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ABSTRACT

The emergence of diffusion models has significantly advanced image synthesis.
Recent studies of model interaction and self-corrective reasoning approaches in
large language models offer new insights for enhancing text-to-image models. In-
spired by these studies, we propose a novel method called ArtAug for enhancing
text-to-image models via model interactions with understanding models. In the
interactions, we leverage human preferences implicitly learned by image under-
standing models to provide fine-grained suggestions for image generation models.
The interactions can modify the image content to make it aesthetically pleasing,
such as adjusting exposure, changing shooting angles, and adding atmospheric ef-
fects. The enhancements brought by the interaction are iteratively fused into the
generation model itself through an additional enhancement module. This enables
the generation model to produce aesthetically pleasing images directly with no ad-
ditional inference cost. In the experiments, we verify the effectiveness of ArtAug
on advanced models such as FLUX, Stable Diffusion 3.5 and Qwen2-VL, with ex-
tensive evaluations in metrics of image quality, human evaluation, and ethics. The
source code and models will be released publicly.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have been extensively studied in re-
cent years. With the development of large-scale image datasets (Schuhmann et al., 2022; Gu et al.,
2022), large text-to-image models (Rombach et al., 2022; Chen et al., 2023; Saharia et al., 2022)
have rapidly developed and demonstrated strong application potential. Downstream tasks such as
interactive creation (Liu et al., 2024c), controllable image generation (Zhang et al., 2023), and con-
sistent story generation (Zhou et al., 2024) all require the generated content to align with human
preferences. However, pre-trained text-to-image models often struggle to produce satisfactory im-
ages without high-quality training datasets or human guidance tailored for specific cases.

To guide image generation models in producing high-quality images, current research primarily
focuses on three aspects: 1) Data refinement (Chen et al., 2024a; Schuhmann et al., 2022) are
employed to eliminate low-quality images from large training datasets, thereby preventing them
from negatively impacting the model’s performance. 2) Prompt engineering (Wang et al., 2024b;
Cao et al., 2023) aims to craft detailed prompts to guide the model in producing superior-quality
images. 3) Alignment training (Wallace et al., 2024; Fan et al., 2024) focuses on aligning the
model’s generative inclinations with human preferences via training. However, these methods all
have certain limitations. Data refinement can only be used for coarse filtering. Directly filtering
out low-quality images requires meticulous efforts and potentially leads to overfitting due to the in-
sufficient amount of data. Prompt engineering based on language models might result in generated
images containing content that is inconsistent with the user-provided prompts, thereby compromis-
ing the text-image correlation. Alignment training is currently the key method for improving image
quality. The mainstream alignment training methods, including Reinforcement Learning from Hu-
man Feedback (RLHF) (Ouyang et al., 2022) and Direct Preference Optimization (DPO) (Rafailov
et al., 2024), require a large amount of manually annotated data, leading to extremely high costs.
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Figure 1: Image examples improved by ArtAug. The base text-to-image model is FLUX.1[dev].

On the other hand, recent studies of model interaction and self-corrective reasoning provide us
with new insights for enhancing the capabilities of image generation models. Particularly, GPT-o1
(OpenAI, 2024) significantly enhances the capabilities of LLMs (Large Language Models) (Brown,
2020) through self-corrective reasoning via the model itself, at the expense of longer computation
time. LLMs are trained on human-generated data and potentially understand human interpretations
and preferences for aesthetics. Recent studies have preliminarily demonstrated the feasibility of
guiding image generation models through interactive conversations using language models (Huang
et al., 2024). Some multimodal models (Wang et al., 2024a; Chen et al., 2024b; Liu et al., 2024b)
are capable of understanding image content and expressing it through natural language, motivating
us to explore the deeper assistive roles of LLMs in relation to image generation models.

To address the current challenges faced by image generation models, inspired by the model in-
teraction and self-corrective reasoning approaches, we propose a novel text-to-image generation
model enhancement approach called ArtAug. As shown in Figure 1, ArtAug can significantly
improve the image quality, aligning the generated image content with human preference. Our frame-
work, ArtAug, introduces a paradigm shift by replacing the human annotator with a highly capable
MLLM-based “AI Art Director”. While the training workflow is multi-staged, it is computationally
manageable, offering a scalable and cost-effective alternative to human-in-the-loop alignment.

The framework ArtAug is presented in Figure 2. There are three modules in ArtAug, including
a generation module for text-to-image generation, an understanding module for analyzing and
refining the image content, and an enhancement module for improving the generation module.
Firstly, we design an interactive image synthesis algorithm, where the understanding module pro-
vides fine-grained modifications for the generation module to produce enhanced images. Secondly,
we build a pairwise training dataset by generating and filtering image pairs. Thirdly, we introduce
differential training to teach the enhancement module to capture differences between original and
enhanced images. Fourthly, we integrate the enhancement module into the generation module, im-
buing the generation module with the enhancement capability brought by interactions, without extra
computational cost. This process is iterated to progressively improve generation. In experiments,
we train the enhancement module on advanced text-to-image models, including FLUX.1[dev] (Labs,
2024) and Stable Diffusion 3.5 (Esser et al., 2024). ArtAug ArtAug significantly improves image
quality, generating more aesthetically pleasing results, evidenced by various evaluation metrics. We
will release the source code and models. Overall, the contributions of this paper include:

• We design an interaction algorithm between a generation module and an understanding
model in image synthesis, demonstrating that current multimodal LLMs can guide text-to-
image models to generate high-quality images aligned with human preferences.

• We propose ArtAug, a framework for improving text-to-image models. By learning the
differences between images before and after interaction, we iteratively enhance the capa-
bilities of the text-to-image model.
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• We train the ArtAug enhancement module based on advanced text-to-image models. Ex-
tensive experiments consistently demonstrate the effectiveness of ArtAug in improving
image quality across multiple aspects.

2 RELATED WORK

2.1 LARGE IMAGE SYNTHESIS MODELS

In recent years, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have achieved signif-
icant breakthroughs in the field of image synthesis, even reaching the level of human artists. Since
the introduction of Latent Diffusion (Rombach et al., 2022), large diffusion models pre-trained on
large-scale text-image datasets (Schuhmann et al., 2022; Lin et al., 2014; Gu et al., 2022) have made
considerable advancements. The generative capabilities of these models have been steadily im-
proved, including both UNet-based models (Ronneberger et al., 2015; Rombach et al., 2022; Podell
et al., 2023; Sauer et al., 2025) and the more recent DiT-based models (Li et al., 2024; Chen et al.,
2023; Esser et al., 2024; Labs, 2024). Notably, DiT (Diffusion Transformer) (Peebles & Xie, 2023)
has considerably enhanced both the convergence speed and the generalization ability of image gen-
eration models, establishing itself as one of the most popular architectures in the realm of image
synthesis. To further enhance image quality in terms of text-image alignment and aesthetic appeal,
various approaches, such as data refinement (Chen et al., 2024a; Schuhmann et al., 2022), prompt
engineering (Wang et al., 2024b; Cao et al., 2023), and alignment training (Wallace et al., 2024;
Fan et al., 2024), have been extensively investigated. Inspired by these studies, we propose a new
approach, which synthesizes data via model interactions and iteratively improves the text-to-image
model after data filtering.

2.2 ALIGNING MODELS WITH HUMAN PREFERENCES

Text-to-image models pre-trained on extensive text-image datasets have demonstrated rudimentary
image generation abilities, but these models often produce suboptimal quality images without fine-
tuning (Liu et al., 2024a). Currently, alignment training stands as the principal method for im-
proving image quality by aligning generated content with human preferences. Alignment training
is initially investigated in large language models (Ouyang et al., 2022; Rafailov et al., 2024), and
has recently been applied to diffusion models. For example, based on reinforcement learning, ap-
proaches like DPOK (Fan et al., 2024) and DDPO (Black et al., 2023) gather human preferences on
model-generated outputs for fine-tuning text-to-image models. Similarly, Diffusion-DPO (Wallace
et al., 2024) and SPO (Liang et al., 2024) employ auxiliary models to model human preferences, us-
ing DPO (Rafailov et al., 2024) to fine-tune diffusion models accordingly. However, because human
preferences are difficult to quantify, these alignment training methodologies necessitate extensive
manually labeled datasets, which are prohibitively expensive to produce. Inspired by these studies,
we explore the possibility of using multimodal LLMs to replace manual annotation, aiming to obtain
a large amount of training data at a lower cost for alignment training.

3 METHODOLOGY

The framework of ArtAug is presented in Figure 2. ArtAug consists of three key steps: interactive
image synthesis, dataset construction and differential training. The three steps are applied to the
model iteratively. In this section, we provide a detailed description of each step.

3.1 INTERACTIVE IMAGE SYNTHESIS

Text-to-image models usually tend to generate simple content when given simple prompts. Prompt
engineering is generally essential for generating high-quality images, but manually crafting high-
quality prompts requires the expertise of human experts. The image generation module (a text-to-
image model) itself struggles to generate detailed and aesthetically pleasing images. To address this
challenge, we propose an interactive algorithm and utilize an additional understanding module (a
multimodal LLM) to aid the generation module.

3
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The red flowers surrounding the couple are vibrant 
and lush, with petals that seem to glow in the 
moonlight. They are arranged in a natural, wildflower 
style, adding a touch of whimsy and romance to the 
scene. The flowers are interspersed with delicate 
greenery and small, twinkling lights that mimic the 
stars in the sky.

The mountains in the background are majestic and 
grand, with snow-capped peaks that glisten in the 
moonlight. The slopes are covered in lush, green 
forests that add depth and texture to the scene. The sky 
above is a canvas of stars, with the full moon casting a 
soft, ethereal glow over the landscape.
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Figure 2: The framework of ArtAug encompasses three key steps. (a) Interactive image syn-
thesis: leverage the generative module to create high-quality images, aided by the understanding
module. (b) Dataset construction: generate a large amount of image pairs and filter them to build a
dataset. (c) Differential training: train the enhancement module to optimize the performance of the
generation module. This enhancement process can be iteratively applied to the model, facilitating
iterative improvement.

The interactive algorithm includes three steps: generation, understanding, and refinement. First, we
use the original generation pipeline of the text-to-image model to generate an image X . Second, we
employ the understanding module u to analyze the image content and generate modification sugges-
tions. The understanding module is implemented based on multimodal LLMs due to their significant
image understanding and grounding capabilities. The modification suggestions provided by the un-
derstanding module are in the form of n pairs of prompt and bounding box, which are formulated as
u(X) = {(Pi,Mi)}ni=1, where the bounding box Mi ∈ {0, 1}H×W represents the location and the
prompt Pi describes the corresponding modified content. To improve computational efficiency, we
directly generate all bounding boxes and prompts through a single-turn dialogue. Third, we use the
generation module to regenerate the image according to the suggestions for image modifications.
To finely control the content of images and ensure that each prompt affects the corresponding area,
we design a partitioned image generation method based on previous studies (Li et al., 2023; Bar-Tal
et al., 2023). Assuming that the original model output is ϵ̂θ(P, t,h), where P is the original prompt,
t is the timestep of the denoising process, and h ∈ RH×W is the latent representation of the image,
we use the weighted average of {ϵ̂θ(Pi, t,h)}ni=1 to replace the original model output. The pseudo
code of the interactive algorithm is presented in Appendix A.1. Intuitively, this algorithm employs
the model to infer according to different prompts and then performs a weighted average of the results
based on the location information, where the weight denotes the region of each prompt.

Unlike directly refining the prompt words, this interactive algorithm can preserve the basic compo-
sition of the image and ensure consistency in visual content, making the image pairs more suitable
for subsequent differential training. We provded several comparison examples in Appendix A.2.

3.2 DATASET CONSTRUCTION

While the procedures outlined in the previous subsection can enhance the quality of generated im-
ages without the need for additional training, this algorithm presents two notable drawbacks. 1)
Slow computational speed. The fine-grained prompts necessitate independent forward inferences
through the model, leading to an increase in overall computation time to n + 1 times the original
time. Consequently, this extends the generation process to several minutes. 2) Risk of bad cases.
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Due to the lack of end-to-end training in the modified image generation pipeline, there is a potential
for producing unrealistic images with higher probability. To overcome these drawbacks, we aim to
consolidate the enhancements produced through interaction into the text-to-image model itself via
post-training. Specifically, we generate a large batch of image pairs (X,X ′) using the interactive im-
age synthesis algorithm, where X represents images generated by the original text-to-image pipeline
and X ′ represents the interactively refined images. We then filter these image pairs to construct a
high-quality dataset for training.

In the data filtering process, we apply stringent filtering criteria. Fundamentally, we expect that im-
ages enhanced through interaction should be more aesthetically pleasing than the originals. There-
fore, we only retain image pairs with increased aesthetic scores (Schuhmann et al., 2022). Addition-
ally, we need to ensure that the enhanced images are consistent with the semantic meaning of the
text prompts. To achieve this, we use the CLIP model (Radford et al., 2021) to filter out all image
pairs where the text-image similarity decreases. These two filtering steps can effectively eliminate a
significant portion of the data unsuitable for training. However, given that the prompts are collected
from real users and exhibit complex content, we conduct further meticulous manual reviews. Dur-
ing the manual review, we remove the content related to pornography, violence, politics, and racial
discrimination, and ensure that the enhanced images in the image pairs show a clear improvement in
quality. Appendix A.3 shows several categories of the final retained training data, where the image
pairs exhibit significant improvements in various aspects, including lightning, detail, composition,
ambiance, clarity, and color. Beyond these fundamental aesthetic enhancements, our algorithm can
achieve more advanced effects, including particle effects, shooting angle, exposure compensation,
style adjustment, background blur and color gradient, etc. This shows our method is not just a
generic “make it prettier” filter, but is actively performing targeted, compositional improvements
guided by the MLLM’s understanding.

3.3 DIFFERENTIAL TRAINING

After filtering and review, approximately 1% to 2% images are retained. The amount of data is
relatively small, and directly using these data to fine-tune the model leads to overfitting, as shown
in our preliminary experiments. Based on the observation, we propose a differential training ap-
proach to learn the differences between images, rather than directly learning the images enhanced
by interactions.

The model structure of the enhancement module is LoRA (Low-Rank Adaptation) (Hu et al., 2021).
Assume that the parameters of fully connected layers in the original model are formulated as

θ = {Wi}mi=1. (1)

For each parameter matrix Wi ∈ Rd1×d2 , the parameter matrix after adding LoRA becomes Wi +
BiAi, where Ai ∈ Rr×d2 and Bi ∈ Rd1×r are two low-rank matrices. The LoRA rank r is a
hyperparameter. We use ϕ = {(Ai,Bi)}mi=1 to denote all LoRA parameters and use “⊕” to denote
the operator of adding LoRA parameters, i.e.,

θ ⊕ ϕ = {Wi +BiAi}mi=1. (2)

We model the standard diffusion model training objective for a single image X with prompt P as
minimizing the loss LDM:

min
ϕ

Et,ϵ [LDM(θ ⊕ ϕ, P,X, t, ϵ)] , (3)

where ϕ represents the trainable LoRA parameters and θ are the frozen base model weights. The
specific form of LDM depends on the diffusion formulation (e.g., DDPM (Ho et al., 2020) or Flow
Matching (Esser et al., 2024)).

To learn the enhancement from an image pair (X,X ′), where X is the original and X ′ is the en-
hanced version, our differential training proceeds in two conceptual steps for each pair:

1. Deterministic LoRA (ϕ1): First, we train a LoRA model ϕ1 to perfectly reconstruct the
original image X . This anchors the model to the base content.

ϕ1 = argmin
ϕ

Et,ϵ [LDM(θ ⊕ ϕ, P,X, t, ϵ)] . (4)

5
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2. Differential LoRA (ϕ2): Second, we freeze the base model θ and the deterministic LoRA
ϕ1, and train a new LoRA, ϕ2, to fit the enhanced image X ′. This forces ϕ2 to capture only
the delta between X and X ′.

ϕ2 = argmin
ϕ

Et,ϵ [LDM(θ ⊕ ϕ1 ⊕ ϕ, P,X ′, t, ϵ)] . (5)

The final enhancement module for this pair is ϕ2, which represents the learned aesthetic transfor-
mation. We discard ϕ1. This process is repeated for all filtered pairs in our dataset, yielding a set of
differential LoRA modules.

3.4 ITERATIVE IMPROVEMENT

Through differential training, we obtain a LoRA model ϕ that can enhance the generative capabilities
of the text-to-image model. This LoRA model can be fused into the base model, i.e., let

θ ← θ ⊕ αΦ
(
θ ⊕ Φ(θ,X), X ′), (6)

where α is the weight of the LoRA. To enhance the stability of the model’s preferences, we average
the LoRA parameters across multiple image pairs. Based on this iterative formula, we make it possi-
ble to continue generating data through the interaction processes. Consequently, the data generation
and the differential training process can be iteratively repeated until the interactive algorithm can no
longer significantly improve the quality of the generated images. Ultimately, we obtain a series of
stacked LoRA models {ϕ[1], ϕ[2], . . . }. We merge them into a single LoRA model by concatenating
the corresponding matrices. The use of the entire enhancement module is consistent with that of
a standard LoRA model and maintains compatibility with other LoRA models. Additionally, users
can adjust the influence of the enhancement module on the text-to-image model by tuning the weight
of the merged LoRA model, thereby achieving controllable generation.

From another perspective, this iterative enhancement process involves updating the model parame-
ters at each iteration, akin to a gradient descent step. We provide a detailed empirical analysis of the
iterations in Section 4.2. The trainable LoRA parameters correspond to the gradient. The parameter
α corresponds to the learning rate in gradient descent. A smaller α can make the training process
more stable, but it will slow down the convergence speed. The number of averaged LoRA mod-
els corresponds to the batch size. In this manner, we can employ human preference, an inherently
non-differentiable training objective, for the training of the model implicitly via data synthesis.

4 EXPERIMENTS

We conduct extensive experiments to demonstrate ArtAug’s effectiveness, including improving
off-the-shelf models and thoroughly investigating each component. Aesthetics is a complex and
subjective concept; therefore, we adopt a diversified evaluation approach, including basic image
quality metrics, human preference models, and human evaluation.

4.1 IMPROVING OFF-THE-SHELF MODELS

4.1.1 EXPERIMENTAL SETTINGS

We train the ArtAug enhancement module based on the advanced text-to-image models
FLUX.1[dev] (Labs, 2024) and Stable Diffusion 3.5 (Esser et al., 2024). In the interaction algo-
rithm, the understanding module is implemented based on Qwen2-VL-72B (Wang et al., 2024a) due
to its sufficiently accurate visual grounding capabilities, which enable the generation of fine-grained
bounding boxes and prompts. The prompt used in Qwen2-VL-72B is presented in Appendix B.1. We
provide detailed discussions about the selection of the multimodal LLM in Appendix B.2, includ-
ing a comparative analysis between six SOTA multimodal LLMs. Our experiments do not require a
text-image dataset; we only use a dataset of prompts. In each training iteration, we randomly sample
approximately 3k prompts from the DiffusionDB dataset (Wang et al., 2022). Considering that these
prompts are collected from users on the internet and some may contain ambiguous semantics, we
refine the prompts using Qwen2-VL-72B before generating images. After filtering and reviewing
as described in Section 3.2, we engaged two human annotators for lightweight data filtering due to

6
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Table 1: Quantitative results on basic image quality.
Aesthetic ↑ CLIP ↑

FLUX.1[dev] 6.35±0.005 26.92±0.046
FLUX.1[dev] + ArtAug 6.81±0.005 26.97±0.048
Stable Diffusion 3.5 6.12±0.005 27.52±0.043
Stable Diffusion 3.5 + ArtAug 6.61±0.004 28.15±0.044

Table 2: Quantitative results on preference models.
PickScore ↑ MPS ↑ HPS ↑ ImageReward ↑

FLUX.1[dev] 42.22 47.52 49.36 48.21
FLUX.1[dev] + ArtAug 57.78 52.48 50.64 51.79
Stable Diffusion 3.5 40.97 44.94 49.35 44.53
Stable Diffusion 3.5 + ArtAug 59.03 55.06 50.65 55.47

concerns about harmful content. We trained a differential LoRA model for each image pair. The
learning rate is set to 1× 10−4, with a batch size of 1, and the LoRA model is trained for 400 steps.
The LoRA rank is manually adjusted to 4, 8, or 16 to ensure convergence on the training image.
The loss function is consistent with the flow match theory (Esser et al., 2024), and other training
hyperparameters are consistent with those of the base text-to-image model itself. One full iteration
of ArtAug, including generating 5k initial pairs, MLLM-based refinement, filtering, and training
all differential LoRAs, was completed under 24 hours on a single 8×A100 node. The human in-
volvement was limited to approximately 2 person-hours for final data review per iteration, a fraction
of the cost of typical RLHF campaigns.

4.1.2 QUANTITATIVE COMPARISON

After training, we randomly sample 10k prompts in DiffusionDB (Wang et al., 2022) to evaluate the
quality of the generated images. These prompts are not used in the data generation. The evaluation
metrics include two categories. 1) Basic image quality metrics: Aesthetic (Schuhmann et al., 2022)
and CLIP (Radford et al., 2021), which are used to measure the aesthetic quality of images and the
alignment between text and image, respectively. 2) Preference models: PickScore (Kirstain et al.,
2023), MPS (Zhang et al., 2024), HPS (Wu et al., 2023), and ImageReward (Xu et al., 2023). These
models are classifier models trained on human-annotated data, and their results can be regarded as
approximations of human preferences.

The quantitative results are presented in Table 1 and Table 2. On the basic aesthetic metric, the model
trained with ArtAug demonstrates significant improvement. This clearly indicates the efficacy of
ArtAug in enhancing image quality. Furthermore, the CLIP text-image similarity metric does
not exhibit a noticeable decline, suggesting that ArtAug does not compromise the original text
comprehension ability of the base model. In Table 2, all preference models consistently demonstrate
the effectiveness of ArtAug. Overall, ArtAug is capable of enhancing the fundamental capabilities
of the text-to-image model. Notably, the strong results on FLUX.1[dev] show that ArtAug delivers
significant gains even on highly optimized models. While DPO/RLHF optimize for text-image
alignment and general human preference, ArtAug adds orthogonal gains by using VLMs’ region-
aware understanding to boost aesthetics and visual refinement.

4.1.3 HUMAN EVALUATION

Some studies (Podell et al., 2023; Jiang et al., 2024) have highlighted the limitations of automatically
computed evaluation metrics, prompting us to conduct an additional double-blind human evaluation.
We invite 20 participants to take part in this evaluation. In each round, participants are shown
two images: one generated by the original text-to-image model and the other generated by the
ArtAug-enhanced model. Similar to GenAI-Arena (Jiang et al., 2024), the positions of the two
images are randomized. The instructions provided to participants are presented in Appendix C.

7
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Table 3: Quantitative results on human evaluation.
w/o ArtAug is better Tie w/ ArtAug is better

FLUX.1[dev] 39.18% 14.89% 45.93%
Stable Diffusion 3.5 39.66% 9.49% 50.85%

Table 4: Quantitative results on ethics, evaluated using NudeNet.
w/o ArtAug w/ ArtAug

FLUX.1[dev] 6.19 4.44
Stable Diffusion 3.5 4.97 2.88

Each participant is asked to select the image with better visual quality or to choose “tie”. We record
the percentage of user votes, as shown in Table 3. ArtAug achieves winning rate of 45.93% and
50.85%, demonstrating the effectiveness of ArtAug in enhancing visual quality.

4.1.4 ETHICS CONSIDERATION

Although ArtAug enhances image generation capabilities, it also raises ethical concerns. We find
that user prompts sourced online often include harmful content (e.g., pornography, violence). More-
over, pre-trained image understanding models may encode biases toward such content, leading
the interaction algorithm to produce suggestive imagery. This requires human moderation during
ArtAug ’s iterative training to prevent bias propagation. To mitigate this, we leverage NudeNet (Be-
dapudi, 2019) to measure harmfulness scores of generated images. As shown in Table 4, ArtAug
does not increase the model’s propensity to generate harmful content.

4.1.5 PROMPT-FOLLOWING EVALUIATION

Whether the original prompt-following capability of models would be compromised when aligning
to human preferences remains a critical issue. Studies (Huang et al., 2025; Zhang et al., 2024) have
highlighted the limitations of CLIP scores in evaluating prompt-following performance. Therefore,
we benchmarked our trained model against other publicly available models on T2I-CompBench++
(Huang et al., 2025), an evaluation framework for text-to-image generation. The results are pre-
sented in Table 5. Although ArtAug is not explicitly optimized for prompt-following capabilities,
we observed slight improvements in this aspect. The reason is that the image understanding model
can interpret both visual content and text content to provide modification suggestions. While this ap-
proach occasionally incorporates aesthetic details beyond prompt specifications (which may reduce
CLIP scores), the fine-grained evaluation benchmark T2I-CompBench++ demonstrates that gener-
ated content does not violate fundamental instruction constraints. Consequently, ArtAug achieves
slight enhancement in prompt-following capabilities based on the advanced model.

4.2 IMPACT OF ITERATION STEP

To better understand the changes in the model’s capabilities throughout the iterative training process,
we analyzed the data of image pairs generated in each iteration. Some statistical indicators are
presented in Figure 3. In each iteration, our primary focus is on the enhancement of image aesthetics
by the interaction algorithm. It can be observed from the figure that the aesthetic scores consistently
improve after interaction. This enhancement capability is ingrained into the model during training
and carries over to the next iteration, enabling continuous improvement. We also calculated the
correlation between images and prompts before and after interaction using the CLIP model. It
should be noted that these prompts are refined by the language model, so the CLIP scores appear
slightly higher than those in Table 1. Although the interaction algorithm may sometimes alter the
image content away from its original semantics, especially when the prompt contains terms like ugly,
dirty, or bloody, our rigorous data filtering process eliminates such data to prevent compromising the
model’s original capabilities. Additionally, we calculated the cosine similarity of images before and
after interaction using the vision encoder component (Dosovitskiy, 2020) of the CLIP model. As
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Table 5: Prompt-following evaluation on T2I-CompBench++.
Color ↑ Shape ↑ Texture ↑ Overall ↑

Stable Diffusion v1.4 0.3765 0.3576 0.4156 0.3832
Stable Diffusion v2 0.5065 0.4221 0.4922 0.4736
Stable Diffusion XL 0.5879 0.4687 0.5299 0.5288
Pixart-α-ft 0.6690 0.4927 0.6477 0.6031

FLUX.1[dev] 0.7516 0.4887 0.6374 0.6259
FLUX.1[dev] + ArtAug 0.7541 0.5172 0.6951 0.6555
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27
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Figure 3: Statistical information of image pairs generated during the iterative training process.

iterations progress, the enhancement effect of the interaction algorithm on image quality diminishes.
In the eighth iteration, we are unable to obtain sufficient image pairs for training after filtering, and
thus, we stop the training process.

4.3 ABLATION STUDIES

We also investigate the effectiveness of the differential LoRA training mentioned in Section 3.3. We
compare it with a LoRA model that was trained naively using the enhanced images in the filtered
dataset. We evaluate the two training methods in the first iteration of FLUX.1[dev]. By employing
the same learning rate and number of training steps, we calculate the basic image quality metrics
of the LoRA models. When we naively train the LoRA models, the Aesthetic and CLIP scores are
6.25 and 29.34, respectively; whereas when we employ differential training, the Aesthetic and CLIP
scores improve to 6.35 and 29.71, respectively. It is evident that naive LoRA training leads to sig-
nificant overfitting, resulting in a noticeable decline in text-image alignment, thereby compromising
the model’s original generative capabilities. Conversely, differential LoRA training better captures
the difference in image pairs and avoids overfitting.

The multimodal LLM in the understanding module is crucial in the interaction algorithm. We fur-
ther compared the performance of Qwen2-VL-72B and other multimodal LLMs. The experimental
results are detailed in Appendix B.2. The task of image refinement necessitates not only accurate
visual grounding abilities but also a sophisticated understanding of aesthetic principles. We observe
that Qwen2-VL-72B can produce more reliable results compared to other models, which is critical
for the synthesis of high-quality data. Our approach is agnostic to any specific image understanding
model. As more powerful image understanding models emerge, they will provide stronger guidance
for image generation, thereby enhancing ArtAug ’s performance.

5 CONCLUSION

In this paper, we explore a method to enhance text-to-image models. To guide these models in
generating high-quality images that align with human preferences, we introduce ArtAug. ArtAug
presents a new path for generative model alignment that is not only effective but also highly scalable.
By leveraging the synthesis-understanding loop, we transform the problem of aesthetic enhancement
from a human-labor-intensive task to a machine-computation-centric one. Based on advanced text-
to-image models, we trained ArtAug modules in the form of LoRA. Experimental results highlight
the substantial improvements achieved through ArtAug. Our approach effectively attains alignment
training with minimal human resource costs.
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A INTERACTION ALGORITHM

A.1 PSEUDO CODE

Algorithm 1 Interactive image synthesis algorithm
1: Input: image prompt P , generation module ϵ̂θ, understanding module u, time steps T .
2: Sample h0 ∼ N (O, I)
3: // Generate an image.
4: h← h0

5: for t = T to 1 do
6: ϵ̂← ϵ̂θ(P, t,h)
7: h← h+ (σt−1 − σt)ϵ̂
8: end for
9: Decode latent representation h to image X

10: // Produce modification suggestions.
11: {(Pi,Mi)}ni=1 ← u(X)
12: // Regenerate the enhanced image.
13: h← h0

14: for t = T to 1 do
15: ϵ̂← ϵ̂θ(P, t,h)
16: ω = I
17: for i = 1 to n do
18: ϵ̂← ϵ̂+ ϵ̂θ(Pi, t,h) ·Mi

19: ω ← ω +Mi

20: end for
21: h← h+ (σt−1 − σt)

ϵ̂
ω

22: end for
23: Decode latent representation h to image X ′

24: Return: image pair (X,X ′)

The pseudo code of the interactive image synthesis algorithm is presented in Algorithm 1. For sim-
plicity, this pseudo code uses a flow match-based diffusion model (Liu et al., 2022) as an example,
where the parameters {σt}Tt=1 is the hyperparameters representing the noise level at each step. This
algorithm can be easily extended to other kinds of diffusion models.

A.2 COMPARED WITH NAIVE PROMPT REFINING

We compared the interaction algorithm outlined in Section 3.1 with the naive prompt refinement
approach, as demonstrated in Figure 4. In the naive prompt refinement approach, we leverage the
multimodal LLM to directly generate a detailed prompt for the image generation model. This ex-
ample reveals that regenerating images using only refined prompts typically results in a complete
alteration of the scene’s overall composition. Conversely, our interaction algorithm is capable of
enhancing the details while preserving the fundamental composition, exemplified by the flowers
and light. This suggests that our interactive algorithm can ensure the consistency in image content.
Therefore, the image pairs generated using the interaction algorithm are better suited for the subse-
quent differential training process, which is aimed at learning the differences between two images.
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(a) Image generated by (b) Image generated by (c) Image generated by
the original prompt. the refined prompt. our interaction algorithm.

Figure 4: Comparison of naive prompt refining and our interaction algorithm.

A.3 EXAMPLES OF INTERACTIONS

Some image pairs generated by our proposed interaction algorithm are displayed in Figures 5 and
6. These images clearly demonstrate that the multimodal LLM can enhance image quality across
various fundamental aesthetic aspects. The improvements in the basic aesthetic aspects include:

• Lighting: Optimizes the effects of natural and artificial light, ensuring a balance of high-
lights and shadows.

• Detail: Enhances subtle yet crucial elements of objects in the image, boosting realism and
visual appeal.

• Composition: Adjusts the relative positions of objects within the image, enhancing com-
positional effects and achieving balanced spatial aesthetics.

• Ambiance: Optimizes the background and atmosphere of the image, creating an environ-
ment and mood that matches the theme.

• Clarity: Improves overall clarity, reducing noise and blur.

• Color: Adjusts temperature, saturation, and more, resulting in vibrant, harmonious colors
while retaining the original scene’s atmosphere.

Beyond these fundamental aesthetic enhancements, our algorithm achieves more advanced effects,
including but not limited to:

• Particle Effects: Introduces dynamic or special effects, such as particle effects, to images.

• Shooting Angle: Alters camera angles for a richer visual experience.

• Exposure Compensation: Simulates realistic scenarios like a galaxy appearing with in-
creased exposure.

• Style Adjustment: Converts images to specific artistic styles to make them aesthetically
pleasing.
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• Background Blur: Highlights main subjects while ensuring natural transitions in the back-
ground.

• Color Gradient: Employs color gradients to smoothly transition between colors, resulting
in a softer and more harmonious image.

These improvements highlight how well multimodal LLMs can enhance image aesthetics and adapt
content and style to suit human preferences. The interactive algorithm effectively transfers the mul-
timodal LLMs’ understanding of aesthetics to the text-to-image model, thereby guiding the image
generation process.

B MULTIMODAL LLMS

B.1 PROMPT OF MULTIMODAL LLMS

The prompt used in Qwen2-VL-72B has undergone several iterations and extensive testing to ensure
its effectiveness in guiding the model to generate enriched and aesthetically pleasing details in the
image. This prompt is detailed as follows, where “ prompt ” denotes the original prompt of the
text-to-image model.

You a r e a h e l p f u l a s s i s t a n t . Given t h e image p l e a s e a n a l y z e t h e
f o l l o w i n g image and c o m p l e t e t h e f o l l o w i n g t a s k s :

1 . Add more d e t a i l s t o t h i s image . For example , b e a u t i f u l l i g h t
and shadow , e x q u i s i t e d e c o r a t i o n s , g o r g e o u s c l o t h i n g ,
b e a u t i f u l n a t u r a l l a n d s c a p e s , e t c . C a u t i o n :
The added d e t a i l s s h o u l d be c o n s i s t e n t w i th t h e o r i g i n a l

d e s c r i p t i o n : p r o m p t
2 . Mark t h e l o c a t i o n s where t h e s e d e t a i l s can be added . C a u t i o n :

Each e n t i t y s h o u l d have on ly a bounding box i n t h e f o r m a t [ x1 ,
y1 , x2 , y2 ] r e p r e s e n t e d u s i n g a b s o l u t e p i x e l c o o r d i n a t e s .

3 . For each bounding box , imag ine t h a t we modify i t i n t o some th ing
e x t r e m e l y a e s t h e t i c a l l y p l e a s i n g . P l e a s e d e s c r i b e t h e image

c o n t e n t o f t h i s p a r t u s i n g words . Do n o t use ’ shou ld ’ . J u s t
d e s c r i b e i t . The a e s t h e t i c a l d e s c r i p t i o n s h o u l d be long .

P l e a s e p r o v i d e t h e r e s u l t s i n JSON f o r m a t a s f o l l o w s , which can be
d i r e c t l y l o a d e d by j s o n . l o a d s ( ) i n Python :

[
{

” bbox ” : [ x1 , y1 , x2 , y2 ] ,
” a e s t h e t i c a l d e s c r i p t i o n ” : ” . . . ”

} ,
{

” bbox ” : [ x1 , y1 , x2 , y2 ] ,
” a e s t h e t i c a l d e s c r i p t i o n ” : ” . . . ”

} ,
. . .

]

B.2 COMPARISON OF DIFFERENT MULTIMODAL LLMS

In the interactive algorithms, the understanding model is implemented using a multimodal LLM. For
the selection of this model, we conduct a comparative analysis. We test multiple multimodal LLMs
using the prompts mentioned in Appendix B.1. The models include Qwen2-VL-7B (Wang et al.,
2024a), LLaMa3.2-vision-90b-instruct (Dubey et al., 2024), InternVL2-26B (Chen et al., 2024b),
Gemini-exp-1206 (Team et al., 2023), Claude-3.5-sonnet (Anthropic, 2025), and Qwen2-VL-72B
(Wang et al., 2024a). The locations that each model indicates needed modification are shown in
Figure 7, with the corresponding modification prompts described as follows:
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Qwen2-VL-7B:

1. The couple is beautifully illuminated by the warm glow of the full moon, casting a soft
light on their silhouettes.

2. The mountains in the background are adorned with a gradient of colors, transitioning from
deep blues at the base to warm oranges near the peaks, creating a stunning contrast against
the night sky.

3. The serene lake reflects the moon’s light, creating a mirror-like surface that enhances the
tranquility of the scene.

4. The trees along the shore are elegantly lit, their dark outlines highlighted by the moonlight,
adding depth and dimension to the landscape.

5. The red flowers surrounding the couple add vibrant pops of color, contrasting beautifully
with the cool tones of the night sky and enhancing the overall romantic atmosphere of the
scene.

LLaMa3.2-vision-90b-instruct:

1. The couple’s embrace is surrounded by a halo of soft, golden light that illuminates their
faces and casts a warm glow on the surrounding landscape. The light is gentle and romantic,
highlighting the love and affection between the two people.

2. The full moon in the background is a deep shade of orange, with a subtle gradient effect that
gives it a sense of depth and dimensionality. The moon’s surface is textured with craters
and mountains, adding to its natural beauty and realism.

3. The mountains in the background are covered in a thick layer of mist, which adds to their
mystery and allure. The mist is depicted in shades of blue and purple, with touches of pink
and orange where it meets the moonlight. The mountains themselves are rugged and rocky,
with steep peaks and valleys that add to their dramatic beauty.

4. The lake in the foreground is calm and peaceful, reflecting the beauty of the surrounding
landscape like a mirror. The water is depicted in shades of blue and green, with touches of
purple and pink where it meets the moonlight. The lake’s surface is dotted with ripples and
waves, adding to its sense of movement and life.

5. The red flowers in the foreground are vibrant and colorful, adding a pop of color to the
otherwise muted palette of the image. The flowers are depicted in various stages of bloom,
with some fully open and others still budding. They are arranged in a random pattern,
adding to their natural beauty and spontaneity.

InternVL2-26B:

1. A luminous full moon with a detailed cratered surface, radiating a warm glow, casting a
golden light across the scene. The stars twinkle softly in the night sky.

2. Mountains with jagged peaks, their dark outlines contrasting against the twilight sky, cast-
ing deep blue shadows that blend into the cool night.

3. A serene lake reflecting the full moon, mirroring the silhouettes of the mountains and
adding a touch of tranquility with its still waters.

4. A field of vibrant red flowers, their petals rich and lush, with leaves that add green high-
lights, creating a striking contrast to the dark silhouettes of the couple.

5. A dense cluster of coniferous trees, their dark, spiky branches reaching upwards, standing
still in the night breeze.

6. The couple’s outlines are refined with fluid lines, their forms bathed in the moonlight,
emphasizing the romantic embrace.

Gemini-exp-1206:

1. The full moon is a radiant celestial orb, its surface a tapestry of soft, glowing craters and
valleys. A gentle, ethereal light emanates from it, casting a silvery sheen over the entire
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scene. The moon’s glow is subtly diffused by a thin veil of high-altitude clouds, creating
a halo effect that adds a mystical quality to the night sky. The light reflects off the clouds,
painting them with hues of soft orange and dusky pink, creating a breathtaking backdrop
for the romantic scene below.

2. The tranquil lake is a mirror of serenity, its surface as smooth as glass, reflecting the moonlit
sky and the surrounding landscape with perfect clarity. The water is a deep, rich blue, tinged
with hints of emerald green near the edges. Gentle ripples, caused by a soft breeze, create
a mesmerizing dance of light and shadow on the water’s surface. The reflection of the full
moon on the lake is not just a mere image but a shimmering pathway of light that seems to
lead into another world, adding a touch of magic and wonder to the scene.

3. The couple stands in a tender embrace, their silhouettes outlined against the luminous back-
drop. The woman’s dress is a flowing, elegant garment made of a soft, shimmering fabric
that catches the moonlight, making her appear almost ethereal. Delicate lace details are
visible on the sleeves and hem, adding a touch of romantic sophistication. The man is
dressed in a finely tailored suit, the fabric a deep, rich color that contrasts beautifully with
the woman’s dress. The suit’s subtle sheen hints at luxury and refinement, and the way
it drapes over his form suggests both strength and tenderness. Their pose is intimate and
loving, a perfect representation of a romantic moment frozen in time.

4. The field of red flowers is a vibrant tapestry of color and life. Each flower is a perfect
specimen, with velvety petals in a deep, passionate red. Delicate dewdrops cling to the
petals, catching the moonlight and sparkling like tiny diamonds. The flowers sway gently
in the breeze, creating a sense of movement and vitality. Among the red flowers, there
are interspersed tiny wildflowers in shades of white and yellow, adding a touch of delicate
beauty and contrast to the scene. The fragrance of the flowers is subtly hinted at, a sweet,
intoxicating scent that adds another layer of sensory richness to the romantic atmosphere.

5. The mountains rise majestically in the background, their peaks shrouded in a soft, ethereal
mist that glows faintly in the moonlight. The slopes are covered in a lush forest of pine
trees, their dark green needles providing a striking contrast to the lighter hues of the sky
and the lake. The trees are rendered in exquisite detail, with each branch and needle clearly
defined, creating a sense of depth and texture. The play of light and shadow on the moun-
tains is intricate and captivating, with the moonlight highlighting certain areas while others
remain in deep shadow, adding a sense of mystery and grandeur to the landscape.

Claude-3.5-sonnet:

1. The night sky is a masterpiece of celestial beauty. Thousands of twinkling stars dot the
deep blue-green expanse, creating a mesmerizing tapestry of light. Wispy, ethereal clouds
float gracefully across the horizon, their edges tinged with a soft, warm glow from the
moon’s radiance. The stars seem to dance and shimmer, their light pulsating gently in the
vast cosmic canvas, inviting the viewer to lose themselves in the infinite wonders of the
universe.

2. The full moon dominates the scene, a breathtaking orb of celestial magnificence. Its surface
is a intricate map of light and shadow, with every crater and maria visible in stunning detail.
The moon glows with an intense golden-orange hue, casting a warm, romantic light across
the landscape. Its radiance is so powerful that it seems to pulse with an otherworldly energy,
bathing everything below in its enchanting luminescence. The moon’s reflection on the lake
below creates a perfect, unbroken circle of light, as if two cosmic entities are reaching out
to touch one another across the expanse of sky and water.

3. The mountain range is a majestic spectacle of nature’s grandeur. Each peak is intricately
detailed, with rugged cliffs, deep crevices, and snow-capped summits that catch the moon-
light and glisten like diamonds. The silhouettes of the mountains create a dramatic interplay
of light and shadow, with each ridge and valley clearly defined. The gradual transition of
colors from the deep blue-green of the closer mountains to the misty purple of the distant
peaks creates a sense of depth and mystery, inviting the eye to explore every contour and
crag of this awe-inspiring landscape.

4. The serene lake is a mirror of tranquility, its surface a flawless reflection of the sky above.
The water is so still that every detail of the surrounding landscape is perfectly replicated,
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creating a symmetrical masterpiece. Gentle ripples near the shore catch the moonlight,
transforming into liquid gold. The lake’s edge is adorned with smooth, dark stones that
seem to glow with an inner light, their surfaces slick with the kiss of water. The perfect
reflection creates an illusion of an infinite world, where sky and water merge into one
continuous realm of beauty.

5. The field of red flowers is a vibrant explosion of color and life. Each blossom is exquisitely
detailed, with velvety petals that catch the moonlight and seem to glow from within. The
flowers sway gently in a soft breeze, creating a hypnotic dance of shadow and light. Deli-
cate stems and leaves are visible among the blooms, adding depth and texture to the floral
carpet. Dew drops cling to the petals, sparkling like tiny diamonds in the moonlight. The
rich, deep red of the flowers contrasts beautifully with the cool tones of the surrounding
landscape, creating a visual focal point that draws the eye and warms the heart.

6. The silhouette of the embracing couple is a poignant symbol of love and connection. Their
forms are perfectly balanced, creating a harmonious shape against the backdrop of the
moon. The outline of their bodies is crisp and clear, with every detail of their posture and
the gentle tilt of their heads towards each other visible. The way they hold each other speaks
volumes about their intimacy and affection. Their silhouette creates a powerful contrast
against the bright background, making them appear as if they are the sole inhabitants of
this magical world, lost in their own private moment of romance and wonder.

Qwen2-VL-72B:

1. The couple is dressed in elegant, flowing garments that shimmer under the moonlight.
The man’s suit is tailored to perfection, with intricate embroidery on the lapels, while the
woman’s dress is adorned with delicate lace and sequins that catch the light. Their embrace
is tender and intimate, creating a sense of warmth and connection.

2. The mountains in the background are majestic and grand, with snow-capped peaks that
glisten in the moonlight. The slopes are covered in lush, green forests that add depth and
texture to the scene. The sky above is a canvas of stars, with the full moon casting a soft,
ethereal glow over the landscape.

3. The serene lake reflects the full moon and the surrounding mountains, creating a mirror-
like surface that adds tranquility to the scene. The water is calm and still, with gentle
ripples that dance in the moonlight. The reflections of the moon and the mountains create
a mesmerizing effect, enhancing the romantic atmosphere.

4. The red flowers surrounding the couple are vibrant and lush, with petals that seem to glow in
the moonlight. They are arranged in a natural, wildflower style, adding a touch of whimsy
and romance to the scene. The flowers are interspersed with delicate greenery and small,
twinkling lights that mimic the stars in the sky.

This task not only requires the model to understand image content but also demands precise visual
grounding abilities. Consequently, we observed that most multimodal LLMs are unable to provide
viable modification suggestions. Among these models, only Claude-3.5-sonnet and Qwen2-VL-72B
meet our requirements. Given that Qwen2-VL-72B is an open-source model, we ultimately decided
to use it to construct our understanding module.

C HUMAN EVALUATION DETAILS

During evaluation, we used minimal instructions (”Which image looks better?”) to prioritize partic-
ipants’ first impressions. Simplified instructions ensure efficient decision-making that better reflects
human aesthetic intuition. Each participant was asked to pick an image with better visual quality
in 100 image pairs. The user interface provided to participants is shown in Figure 8, with the text
displayed in Chinese due to the participants’ language background.
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Figure 5: Image examples improved by the interaction algorithm. The enhanced images exhibit
aesthetic improvements in various aspects.
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Figure 6: Image examples improved by the interaction algorithm. The multimodal LLM in the
interaction algorithm is capable of understanding human preferences and making fine-grained ad-
justments to the content of images.
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(a) Qwen2-VL-7B (b) LLaMa3.2-vision-90b-instruct (c) InternVL2-26B

(d) Gemini-exp-1206 (e) Claude-3.5-sonnet (f) Qwen2-VL-72B

Figure 7: Comparison of image understanding and refining capabilities of multimodal LLMs.
Bounding boxes indicate areas requiring modification, with related prompts provided in the Ap-
pendix B.2.

Figure 8: User interface provided to participants in human evaluation.
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