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ABSTRACT

Selecting the best code solution from multiple generated ones

is an essential task in code generation, which can be achieved by

using some reliable validators (e.g., developer-written test cases) for

assistance. Since reliable test cases are not always available and can

be expensive to build in practice, researchers propose to automati-

cally generate test cases to assess code solutions. However, when

both code solutions and test cases are plausible and not reliable,

selecting the best solution becomes challenging. Although some

heuristic strategies have been proposed to tackle this problem, they

lack a strong theoretical guarantee and it is still an open question

whether an optimal selection strategy exists. Our work contributes

in two ways. First, we show that within a Bayesian framework, the

optimal selection strategy can be defined based on the posterior

probability of the observed passing states between solutions and

tests. The problem of identifying the best solution is then framed as

an integer programming problem. Second, we propose an efficient

approach for approximating this optimal (yet uncomputable) strat-

egy, where the approximation error is bounded by the correctness

of prior knowledge. We then incorporate effective prior knowledge
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to tailor code generation tasks. Both theoretical and empirical stud-

ies confirm that existing heuristics are limited in selecting the best

solutions with plausible test cases. Our proposed approximated

optimal strategy B4
significantly surpasses existing heuristics in se-

lecting code solutions generated by large language models (LLMs)

with LLM-generated tests, achieving a relative performance im-

provement by up to 50% over the strongest heuristic and 246% over

the random selection in the most challenging scenarios. Our code

is publicly available at https://github.com/ZJU-CTAG/B4.
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1 INTRODUCTION

Code generation is an important task in the field of software

engineering [23], aiming to generate code solutions that satisfy

the given requirement. In practice, we often face the problem of

selecting the best code solution from multiple generated alterna-

tives [7, 22]. A common practice is using some validators (e.g., test

cases) to assess the validity of each solution and choose the best

one [5, 33, 36, 46]. However, in real-world scenarios, reliable test
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return a + b

return b + a

return a * b

return a * 2

assert add_two_numbers(4, 5) == 9

assert add_two_numbers(2, 2) == 4

assert add_two_numbers(1, 1) == 2

assert add_two_numbers(3, 2) == 6

assert add_two_numbers(3, 1) == 6

Code Solutions Test Cases

Figure 1: A simple example showing the problem "return the

sum of 𝑎 and𝑏". A link between a generated code solution and

a generated test case indicates that the solution passes the

test. How can we select the best code solution solely based

on these links?

cases are not always available. Developing and maintaining reli-

able test cases can also be resource-intensive and laborious. With

advancements in deep learning and large language models (LLMs),

using auto-generated test cases has gained popularity among re-

searchers and practitioners [20, 26, 27, 35]. Unfortunately, selecting

code solutions based on these potentially unreliable tests poses

significant challenges, since incorrect test cases can disrupt our

decision-making. Fig. 1 provides an example, where selecting the

best code solution becomes difficult since the fourth and fifth test

cases are incorrect.

Few studies systematically explore how to assess plausible code

solutions and select the best using plausible test cases. Under the

assumption that the generated test cases are (mostly) correct, some

existing research favors the solutions that pass the most test cases

[18, 19, 22, 33]. However, this strategy is ineffective when test cases

are merely plausible, indicated by our theoretical analysis (see

Section 4). Other research addresses this challenge by designing

clustering-based heuristic rules. For instance, Shi et al. [36] and Li

et al. [22] clustered code solutions based on test outputs, and se-

lected the solutions from the largest cluster. Chen et al. [5] similarly

clustered code solutions based on the passed test cases, and selected

the best cluster according to the count of solutions and passed test

cases in each. However, these heuristics rely on human-designed

rules and lack strong theoretical foundations, leading to potentially

suboptimal performance. To the best of our knowledge, the optimal

selection strategy for this problem is still an open question.

In this work, we aim to develop a general framework to define

and compute the optimal selection strategy. We first show that

under a Bayesian framework, the optimal strategy can be defined

based on the posterior probability of the observed passing states

between solutions and tests. The problem of identifying the optimal

strategy is then framed as an integer programming problem. Under

a few assumptions, this posterior probability can be further ex-

panded into four integrals, which cannot be directly computed due

to four unknown prior distributions. We then leverage Bayesian sta-

tistics techniques to deduce a computable form for approximating

this posterior probability and optimize the integer programming

from exponential to polynomial complexity. The approximation

error is bounded by the correctness of prior knowledge. Based on

this bound, we investigate two effective priors and incorporate

them into our framework to enhance code generation performance.

Given that the approximated optimal strategy involves scoring code

solutions with four Beta functions [10], we refer to it as B4
.

Based on our developed framework, we further provide a theo-

retical analysis to compare B4
with existing heuristics. We observe

that some heuristics require sufficient correct test cases, while oth-

ers necessitate a higher probability of correct code solutions, as

confirmed by subsequent simulated experiments. In real-world ap-

plications involving selecting LLM-generated code solutions with

LLM-generated test cases, B4
significantly outperforms existing

heuristics across five LLMs and three benchmarks.

In summary, our paper makes the following contributions:

• Optimal Strategy.We systematically address the challenging

problem of selecting plausible code solutions with plausible tests

and establish an optimal yet uncomputable strategy.

• Technique. We derive an efficiently computable approach to

approximate the uncomputable optimal strategy with an error

bound. While our framework is broadly applicable, we adapt it

to code generation by incorporating two effective priors.

• Theoretical Study. Using our framework, we explore the condi-

tions under which existing heuristics are effective or ineffective

and compare them to the approximated optimal strategy B4
.

• Empirical Study.We empirically evaluate our selection strategy

with five code LLMs on three benchmarks. Experimental results

show that our strategy demonstrates up to a 12% average relative

improvement over the strongest heuristic and a 50% improvement

in the most challenging situations where there are few correct

solutions.

2 PRELIMINARIES

Notations. We use bold lowercase letters to denote vectors (e.g.,

x and y), bold uppercase letters to denote matrices (e.g., E), and thin
letters to denote scalars (e.g., 𝑥 and 𝑦). We also use thin uppercase

letters to denote random variables (e.g., 𝑋 , 𝑌 , and 𝐸). 𝒆𝑖 denotes
the 𝑖-th row in matrix E. The index set [𝑁 ] denotes {1, 2, · · · , 𝑁 }.
{0, 1}𝑁 denotes a length-𝑁 binary vector, and {0, 1}𝑁×𝑀 denotes

an 𝑁 ×𝑀 binary matrix.

2.1 Problem Definition

Code generation is a crucial task in software engineering, which

aims at automatically generating a code solution 𝑥 from a given

context 𝑐 . We explore the selection of the best code solution from

𝑁 code solutions generated based on 𝑐 , with 𝑀 test cases (also

generated based on 𝑐) to aid this selection. It is worth noting that the

correctness of both code solutions and test cases is plausible; they

might be either correct or incorrect, which is unobserved however.

All we can observe is a matrix E = {𝑒𝑖 𝑗 }𝑁×𝑀 ∈ {0, 1}𝑁×𝑀 where

𝑒𝑖 𝑗 = 1 indicates the 𝑖-th code solution passes the 𝑗-th test case,

and 0 indicates failure. We term E as passing matrix, and 𝑒𝑖 𝑗 as

passing state.

Let x = {𝑥1, · · · , 𝑥𝑁 } ∈ {0, 1}𝑁 denote the ground-truth correct-

ness of each code solution (unknown to us), in which 1 denotes

correct and 0 denotes incorrect. We assume at least one code solution

is correct since designing a selection strategy would be meaningless

without any correct code. Similarly, the correctness of each test

case is denoted by y = {𝑦1, ..., 𝑦𝑀 } ∈ {0, 1}𝑀 . We assume that all

correct code solutions share identical functionality and all tests
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are not flaky, meaning that all solutions pass the same test cases

on the same context 𝑐 . This can be formulated as the following

assumption.

Assumption 1 (Consistency). For all 𝑖, 𝑗 ∈ [𝑁 ], if 𝑥𝑖 = 1 and

𝑥 𝑗 = 1, then E should satisfy:

𝒆𝑖 = 𝒆 𝑗 (i.e., 𝑒𝑖𝑘 = 𝑒 𝑗𝑘 , ∀𝑘 ∈ [𝑀]).

Furthermore, the correctness of test cases y corresponds to the passing

states of the correct code solutions. Formally, if 𝑥𝑖 = 1, 𝑖 ∈ [𝑁 ], then:

y = 𝒆𝑖 (i.e., 𝑦𝑘 = 𝑒𝑖𝑘 , ∀𝑘 ∈ [𝑀]).

This assumption indicates that E and y should be consistent with

x. Intuitively, E should satisfy that the rows corresponding to the

correct code solutions are the same. y is defined based on these rows.
For example, in Fig. 1, we have x = {1, 1, 0, 0}, y = {1, 1, 1, 0, 0}, and

E =

©«
1 1 1 0 0

1 1 1 0 0

0 1 1 1 1

0 0 1 1 0

ª®®®¬ . (1)

In this paper, our goal is to use E to assess the correctness of

code solutions and select the best one by recovering x and y from

E. Following Chen et al. [5], we do not rely on any specific details

of the code solutions or test cases in this paper.

2.2 Existing Heuristics

In this section, we briefly review two representative heuristic

methods for addressing this problem. The first family of methods

MaxPass [18, 19, 22, 33] always rewards passing test cases. The

best code solution can be selected by counting the passed cases, i.e.,

Select code solution 𝑖, where 𝑖 = argmax

𝑖∈[𝑁 ]

𝑀∑︁
𝑗=1

𝑒𝑖 𝑗 .

The other family of methods examines the consensus between

code solutions and test cases, and clusters the code solutions with

the same functionality [5, 22, 36]. One of the most representative

methods is CodeT [5]. It divides the code solutions into 𝐾 disjoint

subsets based on functionality: 𝑆𝑥 = {𝑆𝑥
1
, · · · , 𝑆𝑥

𝐾
}, where each set

𝑆𝑥
𝑖
(𝑖 ∈ [𝐾]) consists of code solutions that pass the same set of

test cases, denoted by 𝑆
𝑦

𝑖
. The tuple (𝑆𝑥

𝑖
, 𝑆
𝑦

𝑖
) is termed a consensus

set. Taking Fig. 1 as an example, there are three consensus sets:

({𝑥1, 𝑥2}, {𝑦1, 𝑦2, 𝑦3}), ({𝑥3}, {𝑦2, 𝑦3, 𝑦4, 𝑦5}) and ({𝑥4}, {𝑦3, 𝑦4}).
CodeT proposes that a consensus set containing more code

solutions and test cases indicates a higher level of consensus, and

thus the more likely they are correct. Therefore, CodeT scores each

consensus set based on the capacity and selects the code solutions

associated with the highest-scoring set, i.e.,

Select code solutions 𝑖 ∈ 𝑆𝑘 , where 𝑘 = argmax

𝑘∈[𝐾 ]
|𝑆𝑥
𝑘
| · |𝑆𝑦

𝑘
|.

Similarly, other clustering methods, such as MBR-exec [36] and

AlphaCode-C [22], also cluster the code solutions based on test

cases, but only score each set by the number of code solutions |𝑆𝑥
𝑘
|.

We focus our analysis on CodeT as it was verified to outperform

other existing scoring strategies [5].

In this study, we develop a systematic analysis framework, to

evaluate the effectiveness of these heuristics and address the fol-

lowing research questions (RQs):

• RQ1: Given a passing matrix E, what constitutes the optimal selec-

tion strategy?

• RQ2: Is this optimal strategy computable?

• RQ3: Can a practical algorithm be developed to compute (or ap-

proximate) this optimal strategy efficiently?

• RQ4: Under what conditions do existing heuristics not work, based

on our developed analysis framework?

• RQ5: If the answer to RQ3 is true, how does the computable (or

approximated) optimal strategy compare to these heuristics?

3 METHODOLOGY

In this section, we outline our proposed methodology to address

this problem.

3.1 Optimal Strategy

We use 𝑋 = {𝑋1, · · · , 𝑋𝑁 } ∈ {0, 1}𝑁 , 𝑌 = {𝑌1, · · · , 𝑌𝑀 } ∈
{0, 1}𝑀 , and 𝐸 = {𝐸𝑖 𝑗 }𝑁×𝑀 ∈ {0, 1}𝑁×𝑀 to denote random vari-

ables of code solutions’ and tests’ correctness, and the passing ma-

trix, respectively. Note that all 𝑋 , 𝑌 , and 𝐸 depend on the same con-

text 𝐶 , which we omit for ease of notation. A strategy’s estimation

for 𝑋 and 𝑌 is denoted by x̂ = {𝑥1, · · · , 𝑥𝑁 } and ŷ = {𝑦
1
, · · · , 𝑦𝑀 }.

To answer RQ1, our goal is to find the most probable x̂ and ŷ given an
observation 𝐸 = E. This motivates us to design the optimal strategy

by modeling 𝑃 (𝑋,𝑌 | 𝐸). Based on Bayes’ theorem, we have:

𝑃 (𝑋,𝑌 | 𝐸)︸       ︷︷       ︸
posterior

=
𝑃 (𝐸 | 𝑋,𝑌 )

𝑃 (𝐸) 𝑃 (𝑋,𝑌 ) ∝ 𝑃 (𝐸 | 𝑋,𝑌 )︸       ︷︷       ︸
likelihood

𝑃 (𝑋,𝑌 )︸  ︷︷  ︸
prior

.

Therefore, we propose to use maximum a posteriori (MAP)

estimator to obtain the best solution [11]:

x̂∗, ŷ∗ = argmax

x̂∈{0,1}𝑁 ,ŷ∈{0,1}𝑀
𝑃 (𝐸 = E | 𝑋 = x̂, 𝑌 = ŷ)︸                          ︷︷                          ︸

likelihood

𝑃 (𝑋 = x̂, 𝑌 = ŷ)︸               ︷︷               ︸
prior

. (2)

That is to say, we exhaustively explore all 2
𝑁
possible configu-

rations of x̂ and 2
𝑀

configurations of ŷ, computing the likelihood

and prior for each pair. We then find the x̂∗ and ŷ∗ that yield the

highest posterior and select the correct code solutions and test cases

indicated by x̂∗ and ŷ∗. This optimization problem is a 0/1 integer

programming problem, in which all variables are restricted to 0 or

1. The following then answers RQ1.

Answer to RQ1: Given a passing matrix E, the optimal

selection strategy can be framed as a 0/1 integer programming

problem, by finding the one x̂ ∈ {0, 1}𝑁 and ŷ ∈ {0, 1}𝑀 that

maximizes the posterior probability 𝑃 (𝑋 = x̂, 𝑌 = ŷ | 𝐸 = E).

Before calculating Eq.(2), we first introduce the following two

assumptions which are necessary for our subsequent computation.

Assumption 2. The code solutions 𝑋 and the test cases 𝑌 are

independent and randomly sampled.

Assumption 3. Each 𝐸𝑖 𝑗 is only dependent by the 𝑋𝑖 and 𝑌𝑗 ,

∀𝑖 ∈ [𝑁 ], 𝑗 ∈ [𝑀].



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Mouxiang Chen, Zhongxin Liu, He Tao, Yusu Hong, David Lo, Xin Xia, and Jianling Sun

Correct code

Incorrect code

Correct test case

Incorrect test case

Figure 2: Illustration of the generation process. The correct-

ness of code 𝑋𝑖 and test case 𝑌𝑗 is sampled using parameters

𝜃𝑥 and 𝜃𝑦 respectively. 𝐸𝑖 𝑗 is generated based on 𝑋𝑖 and 𝑌𝑗 ,

using the corresponding parameters (1, 0, 𝜃1 or 𝜃0).

Remark 1. Assumption 2 is also used by Chen et al. [5]. Assump-

tion 3 assumes that a passing state 𝐸𝑖 𝑗 is independent of any other

variables except for the corresponding code 𝑋𝑖 and test case 𝑌𝑗 , which

means that 𝐸𝑖 𝑗 (𝑖 ∈ [𝑁 ], 𝑗 ∈ [𝑀]) are conditional independent when
given 𝑋 and 𝑌 . We will further discuss these assumptions in Section 6.

Based on Assumption 3, we can explicitly formulate 𝑃 (𝐸𝑖 𝑗 |
𝑋𝑖 , 𝑌𝑗 ) as follows,
𝑃 (𝐸𝑖 𝑗 = 1 | 𝑋𝑖 = 1, 𝑌𝑗 = 1) = 1, 𝑃 (𝐸𝑖 𝑗 = 1 | 𝑋𝑖 = 1, 𝑌𝑗 = 0) = 0,

𝑃 (𝐸𝑖 𝑗 = 1 | 𝑋𝑖 = 0, 𝑌𝑗 = 1) = 𝜃1, 𝑃 (𝐸𝑖 𝑗 = 1 | 𝑋𝑖 = 0, 𝑌𝑗 = 0) = 𝜃0,
(3)

where 𝜃1 and 𝜃0 are unknown parameters, indicating the probabil-

ities of an incorrect solution passing a correct test case (𝜃1) and

passing an incorrect test case (𝜃0). Eq.(3) suggests that if a solution

is correct (𝑋𝑖 = 1), 𝐸𝑖 𝑗 is deterministic by 𝑌𝑗 to fulfill the consis-

tency (Assumption 1). When a solution is incorrect (𝑋𝑖 = 0), 𝐸𝑖 𝑗 is

a Bernoulli random variable, i.e., a random variable that can only

take 0 or 1, where the probability depends on 𝑌𝑗 .

Based on Assumption 2, the correctness of code solutions 𝑋

and test cases 𝑌 are independent and therefore follow Bernoulli

distributions as well. Suppose that:

𝑃 (𝑋𝑖 = 1) = 𝜃𝑥 , 𝑃 (𝑌𝑗 = 1) = 𝜃𝑦, ∀𝑖 ∈ [𝑁 ], 𝑗 ∈ [𝑀],

where 𝜃𝑥 and 𝜃𝑦 are two unknown parameters. To summarize,

Fig. 2 illustrates the generation process of 𝐸 based on four unknown

parameters 𝜃1, 𝜃0, 𝜃𝑥 and 𝜃𝑦 for a clear presentation.

For ease of notation, we omit the random variables in the prob-

ability expressions in subsequent sections, e.g., using 𝑃 (x̂, ŷ) to
replace 𝑃 (𝑋 = x̂, 𝑌 = ŷ). In the following sections, we provide a

detailed explanation of how to derive the likelihood and prior in

Eq.(2) based on the generation process proposed in Fig. 2.

Computing the likelihood. Based on Assumption 3 and Remark 1,

we can expand the likelihood 𝑃 (E | x̂, ŷ) into the following form:

𝑃 (E | x̂, ŷ) =
∏
𝑖

∏
𝑗

𝑃 (𝑒𝑖 𝑗 | x̂, ŷ)

=
∏
𝑥𝑖=1

∏
𝑗

𝑃 (𝑒𝑖 𝑗 | x̂, ŷ)︸                    ︷︷                    ︸
𝑃1

∏
𝑥𝑖=0

∏
𝑗

𝑃 (𝑒𝑖 𝑗 | x̂, ŷ)︸                    ︷︷                    ︸
𝑃0

, (4)

where 𝑖 ∈ [𝑁 ] and 𝑗 ∈ [𝑀]. The first equality is based on the

independence of 𝐸𝑖 𝑗 . The second equality splits 𝑒𝑖 𝑗 into two parts,

i.e., 𝑃1 and 𝑃0, based on 𝑥𝑖 .

According to Eq.(3), 𝑃1 is either 1 or 0. If ŷ and E are consistent

with x̂ (i.e., satisfy Assumption 1), then 𝑃1 is 1; otherwise 𝑃1 is

0. Here we only focus on consistent configurations that satisfy

Assumption 1. Under this condition, 𝑃 (E | x̂, ŷ) = 𝑃0, so we only

need to compute 𝑃0. Suppose:

E1 = {𝑒𝑖 𝑗 | 𝑥𝑖 = 0, 𝑦 𝑗 = 1, 𝑖 ∈ [𝑁 ], 𝑗 ∈ [𝑀]},
E0 = {𝑒𝑖 𝑗 | 𝑥𝑖 = 0, 𝑦 𝑗 = 0, 𝑖 ∈ [𝑁 ], 𝑗 ∈ [𝑀]}. (5)

Based on Eq.(3), E1 (or E0) contains a set of independent Bernoulli
variables related to 𝜃1 (or 𝜃0). Therefore:

𝑃0 =
∏
�̂�𝑖=0

∏
�̂� 𝑗=1

𝑃 (𝑒𝑖 𝑗 | x̂, ŷ) ·
∏
�̂�𝑖=0

∏
�̂� 𝑗=0

𝑃 (𝑒𝑖 𝑗 | x̂, ŷ)

= 𝑃 (E1 | x̂, ŷ) · 𝑃 (E0 | x̂, ŷ)

=

∫
1

0

𝑃 (E1 | 𝜃1 )𝑃 (𝜃1 )d𝜃1
∫

1

0

𝑃 (E0 | 𝜃0 )𝑃 (𝜃0 )d𝜃0

=

∫
1

0

𝜃
𝑛1

1
(1 − 𝜃1 ) |E1 |−𝑛1𝑃 (𝜃1 )d𝜃1

∫
1

0

𝜃
𝑛0

0
(1 − 𝜃0 ) |E0 |−𝑛0𝑃 (𝜃0 )d𝜃0,

(6)

where the third equality uses the fact that E1 only depends on 𝜃1
and E0 only depends on 𝜃0, which follows Bernoulli distributions

based on Eq.(3). We leverage the law of total probability, where

𝑃 (𝜃1) and 𝑃 (𝜃0) are prior distributions for the two unknown param-

eters. The fourth equality leverages the formulation of the Bernoulli

distribution, where 𝑛1 =
∑
𝑒𝑖 𝑗 ∈E1 𝑒𝑖 𝑗 and 𝑛0 =

∑
𝑒𝑖 𝑗 ∈E0 𝑒𝑖 𝑗 are the

element sums of E1 and E0 respectively.

Computing the prior. To compute the prior 𝑃 (x̂, ŷ), following the
similar derivation as above, we have:

𝑃 (x̂, ŷ) = 𝑃 (x̂)𝑃 (ŷ)

=

∫
1

0

𝑃 (x̂ | 𝜃𝑥 )𝑃 (𝜃𝑥 )d𝜃𝑥
∫

1

0

𝑃 (ŷ | 𝜃𝑦 )𝑃 (𝜃𝑦 )d𝜃𝑦

=

∫
1

0

𝜃
𝑛𝑥
𝑥 (1 − 𝜃𝑥 )𝑁 −𝑛𝑥 𝑃 (𝜃𝑥 )d𝜃𝑥

∫
1

0

𝜃
𝑛𝑦
𝑦 (1 − 𝜃𝑦 )𝑀−𝑛𝑦𝑃 (𝜃𝑦 )d𝜃𝑦,

(7)

where 𝑃 (𝜃𝑥 ) and 𝑃 (𝜃𝑦) are prior distributions. 𝑛𝑥 =
∑
𝑥𝑖 ∈x̂ 𝑥𝑖 and

𝑛𝑦 =
∑
�̂� 𝑗 ∈ŷ 𝑦 𝑗 are the element sums of x̂ and ŷ, respectively.

Answer to RQ2: Under Assumptions 2 and 3, the posterior

of the optimal strategy can be expanded into four integrals

(Eq.(6) and Eq.(7)) related to some observed events (𝑛1, 𝑛0, 𝑛𝑥 ,

and𝑛𝑦 ) and prior distributions on four unobserved parameters

(𝜃1, 𝜃0, 𝜃𝑥 , and 𝜃𝑦 ), which is not computable.

3.2 Practical Implementation

Recall that to compute the optimal strategy, we need to compute

likelihood (Eq.(6)) and prior (Eq.(7)), which is not computable how-

ever due to complicated integrals and unknown prior distributions.

In this section, we describe how to design an efficient approach to

approximate the optimal strategy.

Computing integrals. In Bayesian statistics, employing conju-

gate distributions for prior distributions is a standard technique to

simplify integrals in posterior computation [31]. In our case, all

the variables 𝑋 , 𝑌 , and 𝐸 follow the Bernoulli distributions, whose

conjugate prior is the Beta distribution [4]. Thus, we assume the

four parameters follow Beta distributions, formally,

𝑃 (𝜃0) ∝ 𝜃𝛼0−1
0
(1 − 𝜃0)𝛽0−1, 𝑃 (𝜃1) ∝ 𝜃𝛼1−1

1
(1 − 𝜃1)𝛽1−1,

𝑃 (𝜃𝑥 ) ∝ 𝜃𝛼𝑥−1𝑥 (1 − 𝜃𝑥 )𝛽𝑥−1, 𝑃 (𝜃𝑦) ∝ 𝜃
𝛼𝑦−1
𝑦 (1 − 𝜃𝑦)𝛽𝑦−1,

(8)
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where 𝛼 and 𝛽 are eight hyperparameters that reflect our existing

belief or prior knowledge. We ignore all probability normalizing

constants for ease of notation since they will not change the selec-

tion decision. These hyperparameters allow us to integrate some

effective prior knowledge, which will be elaborated in Section 3.3.

To illustrate how Beta distributions simplify computation, we

take 𝜃𝑥 as an example. Combining the integral about 𝜃𝑥 in Eq.(7)

with 𝑃 (𝜃𝑥 ) in Eq.(8), we obtain:∫
1

0

𝜃
𝑛𝑥
𝑥 (1 − 𝜃𝑥 )𝑁−𝑛𝑥 𝑃 (𝜃𝑥 )d𝜃𝑥

∝
∫

1

0

𝜃
𝑛𝑥
𝑥 (1 − 𝜃𝑥 )𝑁−𝑛𝑥 𝜃𝛼𝑥−1𝑥 (1 − 𝜃𝑥 )𝛽𝑥−1d𝜃𝑥

=

∫
1

0

𝜃
𝑛𝑥+𝛼𝑥−1
𝑥 (1 − 𝜃𝑥 )𝑁−𝑛𝑥+𝛽𝑥−1d𝜃𝑥

= B (𝑛𝑥 + 𝛼𝑥 , 𝑁 − 𝑛𝑥 + 𝛽𝑥 ) ,
where B (·) is known as the Beta function [10], which can be effi-

ciently computed by modern scientific libraries like SciPy [41]. This

deduction is applicable to 𝜃1, 𝜃0, and 𝜃𝑦 as well. Combining Eq.(2),

Eq.(4), Eq.(6), and Eq.(7), and applying the similar transformation

to integrals yields the formula for the computable posterior:

𝑃 (E | x̂, ŷ)𝑃 (x̂, ŷ) = 𝑃1 · 𝑃0 · 𝑃 (x̂, ŷ)
∝ 𝑃1· [B (𝑛1 + 𝛼1, |E1 | − 𝑛1 + 𝛽1) B (𝑛0 + 𝛼0, |E0 | − 𝑛0 + 𝛽0)]
·
[
B (𝑛𝑥 + 𝛼𝑥 , 𝑁 − 𝑛𝑥 + 𝛽𝑥 ) B

(
𝑛𝑦 + 𝛼𝑦, 𝑀 − 𝑛𝑦 + 𝛽𝑦

) ]
(9)

This formula implies that the posterior probability can be approx-

imated by multiplying four Beta functions, multiplied by a term

𝑃1 indicating whether x̂, ŷ, and E are consistent. We next present

an error bound for this approximation (Proof can be found in the

online Appendix [6]).

Theorem 1 (Approximation error bound). Let Δ denote the

absolute error between the true posterior (i.e., 𝑃 (x̂, ŷ | E)) and the es-
timated posterior probability (i.e., multiplying the four Beta functions

with the probability normalizing constants in Eq.(8)). Then:

Δ ≤ 2

𝑃 (E)

(
𝑐1Δ𝜃1 + 𝑐0Δ𝜃0 + 𝑐𝑥Δ𝜃𝑥 + 𝑐𝑦Δ𝜃𝑦

)
,

where Δ𝜃1 is the total variance distance [38] between 𝑃 (𝜃1) and our
assumed Beta prior distribution for 𝜃1. Δ𝜃0 , Δ𝜃𝑥 , and Δ𝜃𝑦 are defined

similarly. 𝑐1, 𝑐0, 𝑐𝑥 , and 𝑐𝑦 are some positive constants less than 1.

Theorem 1 shows that the difference of scores given by the

approximated approach and the optimal strategy (i.e., the true pos-

terior probability) is bounded by the approximation errors in the

prior distributions of the four parameters. If we can accurately give

the prior distributions for each parameter 𝜃 , then Δ𝜃1 = Δ𝜃0 =

Δ𝜃𝑥 = Δ𝜃𝑦 = 0 and this approach can reduce to the optimal strat-

egy. This highlights the importance of incorporating appropriate

prior knowledge for different contexts.

Reducing computation complexity.Recall that theMAP strategy

in Eq.(2) requires enumerating all 2
𝑁+𝑀

combinations. Although

the posterior probability is computable in Eq.(9), the enumeration

cost still constrains the efficient identification of the optimal solu-

tion. Fortunately, given the role of the indicator 𝑃1, only consistent

combinations where 𝑃1 = 1 need consideration. To be specific, for

any x̂ ∈ {0, 1}𝑁 and ŷ ∈ {0, 1}𝑀 combination:

• x̂ must conform to the consistency assumption (Assumption 1).

Thus, any correct solution 𝑖 with 𝑥𝑖 = 1 must pass the same test

cases, i.e., they should be within the same consensus set.

• ŷ must match the test cases passable by any correct solution,

meaning all correct test cases 𝑗 with 𝑦 𝑗 = 1 should also reside in

the corresponding consensus set of the correct solutions.

Therefore, we claim that valid combinations must ensure that

all correct solutions and test cases should be in the same consensus

set. To reduce computations further, we consider any two solutions

within the same consensus set. As these solutions pass identical

test cases, they are completely symmetric and indistinguishable

in E. Therefore, it is illogical to differentiate between them. Thus,

we assume that solutions within the same consensus set should have

identical predicted correctness.

Based on these insights, we propose an enumeration method

based on consensus sets. Similar to CodeT, we initially divide solu-

tions and test cases into 𝐾 consensus sets (𝑆𝑥
𝑖
, 𝑆
𝑦

𝑖
)𝐾
𝑖=1

. Within each

set (𝑆𝑥
𝑖
, 𝑆
𝑦

𝑖
), we predict all solutions in 𝑆𝑥

𝑖
as 1 and all test cases

in 𝑆
𝑦

𝑖
as 1, while others are predicted as 0. This forms a consistent

configuration (x̂, ŷ). We then calculate the posterior of (x̂, ŷ) with
Eq.(10), where 𝑃1 = 1 is always satisfied. This significantly reduces

the number of explored configurations from 2
𝑁+𝑀

to 𝐾 .

3.3 Incorporating Prior Knowledge

We have derived a general explicit expression for the posterior

probability in Eq.(9), which includes eight hyperparameters corre-

sponding to the Beta distribution for four 𝜃 . According to Theo-

rem 1, we should incorporate proper prior knowledge to effectively

approximate the optimal strategy. In this section, we investigate

how to achieve this in the context of code generation.

Priors for 𝜃0 and 𝜃1. In practical scenarios, a test suite, not to

mention a test case, is often incomplete. Therefore, a correct test

case can fail to identify an incorrect solution, causing incorrect

solutions to have a moderate probability of passing correct test

cases (i.e., 𝜃1). Conversely, to pass incorrect test cases that validate

flawed functionalities, incorrect solutionsmust "accidentally" match

this specific flaw to pass, making such occurrences (𝜃0) relatively

rare. This suggests that in practice, 𝜃0 may be very small, but 𝜃1
may not have a clear pattern.

To validate this conjecture, we analyzed code and test case gen-

eration tasks with five different models on HumanEval (See Sec-

tion 5.2.1 for details of models) and computed the actual values of

𝜃1 and 𝜃0 for each problem in HumanEval using ground-truth solu-

tions. Fig. 3(a) displays the true distributions of these parameters,

showing that most 𝜃0 values are concentrated near zero, while 𝜃1
tends to follow a uniform distribution.

Based on this finding, we propose adopting a prior distribution

approaching zero for 𝜃0 and a uniform prior distribution for 𝜃1.

Therefore, we choose a beta prior distribution parameterized by

(𝛼0 = 1, 𝛽0 ≫ 1) for 𝜃0, and choose (𝛼1 = 𝛽1 = 1) for 𝜃1. As
demonstrated in Fig. 3(b), such choice aligns with the findings in

Fig. 3(a). In practice, 𝛽0 serves as a tunable hyperparameter.

Priors for 𝜃𝑥 and 𝜃𝑦 . As discussed previously, each consistent

(x̂, ŷ) corresponds to a consensus set. Chen et al. [5] identified a

heuristic rule that the consensus set with the largest capacity (i.e.,
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Figure 3: (a) Real distributions for two parameters 𝜃0 and 𝜃1.

(b) Three Beta distributions with different hyperparameters.

𝑛𝑥𝑛𝑦 ) is most likely correct. We will validate this rule theoretically

in Section 4. Accordingly, we want the prior distribution 𝑝 (x̂, ŷ)
to favor configurations containing more ones and reward larger

consensus sets. This can be implemented by setting the hyperpa-

rameters for 𝜃𝑥 as (𝛼𝑥 ≫ 1, 𝛽𝑥 = 1), and for 𝜃𝑦 as (𝛼𝑦 ≫ 1, 𝛽𝑦 = 1),
as illustrated in Fig. 3(b). Moreover, we find it sufficient to combine

𝛼𝑥 and 𝛼𝑦 into a single hyperparameter 𝛼𝑥𝑦 , further reducing the

parameter tuning space (see Section 5.2.4 for details).

Answer to RQ3: A practical strategy to approximate un-

computable optimal strategy is to score 𝐾 consensus sets and

select solutions within the highest-score set. The score is

determined by multiplying 4 Beta functions, i.e.,

B (𝑛1 + 1, |E1 | − 𝑛1 + 1) · B (𝑛0 + 1, |E0 | − 𝑛0 + 𝛽0)
·B

(
𝑛𝑥 + 𝛼𝑥𝑦, 𝑁 − 𝑛𝑥 + 1

)
· B

(
𝑛𝑦 + 𝛼𝑥𝑦, 𝑀 − 𝑛𝑦 + 1

)
,
(10)

where 𝛽0 and 𝛼𝑥𝑦 are tunable hyperparameters.

3.4 Further Analysis of Algorithm B4

Given that the score in Eq.(10) is multiplied by four Beta func-

tions, we name this practical strategyB4
. In this section, we provide

a detailed analysis of the proposed B4
to deepen the understanding.

Full algorithm.Algorithm 1 outlines the workflow. Line 1 starts by

collecting the set of test cases each code 𝑖 passes (denoted as 𝒆𝑖 , i.e.,
{𝑒𝑖1, · · · , 𝑒𝑖𝑀 }) and removes duplicates. In Line 3, we iterate over

all unique test case sets. For each ŷ processed, we identify solutions

whose passed test cases precisely match ŷ as x̂ in Line 4. Note that

x̂ and ŷ define a consensus set together. Lines 5-9 compute the

score of this consensus set (i.e., the posterior) by Eq.(10). Ultimately,

Lines 10-11 identify the consensus set with the highest score as the

prediction. For numerical stability, we often store the logarithm of

the scores in practice, by summing the logarithms of the four Beta

functions.

A running example.We reuse Fig. 1 to illustrate how B4
works,

using the hyperparameters 𝛽0 = 𝛼𝑥𝑦 = 10. Firstly, we deduplicate

the rows in Eq.(1) and obtain 𝑆𝑦 = {[1, 1, 1, 0, 0], [0, 1, 1, 1, 1], [0, 0, 1,
1, 0]}, indicating there are three distinct sets of passed test cases cor-
responding to three consensus sets. We need to iterate all three sets

and score for each one. For the first iteration, ŷ = [1, 1, 1, 0, 0] and
x̂ = [1, 1, 0, 0]. It indicates the first consensus set is ({𝑥1, 𝑥2}, {𝑦1, 𝑦2,
𝑦3}). Using Eq.(5), we obtain:

Algorithm 1: Algorithm for B4

Input: Passing matrix E = {𝑒𝑖 𝑗 } ∈ {0, 1}𝑁×𝑀 ,

hyperparameters 𝛽0 > 1, 𝛼𝑥𝑦 > 1

Output: x̂∗ ∈ {0, 1}𝑁 and ŷ∗ ∈ {0, 1}𝑀 indicating the

predicted correct solutions and test cases

1 𝑆𝑦 ← Deduplicate({𝒆𝑖 | 𝑖 ∈ [𝑁 ]});
2 𝑆𝑐𝑜𝑟𝑒∗ ← −∞;
3 for ŷ ∈ 𝑆𝑦 do

4 x̂←
{
1𝒆𝑖=ŷ | 𝑖 ∈ [𝑁 ]

}
;

5 E1 ← {𝑒𝑖 𝑗 | 𝑥𝑖 = 0, 𝑦 𝑗 = 1, 𝑖 ∈ [𝑁 ], 𝑗 ∈ [𝑀]};
6 E0 ← {𝑒𝑖 𝑗 | 𝑥𝑖 = 0, 𝑦 𝑗 = 0, 𝑖 ∈ [𝑁 ], 𝑗 ∈ [𝑀]};
7 𝑛1 ←

∑
𝑒∈E1 𝑒 , 𝑛0 ←

∑
𝑒∈E0 𝑒;

8 𝑛𝑥 ←
∑
𝑖∈[𝑁 ] 𝑥𝑖 , 𝑛𝑦 ←

∑
𝑗∈[𝑀 ] 𝑦 𝑗 ;

9 𝑆𝑐𝑜𝑟𝑒 ←
B (𝑛1 + 1, |E1 | − 𝑛1 + 1) · B (𝑛0 + 1, |E0 | − 𝑛0 + 𝛽0) ·
B

(
𝑛𝑥 + 𝛼𝑥𝑦, 𝑁 − 𝑛𝑥 + 1

)
· B

(
𝑛𝑦 + 𝛼𝑥𝑦, 𝑀 − 𝑛𝑦 + 1

)
;

10 if 𝑆𝑐𝑜𝑟𝑒 > 𝑆𝑐𝑜𝑟𝑒∗ then
11 (𝑆𝑐𝑜𝑟𝑒∗, x̂∗, ŷ∗) ← (𝑆𝑐𝑜𝑟𝑒, x̂, ŷ);

12 return x̂∗, ŷ∗;
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Figure 4: Visualization of two Beta functions used in our

scoring strategy. We set |E0 | = 5000 and 𝑁 = 100.

E1 ={𝑒𝑖 𝑗 | 𝑥𝑖 = 0, 𝑦 𝑗 = 1} = {𝑒31, 𝑒32, 𝑒33, 𝑒41, 𝑒42, 𝑒43},
E0 ={𝑒𝑖 𝑗 | 𝑥𝑖 = 0, 𝑦 𝑗 = 0} = {𝑒34, 𝑒35, 𝑒44, 𝑒45},

where E1 (or E0) represents the events that an incorrect solution

passes a correct (or an incorrect) test case, under the prediction x̂
and ŷ. We count these events: 𝑛1 =

∑
E1 = 3, 𝑛0 =

∑
E0 = 3, 𝑛𝑥 =∑

x̂ = 2, and 𝑛𝑦 =
∑
ŷ = 3. Following this, the score is:

B (3 + 1, 6 − 3 + 1) × B (3 + 1, 4 − 3 + 10)
× B (2 + 10, 4 − 2 + 1) × B (3 + 10, 5 − 3 + 1) = 1.20 × 10−12 .
For the second iteration, we have ŷ = [0, 1, 1, 1, 1] and x̂ =

[0, 0, 1, 0], resulting the score 1.15 × 10−13. For the third iteration,

we have ŷ = [0, 0, 1, 1, 0] and x̂ = [0, 0, 0, 1], resulting the score

1.24 × 10−15. One can find that the first consensus set has the

largest score 1.20× 10−12, leading to the selection of {𝑥1, 𝑥2} as the
optimal solution.

Understanding Beta functions. To further explore the role of

two hyperparameters used in the B4
and our scoring strategy, we

visualize two Beta functions related to two hyperparameters 𝛽0 and

𝛼𝑥𝑦 in Fig. 4. Fig. 4(a) reveals that the function value is insensitive
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to 𝑛0 when 𝛽0 is very small. As 𝛽0 increases, the Beta function has

little change for small 𝑛0 but has a particularly small value for large

𝑛0. This suggests that a larger 𝛽0 leads the algorithm to reward

predictions with smaller 𝑛0. Recall that 𝑛0 represents the number of

incorrect solutions passing incorrect test cases, which is generally

small in the real world (as discussed in Section 3.3). This indicates

that our B4
, which uses a 𝛽0 ≫ 1, aligns with practical conditions

well. Similarly, Fig. 4(b) shows a large 𝛼𝑥𝑦 leads the algorithm to

predict more correct solutions or tests (i.e., larger 𝑛𝑥 or 𝑛𝑦 ), which

rewards a larger consensus set as we expected in Section 3.3.

4 THEORETICAL ANALYSIS

In this section, we address RQ4 by a theoretical accuracy anal-

ysis of the two representative heuristics,MaxPass and CodeT, to

investigate under what conditions they can and cannot work.Max-

Pass is a widely-used heuristic [18, 19, 22, 33] and CodeT is the

state-of-the-art heuristic for code generation. Furthermore, these

theoretical analyses further explain why the priors for 𝑃 (x̂, ŷ) intro-
duced in Section 3.3 are chosen. We assume that Assumptions 1-3

are satisfied, and the data follows the generation process in Fig. 2.

All proofs can be found in the online Appendix [6].

We begin with a theorem which assesses MaxPass’s accuracy

when there is a large number of test cases:

Lemma 4.1. Suppose there exist 𝑛𝑦 correct test cases and 𝑛𝑦 incor-

rect test cases (𝑛𝑦 +𝑛𝑦 = 𝑀). When both 𝑛𝑦 and 𝑛𝑦 are large enough,

the probability of any incorrect code passing 𝑌 (𝑌 ≥ 𝑛𝑦 ) test cases is:

𝑃 (𝑌 ≥ 𝑛𝑦) ∼ Φ

(
𝑛𝑦𝜃0 − 𝑛𝑦 (1 − 𝜃1)√︁

𝑛𝑦𝜃1 (1 − 𝜃1) + 𝑛𝑦𝜃0 (1 − 𝜃0)

)
,

where Φ is the cumulative distribution function (CDF) of the standard

normal distribution. 𝜃0 and 𝜃1 are defined in Eq.(3).

Theorem 2 (Impact of correct test cases for MaxPass). If

𝜃1 < 1, the accuracy of MaxPass (i.e., the probability of all incorrect

solutions passing less than 𝑛𝑦 test cases) can exponentially converge

to 1 as 𝑛𝑦 →∞.
Theorem 3 (Impact of incorrect solutions for MaxPass). If

there are 𝑛𝑥 incorrect solutions, the accuracy of MaxPass can expo-

nentially converge to 0 as 𝑛𝑥 →∞.
Theorem 2 demonstrates the working condition for MaxPass: it

requires a large amount of correct test cases𝑛𝑦 tomake the accuracy

converge to 1. However, Theorem 3 also underscores a limitation

of MaxPass: it lacks scalability to the number of code solutions

𝑁 . As 𝑁 increases, 𝑛𝑥 increases and the accuracy of MaxPass will

exponentially converge to zero.

Following this, we analyze the error of CodeT. Considering the

problem’s complexity, we fix the𝑀 test cases and explore how the

error evolves as the number of generated code solutions 𝑁 grows,

as shown in the following theorem.

Lemma 4.2. Suppose the correctness of code solutions and test cases

are x and y. Let 𝑛𝑥 =
∑
x and 𝑛𝑦 =

∑
y denote the number of correct

code solutions and test cases, respectively. For any incorrect consensus
set that corresponds to a prediction x̂ and ŷ, similarly let 𝑛𝑥 =

∑
x̂

and 𝑛�̂� =
∑
ŷ. For arbitrary y and ŷ, if 𝑁 is sufficiently large, the

probability of this consensus set being scored higher than the correct

one by CodeT (i.e., 𝑛𝑥𝑛�̂� > 𝑛𝑥𝑛𝑦 ) follows:

𝑃 (𝑛�̂�𝑛�̂� > 𝑛𝑥𝑛𝑦 ) ∼ Φ
©«

√
𝑁 (𝜃 ′𝑛�̂� − 𝜃𝑥𝑛𝑦 )√︃

𝑛2
�̂�
𝜃 ′ (1 − 𝜃 ′ ) + 𝑛2𝑦𝜃𝑥 (1 − 𝜃𝑥 ) − 2𝑛�̂�𝑛𝑦𝜃

′𝜃𝑥

ª®®¬ ,
where 𝜃 ′ is a constant, defined as:

𝜃 ′ = (1 − 𝜃𝑥 )𝜃 ŷ
⊤y

1
(1 − 𝜃1) (1−ŷ)

⊤y𝜃0
ŷ⊤ (1−y) (1 − 𝜃0) (1−ŷ)

⊤ (1−y) .

Theorem 4 (Impact of 𝜃𝑥 and 𝑁 for CodeT). If 𝜃𝑥 is large

enough such that 𝜃 ′𝑛�̂� < 𝜃𝑥𝑛𝑦 , then the error probability 𝑃 (𝑛𝑥𝑛�̂� >

𝑛𝑥𝑛𝑦) can exponentially converge to 0 as 𝑁 →∞. Otherwise, if 𝜃𝑥
is low enough such that 𝜃 ′𝑛�̂� > 𝜃𝑥𝑛𝑦 , the error probability converges

to 1 as 𝑁 →∞.

Theorem 4 elucidates the working condition for CodeT: it re-

quires a sufficient high correct probability of code solutions (high

𝜃𝑥 ). If the generated solutions contain excessive incorrect solutions,

CodeT may not work well. An important insight is that under the

condition of high 𝜃𝑥 , CodeT offers better scalability compared to

MaxPass: as the number of solutions 𝑁 increases, CodeT’s selec-

tion accuracy can exponentially converge towards 1 (Theorem 4),

whereas MaxPass’s accuracy will converge towards 0 (Theorem 3).

Answer toRQ4: Existing heuristics work under specific con-
ditions. MaxPass requires sufficient correct test cases, while

CodeT requires a high correct probability of solutions. When

both of their requirements are satisfied, CodeT has better

scalability with the number of solutions 𝑁 thanMaxPass.

Considering the analyzing complexity, whether a similar error

probability analysis can be directly provided for B4
is an open

question.
1
Fortunately, these theoretical analyses still indirectly

support the effectiveness of B4
. For example, Theorem 4 validates

the effectiveness of the priors for𝜃𝑥 and𝜃𝑦 of ourB4
. Recall that our

introduced priors for 𝑃 (x̂, ŷ) are similar to CodeT’s assumptions

(Section 3.3), which offers similar scalability benefits under the

condition that 𝜃𝑥 is relatively large. However, it is crucial to note

that these priors are just part of our methods. Besides the priors for

𝜃𝑥 and 𝜃𝑦 , we also incorporate priors for𝜃0 and 𝜃1, which effectively

compensates for the limitations of CodeT’s priors, particularly in

scenarios where 𝜃𝑥 is low. As our subsequent experiments confirm,

B4
significantly outperforms CodeT in such challenging scenarios.

5 EXPERIMENT

In this section, we conduct experiments to further answer RQ4

and RQ5. We start with exploring the conditions under which exist-

ing heuristics can work efficiently through simulation experiments

in different controlled environments, to validate the theoretical

insights discussed in Section 4. Subsequently, we compare the per-

formance of B4
with existing heuristics on real-world datasets.

1
To show the complexity, note that computing the distribution for B4

’s score is

necessary for estimating error probability. The score can be represented as the product

of 𝑛𝑥 , 𝑛1 , and 𝑛0 after nonlinear transformations (here we assume 𝑛𝑦 is given, as

Lemma 4.2). However, despite oversimplification, i.e., treating three variables as normal,

linearizing the transformations, and assuming their independence, the computation is

still a challenge in the literature [37].
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Figure 5: Pass@1 results of the three methods under different conditions in the simulated experiments. By default, we set

𝑁 = 10,𝑀 = 30, 𝜃𝑥 = 0.2, and 𝜃𝑦 = 0.3 except for the varied one.

5.1 Simulated Experiments

In our simulated experiments, we sampled 𝑁 = 10 solutions

and𝑀 = 30 test cases, and set four parameters 𝜃𝑥 = 0.2, 𝜃𝑦 = 0.3,

𝜃1 = 0.4 and 𝜃0 = 0.1 by default. These default values are based on

our measurement of the real data generated by CodeGen [29] on

HumanEval [7]. Based on these parameters, we randomly sampled

a data point (x, y, E) following the process shown in Fig. 2. Subse-

quently, we usedMaxPass, CodeT, and B4
to select the solutions

x̂ using E, and computed the proportion of correct solutions within

x̂ (i.e., Pass@1) using the ground-truth x. We repeated this process

20,000 times and averaged the results to ensure stability for each

experiment. Following Section 3.3, the hyperparameters 𝛽0 and 𝛼𝑥𝑦
should be larger than 1, and we preliminarily chose 𝛽0 = 𝛼𝑥𝑦 = 10.

Figs. 5(a) and 5(b) display the results as the scale of data 𝑁 and

𝑀 change. One can observe in Fig. 5(a) that CodeT’s performance

gradually improves with an increase in the number of code solutions

𝑁 , whereasMaxPass shows a decline as 𝑁 increases. This confirms

our theoretical results in Section 4: CodeT has better scalability

with 𝑁 thanMaxPass. Fig. 5(b) shows that unlike with 𝑁 ,MaxPass

tends to improve as𝑀 increases. Regardless of the values of 𝑁 and

𝑀 , B4
consistently outperforms the two baselines, proving that

existing heuristic algorithms are not optimal. Specifically, B4
tends

to provide greater performance enhancements relative to CodeT

when 𝑁 is small. This could be because CodeT does not perform

as well when 𝑁 is low, which is also validated in Theorem 4.

Figs. 5(c) and 5(d) display the results as the probability of correct

solutions 𝜃𝑥 and test cases 𝜃𝑦 change. All three methods gradu-

ally improve as the accuracy increases. Specifically, both B4
and

CodeT’s accuracies can converge to 1 as 𝜃𝑥 increases, while all

three methods converge to 1 as 𝜃𝑦 increases. This indicates that

MaxPass is less sensitive to 𝜃𝑥 but more responsive to 𝜃𝑦 , con-

firming the findings of Lemma 4.1 that the number of correct test

cases matters for MaxPass. B4
consistently outperforms all the

two heuristics under all conditions. Notably, when 𝜃𝑥 is low, it

significantly outperforms CodeT with a large improvement. This

suggests that CodeT struggles under the condition of few correct

solutions and affirms the findings of Theorem 4.

5.2 Real-world Experiments

5.2.1 Experiment setup. We conducted experiments on three public

code generation benchmarks, HumanEval [7], MBPP [2] (sanitized

version), and APPS [16] with three difficulty levels. These bench-

marks have beenwidely used by LLM-based code generation studies

[7, 13, 21, 29, 34]. Specifically, each benchmark contains some cod-

ing tasks, and each task consists of a natural language requirement,

a function signature, and a golden test suite for evaluating the cor-

rectness of generated solutions. Notably, these golden test suites

and the generated test cases are not the same; the generated test

cases are used by each selection strategy to select the generated

code, while the golden test suites are solely used to evaluate the

performance of selection strategies.

We used the same zero-shot prompt format as CodeT [5] for

both code and test case generation. Following CodeT, the numbers

of generated solutions and test cases are 100 for HumanEval and

MBPP and 50 for APPS. Both solutions and tests are generated by

the same model.

For models, our experiments are based on Codex [7] (code-

davinci-002 version), CodeGen [29] (16B Python mono-lingual

version), and three recent open-source models, StarCoder [21],

CodeLlama [34] (7B Python version) and Deepseek-Coder [13]

(6.7B Instruct version). The generation hyperparameters such as

temperature, top 𝑝 , and max generation length are the same as [5].

Additionally, as APPS has significantly more problems (5,000) com-

pared to HumanEval (164) and MBPP (427), testing all models on it

is prohibitively expensive. Given that Codex outperforms the other

models on HumanEval andMBPP in most of our experiments (using

CodeT strategy), we followed Chen et al. [5] by only evaluating

Codex’s outputs on the APPS dataset.

For baselines, in addition to MaxPass [18, 19] and CodeT [5],

we also used MBR-exec [22, 36], which is similar to CodeT but

scores each consensus set with the number of solutions, and a

naive Random, which picks a code from the generated solutions

randomly.We reported the average Pass@1 of the selected solutions.

Our method is presented in the format of B4
(log

10
𝛽0, log10 𝛼𝑥𝑦 ).

For example, B4
(4,3) represents 𝛽0 = 10

4
and 𝛼𝑥𝑦 = 10

3
. For a fair

comparison, all the methods operate on the same passing matrices

E. We reported three variants of methods: B4
(4,3), B4

(5,3), and

B4
(6,3), and compared each of them with CodeT using Wilcoxon

signed-rank significance test [43].

To comprehensively evaluate different selection methods, we

filtered the problems based on the proportion of correct solutions

among all generated solutions (i.e., 𝜃𝑥 ). We first filtered out prob-

lems with 𝜃𝑥 = 1 and 𝜃𝑥 = 0, as the solutions for these problems are

either entirely correct or incorrect, which can not differentiate se-

lection strategies. We name this setting discriminative problems.

To provide a more challenging environment for selecting correct
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Table 1: Pass@1 (%) of the code solutions selected by different strategies across various datasets and models with two settings

(RD=Random, MP=MaxPass, MBR=MBR-exec, CT=CodeT). We also reported the average relative improvement of the three

B4
variants over the strongest heuristic CodeT and the p-values derived from the Wilcoxon signed-rank test.

Dataset Model

Discriminative Problems (0 < 𝜽𝒙 < 1) Hard Problems (0 < 𝜽𝒙 < 0.5)

RD MP MBR CT

ours

RD MP MBR CT

ours

B4
(4,3) B4

(5,3) B4
(6,3) B4

(4,3) B4
(5,3) B4

(6,3)

HumanEval

CodeGen 32.5 28.6 44.8 51.5 56.8 58.0 56.9 13.0 11.1 21.0 31.4 38.2 40.0 40.8

Codex 39.2 57.8 55.0 71.7 70.6 73.1 73.1 19.2 43.2 27.6 54.6 52.9 56.9 56.9

StarCoder 29.8 32.2 47.9 55.0 59.0 59.3 57.8 15.0 16.3 29.3 38.9 44.4 44.8 42.8

CodeLlama 34.1 40.6 52.6 61.7 63.5 64.8 64.0 15.8 24.5 30.8 44.1 46.7 48.6 47.4

Deepseek-Coder 65.3 58.2 80.4 79.2 80.5 78.5 78.5 24.7 33.7 35.0 30.6 35.5 31.3 31.3

MBPP

CodeGen 42.4 48.1 56.4 64.9 66.7 64.9 64.7 21.8 30.8 28.4 43.5 45.6 42.5 42.3

Codex 55.1 70.5 71.9 80.0 80.8 81.3 81.9 23.9 46.4 32.5 53.9 55.1 56.6 58.0

StarCoder 46.1 55.6 65.6 69.6 70.6 70.6 70.6 21.5 39.5 37.8 45.6 47.5 47.9 47.9

CodeLlama 47.2 60.0 65.4 72.4 72.6 73.4 73.8 19.8 39.0 30.7 44.7 45.0 46.7 47.5

Deepseek-Coder 56.5 71.4 66.9 75.2 75.9 75.9 75.9 22.3 45.6 25.7 45.9 46.7 47.6 47.6

APPS introductory

Codex

36.2 46.4 41.6 59.5 63.7 63.7 64.4 17.6 29.5 15.9 41.6 46.6 47.6 48.3

APPS interview 15.6 26.0 14.7 36.0 40.4 40.8 41.1 11.2 22.4 8.0 30.6 35.1 35.5 35.9

APPS competition 7.9 16.8 3.1 17.3 23.1 25.2 25.2 7.0 16.2 2.5 16.0 21.9 24.0 24.0

Avg. relative improvement over the strongest heuristic CodeT +6.1% +7.5% +7.2% +10.1% +12.0% +12.0%

p-value 0.001 0.0003 0.0006 0.0009 0.0004 0.0004

solutions, we propose a new setting on a subset of discriminative

problems where 0 < 𝜃𝑥 < 0.5, named hard problems.

5.2.2 Main results. Table 1 presents the main results, showing that

all three B4
variants consistently and significantly outperform ex-

isting heuristics. Specifically, each single variant of B4 outperforms

all baselines in most cases. On average, each variant surpasses the

strongest heuristic baseline, CodeT, by 6-12% with statistically sig-

nificant differences (proven by significance tests). This highlights a

substantial gap between existing heuristics and the optimal strategy

and suggests our method effectively approximates the optimal.

Additionally,B4
shows a greater performance improvement over

CodeT in more challenging scenarios (i.e., smaller 𝜃𝑥 ). It achieves

a 6.1%-7.5% relative improvement in discriminative problems and

a 10.1%-12.0% improvement in hard problems. In the most chal-

lenging scenario (APPS competition on hard problems), B4
can

even deliver up to a 50% enhancement over CodeT and 246% over

random selection. These findings align with the conclusions of

Lemma 4.2 and the simulated experiments depicted in Fig. 5(c), con-

firming that existing heuristics struggle with more difficult tasks.

We also observed that the gains from B4
on the MBPP dataset are

less significant than on HumanEval and APPS, likely because the

MBPP problems are inherently simpler, as indicated by Random.

For hyperparameters, the optimal hyperparameter 𝛽0 forB4
varies

across different scenarios, suggesting that the prior distribution

of 𝜃0 may differ depending on the context. This makes sense as

different models might generate incorrect solutions and test cases

with different patterns. For example, when models more easily mis-

interpret the problem, leading solutions and test cases to follow

the same incorrect patterns, the probability of incorrect solutions

passing incorrect test cases 𝜃0 can increase, thus necessitating a

larger 𝛽0 to reflect this change. We will further discuss the impact

of hyperparameters in the next section.

Answer toRQ5: The proposedB4
significantly outperforms

existing heuristics, achieving a 6.1%-7.5% relative improve-

ment in discriminative problems and a 10.1%-12.0% improve-

ment in hard problems over the strongest CodeT.

5.2.3 Ablation studies on two hyperparameters. Figs. 6(a) and 6(b)

show the average performance on two datasets as influenced by two

hyperparameters 𝛽0 and 𝛼𝑥𝑦 . Recall that 𝛽0 controls the likelihood

𝑃 (E | x̂, ŷ) and 𝛼𝑥𝑦 controls the prior 𝑃 (x̂, ŷ). For 𝛽0, performance

on both datasets initially increases and decreases as 𝛽0 increases,

with the optimal value around 10
4
-10

6
. This pattern suggests that

an appropriate 𝛽0 can better align with the prior distribution of 𝜃0,

resulting in more accurate likelihood estimates.

For 𝛼𝑥𝑦 , we found that performance improves with an increase

in 𝛼𝑥𝑦 on HumanEval and MBPP, whereas the opposite is true for

APPS. Recall that a larger 𝛼𝑥𝑦 makes the strategy closer to CodeT.

One possible reason is that the tasks in HumanEval and MBPP are

relatively simpler, so CodeT performs better on these two datasets,

as shown in Theorem 4.

5.2.4 Ablation studies on splitting 𝛼𝑥𝑦 into two individual hyper-
parameters 𝛼𝑥 and 𝛼𝑦 . As discussed in Section 3.3, we combined

𝛼𝑥 and 𝛼𝑦 into a single 𝛼𝑥𝑦 in Eq.(8). This section examines the

effects of tuning 𝛼𝑥 and 𝛼𝑦 independently. Section 5.2.3 shows the

trend of average performance across all datasets as 𝛼𝑥 and 𝛼𝑦 vary,

with 𝛽0 set at 10
6
. We observe that performance declines signif-

icantly when 𝛼𝑦 − 𝛼𝑥 has a large value (i.e., in the bottom right

area of Section 5.2.3). As 𝛼𝑦 −𝛼𝑥 gradually decreases (moving from

the bottom right towards the top left), performance can be gradu-

ally improved. The method achieves optimal performance when

𝛼𝑥 and 𝛼𝑦 are closed (𝛼𝑥 = 10
3
and 𝛼𝑦 = 10

2
). Considering that

the model’s performance is not sensitive to 𝛼𝑥𝑦 when 𝛽0 is within

an appropriate range, we argue that merging 𝛼𝑥 and 𝛼𝑦 into one

hyperparameter simplifies tuning without substantially affecting

performance. Therefore, we adopted 𝛼𝑥 = 𝛼𝑦 = 10
3
in our previous

main experiment.
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Figure 6: Pass@1 (%) results of varying 𝛼𝑥𝑦 and 𝛽0 on HumanEval’s, MBPP’s, and APPS’ discriminative problems.
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Figure 7: Pass@1 (%) results of splitting 𝛼𝑥𝑦 into two hy-

perparameters 𝛼𝑥 and 𝛼𝑦 on the discriminative problems of

HumanEval and MBPP when 𝛽0 = 10
6
.

5.2.5 Computational Cost. Table 2 shows the running time of the

B4
algorithm and CodeT, where B4

is slightly slower than CodeT

due to the relatively higher overhead of beta functions in B4
com-

pared to simple counting in CodeT. Notably, the computational

complexity of both is the same, as both first partition the consensus

sets and then score them. We can observe that even for large𝑀 and

𝑁 (e.g., 𝑀 = 𝑁 = 400), the running time is less than one second,

which is much less than the time to generate 400 solutions and tests

with LLMs. Therefore, we believe that the efficiency of B4
will not

become a bottleneck for practical systems.

6 DISCUSSION

In this section, we discuss the limitations and threats to the

validity of this study.

6.1 Limitations

Assumption 2 and 3. These assumptions are related to indepen-

dence. Assumption 2 considers the correctness of code solutions and

test cases are independent, which can be violated if there is a causal

relationship in their generation, such as using a generated test case

as input to an LLM for further generation. Assumption 3 states

that passing probability is solely determined by the correctness of

Table 2: Computation cost with the increases of the number

of code solutions 𝑁 and test cases𝑀 .

𝑁 and𝑀 100 200 300 400

CodeT 10 ms 65 ms 202 ms 455 ms

B4
15 ms 79 ms 243 ms 588 ms

the associated code and test case. However, the independence of

passing states may be broken by other unobserved factors hidden

in the code. For example, if two incorrect solutions exhibit similar

structures and similar error types, their passing states might be

positively correlated. Considering the significant complexity in-

troduced by the lack of independence, further exploration of the

dependence case is deferred to future research.

Prior for 𝜃0. This prior assumes that 𝜃0 (i.e., the probability of

incorrect solutions passing incorrect test cases) is typically low.

However, when LLMs misinterpret a problem, incorrect test cases

may coincidently specify the functionality of incorrect solutions

and potentially increase 𝜃0. Considering that this prior can bring

considerable benefits (as shown in Section 5.2.3), we argue that its

advantages significantly outweigh the limitations.

Priors for 𝜃𝑥 and 𝜃𝑦 . These priors, similar to the heuristic rule

of CodeT, suggest that larger consensus sets are more likely to be

correct. We have validated its theoretical effectiveness under the

conditions of large 𝑁 and high 𝜃𝑥 , as detailed in Section 4. Even

though its efficacy may diminish when these conditions are not

met, the prior for 𝜃0 effectively compensates for this situation as

demonstrated in Section 5.2.3.

Hyperparameters. Our method includes two hyperparameters,

𝛼𝑥𝑦 and 𝛽0, which may pose challenges in tuning across different

usage scenarios. Fortunately, we have found that using consistent

hyperparameters across all benchmarks can still yield significant

improvements in our experimental scenarios. The tuning of hyper-

parameters for specific applications, potentially using a validation

set to optimize them, remains an area for future research.

Theoretical results. To derive a closed form of the probabilities,

we used the Law of Large Numbers to examine the scenarios where

𝑁 and𝑀 are sufficiently large. Besides, in Lemma 4.2, we focus on a
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single incorrect consensus set and neglect the complex interactions

of multiple incorrect sets for computational convenience. Despite

these simplifications, the key insights from these theorems are

empirically validated in Section 5, thus we believe these theoretical

analyses remain valuable. Finally, whether an error probability of

B4
can be explicitly provided, similar to those of existing heuristics

provided in Section 4, is an interesting open question.

6.2 Threats to Validity

The used benchmarks, i.e., HumanEval, MBPP, and APPS, con-

sist of small-scale function-level tasks and may not capture the

nuances of more complex scenarios in practice. Additionally, some

ground-truth test suites used to evaluate the solution’s correctness

in the benchmarks are just an approximation to the specification

and can be incomplete. This leads to a few correct solutions (i.e.,

the solutions passing the ground truth test suite) not exhibiting

identical functionality and violating Assumption 1. Considering

that such cases are relatively rare and most related work is centered

on these benchmarks [5, 7, 13, 21, 34], we believe this threat will

not significantly influence our conclusions.

Our experiments focus on Python code generation tasks, which

may not reflect the effectiveness of our method on other program-

ming languages and other software engineering (SE) generation

tasks. However, Python is one of the most popular programming

languages and code generation is a challenging and important SE

generation task. In addition, our method is language-agnostic and

our theoretical framework can be easily adapted to other SE gen-

eration tasks, such as Automated Program Repair (APR) and code

translation. Therefore, we believe this threat is limited.

7 RELATEDWORK

Reranking and selection for plausible solutions.Using external

validators (e.g., test cases) to assess, rerank, or select the generated

solutions is widely used in various software engineering tasks. In

code generation, Lahiri et al. [18] incorporated user feedback to

choose test cases for code selection. In APR, Yang et al. [46] used test

cases generated by fuzz testing to validate automatically generated

patches. In code translation, Roziere et al. [33] leveraged EvoSuite

[12] to automatically generate test cases for filtering out invalid

translations. These methods are developed by assuming that the

validators are reliable and can be reduced to the MaxPass strategy

in our work. However, it may be ineffective when the validators

are plausible, as evidenced in Section 4. In code generation, several

cluster-based strategies are proposed to leverage incomplete or

plausible test cases to rerank LLM-generated code solutions [5, 22,

36]. Li et al. [22], Shi et al. [36] and Chen et al. [5] clustered code

solutions based on their test results and scored each with the cluster

capacity. These cluster-based heuristics, particularly CodeT [5], can

work well when the test cases are plausible but are susceptible to

the incorrectness of solutions as in Section 4.

Some research uses deep learning techniques for ranking LLM-

generated code snippets without executable test cases. Inala et

al. [17] introduced a neural ranker for predicting the validity of a

sampled program. Chen et al. [7] and Zhang et al. [49] leveraged

the LLM likelihood of the generated program for selecting the

most probable code snippets. These strategies fall beyond the scope

of this work since the problem we tackle does not assume the

existence of additional training data or the ranking scores produced

by the generation techniques. However, it is an interesting question

whether these strategies have a theoretical guarantee.

Code generation.Code generation is an important task in software

engineering, aimed at automating the production of code from

defined software requirements [23]. Traditional techniques rely on

predefined rules, templates, or configuration data to automate the

process [14, 42], and often struggle with flexibility across different

projects. Due to the impressive success of large language models

(LLMs), recent studies focus on training LLMs on extensive code

corpora to tackle complex code generation challenges [48]. Many

code LLMs have shown remarkable capabilities in this domain, such

as Codex [7], CodeGen [29], StarCoder [21], CodeLlama [34] and

DeepSeek-Coder [13]. This paper focuses on assessing the code

solutions generated by a code generation approach with plausible

test cases, and is thus orthogonal to these techniques.

Test case generation. Developing and maintaining human-crafted

test cases can be expensive. Many techniques have been proposed

to automatically generate test cases. Traditional approaches include

search-based [15, 20, 24], constrained-based [44], and probability-

based techniques [30]. Although most of these approaches achieve

satisfactory correctness, they are constrained by inadequate cov-

erage and poor readability, and are typically limited to generating

only regression oracles [45] or implicit oracles [3]. Recently, ap-

plying deep learning models (e.g., LLMs) to generate test cases has

become popular [1, 8, 9, 25–28, 32, 35, 39, 40, 47]. However, ensuring

the correctness and reliability of these generated test cases remains

difficult. This paper explores the challenging problem of employing

such plausible test cases for selecting plausible code solutions.

8 CONCLUSION AND FUTUREWORK

In this study, we introduce a systematic framework to derive an

optimal strategy for assessing and selecting plausible code solu-

tions using plausible test cases. We then develop a novel approach

that approximates this optimal strategy with an error bound and

tailors it for code generation tasks. By theoretical analysis, we show

that existing heuristics are suboptimal. Our strategy substantially

outperforms existing heuristics in several real-world benchmarks.

Future work could explore adapting our framework to other gen-

eration tasks in software engineering, such as automatic program

repair and code translation. Also, the effectiveness of our proposed

priors in these contexts, as well as the potential for alternative

priors, remains an open question.

Our online appendix is available on Zenodo [6].
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