods which enable
LLMs to modify or revise their outputs at inference (Kamoi et al., 2024; Pan et al., 2024). Such
methods identify errors during generation and guide models toward better responses through targeted
feedback mechanisms (Paul et al., 2023; Tyen et al., 2023; Shinn et al., 2023). The feedback on
the final output is provided via external knowledge bases (Gou et al., 2024; Zheng et al., 2024) or
by more capable models (e.g., GPT-4) (Koutcheme et al., 2024). However final-output feedback
is too coarse to provide effective steering, and thus these methods often fail to prevent recurring
error patterns and lead to non-convergent refinement loops (Kamoi et al., 2024; Xu et al., 2024).
Some methods use supervised fine-tuning as an alternative to build self-correction behaviour directly
into models (Yan et al., 2025; Liu et al., 2025; Wang et al., 2024a); however, they are inherently
limited by the distribution of their training data. They are susceptible to performance degradation on
out-of-distribution tasks, where uncorrected errors can cascade through the generation.

Rather than building domain-specific models with built-in self-correction, we believe that itera-
tive refinement remains the most general and practical approach. However, it requires fundamental

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the proposed Once-More framework (Sec. 3.1). The Producer generates
adaptive units, which are checked by Perplexity and Verifier(s). Rejected units trigger regeneration
via the combined feedback and perplexity-driven guidance, creating a continuous self-correction
process that intervenes before errors propagate.

improvements in guidance granularity. Effective self-correction should function continuously through-
out generation, progressively steering models along better trajectories, and eventually allow “more
correct” incremental decisions to accumulate into better final outputs. Motivated by this vision,
in this paper, we propose an inference-time framework, Once-More, which performs continuous
self-correction on any LLM generation process. It transforms the LLM generation process into a
multi-agent interaction process: a Producer generates content while Verifier(s) evaluate and provide
continuous guidance. Once-More operates at the level of units of generation (e.g., clauses, sentences,
paragraphs, or code blocks). A complete generation is a sequential composition of unit generations.
When the Producer generates a unit, the framework computes its perplexity to assess potential errors.
High perplexity triggers verification for goal alignment, correctness, and consistency. Rejected units
are regenerated using evaluation feedback combined with perplexity-driven logit redistribution until
the Verifier(s) accept the unit. Figure 1 shows the high-level overview of the proposed Once-More.
The framework also supports LLM, non-LLM, or tool-augmented Verifiers.

The proposed Once-More are evaluated on various benchmarks, including Olympiad mathematics
(AIME 2024 (Art of Problem Solving, 2024a;b) and 2025 (Art of Problem Solving, 2025a;b)),
graduate-level science questions (GPQA) (Rein et al., 2024), LiveBench (reasoning) (White et al.,
2024), SVAMP (Patel et al., 2021), and GSM8K (Cobbe et al., 2021). It achieves state-of-the-art
performance when compared to other self-correction methods. Our contributions are as follows:
(1) We propose the Once-More framework to perform continuous, fine-grained self-correction,
which yields State-of-the-Art performance while being more token-efficient than previous iterative
refinement methods; (2) We present a method to uniquely fuse perplexity-based uncertainty signals
with external verifier feedback. It is employed in Once-More to prevent repeated errors while
preserving model beliefs during generation. To our knowledge, the proposed Once-More is the
first post-hoc method to leverage token perplexity and external feedback for continuous, guided
self-correction; (3) Our proposed continuous guidance mechanism in Once-More enables LLMs to
perform reasoning-like corrections dynamically during generation, which helps to detect early errors
and move to better generation trajectories.

2 RELATED WORK

Error accumulation in LLMs. The problem of error propagation in autoregressive models has
been extensively studied. Classical analyses of exposure bias demonstrate that models trained on
teacher-forced prefixes often struggle at test time, leading to error compounding in long generations
(Arora et al., 2022; Schmidt, 2019). LLMs also suffer from the error accumulation issue, although
LLM’s error accumulation patterns are more nuanced than simple exponential decay (Arbuzov et al.,
2025). While scaling up LLMs enables the emergence of self-correction behaviours (Liu et al.,
2024; Wang et al., 2024b), they remain unpredictable and uncontrollable at inference. To address
this concern, we propose making self-correction explicit and controllable through perplexity-guided

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

intervention. Our proposed approach is model-agnostic and can be used with smaller-sized LLMs,
making it more practical for local or edge use cases.

Self-correction via iterative refinement. Several approaches can enable LLMs to revise their outputs
through iterative processes. For instance, CRITIC uses external tools to verify model outputs and
provides corrective feedback (Gou et al., 2024), Self-Refine employs models as both generators
and evaluators (Madaan et al., 2023), and Verify-and-Edit incorporates knowledge bases for factual
correction (Zhao et al., 2023). While these approaches can improve response quality, they operate
on completed drafts or coarse-grained steps, and therefore could allow errors to compound before
intervention occurs. The prompt-only feedback also occasionally fails to prevent recurring error
patterns. Our proposed Once-More addresses the above concerns by intervening at a more granular
level with continuous monitoring, enabling more direct and localized feedback that has a more
effective impact on the model’s generation process.

Self-correction via supervised fine-tuning. Another line of work builds self-correction behaviours
directly into the models through training. For instance, S3c-MATH trains spontaneous self-correction
for mathematical reasoning (Yan et al., 2025), LLaVA-SCo extends this to vision-language models
(Liu et al., 2025), and the learning-from-failure approach finetunes models to internalize correction
behaviours (Wang et al., 2024a). However, their gains remain modest, and these methods require
extensive training data and are susceptible to performance degradation on out-of-distribution tasks.
To tackle such issues, our proposed framework remains model-agnostic and training-free, while
providing continuous guidance for self-correction behaviours.

Multi-agent and role-playing approaches. Formulating generation as a multi-agent interaction has
been shown to be effective for complex tasks. E.g., Reflexion equips agents with verbal feedback and
episodic memory to improve over trials (Shinn et al., 2023), MAgICoRe combines solver, reviewer,
and refiner roles with reward models for targeted step-wise error correction (Chen et al., 2024), and
ReAct interleaves reasoning with external actions to reduce hallucinations (Yao et al., 2023). These
methods leverage role specialization to provide feedback in different perspectives, and inspired by
their success, our proposed Once-More adopts this idea in its Producer-Verifier architecture. However,
their coarse-grained feedback and prompt-only interactions cannot guarantee effective steering. We
therefore plan to enhance the multi-agent system with continuous monitoring and direct probability
intervention.

Decoding time steering. The approach that manipulates sampling at inference time offers another
avenue for controlling generation behaviour. E.g., GeDi guides generation toward desired attributes
with discriminative models (Krause et al., 2020), Contrastive Decoding reduces hallucination by
subtracting weaker model logits (Li et al., 2022; O’Brien & Lewis, 2023), and DoLa sharpens
factuality through layer-wise contrast (Chuang et al., 2023). Recent work on Cautious Next Token
Prediction demonstrates that perplexity-based mechanisms can effectively guide generation decisions
(Wang et al., 2025b), providing a theoretical basis for our approach. However, existing methods
only operate globally or target high-level attributes, lacking fine-grained control. Inspired by these
methods, our proposed method manipulates sampling at inference time, but also employs localized
logit manipulation to perform a more effective generation steering.

3 ONCE-MORE FRAMEWORK

We now present Once-More, a model-agnostic framework that performs continuous self-correction
during LLM generation. The key idea is simple: rather than waiting for a complete output before
providing feedback, we monitor generation quality at intermediate steps and intervene immediately
when potential errors are detected. This section describes the framework’s architecture (Sec. 3.1),
how it monitors generation quality (Sec. 3.2), and how it guides corrections (Sec. 3.3).

3.1 FRAMEWORK ARCHITECTURE

As shown in Figure 1, Once-More transforms standard LLM generation into a monitored multi-agent
process with three core components:

Producer. A frozen, pre-trained LLM that generates content incrementally in units (adaptive chunks
such as sentences, paragraphs, or code blocks). The Producer operates at inference time without

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Illustration example: The proposed Once-More corrects a mathematical interpretation
error on AIME 2024 Problem 83. It rejects an incorrect single-digit interpretation (unit 3), provides
feedback, and guides the model to reconsider. The model then explicitly reasons why the initial is
impossible and pivots to the correct two-digit interpretation, demonstrating intermediate reasoning.

any training or fine-tuning. The only requirement is access to token-level probability scores during
decoding, which many providers already expose through their APIs. This requirement matters only
for our regeneration mechanism and doesn’t constrain the choice of model architecture.

Verifier(s). One or more agents that evaluate each provisional unit against the task Goal and
constraints, returning a binary decision (accept or reject) along with optional feedback F in natural
language or structured format. Verifiers may be LLMs, non-LLM programs, or tool-augmented
modules as in tool-using agents (Yao et al., 2023; Shen et al., 2023; Shen, 2024).

Generation Units. Rather than working with fixed token windows, Once-More adapts its interven-
tion granularity to the task context. For mathematical reasoning, a unit might be a single equation or
derivation step; for code generation, a function or block; for prose, a sentence or paragraph. Units are
identified using syntactic markers (punctuation, indentation) or learned boundary predictors. This
adaptivity enables intervention at the most appropriate granularity for each task.

The Generation-Verification Loop. The proposed Once-More framework operates through contin-
uous generation, monitoring, and correction loops. Figure 2 demonstrates this on a mathematical
problem, showing how the framework catches and corrects an incorrect interpretation mid-solution.
Let Goal denote the task and Context the generation history that has been verified and accepted. The
framework operates through the following loop:

1. Generate: The Producer generates a provisional unit Y = [y1, . . . , yn] conditioned on (Goal,
Context), where yi is one output token at time i.

2. Monitor: Compute the unit’s perplexity PPLunit(Y) as an uncertainty signal (refsub-
sec:perplexity).

3. Decide:
• If PPLunit(Y) ≤ Pth (low uncertainty), trust the unit and append to Context.
• If PPLunit(Y) > Pth (high uncertainty), invoke Verifier for explicit checking.

4. Verify & Correct:
• If accepted: Append to Context and create a checkpoint.
• If rejected: Trigger guided regeneration (Sec. 3.3) using verifier feedback and probability

adjustments.
• If regeneration also fails: Roll back to the previous checkpoint and regenerate from there, as the

error may have originated earlier.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) AIME24 (b) GPQA-Diamond (c) LiveBench(Reasoning)

Figure 3: Distributions of the mean top-10% perplexity for correct vs. incorrect answers across
benchmarks. Incorrect units consistently exhibit higher perplexity.

This continuous monitoring enables early error detection and correction before mistakes compound
into larger failures.

3.2 MONITORING GENERATION QUALITY VIA PERPLEXITY

To detect potential errors during generation, we need a real-time quality signal that doesn’t require
external verification for every token. We leverage perplexity, which is a standard language modeling
metric that measures prediction uncertainty (Jelinek et al., 1977; Christopher Manning, 2021; Hugging
Face, 2025). Recent work shows that entropy-based metrics provide reliable signals for response
quality (Fu et al., 2025; Yang et al., 2025b; Wang et al., 2025a), which motivates our approach.

Intuition. When a model confidently predicts the next token (high probability on one candidate),
perplexity is low. When probability mass spreads across multiple candidates, perplexity increases,
signalling uncertainty. High uncertainty often correlates with potential errors, indicating the model is
likely unsure what to generate next, and it’s probably on the wrong path.

Token-Level Perplexity. At each position t, the Producer outputs a probability distribution qt(v)
over the vocabulary V . Rather than computing perplexity over the entire vocabulary (expensive), we
approximate using the top-K most likely tokens St = {vt,1, . . . , vt,K} (Holtzman et al., 2018; Fan
et al., 2018):

PPL
(K)
t = exp

(
1

K

K∑
i=1

(− log qt(vt,i))

)
(1)

This efficiently captures local uncertainty: PPL(K)
t ≈ 1 when one token dominates, and increases as

mass spreads across alternatives.

Unit-Level Aggregation & Verification Trigger. For a unit Y = [y1, . . . , yn], we average token-
level perplexities:

PPLunit(Y) =
1

n

n∑
t=1

PPL
(K)
t (2)

Verification is triggered when PPLunit(Y) > Pth, where Pth is calibrated on a small held-out set
to target a desired verification rate (e.g., check the top 25% most uncertain units). Details of the
calibration procedure are in Appendix A.2. Figure 3 empirically validates this approach: on our
benchmarks, incorrect units consistently show substantially higher perplexity than correct ones,
demonstrating clear separation between reliable and problematic generations.

3.3 GUIDED REGENERATION VIA PROBABILITY ADJUSTMENT

When a unit is rejected, simply asking the model to ”try again” often produces the same mistake,
since the model’s learned biases can lead it down the same path (Xu et al., 2024). The model may
acknowledge the feedback but still sample the same tokens due to strong learned priors. To break this
cycle, Once-More performs guided regeneration: it (1) incorporates verifier feedback into the prompt,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and (2) directly adjusts the token probability distribution to suppress previously chosen tokens and
explore alternatives.

Overview of the Adjustment Mechanism. The adjustment process operates at the token level
during regeneration:

1. Identify high-uncertainty tokens: Convert the rejected unit’s token-level perplexities into
position-wise suppression strengths; therefore, tokens with higher uncertainty receive stronger
suppression.

2. Align attempts: Match tokens between the rejected attempt and the current regeneration attempt
to determine which tokens to suppress at each position.

3. Redistribute probability mass: At each position, decrease the probability of the previously
chosen token and proportionally increase alternatives, ensuring a valid probability distribution.

We now detail each step.

Step 1: Converting Perplexity to Suppression Strength. Let [x1, . . . , xn−] denote the rejected
unit with token-level perplexities {PPLi}n−

i=1. We normalize these into suppression weights:

û
(1)
i =

PPLi −min(PPL)

max(PPL)−min(PPL) + ε
∈ [0, 1] (3)

where ε is a small constant for numerical stability. This maps perplexity to a [0,1] scale: tokens with
high perplexity (high uncertainty) get suppression weights near 1, while confident tokens get weights
near 0.

Step 2: Aligning Regeneration with Previous Attempt. When regenerating, the new token
sequence [y1, . . . , yn] may differ in length and content from [x1, . . . , xn−]. We establish a monotone
alignment to transfer suppression weights: for each position j in the new attempt, find the first
matching token xi from the previous attempt (if any), creating an alignment matrix A ∈ {0, 1}n−×n.
This identifies which token should be suppressed at each regeneration position:

targetj =
{
xi, if a match exists at position i

xj , otherwise (use position-based fallback)
(4)

To avoid over-suppressing tokens that matched only by coincidence (e.g., common words appearing
at distant positions), we apply distance decay:

û→
j = Aij · exp

(
−
(

|i−j|
τ

)γ)
· û(1)

i (5)

where τ controls the decay rate and γ ∈ {1, 2} the decay shape. This reduces suppression strength
for matches far from their original position.

We further apply Gaussian smoothing to prevent over-localization, spreading suppression signals
across nearby positions (details in Appendix A.3). The final effective suppression at position j is:

αj = α · u⋆
j , α ∈ (0, 1) (6)

where u⋆
j blends the direct and smoothed suppression signals, and α is a global scaling factor.

Step 3: Probability Redistribution. Let q(2)j (v) denote the Producer’s original next-token distribu-
tion at position j during regeneration. We adjust this distribution to suppress the target token while
boosting alternatives:

sj(v) =

{
1− αj rj(v), v = targetj (suppress)

1 + κj rj(v)
β , v ̸= targetj (boost)

(7)

where rj(v) = q
(2)
j (v)/max(ε, q̄

(1)
j (v)) measures how much the model’s belief about token v has

shifted between attempts. The coefficient κj is computed to preserve probability mass:

κj =
αj rj(targetj) q

(2)
j (targetj)∑

u̸=targetj

q
(2)
j (u) rj(u)

β
(8)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

ensuring that the total probability removed from the target equals the total added to alternatives
(derivation in Appendix A.4). The parameter β ≥ 0 controls how redistributed mass is allocated and
is set to 1 for all our experiments.

The final adjusted distribution is:

q̃j(v) =
q
(2)
j (v) sj(v)∑

u∈V q
(2)
j (u) sj(u)

(9)

This is a valid probability distribution (non-negative, sums to 1) that explores alternatives while
respecting the model’s learned beliefs.

Regeneration Process. With the adjusted distribution q̃j(·), the Producer samples a new unit. The
verifier feedback is also appended to the prompt context, providing semantic guidance alongside
the probability adjustment. If this regenerated unit is accepted, it becomes the new checkpoint. If
rejected again, the framework rolls back to the previous checkpoint (before the problematic unit) and
regenerates from there, recognizing that the error may have originated earlier in the generation. By
combining perplexity-driven uncertainty detection with probability-level intervention, Once-More
achieves continuous, fine-grained self-correction that prevents error accumulation during generation.

4 EXPERIMENTS

4.1 SETUP AND BASELINES

Due to the rapid development of the LLM field, prior self-correction studies employ diverse experi-
mental setups across different models and benchmarks. To establish reproducible comparisons, we
selected the popular open-sourced Qwen3 family of models (4B, 8B, and 14B parameters) as our base
models (non-thinking) (Yang et al., 2025a). These model sizes were chosen for three key reasons:
(1) they span small to medium scales, revealing how self-correction scales with capacity; (2) they
represent practical compute-constrained scenarios; (3) Qwen3 offers state-of-the-art performance at
these sizes, ensuring our results are relevant to current practice.

We evaluated Once-More on six benchmarks: AIME 2024 (Art of Problem Solving, 2024a;b) and
2025 (Art of Problem Solving, 2025a;b) for complex mathematical reasoning, LiveBench (reasoning
subset) (Rein et al., 2024) for general reasoning, GPQA Diamond (Rein et al., 2024) for graduate-level
science questions, and SVAMP (Patel et al., 2021) and GSM8K (Cobbe et al., 2021) for arithmetic
word problems. This benchmark selection covers diverse reasoning types and difficulty levels.

We compare the proposed Once-More with four representative baselines:

• Raw: Direct generation without self-correction.

• Self-Refine (Madaan et al., 2023): The most widely-cited iterative refinement method,
representing prompt-based self-correction approaches.

• CRITIC (Gou et al., 2024): Incorporates external tools for verification, representing tool-
augmented self-correction methods and most recent post-hoc method.

• S3c-MATH (Yan et al., 2025): A supervised fine-tuning approach, representing training-
based self-correction methods.

Here, we implemented the Self-Refine and CRITIC baselines according to their references. For
Self-Refine, the number of refinement iterations was set to k = 3. For CRITIC, since no suitable
resources were specified in the original work, we adapted the method by leaving the external evidence
field empty in math experiments. On the GPQA Diamond benchmark, CRITIC uses the first 1000
words from web search results as external evidence. S3c-MATH results are taken from their published
papers on comparable models. All reported results represent means over three independent runs. For
Once-More’s default configuration, we set K = 5 for top-K perplexity calculation, with suppression
factor α = 1.0, redistribution sharpness β = 1.0, distance decay τ = 1, diffusion bandwidth σ = 1
and perplexity threshold η = 25% fixed. The verifier feedback is generated from an agent using the
same LLM as the producer agent across all experiments.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Accuracy performance (mean accuracy % ± std. dev. over 3 runs) comparisons between the
proposed Once-More and baseline self-correction methods across multiple benchmarks. Results are
for Qwen3 models of varying sizes (4B, 8B, 14B parameters). Once-More consistently outperforms
iterative refinement approaches (Self-Refine, CRITIC) and raw generation.

AIME24 AIME25 LiveBench(Reason.) GPQA Diamond

Qwen3 4B

Raw 13.3 ±3.3 20.0 ±3.3 20.3 ±1.2 43.9 ±1.3
SelfRefine 13.3 ±3.3 18.9 ±3.8 21.0 ±0.9 43.9 ±1.0
CRITIC 14.4±1.9 20.0±3.3 20.7±1.3 48.9±0.8
ours 16.7±3.4 23.3±3.4 33.0±1.0 47.5±0.9

Qwen3 8B

Raw 24.4±1.9 16.7±3.4 30.5±0.9 45.4±0.9
SelfRefine 25.6±3.9 15.5±3.9 31.2±1.3 47.0±1.7
CRITIC 24.4±1.9 18.8±3.9 31.5±1.3 48.9±1.5
ours 33.3±3.3 24.4±1.9 39.5±1.3 49.5±1.7

Qwen3 14B

Raw 26.7±3.3 18.8±3.8 44.0±1.3 48.0±1.5
SelfRefine 28.8±3.8 23.3±3.3 46.5±1.5 49.2±1.0
CRITIC 28.8±1.9 22.2±3.9 45.5±1.5 50.5±1.3
ours 36.7±3.3 26.7±3.3 52.5±1.8 55.6±1.6

Table 2: Accuracy performance comparisons with supervised fine-tuning methods on mathematical
benchmarks. Once-More achieves competitive or superior performance without any training.

Llama 3 8B Qwen2 Math 7B

Benchmark MetaMath
SFT

S3C
w/o R&I

S3C
MathQA Ours MetaMath

SFT
S3C

w/o R&I
S3C

MathQA Ours

SVAMP 81.4 80.5 81.8 82.0 85.6 86.7 87.4 89.0
GSM8K 81.1 81.7 82.9 79.0 84.1 84.4 84.8 85.2

4.2 MAIN RESULTS

Table 1 presents performance comparisons across the AIME24/25, LiveBench (reasoning), and GPQA
Diamond benchmarks. Our proposed Once-More consistently outperforms all baselines across model
sizes and task types. On mathematical reasoning tasks (AIME 2024/2025), Once-More achieves
3.4 to 10 point gains over raw generation, with the 14B model reaching 36.7% on AIME 2024 and
26.7% on AIME 2025. In contrast, Self-Refine and CRITIC show minimal improvements, gaining
at most 2.1 to 4.5 points. For general reasoning (LiveBench), Once-More delivers 9.0 to 12.7 point
improvements, while baselines achieve less than 1 point gain. On GPQA Diamond, all model sizes
show consistent 3.6 to 7.6 point improvements with Once-More.

Table 2 compares Once-More against supervised fine-tuning approaches, including MetaMath-SFT
and S3c-MATH. Once-More achieves the best performance on SVAMP across both model families
(82.0% for Llama 3 8B, 89.0% for Qwen2 Math 7B) without any training. While S3c-MATH
outperforms Once-More on GSM8K for Llama (82.9% vs 79.0%), Once-More leads on Qwen2 Math
(85.2% vs 84.8%). The results demonstrate that Once-More can match or exceed specialized training
methods while maintaining model-agnostic deployment.

4.3 ANALYSIS AND ABLATION STUDY

Scaling effects in self-correction. On AIME 2024, Once-More’s improvements scale progressively:
a 25.6% relative gain for 4B, 36.4% for 8B, and 37.4% for 14B models. This scaling pattern
suggests that self-correction benefits from richer internal representations in larger models. They can
generate more informative feedback and possess more nuanced token distributions for effective logit
redistribution. The same pattern holds across AIME 2025, where gains increase from 16.5% (4B) to
42% (14B). This indicates that Once-More can scale with model capacity, unlike post-hoc methods
that show diminishing returns.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Average wall-clock time for one answer. (b) Average token usage for one answer.

Figure 4: Run time comparisons across tasks on Qwen3-14B.

Table 3: Ablation study on Once-More components using Qwen3-14B. Both verifier feedback and
logit redistribution contribute substantially, with the best accuracy performance from combining both.

Method AIME24 GPQA

Raw 26.7 48.0
w/o Redistribution 33.3 51.5
w/o Feedback 30.3 48.4
Full Once-more 36.7 55.6

Small models and the feedback quality problem. Existing self-correction methods do not work
on smaller models. Self-Refine shows no improvement on the 4B model for AIME 2024 and actually
degrades performance on AIME 2025 for the 8B model (16.7%→15.5%). CRITIC fares slightly
better but still achieves minimal gains. This is likely due to smaller models’ limited capabilities
to produce meaningful feedback on long outputs. Once-More mitigates this by combining verifier
feedback with logit redistribution, ensuring corrections happen even when feedback quality is low.
The finer unit-level granularity also makes feedback inherently easier for verifiers to provide.

Mathematical reasoning improvement. On AIME24 and AIME25, Once-More substantially
outperforms CRITIC and Self-Refine. This is because mathematical errors are unforgiving; a single
misstep can invalidate an entire solution. This makes existing post-hoc methods less reliable as
they must locate the faulty step in a complete solution and regenerate a full answer. In contrast,
Once-More’s continuous monitoring catches mistakes as they occur, enabling correction at the point
of failure rather than after completion.

Efficiency analysis. Figure 4 compares wall-clock time and token consumption across methods
on Qwen3 14B. Despite its regeneration cycles, Once-More demonstrates competitive wall-clock
time, matching or outperforming Self-Refine and CRITIC across all tasks while achieving superior
accuracy. For token usage, Once-More consistently achieves the lowest consumption among self-
correction methods, using 17-21% fewer tokens than Self-Refine on AIME tasks. This efficiency
advantage persists across other benchmarks. Notably, GPQA Diamond exhibits shorter generations
across all methods, providing fewer opportunities for continuous intervention and partially explaining
the smaller performance gains on this task. Overall, Once-More achieves superior accuracy without
incurring additional computational costs compared to existing self-correction approaches.

Effects of verifier feedback and logit redistribution Table 3 evaluates the contributions of
feedback and logit redistribution on Qwen3-14B. Removing redistribution but keeping feedback
yields 33.3% on AIME24 (+6.6) and 51.5% on GPQA (+3.5). Removing feedback but keeping
redistribution gives 30.3% (+3.6) and 48.4% (+0.4). The full system reaches 36.7% and 55.6%, which
are gains of +10.0 and +7.6 over raw. The effects are roughly additive on AIME24 and clearly more
than additive on GPQA, suggesting that feedback and redistribution resolve different failure modes:

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 4: Unit length ablation study using Qwen3-14B, with mean accuracy (%)
± std. dev. over 3 runs.

Unit length (sentences)

Benchmark 1 2 4 32 64 128

AIME24 36.6 ± 3.3 34.3 ± 1.9 35.5 ± 1.9 30.0 ± 2.7 26.7 ± 2.7 26.7 ± 2.7
LiveBench 52.3 ± 1.2 52.1 ± 1.0 52.3 ± 1.2 49.8 ± 1.7 50.3 ± 1.3 45.3 ± 0.6
GPQA-D 55.6 ± 1.8 55.5 ± 1.3 56.1 ± 1.5 49.7 ± 1.0 49.3 ± 0.3 50.0 ± 0.7

feedback supplies semantic guidance about the error, and redistribution enforces exploration away
from the previously chosen tokens so that the guidance actually changes the trajectory.

Effects of answer unit granularity Table 4 evaluates the contributions of answer unit granularity
on Qwen3-14B model under default hyper-parameter setting. The results do not indicate significant
performance differences for small unit lengths (≤ 4 sentences). This shows that the proposed Once-
More framework is robust under fine-grained segmentation. However, when the unit length increases
significantly (≥ 32 sentences), performance drops across all three benchmarks and converges to the
performance of the raw model (without Once-More) at a unit length of 128.

Table 5: Accuracy (%) results under different Producer–Verifier configurations and raw output.

Producer: Qwen-14B Qwen-4B

Verifier: 14B 8B 4B Raw 14B 8B 4B Raw

AIME24 36.6 36.6 30.0 26.6 33.3 23.3 16.7 13.3
LiveBench 52.5 49.5 46.5 44.0 41.0 38.5 33.0 20.3
GPQA-D 55.6 51.5 50.0 48.0 54.0 52.5 47.5 43.9

Asymmetric settings of Producer/Verifier Table 5 presents the results using both configurations
of the strong-producer / weak-verifier and the weak-producer / strong-verifier. Experiments conducted
under default hyperparameters. Results show that, with a strong Producer (Qwen-14B), performance
degrades only mildly with weaker verifiers (4B/8B), remaining substantially better than the raw
baseline. With a weak Producer (Qwen-4B), increasing verifier strength (using 14B) yields massive
improvements across all benchmarks.

Comprehensive ablation study for hyper-parameters suppression α, distance decay factor τ , diffusion
bandwidth σ, and perplexity threshold η can be found at Appendix. A.5.

5 CONCLUSION

We presented Once-More, a model-agnostic, training-free framework for continuous self-correction
during generation, which monitors uncertainty at the unit level, invokes verifier feedback when needed,
and enforces exploration via perplexity-guided logit redistribution. This fine-grained, intervene-as-
you-go design efficiently reduces error propagation and turns incremental improvements at each
unit into stronger end-to-end generations. When tested on diverse benchmarks and model sizes, the
proposed Once-More consistently outperforms post-hoc refinement baselines while remaining token-
efficient, demonstrating that controllable, inference-time steering can yield reliable gains without
additional training. Despite these gains, we acknowledge specific limitations: the framework may
struggle to trace errors rooted deep in the generation history, potentially leading to regeneration loops;
confident errors (false negatives) may occasionally bypass the perplexity trigger; and the system’s
performance ceiling remains influenced by verifier quality. Future work will focus on addressing
these challenges through dynamic rollback mechanisms and adaptive thresholding.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide comprehensive implementation details through-
out the paper and supplementary materials. The Once-More framework’s complete algorithmic
description appears in Appendix A.1, with mathematical formulations for perplexity computation
(Section 3.2) and logit redistribution mechanism (Section 3.3). Experimental setup details, includ-
ing all hyperparameters (K = 5, α = 1.0, β = 1.0), model specifications (Qwen3 4B/8B/14B),
and benchmark descriptions are provided in Section 4.1. We also detail our implementation pro-
cedures for Self-Refine and CRITIC, including specific adaptations for mathematical tasks. All
experiments use publicly available models and benchmarks (AIME 2024/2025, LiveBench, GPQA
Diamond, SVAMP, GSM8K) with standard evaluation metrics. We report results averaged over
three independent runs to account for stochastic variation. An anonymous GitHub repository has
been created. It will be used to host the complete implementation of Once-More after this work
is published. It will include the Producer-Verifier architecture, perplexity monitoring system, logit
redistribution algorithm, and scripts to reproduce all experimental results. The repository is available
at: https://anonymous.4open.science/r/once-more-F54C/

REFERENCES

Mikhail L Arbuzov, Alexey A Shvets, and Sisong Beir. Beyond exponential decay: Rethinking error
accumulation in large language models. arXiv preprint arXiv:2505.24187, 2025.

Kushal Arora, Layla El Asri, Hareesh Bahuleyan, and Jackie Cheung. Why exposure bias matters: An
imitation learning perspective of error accumulation in language generation. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio (eds.), Findings of the Association for Computational
Linguistics: ACL 2022, pp. 700–710, Dublin, Ireland, May 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.findings-acl.58. URL https://aclanthology.org/
2022.findings-acl.58/.

Art of Problem Solving. 2024 aime i. https://artofproblemsolving.com/wiki/
index.php/2024_AIME_I, 2024a. Accessed: 2025.

Art of Problem Solving. 2024 aime ii. https://artofproblemsolving.com/wiki/
index.php/2024_AIME_II, 2024b. Accessed: 2025.

Art of Problem Solving. 2025 aime i. https://artofproblemsolving.com/wiki/
index.php/2025_AIME_I, 2025a. Accessed: 2025.

Art of Problem Solving. 2024 aime ii. https://artofproblemsolving.com/wiki/
index.php/2025_AIME_II, 2025b. Accessed: 2025.

Justin Chih-Yao Chen, Archiki Prasad, Swarnadeep Saha, Elias Stengel-Eskin, and Mohit Bansal.
Magicore: Multi-agent, iterative, coarse-to-fine refinement for reasoning. arXiv preprint
arXiv:2409.12147, 2024.

Christopher Manning. Natural language processing with deep learning cs224n/ling284, lecture
6. https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/
slides/cs224n-2021-lecture06-fancy-rnn.pdf, 2021. Accessed: 2025.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James Glass, and Pengcheng He. Dola:
Decoding by contrasting layers improves factuality in large language models. arXiv preprint
arXiv:2309.03883, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833, 2018.

Mohamed Amine Ferrag, Norbert Tihanyi, and Merouane Debbah. From llm reasoning to autonomous
ai agents: A comprehensive review. arXiv preprint arXiv:2504.19678, 2025.

11

https://anonymous.4open.science/r/once-more-F54C/
https://aclanthology.org/2022.findings-acl.58/
https://aclanthology.org/2022.findings-acl.58/
https://artofproblemsolving.com/wiki/index.php/ 2024_AIME_I
https://artofproblemsolving.com/wiki/index.php/ 2024_AIME_I
https://artofproblemsolving.com/wiki/index.php/ 2024_AIME_II
https://artofproblemsolving.com/wiki/index.php/ 2024_AIME_II
https://artofproblemsolving.com/wiki/index.php/ 2025_AIME_I
https://artofproblemsolving.com/wiki/index.php/ 2025_AIME_I
https://artofproblemsolving.com/wiki/index.php/ 2025_AIME_II
https://artofproblemsolving.com/wiki/index.php/ 2025_AIME_II
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture06-fancy-rnn.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/slides/cs224n-2021-lecture06-fancy-rnn.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence, 2025. URL
https://arxiv.org/abs/2508.15260.

Garry A Gabison and R Patrick Xian. Inherent and emergent liability issues in llm-based agentic
systems: a principal-agent perspective. arXiv preprint arXiv:2504.03255, 2025.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
CRITIC: Large language models can self-correct with tool-interactive critiquing. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=Sx038qxjek.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut, David Golub, and Yejin Choi. Learning
to write with cooperative discriminators. arXiv preprint arXiv:1805.06087, 2018.

Hugging Face. Perplexity of fixed-length models. https://huggingface.co/docs/
transformers/en/perplexity, 2025. Accessed: 2025.

Fred Jelinek, Robert L Mercer, Lalit R Bahl, and James K Baker. Perplexity—a measure of the
difficulty of speech recognition tasks. The Journal of the Acoustical Society of America, 62(S1):
S63–S63, 1977.

Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, and Rui Zhang. When can llms actually correct
their own mistakes? a critical survey of self-correction of llms. Transactions of the Association for
Computational Linguistics, 12:1417–1440, 2024.

Charles Koutcheme, Nicola Dainese, Sami Sarsa, Arto Hellas, Juho Leinonen, and Paul Denny. Open
source language models can provide feedback: Evaluating llms’ ability to help students using
gpt-4-as-a-judge. In Proceedings of the 2024 on Innovation and Technology in Computer Science
Education V. 1, pp. 52–58. Association for Computing Machinery, 2024.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
Socher, and Nazneen Fatema Rajani. Gedi: Generative discriminator guided sequence generation.
arXiv preprint arXiv:2009.06367, 2020.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization.
arXiv preprint arXiv:2210.15097, 2022.

Dancheng Liu, Amir Nassereldine, Ziming Yang, Chenhui Xu, Yuting Hu, Jiajie Li, Utkarsh Kumar,
Changjae Lee, Ruiyang Qin, Yiyu Shi, et al. Large language models have intrinsic self-correction
ability. arXiv preprint arXiv:2406.15673, 2024.

Zixuan Liu, Guangkai Jiang, and Siavash Khajavi. Llava-sco: Teach vision language models to self-
correct. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, pp. 3415–3424, June 2025.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Sean O’Brien and Mike Lewis. Contrastive decoding improves reasoning in large language models.
arXiv preprint arXiv:2309.09117, 2023.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang.
Automatically correcting large language models: Surveying the landscape of diverse automated
correction strategies. Transactions of the Association for Computational Linguistics, 12:484–506,
2024.

Melissa Z Pan, Mert Cemri, Lakshya A Agrawal, Shuyi Yang, Bhavya Chopra, Rishabh Tiwari,
Kurt Keutzer, Aditya Parameswaran, Kannan Ramchandran, Dan Klein, Joseph E. Gonzalez,
Matei Zaharia, and Ion Stoica. Why do multiagent systems fail? In ICLR 2025 Workshop on
Building Trust in Language Models and Applications, 2025. URL https://openreview.
net/forum?id=wM521FqPvI.

12

https://arxiv.org/abs/2508.15260
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://huggingface.co/docs/transformers/en/perplexity
https://huggingface.co/docs/transformers/en/perplexity
https://openreview.net/forum?id=wM521FqPvI
https://openreview.net/forum?id=wM521FqPvI

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve sim-
ple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
(eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2080–2094, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL
https://aclanthology.org/2021.naacl-main.168/.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West,
and Boi Faltings. Refiner: Reasoning feedback on intermediate representations. arXiv preprint
arXiv:2304.01904, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Florian Schmidt. Generalization in generation: A closer look at exposure bias. arXiv preprint
arXiv:1910.00292, 2019.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36:38154–38180, 2023.

Zhuocheng Shen. Llm with tools: A survey. arXiv preprint arXiv:2409.18807, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Jiankai Sun, Chuanyang Zheng, Enze Xie, Zhengying Liu, Ruihang Chu, Jianing Qiu, Jiaqi Xu,
Mingyu Ding, Hongyang Li, Mengzhe Geng, et al. A survey of reasoning with foundation models:
Concepts, methodologies, and outlook. ACM Computing Surveys, 57(11):1–43, 2025.

Gladys Tyen, Hassan Mansoor, Victor Cărbune, Peter Chen, and Tony Mak. Llms cannot find
reasoning errors, but can correct them given the error location. arXiv preprint arXiv:2311.08516,
2023.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
Math-shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv preprint
arXiv:2312.08935, 2023.

Renxi Wang, Haonan Li, Xudong Han, Yixuan Zhang, and Timothy Baldwin. Learning from failure:
Integrating negative examples when fine-tuning large language models as agents. arXiv preprint
arXiv:2402.11651, 2024a.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xiong-Hui Chen,
Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for LLM reasoning. In The Thirty-ninth Annual Conference on
Neural Information Processing Systems, 2025a. URL https://openreview.net/forum?
id=yfcpdY4gMP.

Yifei Wang, Yuyang Wu, Zeming Wei, Stefanie Jegelka, and Yisen Wang. A theoretical understanding
of self-correction through in-context alignment. Advances in Neural Information Processing
Systems, 37:89869–89912, 2024b.

Yizhou Wang, Lingzhi Zhang, Yue Bai, Mang Tik Chiu, Zhengmian Hu, Mingyuan Zhang, Qihua
Dong, Yu Yin, Sohrab Amirghodsi, and Yun Fu. Cautious next token prediction. In Wanxiang
Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the
Association for Computational Linguistics: ACL 2025, pp. 25685–25697, Vienna, Austria, July
2025b. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/
v1/2025.findings-acl.1318. URL https://aclanthology.org/2025.findings-acl.
1318/.

13

https://aclanthology.org/2021.naacl-main.168/
https://openreview.net/forum?id=yfcpdY4gMP
https://openreview.net/forum?id=yfcpdY4gMP
https://aclanthology.org/2025.findings-acl.1318/
https://aclanthology.org/2025.findings-acl.1318/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, et al. Livebench: A challenging, contamination-
limited llm benchmark. arXiv preprint arXiv:2406.19314, 2024.

Wenda Xu, Guanglei Zhu, Xuandong Zhao, Liangming Pan, Lei Li, and William Wang. Pride and
prejudice: Llm amplifies self-bias in self-refinement. In ACL (1), pp. 15474–15492, 2024. URL
https://doi.org/10.18653/v1/2024.acl-long.826.

Yuchen Yan, Jin Jiang, Yang Liu, Yixin Cao, Xin Xu, Mengdi Zhang, Xunliang Cai, and Jian Shao.
S3c-math: spontaneous step-level self-correction makes large language models better mathematical
reasoners. In Proceedings of the Thirty-Ninth AAAI Conference on Artificial Intelligence and Thirty-
Seventh Conference on Innovative Applications of Artificial Intelligence and Fifteenth Symposium
on Educational Advances in Artificial Intelligence, AAAI’25/IAAI’25/EAAI’25. AAAI Press,
2025. ISBN 978-1-57735-897-8. doi: 10.1609/aaai.v39i24.34749. URL https://doi.org/
10.1609/aaai.v39i24.34749.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025a.

Zhen Yang, Mingyang Zhang, Feng Chen, Ganggui Ding, Liang Hou, Xin Tao, Pengfei Wan, and
Ying-Cong Chen. Less is more: Improving llm reasoning with minimal test-time intervention,
2025b. URL https://arxiv.org/abs/2510.13940.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Ruochen Zhao, Xingxuan Li, Shafiq Joty, Chengwei Qin, and Lidong Bing. Verify-and-edit: A
knowledge-enhanced chain-of-thought framework. arXiv preprint arXiv:2305.03268, 2023.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement. arXiv
preprint arXiv:2402.14658, 2024.

14

https://doi.org/10.18653/v1/2024.acl-long.826
https://doi.org/10.1609/aaai.v39i24.34749
https://doi.org/10.1609/aaai.v39i24.34749
https://arxiv.org/abs/2510.13940

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ONCE-MORE ALGORITHM

Algorithm 1 Once-More Framework

Require: Producer LLM, Tokenizer, Verifier setR, Goal x, role prompt, max tokens Tmax

1: Init:
Build chat prompt from (role prompt, x);
Encode to token id: step ids.
Set past← ∅, Output← ∅, tokens← 0. consecutive fails← 0
Initialize ckpt stack← [(0, step ids)], supp stack← [None], suppression← None.

2: for i = 1 to Tmax do
3: Propose: Generate sentence s and update (past, step ids, suppression).
4: Monitor:

Compute reliability→ (ok, λ).
Update supp stack with (λ, t1:L, ℓ1:L).
Update tokens← tokens+ L.

5: if not ok and i > 1 then
6: Verify: Verifier judge (accept, F)← Judge(R, x,Output, s).
7: if not accept and consecutive fails < 4 then
8: Rollback & Guide:

Restore last checkpoint (k⋆, ids⋆);
set suppression from supp stack;
trim past to k⋆;
reset step ids← ids⋆;
pop stacks;
append feedback F to step ids;
consecutive fails += 1
continue.

9: end if
10: end if
11: Commit:

Append s to Output;
push new checkpoints to ckpt stack and supp stack;
reset suppression← None.
reset consecutive← 0

12: if last token of step ids is eos or tokens > Tmax then
13: break
14: end if
15: end for
16: return Output

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2 QUANTILE CALIBRATION FOR THE RELIABILITY THRESHOLD

We set the verification trigger by calibrating a unit perplexity threshold from a short, held-out run.

Inputs and unit count. For each calibration prompt i = 1, . . . , D, run the Producer once without
verification and compute a unit-level perplexity Punit for every emitted unit (as in Section 3.2). If the
i-th output contains Ui units, it contributes Ui scalar values. The total number of calibration units is

M =

D∑
i=1

Ui .

Collect all unit perplexities as {P (m)}Mm=1.

Empirical quantile. Form the empirical distribution by sorting the values themselves in ascending
order (this sorting step ignores the original time order), yielding the order statistics

P(1) ≤ P(2) ≤ · · · ≤ P(M) .

Fix a target verification rate η ∈ (0, 1) so that roughly the largest η fraction of units will be verified
at run time. Set q = 1− η and compute

h = 1 + (M − 1) q, k = ⌊h⌋, γ = h− k,

then define the calibrated threshold

Pth =


P(1), h ≤ 1,

P(M), h ≥M,

(1− γ)P(k) + γ P(k+1), otherwise.

At inference time, verify a provisional unit Y whenever Punit(Y) > Pth.

A.3 MATHEMATICAL PROPERTIES OF THE FRAMEWORK

We now establish formal properties of the Once-More framework’s perplexity computation and
probability adjustment mechanism.

A.3.1 PROPERTIES OF PERPLEXITY-BASED MONITORING

Property 1 (Perplexity Lower Bound). For any position j and K ≥ 1, the token-level perplexity
satisfies PPL(K)

j ≥ 1.

Proof. By definition, PPL(K)
j = exp(ANLL

(K)
j) where

ANLL
(K)
j =

1

K

K∑
i=1

(− log qj(vj,i)) (10)

Since qj(vj,i) ∈ (0, 1] for valid probabilities, we have − log qj(vj,i) ≥ 0. The lower bound of
1 is achieved when K = 1 and qj places all mass on a single token (i.e., qj(vj,1) = 1), giving
− log(1) = 0 and exp(0) = 1.

Property 2 (Sensitivity Control via K). Larger values of K increase the sensitivity of perplexity
to distribution spread, while smaller values focus on top candidates.

Justification. When K is small, PPL(K)
j reflects only the most probable tokens. If the top token has a

high probability, perplexity remains low even if tail probabilities are spread. As K increases, more of
the distribution is captured, increasing sensitivity to uncertainty in lower-ranked alternatives. This
creates a trade-off: larger K detects subtle uncertainties but increases variance; smaller K provides
conservative, stable estimates.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3.2 PROPERTIES OF GUIDED REGENERATION

Property 3 (Mass Balance). Given suppression factors satisfying 0 ≤ αjrj(targetj) < 1 and
redistribution coefficient κj as defined in Section 3.3, the probability mass removed from the target
token exactly equals the mass added to alternatives before normalization.

Proof. See Appendix A.4 for the complete derivation of κj , which explicitly enforces this constraint.

Property 4 (Valid Probability Distribution). The adjusted distribution q̃j(·) is a valid probability
distribution (non-negative, sums to 1).

Proof. By construction:

1. Non-negativity: For the target token, sj(targetj) = 1 − αjrj(targetj) > 0 by the constraint
αjrj(targetj) < 1. For alternatives, sj(v) = 1 + κjrj(v)

β > 0 since κj > 0 (as long as

alternatives exist) and rj(v) ≥ 0. Since q
(2)
j (v) ≥ 0 for all v, we have q

(2)
j (v)sj(v) ≥ 0.

2. Normalization: The denominator
∑

u∈V q
(2)
j (u)sj(u) > 0 by non-negativity and the fact that

q
(2)
j is a valid distribution. The normalization explicitly ensures

∑
v∈V q̃j(v) = 1.

Property 5 (Monotone Suppression). For fixed q
(2)
j and importance ratios rj , the adjusted proba-

bility q̃j(targetj) strictly decreases with αj within the admissible range.

Proof. From the definition:

q̃j(targetj) =
q
(2)
j (targetj)(1− αjrj(targetj))∑

u q
(2)
j (u)sj(u)

(11)

Taking the derivative with respect to αj (applying the quotient rule and using the fact that κj depends
on αj), one can show that:

∂q̃j(targetj)
∂αj

< 0 (12)

The key insight is that increasing αj directly reduces the target token’s weight while increasing
alternatives’ weights, creating a double effect.

Property 6 (Controlled Exploration via β). The tempering exponent β controls the distribution
of redistributed mass:

• β = 0: Mass spreads uniformly across all alternatives
• β = 1: Mass allocates proportionally to importance ratios rj(v)
• β > 1: Mass concentrates on tokens with the largest importance ratios

Justification. The boost factor for alternatives is 1 + κjrj(v)
β . When β = 0, this becomes 1 + κj

(constant across all alternatives), distributing mass uniformly. As β increases, rj(v)β amplifies
differences: tokens with rj(v) > 1 (model now favours more) receive exponentially more boost,
while tokens with rj(v) < 1 receive less. This creates an exploration-exploitation trade-off controlled
by β.

Property 7 (Stability of Adjustment). When q
(2)
j remains close to q

(1)
j and β ≤ 1, the KL

divergence between the adjusted and original distributions scales linearly with maximum suppression:

KL
(
q̃j ∥ q(2)j

)
= O(αmax) (13)

Proof sketch. The KL divergence is:

KL
(
q̃j ∥ q(2)j

)
=
∑
v

q̃j(v) log
q̃j(v)

q
(2)
j (v)

(14)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

When αj is small, sj(v) ≈ 1 for all v, making q̃j(v) ≈ q
(2)
j (v)/Z where Z ≈ 1. A Taylor expansion

around αj = 0 shows that the leading term is linear in αj . The condition β ≤ 1 ensures that the
redistribution doesn’t create sharp peaks that would increase divergence. For detailed calculation,
note that:

log
q̃j(v)

q
(2)
j (v)

= log sj(v)− logZ ≈ sj(v)− 1− (Z − 1) (15)

where both sj(v)− 1 and Z − 1 are O(αj).

Property 8 (Alignment and Diffusion Regularization). The combination of distance-decayed
alignment and Gaussian diffusion prevents both over-localization and excessive spread of suppression
signals.

Justification. The distance decay exp(−(|i − j|/τ)γ) reduces suppression for tokens matched far
from their original position, preventing spurious long-range alignments from causing inappropriate
suppression. The Gaussian diffusion with bandwidth σ then smooths the resulting signal:

ūj =
1

Zj

n∑
i=1

exp

(
− (j − i)2

2σ2

)
û→
i (16)

As σ → 0, this reduces to position-wise suppression ūj → û→
j (localized). As σ increases,

suppression spreads to neighboring positions (regularized). The final blend u⋆
j = 0.5û→

j + 0.5ūj

balances both effects, preventing over-fitting to specific positions while maintaining locality.

A.4 DERIVATION OF THE REDISTRIBUTION CONSTANT

We now derive the formula for κj that ensures probability mass conservation during the adjustment
process.

Setup. At position j, we adjust the original distribution q
(2)
j (v) by applying scaling factors sj(v):

sj(v) =

{
1− αjrj(v), v = targetj
1 + κjrj(v)

β , v ̸= targetj
(17)

where:

• αj ∈ (0, 1) is the suppression strength

• rj(v) = q
(2)
j (v)/max(ε, q̄

(1)
j (v)) is the importance ratio

• β ≥ 0 controls redistribution sharpness

• κj is the redistribution coefficient to be determined

Mass Conservation Constraint. For a valid probability distribution, the total probability mass
before and after adjustment must be equal. Define:

Mass removed from target:

∆− = q
(2)
j (targetj)− q

(2)
j (targetj) · sj(targetj) (18)

= q
(2)
j (targetj)− q

(2)
j (targetj) · (1− αjrj(targetj)) (19)

= αjrj(targetj) · q
(2)
j (targetj) (20)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Mass added to alternatives:
∆+ =

∑
u̸=targetj

[
q
(2)
j (u) · sj(u)− q

(2)
j (u)

]
(21)

=
∑

u̸=targetj

[
q
(2)
j (u) · (1 + κjrj(u)

β)− q
(2)
j (u)

]
(22)

=
∑

u̸=targetj

q
(2)
j (u) · κjrj(u)

β (23)

= κj

∑
u̸=targetj

q
(2)
j (u) · rj(u)β (24)

Solving for κj . Setting ∆− = ∆+ for mass conservation:

αjrj(targetj) · q
(2)
j (targetj) = κj

∑
u̸=targetj

q
(2)
j (u) · rj(u)β (25)

Solving for κj :

κj =
αjrj(targetj) · q

(2)
j (targetj)∑

u̸=targetj
q
(2)
j (u) · rj(u)β

(26)

Normalization. After applying the scaling factors, we normalize to obtain the final distribution:

q̃j(v) =
q
(2)
j (v) · sj(v)∑

u∈V q
(2)
j (u) · sj(u)

(27)

By construction (mass conservation), the numerator of the normalization constant equals:∑
u

q
(2)
j (u) · sj(u) = q

(2)
j (targetj) · sj(targetj) +

∑
u̸=targetj

q
(2)
j (u) · sj(u) (28)

=
[
q
(2)
j (targetj)−∆−

]
+

 ∑
u̸=targetj

q
(2)
j (u) + ∆+

 (29)

=
∑
u

q
(2)
j (u) + (∆+ −∆−) (30)

= 1 + 0 = 1 (31)

Thus, the distribution is properly normalized even before the explicit normalization step, confirming
that our choice of κj correctly preserves mass.

Numerical Safeguards. In practice, we implement several safeguards:

• Use ε = 10−8 in importance ratios to avoid division by zero
• Clip αjrj(targetj) to ensure it remains strictly less than 1
• If the denominator in κj is extremely small (no viable alternatives), either reduce β toward 0 to

spread mass broadly or cap κj and trigger a fresh generation attempt

• Verify that
∑

u q
(2)
j (u)sj(u) > 0 before normalization

A.5 ABLATION STUDY

A.5.1 ANALYSIS OF SUPPRESSION STRENGTH α

The ablation study in α (suppression strength) is carried out using the Qwen-14B model on AIME24,
Livebench, and GPQA-Diamond. Results are reported in Table 6 from a single run. All other parame-
ters are chosen as the default value.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Ablation study on suppression strength α using Qwen3 14B. Results from a single run.

α = 0.1 α = 0.5 α = 1 α = 1.5 α = 2

AIME24 30.0 33.3 36.6 36.6 36.6
LiveBench 49.5 52.5 54.5 54.5 54.0
GPQA-D 50.5 51.5 52.0 52.5 51.0

For all benchmarks, performance is relatively stable for suppression strengths α ≥1. While a small
suppression strength (α = 0.1) dilutes the effect of our proposed Once-More Framework and achieves
the worst performance in the ablation study.

A.5.2 ANALYSIS OF DISTANCE DECAY FACTOR τ

The ablation study on τ (distance decay factor) is conducted by Qwen-14B model on AIME24,
Livebench and GPQA-Diamond. The granularity of τ is set to 0.01 (extremely small τ representing
decay to 0, suppression only works on the target token in this specific position), 0.5, 1, 1.5 and 100
(extremely large τ representing no decay, the target token will be equally suppressed regardless of its
position). Results are reported in Table 7 from a single run. All other parameters are chosen as the
default value.

Table 7: Ablation on distance decay factor τ . Accuracy from single run.

Benchmark τ = 0.01 τ = 0.5 τ = 1 τ = 1.5 τ = 100

AIME24 23.3 36.6 36.6 36.6 30.3
LiveBench 43.5 52.5 52.5 52.0 50.5
GPQA-D 45.5 54.5 55.0 55.0 52.5

The ablation results show a very interesting phenomenon. Without distance decay (an extremely
small τ = 0.01), model performance decreases significantly, becoming even worse than the raw model
baseline. Under this setting, the Once-More framework only suppresses the target token if it is in
the exact same position as in the previously rejected sequence. The model sometimes finds a trick to
regenerate. Assuming this is the previously rejected unit:

This sequence contains an error and was therefore rejected

Producer first generates a few other words and then repeats exactly the same sequence as the previously
rejected one, just like:

Got it! This sequence contains an error and therefore got
rejected↪→

Since the position is mismatched by these beginning words, the later regenerated sequence is not
suppressed at all. However, this will be subsequently rejected by the reviewer, causing the model to
get stuck in a loop until the maximum token limit is reached.

Table 8: Ablation on diffusion bandwidth σ. Accuracy from a single run.

Benchmark σ = 0.1 σ = 1 σ = 5 σ = 10

AIME24 33.3 36.3 26.6 30.0
LiveBench 52.5 55.0 48.5 47.5
GPQA-D 50.5 52.5 49.0 49.5

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.5.3 ANALYSIS OF DIFFUSION BANDWIDTH σ

Table 8 reports the effect of diffusion bandwidth σ which controls how suppression spreads across
neighboring tokens. The results show that a large σ(≥ 5) spreads the suppression too broadly. It dilutes
the suppression effect on the target token and behaves similarly to using a very small suppression
strength (α). Conversely, a very small σ restricted suppression only to the current token, making the
adjustment too localized and also degrading accuracy.

A.5.4 ANALYSIS OF PERPLEXITY THRESHOLD η

Since the parameter K (top-K for perplexity estimation) directly defines unit perplexity and conse-
quently impacts the threshold ratio η, we conducted a joint ablation study of these two parameters.
Table 9 and Table 10 show that, for small K (1 or 5), changing η primarily impacts runtime rather
than accuracy. A looser threshold (η = 50%) increases verification calls and computation time, while
a stricter threshold (η = 12.5%) improves efficiency. Large K values generally degrade accuracy.

Table 9: AIME24 results: accuracy and wall-clock time across perplexity threshold η and top-K
settings.

η = 12.5% η = 25% η = 50%

Acc. Time (s) Acc. Time (s) Acc. Time (s)

K = 1 36.6 1693 36.6 3579 36.6 6448
K = 5 36.6 2448 33.3 4133 36.6 6103
K = 10 33.3 2397 33.3 3142 36.6 5954
K = 15 30.0 2929 33.3 2851 33.3 7088

Table 10: GPQA results: accuracy and wall-clock time across perplexity threshold η and top-K
settings.

η = 12.5% η = 25% η = 50%

Acc. Time (s) Acc. Time (s) Acc. Time (s)

K = 1 51.0 1987 54.5 3640 61.6 4953
K = 5 47.5 2448 55.5 3848 55.0 4424
K = 10 49.0 2397 49.5 2098 53.5 4244
K = 15 48.4 2473 49.5 2486 55.0 3412

A.6 ADDITIONAL OBSERVATIONS

A.6.1 INTERMEDIATE REASONING BEHAVIOUR

Here is one example that the proposed Once-More framework exhibits intermediate reasoning
behaviour. The following text is the partial output from AIME24 problem 83:

We are given a 2x3 grid where each cell contains a digit from 0 to
9. We need to fill the grid such that:↪→
1. The **sum of the two numbers formed by reading left to right**
(i.e., the top row and bottom row) is **999**.↪→

[Perplexity acceptable: False]
[Judge] Output accepted.

2. The **sum of the three numbers formed by reading top to bottom**
(i.e., the first column, second column, and third column) is **99**.↪→

[Perplexity acceptable: True]

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Let’s denote the grid as follows:
$$
\begin{array}{|c|c|c|}
\hline
a & b & c \\
\hline
d & e & f \\
\hline
\end{array}
$$
Step 1: Understand the horizontal sums
We are told that:
$$
abc + def = 999
$$
Here, abc and def are 3-digit numbers formed by the digits in
the top row and bottom row, respectively.↪→

[Perplexity acceptable: False]
[Judge] Output accepted.

past_cache length: 400
That is:
- $abc = 100a + 10b + c$
- $def = 100d + 10e + f$
So:
$$
(100a + 10b + c) + (100d + 10e + f) = 999 \tag{1}
$$
Step 2: Understand the vertical sums
We are told that:
$$
a + d + e = 99 \quad \text{(first column)} \\
b + e + f = 99 \quad \text{(second column)} \\
c + f = 99 \quad \text{(third column)}
$$

[Perplexity acceptable: False]
[Judge] Output rejected.
[Rolling back to the corresponding checkpoint]
[Feedback message to the model]:
(The vertical sums must involve multi-digit numbers, not single
digits. Re-express the vertical sums as $ad + de + ef = 99$, etc.,
or clarify the problem statement.)

↪→
↪→

Clarifying: the problem says "the sum of the three numbers formed by
reading top to bottom is 99". That means:↪→
- The first column forms a number: $a \times 100 + d \times 10 +
...$, but that would be too large.↪→

[Perplexity acceptable: False]
[Judge] Output rejected.
[Rolling back to the corresponding checkpoint]
[Feedback message to the model]:
(Clarify how the top-to-bottom numbers are formed (e.g.,
single-digit numbers or multi-digit). The current interpretation is
unclear.)

↪→
↪→

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Let's assume that the top-to-bottom numbers are formed by reading
each of the three columns as a single-digit value (i.e., just the
digit in each column). Then the sum of these three digits is 99,
which is impossible since the maximum sum of three digits is
$9+9+9=27$. So this interpretation is invalid.

↪→
↪→
↪→
↪→

[Perplexity acceptable: False]
[Judge] Output accepted.

Let's try a different interpretation: The **top-to-bottom** numbers
are formed by concatenating the two digits in each column to form a
two-digit number.

↪→
↪→

[Perplexity acceptable: False]
[Judge] Output accepted.

For example, if the first column has digits a and b, then the
number is $10a + b$. Then we can add up the three such numbers for
the three columns, and that total should be 99.

↪→
↪→

So now we have:

- The top row is a 3-digit number: $100a + 10b + c$
- The bottom row is a 3-digit number: $100d + 10e + f$
- The sum of these two numbers is **999**:

$(100a + 10b + c) + (100d + 10e + f) = 999$ | (Equation 1)

- The sum of the three column-wise two-digit numbers is **99**:
$(10a + d) + (10b + e) + (10c + f) = 99$ | (Equation 2)

We are to find the number of such digit arrangements that satisfy
both equations.↪→

This partial output shows how Once-More conducted one successful self-correction.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

A.7 PRACTICAL IMPLEMENTATION NOTES

Length changes and alignment. If the revised unit Y ′ = [y′1, . . . , y
′
m] has m ̸= n:

• If m < n, positions j > m do not apply; early stopping may be the correction.
• If m > n, positions j > n are generated without suppression (they did not occur previously).
• For j ≤ min(m,n) we apply the update above. Optionally, one can align by minimal edit

distance when the new attempt diverges early; our experiments did not require this.

Chunking strategy and context management

• Choosing the unit. For prose, we default to sentence boundaries with a max token cap,
splitting very long sentences into clauses; for code, we use syntax-aware spans (function,
block, or diff hunk). Smaller units give finer correction. Larger units preserve coherence.

• Boundary overlap. We allow a short overlap window when proposing the next unit and let
the Verifier inspect a sliding window that straddles the boundary to avoid seam artifacts.

• Context growth. For long outputs, we keep a rolling buffer of recent accepted text,
optionally with compressed summaries of older content, to stay within context limits.

• Multiple verifiers. Factuality, format, and safety checks can run in parallel with conjunctive
acceptance, or in stages (cheap checks first). Tool use follows standard agent patterns.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

A.8 EXAMPLE PROMPTS

Below are the prompts we used in Once-More for the Producer, Verifier A (Formal & Local), Verifier
B (Global/Sanity), and an optional Adjudicator.

Shared verifier SYSTEM (use for both verifiers).

You are a verifier. You judge exactly one CURRENT_SPAN in a partial
solution.↪→
Do not solve the whole task. Be precise and conservative.

Inputs:
- TASK: the problem/question
- ACCEPTED_CONTEXT: the already-accepted prior steps/state
- CURRENT_SPAN: the producer's proposed new step(s) to add now

GPQA-STYLE GRADUATE Q&A (SCIENCE)

Producer (SYSTEM+USER)

[SYSTEM]
You are a graduate-level problem solver. Solve the problem step by
step, separated by a period. Your answer should be chosen from
options A, B, C, D and end with:

↪→
↪→

Final answer: <A/B/C/D>

[USER]
QUESTION:
{{GPQA_QUESTION_STEM_AND_OPTIONS}}

Verifier A (Formal & Local) (USER only; use shared SYSTEM above)

[USER]
TASK: {{GPQA_QUESTION_STEM_AND_OPTIONS}}
ACCEPTED_CONTEXT: {{PRIOR_NOTES_OR_NONE}}
CURRENT_SPAN: {{PRODUCER_PARAGRAPH}}

You are a very strict verifier with Rubric:
R1 algebraic legality (no invalid cancellations, correct radical/log
rules),↪→
R2 arithmetic accuracy,
R3 domain/branch/constraints respected and stated,
R4 check carefully for the hold of equations/inequalities,
R5 check the scientific correctness of each claim.
R6 Flag missing premises, leaps, or contradictions.
R7 Counterfactual statement Checking.

Does the input unit in the right track to achieve the goal, given
the context? Verify the input unit with your role and task. Only
reject the answer according to your role.

↪→
↪→

The input may not necessarily solve the goal directly as there are
more details in the upcoming text. If yes, answer Yes. If no, answer
No and provide repair hints beginning with 'Suggestion' to improve
in no more than 20 words.

↪→
↪→
↪→

Verifier B (Global/Sanity) (USER only; use shared SYSTEM above; optional)

[USER]
TASK: {{GPQA_QUESTION_STEM_AND_OPTIONS}}

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

ACCEPTED_CONTEXT: {{PRIOR_NOTES_OR_NONE}}
CURRENT_SPAN: {{PRODUCER_PARAGRAPH}}

Perform:
S1 quick alternative micro-derivation or spot-check,
S2 sanity bounds / physical plausibility,
S3 attempt 1-2 counterexamples,
S4 flag hidden assumptions.

Allowed error_tags:
["counterexample","bounds","assumption","consistency"].↪→

AIME-STYLE OLYMPIAD MATHEMATICS

Producer (SYSTEM+USER)

[SYSTEM]
You are an AIME problem solver. Produce one clean step-wise
derivation and end with:↪→
Final answer: \boxed{<integer 0-999>}

[USER]
PROBLEM:
{{AIME_PROBLEM_TEXT}}

Verifier A (Formal & Local) (USER only; use shared SYSTEM above)

[USER]
TASK: {{AIME_PROBLEM_TEXT}}
ACCEPTED_CONTEXT: {{PRIOR_ACCEPTED_STEPS_OR_NONE}}
CURRENT_SPAN: {{PRODUCER_STEPS}}

Rubric:
R1 algebraic legality (no invalid cancellations, correct radical/log
rules),↪→
R2 arithmetic accuracy,
R3 domain/branch/constraints respected and stated,
R4 local entailment from prior state,
R5 notation/variable hygiene,
R6 if final answer present: integer 0-999 and derived quantity
matches.↪→

Does the input unit in the right track to achieve the goal given the
context? Verify the input unit with your role and task. Only reject
the answer according to your role.

↪→
↪→

The input may not necessarily solve the goal directly as there are
more details in the upcoming text. If yes, answer Yes. If no, answer
No and provide repair hints beginning with 'Suggestion' to improve
in no more than 20 words.

↪→
↪→
↪→

Verifier B (Global/Sanity) (USER only; use shared SYSTEM above; optional)

[USER]
TASK: {{AIME_PROBLEM_TEXT}}
ACCEPTED_CONTEXT: {{PRIOR_ACCEPTED_STEPS_OR_NONE}}
CURRENT_SPAN: {{PRODUCER_STEPS}}

Perform:
S1 quick recompute of the same claim via a different micro-tactic,
S2 sanity bounds/mod checks (e.g., parity, sign, rough magnitude),

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

S3 try 1-2 simple counterexamples consistent with constraints,
S4 flag hidden assumptions (e.g., x != 0).

Allowed error_tags:
["counterexample","bounds","assumption","consistency"].↪→

LIVENBENCH (REASONING)

Producer (SYSTEM+USER)

[SYSTEM]
You are an problem solver. Solve the problem step by step seperated
by period. This problem is guaranteed to have a solution. Should not
exit without finding the exact solution.

↪→
↪→

The final answer is wrapped as:\n<solution>...</solution>

[USER]
PROBLEM:
{{LIVEBENCH_PROBLEM_TEXT}}

Verifier A (Formal & Local) (USER only; use shared SYSTEM above)

[USER]
TASK: {{LIVEBENCH_PROBLEM_TEXT}}
ACCEPTED_CONTEXT: {{PRIOR_ACCEPTED_STEPS_OR_NONE}}
CURRENT_SPAN: {{PRODUCER_STEPS}}

Rubric (apply all):
R1 factual correctness of claims vs. standard
definitions/literature,↪→
R2 local logical entailment (no leaps),
R3 unit/notation hygiene,
R4 current answer matches reasoning,
R5 the current answer is not necessarily complete.

Does the input unit in the right track to achieve the goal given the
context? Verify the input unit with your role and task. Only reject
the answer according to your role.

↪→
↪→

The input may not necessarily solve the goal directly as there are
more details in the upcoming text.↪→
If yes, answer Yes. If no, answer No and provide repair hints
beginning with 'Suggestion' that can be concatenated to the context
to improve future answer.

↪→
↪→

The suggestion should no more than 10 words.

SVAMP

Producer (SYSTEM+USER)

[SYSTEM]
You are an problem solver. Solve the problem step by step seperated
by period. This problem is guaranteed to have a solution. Should not
exit without finding the exact solution.

↪→
↪→

The final answer should be in the format: Final answer:
\boxed{<integer 0-999>}↪→

[USER]
PROBLEM:
{{SVAMP_PROBLEM_TEXT}}

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Verifier A (Formal & Local) (USER only; use shared SYSTEM above)

[USER]
TASK: {{SVAMP_PROBLEM_TEXT}}
ACCEPTED_CONTEXT: {{PRIOR_ACCEPTED_STEPS_OR_NONE}}
CURRENT_SPAN: {{PRODUCER_STEPS}}

R1 algebraic legality (no invalid cancellations, correct radical/log
rules),↪→
R2 arithmetic accuracy,
R3 check carefully for current formulating the real life problem
into math symbols, be very sensitive to negative numbers↪→
R4 check carefully for formulating the real life problem into math
symbols,↪→
R5 check carefully for any unresonable number during the
calculation, which will not happen in real life situation↪→
R6 Check carefully about whether the current answer is overthinking
or too complex to be true in real life situation.↪→
R7 Check carefully about whether the current context model the goal
correctly↪→

Verify the input unit with your role and task. Only reject the
answer according to rubric. Do not reject for other reasons.↪→
The input may not necessarily solve the goal directly as there are
more details in the upcoming text. If yes, answer Yes. If no, answer
No and provide repair hints beginning with 'Suggestion' to improve
in no more than 20 words.

↪→
↪→
↪→

GSM8K

Producer (SYSTEM+USER)

[SYSTEM]
You are an problem solver. Solve the problem step by step seperated
by period. This problem is guaranteed to have a solution. Should not
exit without finding the exact solution.

↪→
↪→

Final answer: \boxed{<integer 0-999>}

[USER]
PROBLEM:
{{GSM8K_PROBLEM_TEXT}}

Verifier A (Formal & Local) (USER only; use shared SYSTEM above)

[USER]
TASK: {{GSM8K_PROBLEM_TEXT}}
ACCEPTED_CONTEXT: {{PRIOR_ACCEPTED_STEPS_OR_NONE}}
CURRENT_SPAN: {{PRODUCER_STEPS}}

R1 algebraic legality (no invalid cancellations, correct radical/log
rules),↪→
R2 arithmetic accuracy,
R3 check carefully for current formulating the real life problem
into math symbols, be very sensitive to negative numbers↪→
R4 check carefully for formulating the real life problem into math
symbols,↪→
R5 check carefully for any unresonable number during the
calculation, which will not happen in real life situation↪→
R6 Check carefully about whether the current answer is overthinking
or too complex to be true in real life situation.↪→

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

R7 Check carefully about whether the current context model the goal
correctly↪→

Verify the input unit with your role and task. Only reject the
answer according to rubric. Do not reject for other reasons.↪→
The input may not necessarily solve the goal directly as there are
more details in the upcoming text. If yes, answer Yes. If no, answer
No and provide repair hints beginning with 'Suggestion' to improve
in no more than 20 words.

↪→
↪→
↪→

A.9 USE OF LARGE LANGUAGE MODEL (LLM)

We used an LLM strictly for editorial assistance at the final drafting stage. Specifically, the LLM
was used only to check for grammatical errors, fix typographical mistakes, and enhance sentence
transitions for better readability. All technical content, including ideas, algorithms, proofs/derivations,
experiments, analyses, tables/figures, and conclusions, was authored by the listed authors. The LLM
did not generate, rewrite, or materially alter any scientific claims or results.

All LLM-suggested edits were manually reviewed and accepted or rejected by the authors. We
retained authorship control at all times and ensured that no technical meaning was changed. The
LLM is not an author and bears no responsibility for the paper’s content. The authors assume full
accountability for all claims and results.

29

	Introduction
	Related Work
	hLOnce-More Framework
	hLFramework Architecture
	hLMonitoring Generation Quality via Perplexity
	hLGuided Regeneration via Probability Adjustment

	Experiments
	Setup and baselines
	Main Results
	Analysis and Ablation Study

	Conclusion
	Appendix
	Once-More Algorithm
	Quantile calibration for the reliability threshold
	Mathematical Properties of the Framework
	Properties of Perplexity-Based Monitoring
	Properties of Guided Regeneration

	Derivation of the Redistribution Constant
	Ablation study
	Analysis of Suppression Strength
	Analysis of Distance Decay Factor
	Analysis of Diffusion Bandwidth
	Analysis of Perplexity Threshold

	Additional observations
	Intermediate reasoning behaviour

	Practical Implementation Notes
	Example prompts
	Use of large language model (LLM)

