

000 001 002 003 004 005 006 ARTAUG: ITERATIVE ENHANCEMENT OF TEXT-TO- 007 IMAGE MODELS VIA SYNTHESIS-UNDERSTANDING 008 INTERACTION 009 010 011 012

013 **Anonymous authors**
014 Paper under double-blind review
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 The emergence of diffusion models has significantly advanced image synthesis.
029 Recent studies of model interaction and self-corrective reasoning approaches in
030 large language models offer new insights for enhancing text-to-image models. In-
031 spired by these studies, we propose a novel method called ArtAug for enhancing
032 text-to-image models via model interactions with understanding models. In the
033 interactions, we leverage human preferences implicitly learned by image under-
034 standing models to provide fine-grained suggestions for image generation models.
035 The interactions can modify the image content to make it aesthetically pleasing,
036 such as adjusting exposure, changing shooting angles, and adding atmospheric ef-
037 fects. The enhancements brought by the interaction are iteratively fused into the
038 generation model itself through an additional enhancement module. This enables
039 the generation model to produce aesthetically pleasing images directly with no ad-
040 dditional inference cost. In the experiments, we verify the effectiveness of ArtAug
041 on advanced models such as FLUX, Stable Diffusion 3.5 and Qwen2-VL, with ex-
042 tensive evaluations in metrics of image quality, human evaluation, and ethics. The
043 source code and models will be released publicly.
044
045
046
047
048
049
050
051
052
053

1 INTRODUCTION

054 Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have been extensively studied in re-
055 cent years. With the development of large-scale image datasets (Schuhmann et al., 2022; Gu et al.,
056 2022), large text-to-image models (Rombach et al., 2022; Chen et al., 2023; Saharia et al., 2022)
057 have rapidly developed and demonstrated strong application potential. Downstream tasks such as
058 interactive creation (Liu et al., 2024c), controllable image generation (Zhang et al., 2023), and con-
059 sistent story generation (Zhou et al., 2024) all require the generated content to align with human
060 preferences. However, pre-trained text-to-image models often struggle to produce satisfactory im-
061 ages without high-quality training datasets or human guidance tailored for specific cases.
062

063 To guide image generation models in producing high-quality images, current research primarily
064 focuses on three aspects: **1) Data refinement** (Chen et al., 2024a; Schuhmann et al., 2022) are
065 employed to eliminate low-quality images from large training datasets, thereby preventing them
066 from negatively impacting the model’s performance. **2) Prompt engineering** (Wang et al., 2024b;
067 Cao et al., 2023) aims to craft detailed prompts to guide the model in producing superior-quality
068 images. **3) Alignment training** (Wallace et al., 2024; Fan et al., 2024) focuses on aligning the
069 model’s generative inclinations with human preferences via training. However, these methods all
070 have certain limitations. Data refinement can only be used for coarse filtering. Directly filtering
071 out low-quality images requires meticulous efforts and potentially leads to overfitting due to the in-
072 sufficient amount of data. Prompt engineering based on language models might result in generated
073 images containing content that is inconsistent with the user-provided prompts, thereby compromis-
074 ing the text-image correlation. Alignment training is currently the key method for improving image
075 quality. The mainstream alignment training methods, including Reinforcement Learning from Hu-
076 man Feedback (RLHF) (Ouyang et al., 2022) and Direct Preference Optimization (DPO) (Rafailov
077 et al., 2024), require a large amount of manually annotated data, leading to extremely high costs.
078

Figure 1: Image examples improved by ArtAug. The base text-to-image model is FLUX.1[dev].

On the other hand, recent studies of model interaction and self-corrective reasoning provide us with new insights for enhancing the capabilities of image generation models. Particularly, GPT-o1 (OpenAI, 2024) significantly enhances the capabilities of LLMs (Large Language Models) (Brown, 2020) through self-corrective reasoning via the model itself, at the expense of longer computation time. LLMs are trained on human-generated data and potentially understand human interpretations and preferences for aesthetics. Recent studies have preliminarily demonstrated the feasibility of guiding image generation models through interactive conversations using language models (Huang et al., 2024). Some multimodal models (Wang et al., 2024a; Chen et al., 2024b; Liu et al., 2024b) are capable of understanding image content and expressing it through natural language, motivating us to explore the deeper assistive roles of LLMs in relation to image generation models.

To address the current challenges faced by image generation models, inspired by the model interaction and self-corrective reasoning approaches, we propose a novel text-to-image generation model enhancement approach called ArtAug. As shown in Figure 1, ArtAug can significantly improve the image quality, aligning the generated image content with human preference. Our framework, ArtAug, introduces a paradigm shift by replacing the human annotator with a highly capable MLLM-based “AI Art Director”. While the training workflow is multi-staged, it is computationally manageable, offering a scalable and cost-effective alternative to human-in-the-loop alignment.

The framework ArtAug is presented in Figure 2. There are three modules in ArtAug, including a **generation module** for text-to-image generation, an **understanding module** for analyzing and refining the image content, and an **enhancement module** for improving the generation module. Firstly, we design an interactive image synthesis algorithm, where the understanding module provides fine-grained modifications for the generation module to produce enhanced images. Secondly, we build a pairwise training dataset by generating and filtering image pairs. Thirdly, we introduce differential training to teach the enhancement module to capture differences between original and enhanced images. Fourthly, we integrate the enhancement module into the generation module, imbuing the generation module with the enhancement capability brought by interactions, without extra computational cost. This process is iterated to progressively improve generation. In experiments, we train the enhancement module on advanced text-to-image models, including FLUX.1[dev] (Labs, 2024) and Stable Diffusion 3.5 (Esser et al., 2024). ArtAug significantly improves image quality, generating more aesthetically pleasing results, evidenced by various evaluation metrics. We will release the source code and models. Overall, the contributions of this paper include:

- We design an interaction algorithm between a generation module and an understanding model in image synthesis, demonstrating that current multimodal LLMs can guide text-to-image models to generate high-quality images aligned with human preferences.
- We propose ArtAug, a framework for improving text-to-image models. By learning the differences between images before and after interaction, we iteratively enhance the capabilities of the text-to-image model.

108 • We train the ArtAug enhancement module based on advanced text-to-image models. Ex-
 109 tensive experiments consistently demonstrate the effectiveness of ArtAug in improving
 110 image quality across multiple aspects.

112 **2 RELATED WORK**

115 **2.1 LARGE IMAGE SYNTHESIS MODELS**

117 In recent years, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have achieved signif-
 118 icant breakthroughs in the field of image synthesis, even reaching the level of human artists. Since
 119 the introduction of Latent Diffusion (Rombach et al., 2022), large diffusion models pre-trained on
 120 large-scale text-image datasets (Schuhmann et al., 2022; Lin et al., 2014; Gu et al., 2022) have made
 121 considerable advancements. The generative capabilities of these models have been steadily im-
 122 proved, including both UNet-based models (Ronneberger et al., 2015; Rombach et al., 2022; Podell
 123 et al., 2023; Sauer et al., 2025) and the more recent DiT-based models (Li et al., 2024; Chen et al.,
 124 2023; Esser et al., 2024; Labs, 2024). Notably, DiT (Diffusion Transformer) (Peebles & Xie, 2023)
 125 has considerably enhanced both the convergence speed and the generalization ability of image
 126 generation models, establishing itself as one of the most popular architectures in the realm of image
 127 synthesis. To further enhance image quality in terms of text-image alignment and aesthetic appeal,
 128 various approaches, such as data refinement (Chen et al., 2024a; Schuhmann et al., 2022), prompt
 129 engineering (Wang et al., 2024b; Cao et al., 2023), and alignment training (Wallace et al., 2024;
 130 Fan et al., 2024), have been extensively investigated. Inspired by these studies, we propose a new
 131 approach, which synthesizes data via model interactions and iteratively improves the text-to-image
 132 model after data filtering.

133 **2.2 ALIGNING MODELS WITH HUMAN PREFERENCES**

135 Text-to-image models pre-trained on extensive text-image datasets have demonstrated rudimentary
 136 image generation abilities, but these models often produce suboptimal quality images without fine-
 137 tuning (Liu et al., 2024a). Currently, alignment training stands as the principal method for im-
 138 proving image quality by aligning generated content with human preferences. Alignment training
 139 is initially investigated in large language models (Ouyang et al., 2022; Rafailov et al., 2024), and
 140 has recently been applied to diffusion models. For example, based on reinforcement learning, ap-
 141 proaches like DPOK (Fan et al., 2024) and DDPO (Black et al., 2023) gather human preferences on
 142 model-generated outputs for fine-tuning text-to-image models. Similarly, Diffusion-DPO (Wallace
 143 et al., 2024) and SPO (Liang et al., 2024) employ auxiliary models to model human preferences, us-
 144 ing DPO (Rafailov et al., 2024) to fine-tune diffusion models accordingly. However, because human
 145 preferences are difficult to quantify, these alignment training methodologies necessitate extensive
 146 manually labeled datasets, which are prohibitively expensive to produce. Inspired by these studies,
 147 we explore the possibility of using multimodal LLMs to replace manual annotation, aiming to obtain
 148 a large amount of training data at a lower cost for alignment training.

149 **3 METHODOLOGY**

151 The framework of ArtAug is presented in Figure 2. ArtAug consists of three key steps: interac-
 152 tive image synthesis, dataset construction and differential training. The three steps are applied to the
 153 model iteratively. In this section, we provide a detailed description of each step.

155 **3.1 INTERACTIVE IMAGE SYNTHESIS**

157 Text-to-image models usually tend to generate simple content when given simple prompts. Prompt
 158 engineering is generally essential for generating high-quality images, but manually crafting high-
 159 quality prompts requires the expertise of human experts. The image generation module (a text-to-
 160 image model) itself struggles to generate detailed and aesthetically pleasing images. To address this
 161 challenge, we propose an interactive algorithm and utilize an additional understanding module (a
 162 multimodal LLM) to aid the generation module.

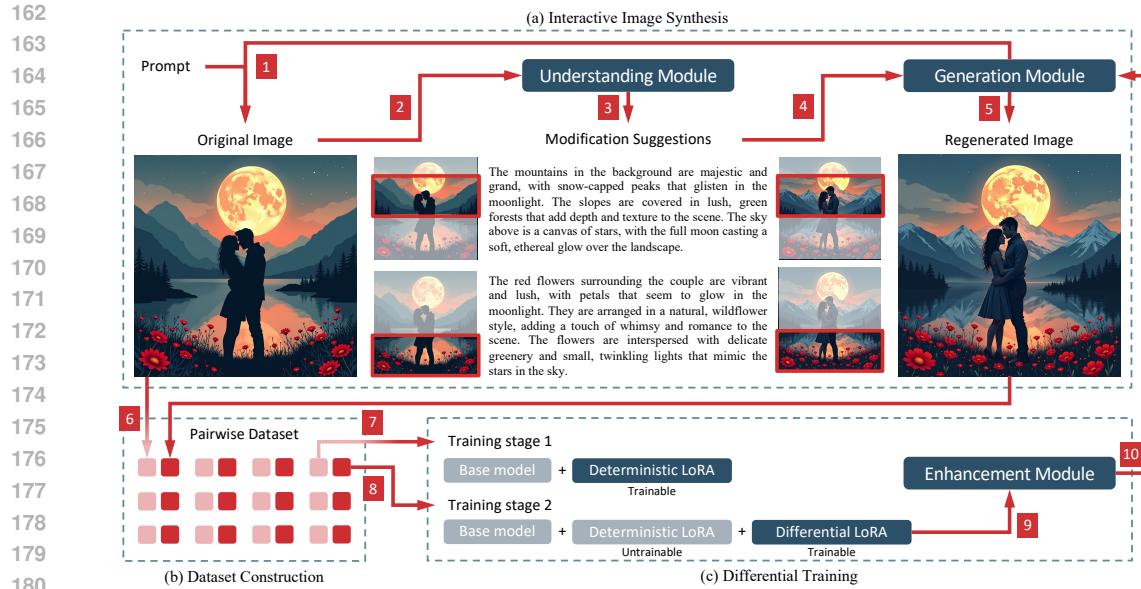


Figure 2: The framework of ArtAug encompasses three key steps. **(a) Interactive image synthesis:** leverage the generative module to create high-quality images, aided by the understanding module. **(b) Dataset construction:** generate a large amount of image pairs and filter them to build a dataset. **(c) Differential training:** train the enhancement module to optimize the performance of the generation module. This enhancement process can be iteratively applied to the model, facilitating iterative improvement.

The interactive algorithm includes three steps: generation, understanding, and refinement. First, we use the original generation pipeline of the text-to-image model to generate an image X . Second, we employ the understanding module u to analyze the image content and generate modification suggestions. The understanding module is implemented based on multimodal LLMs due to their significant image understanding and grounding capabilities. The modification suggestions provided by the understanding module are in the form of n pairs of prompt and bounding box, which are formulated as $u(X) = \{(P_i, M_i)\}_{i=1}^n$, where the bounding box $M_i \in \{0, 1\}^{H \times W}$ represents the location and the prompt P_i describes the corresponding modified content. To improve computational efficiency, we directly generate all bounding boxes and prompts through a single-turn dialogue. Third, we use the generation module to regenerate the image according to the suggestions for image modifications. To finely control the content of images and ensure that each prompt affects the corresponding area, we design a partitioned image generation method based on previous studies (Li et al., 2023; Bar-Tal et al., 2023). Assuming that the original model output is $\hat{\epsilon}_\theta(P, t, h)$, where P is the original prompt, t is the timestep of the denoising process, and $h \in \mathbb{R}^{H \times W}$ is the latent representation of the image, we use the weighted average of $\{\hat{\epsilon}_\theta(P_i, t, h)\}_{i=1}^n$ to replace the original model output. The pseudo code of the interactive algorithm is presented in Appendix A.1. Intuitively, this algorithm employs the model to infer according to different prompts and then performs a weighted average of the results based on the location information, where the weight denotes the region of each prompt.

Unlike directly refining the prompt words, this interactive algorithm can preserve the basic composition of the image and ensure consistency in visual content, making the image pairs more suitable for subsequent differential training. We provided several comparison examples in Appendix A.2.

3.2 DATASET CONSTRUCTION

While the procedures outlined in the previous subsection can enhance the quality of generated images without the need for additional training, this algorithm presents two notable drawbacks. 1) Slow computational speed. The fine-grained prompts necessitate independent forward inferences through the model, leading to an increase in overall computation time to $n + 1$ times the original time. Consequently, this extends the generation process to several minutes. 2) Risk of bad cases.

216 Due to the lack of end-to-end training in the modified image generation pipeline, there is a potential
 217 for producing unrealistic images with higher probability. To overcome these drawbacks, we aim to
 218 consolidate the enhancements produced through interaction into the text-to-image model itself via
 219 post-training. Specifically, we generate a large batch of image pairs (X, X') using the interactive im-
 220 age synthesis algorithm, where X represents images generated by the original text-to-image pipeline
 221 and X' represents the interactively refined images. We then filter these image pairs to construct a
 222 high-quality dataset for training.

223 In the data filtering process, we apply stringent filtering criteria. Fundamentally, we expect that im-
 224 ages enhanced through interaction should be more aesthetically pleasing than the originals. There-
 225 fore, we only retain image pairs with increased aesthetic scores (Schuhmann et al., 2022). Addition-
 226 ally, we need to ensure that the enhanced images are consistent with the semantic meaning of the
 227 text prompts. To achieve this, we use the CLIP model (Radford et al., 2021) to filter out all image
 228 pairs where the text-image similarity decreases. These two filtering steps can effectively eliminate a
 229 significant portion of the data unsuitable for training. However, given that the prompts are collected
 230 from real users and exhibit complex content, we conduct further meticulous manual reviews. Dur-
 231 ing the manual review, we remove the content related to pornography, violence, politics, and racial
 232 discrimination, and ensure that the enhanced images in the image pairs show a clear improvement in
 233 quality. Appendix A.3 shows several categories of the final retained training data, where the image
 234 pairs exhibit significant improvements in various aspects, including lightning, detail, composition,
 235 ambiance, clarity, and color. Beyond these fundamental aesthetic enhancements, our algorithm can
 236 achieve more advanced effects, including particle effects, shooting angle, exposure compensation,
 237 style adjustment, background blur and color gradient, etc. This shows our method is not just a
 238 generic “make it prettier” filter, but is actively performing targeted, compositional improvements
 239 guided by the MLLM’s understanding.

240 3.3 DIFFERENTIAL TRAINING

241 After filtering and review, approximately 1% to 2% images are retained. The amount of data is
 242 relatively small, and directly using these data to fine-tune the model leads to overfitting, as shown
 243 in our preliminary experiments. Based on the observation, we propose a differential training ap-
 244 proach to learn the differences between images, rather than directly learning the images enhanced
 245 by interactions.

246 The model structure of the enhancement module is LoRA (Low-Rank Adaptation) (Hu et al., 2021).
 247 Assume that the parameters of fully connected layers in the original model are formulated as

$$249 \quad \theta = \{\mathbf{W}_i\}_{i=1}^m. \quad (1)$$

250 For each parameter matrix $\mathbf{W}_i \in \mathbb{R}^{d_1 \times d_2}$, the parameter matrix after adding LoRA becomes $\mathbf{W}_i +$
 251 $\mathbf{B}_i \mathbf{A}_i$, where $\mathbf{A}_i \in \mathbb{R}^{r \times d_2}$ and $\mathbf{B}_i \in \mathbb{R}^{d_1 \times r}$ are two low-rank matrices. The LoRA rank r is a
 252 hyperparameter. We use $\phi = \{(\mathbf{A}_i, \mathbf{B}_i)\}_{i=1}^m$ to denote all LoRA parameters and use “ \oplus ” to denote
 253 the operator of adding LoRA parameters, i.e.,

$$255 \quad \theta \oplus \phi = \{\mathbf{W}_i + \mathbf{B}_i \mathbf{A}_i\}_{i=1}^m. \quad (2)$$

257 We model the standard diffusion model training objective for a single image X with prompt P as
 258 minimizing the loss \mathcal{L}_{DM} :

$$259 \quad \min_{\phi} \mathbb{E}_{t, \epsilon} [\mathcal{L}_{\text{DM}}(\theta \oplus \phi, P, X, t, \epsilon)], \quad (3)$$

261 where ϕ represents the trainable LoRA parameters and θ are the frozen base model weights. The
 262 specific form of \mathcal{L}_{DM} depends on the diffusion formulation (e.g., DDPM (Ho et al., 2020) or Flow
 263 Matching (Esser et al., 2024)).

264 To learn the enhancement from an image pair (X, X') , where X is the original and X' is the en-
 265 hanced version, our differential training proceeds in two conceptual steps for each pair:

266 1. **Deterministic LoRA (ϕ_1):** First, we train a LoRA model ϕ_1 to perfectly reconstruct the
 267 original image X . This anchors the model to the base content.

$$269 \quad \phi_1 = \arg \min_{\phi} \mathbb{E}_{t, \epsilon} [\mathcal{L}_{\text{DM}}(\theta \oplus \phi, P, X, t, \epsilon)]. \quad (4)$$

270 2. **Differential LoRA (ϕ_2):** Second, we freeze the base model θ and the deterministic LoRA
 271 ϕ_1 , and train a new LoRA, ϕ_2 , to fit the enhanced image X' . This forces ϕ_2 to capture only
 272 the delta between X and X' .

273 274
$$\phi_2 = \arg \min_{\phi} \mathbb{E}_{t, \epsilon} [\mathcal{L}_{\text{DM}}(\theta \oplus \phi_1 \oplus \phi, P, X', t, \epsilon)]. \quad (5)$$

 275

276 The final enhancement module for this pair is ϕ_2 , which represents the learned aesthetic transfor-
 277 mation. We discard ϕ_1 . This process is repeated for all filtered pairs in our dataset, yielding a set of
 278 differential LoRA modules.

279 280 **3.4 ITERATIVE IMPROVEMENT**

281 Through differential training, we obtain a LoRA model ϕ that can enhance the generative capabilities
 282 of the text-to-image model. This LoRA model can be fused into the base model, i.e., let

283 284
$$\theta \leftarrow \theta \oplus \alpha \Phi(\theta \oplus \Phi(\theta, X), X'), \quad (6)$$

 285

286 where α is the weight of the LoRA. To enhance the stability of the model’s preferences, we average
 287 the LoRA parameters across multiple image pairs. Based on this iterative formula, we make it possi-
 288 ble to continue generating data through the interaction processes. Consequently, the data generation
 289 and the differential training process can be iteratively repeated until the interactive algorithm can no
 290 longer significantly improve the quality of the generated images. Ultimately, we obtain a series of
 291 stacked LoRA models $\{\phi^{[1]}, \phi^{[2]}, \dots\}$. We merge them into a single LoRA model by concatenating
 292 the corresponding matrices. The use of the entire enhancement module is consistent with that of
 293 a standard LoRA model and maintains compatibility with other LoRA models. Additionally, users
 294 can adjust the influence of the enhancement module on the text-to-image model by tuning the weight
 295 of the merged LoRA model, thereby achieving controllable generation.

296 From another perspective, this iterative enhancement process involves updating the model parame-
 297 ters at each iteration, akin to a gradient descent step. We provide a detailed empirical analysis of the
 298 iterations in Section 4.2. The trainable LoRA parameters correspond to the gradient. The parameter
 299 α corresponds to the learning rate in gradient descent. A smaller α can make the training process
 300 more stable, but it will slow down the convergence speed. The number of averaged LoRA mod-
 301 els corresponds to the batch size. In this manner, we can employ human preference, an inherently
 302 non-differentiable training objective, for the training of the model implicitly via data synthesis.

303 304 **4 EXPERIMENTS**

305 We conduct extensive experiments to demonstrate ArtAug’s effectiveness, including improving
 306 off-the-shelf models and thoroughly investigating each component. Aesthetics is a complex and
 307 subjective concept; therefore, we adopt a diversified evaluation approach, including basic image
 308 quality metrics, human preference models, and human evaluation.

310 311 **4.1 IMPROVING OFF-THE-SHELF MODELS**

312 313 **4.1.1 EXPERIMENTAL SETTINGS**

314 We train the ArtAug enhancement module based on the advanced text-to-image models
 315 FLUX.1[dev] (Labs, 2024) and Stable Diffusion 3.5 (Esser et al., 2024). In the interaction algo-
 316 rithm, the understanding module is implemented based on Qwen2-VL-72B (Wang et al., 2024a) due
 317 to its sufficiently accurate visual grounding capabilities, which enable the generation of fine-grained
 318 bounding boxes and prompts. The prompt used in Qwen2-VL-72B is presented in Appendix B.1. We
 319 provide detailed discussions about the selection of the multimodal LLM in Appendix B.2, includ-
 320 ing a comparative analysis between six SOTA multimodal LLMs. Our experiments do not require a
 321 text-image dataset; we only use a dataset of prompts. In each training iteration, we randomly sample
 322 approximately 3k prompts from the DiffusionDB dataset (Wang et al., 2022). Considering that these
 323 prompts are collected from users on the internet and some may contain ambiguous semantics, we
 324 refine the prompts using Qwen2-VL-72B before generating images. After filtering and reviewing
 325 as described in Section 3.2, we engaged two human annotators for lightweight data filtering due to

324

325

Table 1: Quantitative results on basic image quality.

	Aesthetic \uparrow	CLIP \uparrow
FLUX.1[dev]	6.35 ± 0.005	26.92 ± 0.046
FLUX.1[dev] + ArtAug	6.81 ± 0.005	26.97 ± 0.048
Stable Diffusion 3.5	6.12 ± 0.005	27.52 ± 0.043
Stable Diffusion 3.5 + ArtAug	6.61 ± 0.004	28.15 ± 0.044

332

333

Table 2: Quantitative results on preference models.

	PickScore \uparrow	MPS \uparrow	HPS \uparrow	ImageReward \uparrow
FLUX.1[dev]	42.22	47.52	49.36	48.21
FLUX.1[dev] + ArtAug	57.78	52.48	50.64	51.79
Stable Diffusion 3.5	40.97	44.94	49.35	44.53
Stable Diffusion 3.5 + ArtAug	59.03	55.06	50.65	55.47

340

341

concerns about harmful content. We trained a differential LoRA model for each image pair. The learning rate is set to 1×10^{-4} , with a batch size of 1, and the LoRA model is trained for 400 steps. The LoRA rank is manually adjusted to 4, 8, or 16 to ensure convergence on the training image. The loss function is consistent with the flow match theory (Esser et al., 2024), and other training hyperparameters are consistent with those of the base text-to-image model itself. One full iteration of ArtAug, including generating 5k initial pairs, MLLM-based refinement, filtering, and training all differential LoRAs, was completed under 24 hours on a single $8 \times$ A100 node. The human involvement was limited to approximately 2 person-hours for final data review per iteration, a fraction of the cost of typical RLHF campaigns.

351

352

4.1.2 QUANTITATIVE COMPARISON

353

354

After training, we randomly sample 10k prompts in DiffusionDB (Wang et al., 2022) to evaluate the quality of the generated images. These prompts are not used in the data generation. The evaluation metrics include two categories. 1) **Basic image quality metrics**: Aesthetic (Schuhmann et al., 2022) and CLIP (Radford et al., 2021), which are used to measure the aesthetic quality of images and the alignment between text and image, respectively. 2) **Preference models**: PickScore (Kirstain et al., 2023), MPS (Zhang et al., 2024), HPS (Wu et al., 2023), and ImageReward (Xu et al., 2023). These models are classifier models trained on human-annotated data, and their results can be regarded as approximations of human preferences.

360

361

The quantitative results are presented in Table 1 and Table 2. On the basic aesthetic metric, the model trained with ArtAug demonstrates significant improvement. This clearly indicates the efficacy of ArtAug in enhancing image quality. Furthermore, the CLIP text-image similarity metric does not exhibit a noticeable decline, suggesting that ArtAug does not compromise the original text comprehension ability of the base model. In Table 2, all preference models consistently demonstrate the effectiveness of ArtAug. Overall, ArtAug is capable of enhancing the fundamental capabilities of the text-to-image model. Notably, the strong results on FLUX.1[dev] show that ArtAug delivers significant gains even on highly optimized models. While DPO/RLHF optimize for text-image alignment and general human preference, ArtAug adds orthogonal gains by using VLMs’ region-aware understanding to boost aesthetics and visual refinement.

370

371

4.1.3 HUMAN EVALUATION

372

373

Some studies (Podell et al., 2023; Jiang et al., 2024) have highlighted the limitations of automatically computed evaluation metrics, prompting us to conduct an additional double-blind human evaluation. We invite 20 participants to take part in this evaluation. In each round, participants are shown two images: one generated by the original text-to-image model and the other generated by the ArtAug-enhanced model. Similar to GenAI-Arena (Jiang et al., 2024), the positions of the two images are randomized. The instructions provided to participants are presented in Appendix C.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 3: Quantitative results on human evaluation.

	w/o ArtAug is better	Tie	w/ ArtAug is better
FLUX.1[dev]	39.18%	14.89%	45.93%
Stable Diffusion 3.5	39.66%	9.49%	50.85%

Table 4: Quantitative results on ethics, evaluated using NudeNet.

	w/o ArtAug	w/ ArtAug
FLUX.1[dev]	6.19	4.44
Stable Diffusion 3.5	4.97	2.88

Each participant is asked to select the image with better visual quality or to choose “tie”. We record the percentage of user votes, as shown in Table 3. ArtAug achieves winning rate of 45.93% and 50.85%, demonstrating the effectiveness of ArtAug in enhancing visual quality.

4.1.4 ETHICS CONSIDERATION

Although ArtAug enhances image generation capabilities, it also raises ethical concerns. We find that user prompts sourced online often include harmful content (e.g., pornography, violence). Moreover, pre-trained image understanding models may encode biases toward such content, leading the interaction algorithm to produce suggestive imagery. This requires human moderation during ArtAug’s iterative training to prevent bias propagation. To mitigate this, we leverage NudeNet (Bedapudi, 2019) to measure harmfulness scores of generated images. As shown in Table 4, ArtAug does not increase the model’s propensity to generate harmful content.

4.1.5 PROMPT-FOLLOWING EVALUATION

Whether the original prompt-following capability of models would be compromised when aligning to human preferences remains a critical issue. Studies (Huang et al., 2025; Zhang et al., 2024) have highlighted the limitations of CLIP scores in evaluating prompt-following performance. Therefore, we benchmarked our trained model against other publicly available models on T2I-CompBench++ (Huang et al., 2025), an evaluation framework for text-to-image generation. The results are presented in Table 5. Although ArtAug is not explicitly optimized for prompt-following capabilities, we observed slight improvements in this aspect. The reason is that the image understanding model can interpret both visual content and text content to provide modification suggestions. While this approach occasionally incorporates aesthetic details beyond prompt specifications (which may reduce CLIP scores), the fine-grained evaluation benchmark T2I-CompBench++ demonstrates that generated content does not violate fundamental instruction constraints. Consequently, ArtAug achieves slight enhancement in prompt-following capabilities based on the advanced model.

4.2 IMPACT OF ITERATION STEP

To better understand the changes in the model’s capabilities throughout the iterative training process, we analyzed the data of image pairs generated in each iteration. Some statistical indicators are presented in Figure 3. In each iteration, our primary focus is on the enhancement of image aesthetics by the interaction algorithm. It can be observed from the figure that the aesthetic scores consistently improve after interaction. This enhancement capability is ingrained into the model during training and carries over to the next iteration, enabling continuous improvement. We also calculated the correlation between images and prompts before and after interaction using the CLIP model. It should be noted that these prompts are refined by the language model, so the CLIP scores appear slightly higher than those in Table 1. Although the interaction algorithm may sometimes alter the image content away from its original semantics, especially when the prompt contains terms like ugly, dirty, or bloody, our rigorous data filtering process eliminates such data to prevent compromising the model’s original capabilities. Additionally, we calculated the cosine similarity of images before and after interaction using the vision encoder component (Dosovitskiy, 2020) of the CLIP model. As

432
433
434
435
436
437
438
439
440
441

Table 5: Prompt-following evaluation on T2I-CompBench++.

	Color \uparrow	Shape \uparrow	Texture \uparrow	Overall \uparrow
Stable Diffusion v1.4	0.3765	0.3576	0.4156	0.3832
Stable Diffusion v2	0.5065	0.4221	0.4922	0.4736
Stable Diffusion XL	0.5879	0.4687	0.5299	0.5288
Pixart- α -ft	0.6690	0.4927	0.6477	0.6031
FLUX.1[dev]	0.7516	0.4887	0.6374	0.6259
FLUX.1[dev] + ArtAug	0.7541	0.5172	0.6951	0.6555

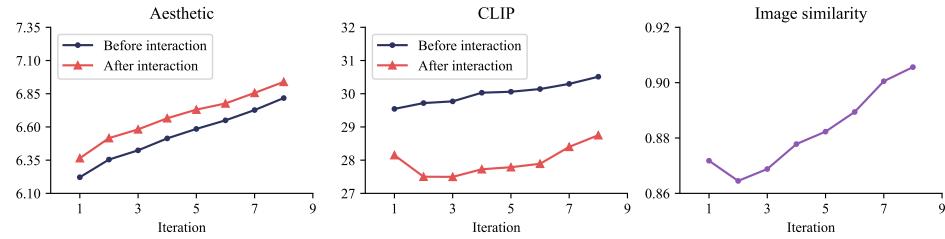
442
443
444
445
446
447
448
449
450451
452

Figure 3: Statistical information of image pairs generated during the iterative training process.

453
454
455
456

iterations progress, the enhancement effect of the interaction algorithm on image quality diminishes. In the eighth iteration, we are unable to obtain sufficient image pairs for training after filtering, and thus, we stop the training process.

457

4.3 ABLATION STUDIES

458
459
460
461
462
463
464
465
466
467

We also investigate the effectiveness of the differential LoRA training mentioned in Section 3.3. We compare it with a LoRA model that was trained naively using the enhanced images in the filtered dataset. We evaluate the two training methods in the first iteration of FLUX.1[dev]. By employing the same learning rate and number of training steps, we calculate the basic image quality metrics of the LoRA models. When we naively train the LoRA models, the Aesthetic and CLIP scores are 6.25 and 29.34, respectively; whereas when we employ differential training, the Aesthetic and CLIP scores improve to 6.35 and 29.71, respectively. It is evident that naive LoRA training leads to significant overfitting, resulting in a noticeable decline in text-image alignment, thereby compromising the model’s original generative capabilities. Conversely, differential LoRA training better captures the difference in image pairs and avoids overfitting.

468
469
470
471
472
473
474
475

The multimodal LLM in the understanding module is crucial in the interaction algorithm. We further compared the performance of Qwen2-VL-72B and other multimodal LLMs. The experimental results are detailed in Appendix B.2. The task of image refinement necessitates not only accurate visual grounding abilities but also a sophisticated understanding of aesthetic principles. We observe that Qwen2-VL-72B can produce more reliable results compared to other models, which is critical for the synthesis of high-quality data. Our approach is agnostic to any specific image understanding model. As more powerful image understanding models emerge, they will provide stronger guidance for image generation, thereby enhancing ArtAug’s performance.

476
477

5 CONCLUSION

478
479
480
481
482
483
484
485

In this paper, we explore a method to enhance text-to-image models. To guide these models in generating high-quality images that align with human preferences, we introduce ArtAug. ArtAug presents a new path for generative model alignment that is not only effective but also highly scalable. By leveraging the synthesis-understanding loop, we transform the problem of aesthetic enhancement from a human-labor-intensive task to a machine-computation-centric one. Based on advanced text-to-image models, we trained ArtAug modules in the form of LoRA. Experimental results highlight the substantial improvements achieved through ArtAug. Our approach effectively attains alignment training with minimal human resource costs.

486 REFERENCES
487

488 Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2025. URL <https://api.semanticscholar.org/CorpusID:268232499>.

489

490 Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing diffusion paths for
491 controlled image generation. *arXiv preprint arXiv:2302.08113*, 2023.

492

493 P Bedapudi. Nudenet: Neural nets for nudity classification, detection and selective censoring, 2019.

494

495 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
496 models with reinforcement learning. *arXiv preprint arXiv:2305.13301*, 2023.

497

498 Tom B Brown. Language models are few-shot learners. *arXiv preprint arXiv:2005.14165*, 2020.

499

500 Tingfeng Cao, Chengyu Wang, Bingyan Liu, Ziheng Wu, Jinhui Zhu, and Jun Huang. Beautiful-
501 prompt: Towards automatic prompt engineering for text-to-image synthesis. In *Proceedings of
502 the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track*, pp.
503 1–11, 2023.

504

505 Daoyuan Chen, Yilun Huang, Zhijian Ma, Hesen Chen, Xuchen Pan, Ce Ge, Dawei Gao, Yuexi-
506 ang Xie, Zhaoyang Liu, Jinyang Gao, Yaliang Li, Bolin Ding, and Jingren Zhou. Data-juicer:
507 A one-stop data processing system for large language models. In *International Conference on
508 Management of Data*, 2024a.

509

510 Junsong Chen, YU Jincheng, GE Chongjian, Lewei Yao, Enze Xie, Zhongdao Wang, James Kwok,
511 Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-alpha: Fast training of diffusion transformer
512 for photorealistic text-to-image synthesis. In *The Twelfth International Conference on Learning
513 Representations*, 2023.

514

515 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
516 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
517 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer
518 Vision and Pattern Recognition*, pp. 24185–24198, 2024b.

519

520 Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
521 *arXiv preprint arXiv:2010.11929*, 2020.

522

523 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
524 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
525 *arXiv preprint arXiv:2407.21783*, 2024.

526

527 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas M"uller, Harry Saini, Yam
528 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
529 high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*,
530 2024.

531

532 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
533 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-
534 tuning text-to-image diffusion models. *Advances in Neural Information Processing Systems*, 36,
535 2024.

536

537 Jiaxi Gu, Xiaojun Meng, Guansong Lu, Lu Hou, Niu Minzhe, Xiaodan Liang, Lewei Yao, Runhui
538 Huang, Wei Zhang, Xin Jiang, et al. Wukong: A 100 million large-scale chinese cross-modal
539 pre-training benchmark. *Advances in Neural Information Processing Systems*, 35:26418–26431,
2022.

540

541 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
542 neural information processing systems*, 33:6840–6851, 2020.

543

544 Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
545 et al. Lora: Low-rank adaptation of large language models. In *International Conference on
546 Learning Representations*, 2021.

540 Kaiyi Huang, Chengqi Duan, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench++:
 541 An enhanced and comprehensive benchmark for compositional text-to-image generation. *IEEE*
 542 *Transactions on Pattern Analysis and Machine Intelligence*, 2025.

543 Minbin Huang, Yanxin Long, Xinch Deng, Ruihang Chu, Jiangfeng Xiong, Xiaodan Liang, Hong
 544 Cheng, Qinglin Lu, and Wei Liu. Dialoggen: Multi-modal interactive dialogue system for multi-
 545 turn text-to-image generation. *arXiv preprint arXiv:2403.08857*, 2024.

546 Dongfu Jiang, Max Ku, Tianle Li, Yuansheng Ni, Shizhuo Sun, Rongqi Fan, and Wenh Chen. Genai
 547 arena: An open evaluation platform for generative models. *arXiv preprint arXiv:2406.04485*,
 548 2024.

549 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 550 a-pic: An open dataset of user preferences for text-to-image generation. *Advances in Neural*
 551 *Information Processing Systems*, 36:36652–36663, 2023.

552 553 Black Forest Labs. black-forest-labs/flux github page, 2024.

554 Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
 555 and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In *Proceedings of the*
 556 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22511–22521, 2023.

557 558 Zhimin Li, Jianwei Zhang, Qin Lin, Jiangfeng Xiong, Yanxin Long, Xinch Deng, Yingfang Zhang,
 559 Xingchao Liu, Minbin Huang, Zedong Xiao, et al. Hunyuan-dit: A powerful multi-resolution
 560 diffusion transformer with fine-grained chinese understanding. *arXiv preprint arXiv:2405.08748*,
 561 2024.

562 563 Zhanhao Liang, Yuhui Yuan, Shuyang Gu, Bohan Chen, Tiansai Hang, Ji Li, and Liang Zheng.
 564 Step-aware preference optimization: Aligning preference with denoising performance at each
 565 step. *arXiv preprint arXiv:2406.04314*, 2024.

566 567 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 568 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer*
 569 *Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014,*
 570 *Proceedings, Part V 13*, pp. 740–755. Springer, 2014.

571 Buhua Liu, Shitong Shao, Bao Li, Lichen Bai, Zhiqiang Xu, Haoyi Xiong, James Kwok, Sumi
 572 Helal, and Zeke Xie. Alignment of diffusion models: Fundamentals, challenges, and future.
 573 *arXiv preprint arXiv:2409.07253*, 2024a.

574 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 575 *in neural information processing systems*, 36, 2024b.

576 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 577 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

578 579 Zichen Liu, Yue Yu, Hao Ouyang, Qiuyu Wang, Ka Leong Cheng, Wen Wang, Zhiheng Liu, Qifeng
 580 Chen, and Yujun Shen. Magicquill: An intelligent interactive image editing system. *arXiv preprint*
 581 *arXiv:2411.09703*, 2024c.

582 583 OpenAI. Openai o1 system card, 2024. URL <https://cdn.openai.com/o1-system-card-20240917.pdf>.

584 585 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 586 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 587 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 588 27730–27744, 2022.

589 590 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 591 *the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.

592 593 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 594 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 595 synthesis. In *The Twelfth International Conference on Learning Representations*, 2023.

594 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 595 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 596 models from natural language supervision. In *International conference on machine learning*, pp.
 597 8748–8763. PMLR, 2021.

598 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 599 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 600 *in Neural Information Processing Systems*, 36, 2024.

602 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 603 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 604 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

605 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 606 ical image segmentation. In *Medical Image Computing and Computer-Assisted Intervention-
 607 MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceed-
 608 ings, Part III 18*, pp. 234–241. Springer, 2015.

609 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 610 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 611 text-to-image diffusion models with deep language understanding. *Advances in neural informa-
 612 tion processing systems*, 35:36479–36494, 2022.

613 Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
 614 tillation. In *European Conference on Computer Vision*, pp. 87–103. Springer, 2025.

615 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 616 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 617 open large-scale dataset for training next generation image-text models. *Advances in Neural
 618 Information Processing Systems*, 35:25278–25294, 2022.

619 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 620 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 621 ing*, pp. 2256–2265. PMLR, 2015.

622 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 623 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 624 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

625 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 626 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
 627 direct preference optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 628 and Pattern Recognition*, pp. 8228–8238, 2024.

629 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 630 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 631 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

632 Ruochen Wang, Ting Liu, Cho-Jui Hsieh, and Boqing Gong. On discrete prompt optimization for
 633 diffusion models. *arXiv preprint arXiv:2407.01606*, 2024b.

634 Zijie J Wang, Evan Montoya, David Munechika, Haoyang Yang, Benjamin Hoover, and Duen Horng
 635 Chau. Diffusiondb: A large-scale prompt gallery dataset for text-to-image generative models.
 636 *arXiv preprint arXiv:2210.14896*, 2022.

637 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 638 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 639 image synthesis. *arXiv preprint arXiv:2306.09341*, 2023.

640 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 641 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
 642 *Advances in Neural Information Processing Systems*, 36:15903–15935, 2023.

648 Lvmín Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 649 diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 650 pp. 3836–3847, 2023.

651 Sixian Zhang, Bohan Wang, Junqiang Wu, Yan Li, Tingting Gao, Di Zhang, and Zhongyuan Wang.
 652 Learning multi-dimensional human preference for text-to-image generation. In *Proceedings of*
 653 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8018–8027, 2024.

654

655 Yupeng Zhou, Daquan Zhou, Ming-Ming Cheng, Jiashi Feng, and Qibin Hou. Storydiffusion:
 656 Consistent self-attention for long-range image and video generation. *arXiv preprint*
 657 *arXiv:2405.01434*, 2024.

658

659 **A** INTERACTION ALGORITHM

660

661 **A.1** PSEUDO CODE

662

663 **Algorithm 1** Interactive image synthesis algorithm

664 1: **Input:** image prompt P , generation module $\hat{\epsilon}_\theta$, understanding module u , time steps T .
 665 2: Sample $\mathbf{h}_0 \sim \mathcal{N}(\mathbf{O}, \mathbf{I})$
 666 3: // Generate an image.
 667 4: $\mathbf{h} \leftarrow \mathbf{h}_0$
 668 5: **for** $t = T$ **to** 1 **do**
 669 6: $\hat{\epsilon} \leftarrow \hat{\epsilon}_\theta(P, t, \mathbf{h})$
 670 7: $\mathbf{h} \leftarrow \mathbf{h} + (\sigma_{t-1} - \sigma_t)\hat{\epsilon}$
 671 8: **end for**
 672 9: Decode latent representation \mathbf{h} to image X
 673 10: // Produce modification suggestions.
 674 11: $\{(P_i, \mathbf{M}_i)\}_{i=1}^n \leftarrow u(X)$
 675 12: // Regenerate the enhanced image.
 676 13: $\mathbf{h} \leftarrow \mathbf{h}_0$
 677 14: **for** $t = T$ **to** 1 **do**
 678 15: $\hat{\epsilon} \leftarrow \hat{\epsilon}_\theta(P, t, \mathbf{h})$
 679 16: $\omega = \mathbf{I}$
 680 17: **for** $i = 1$ **to** n **do**
 681 18: $\hat{\epsilon} \leftarrow \hat{\epsilon} + \hat{\epsilon}_\theta(P_i, t, \mathbf{h}) \cdot \mathbf{M}_i$
 682 19: $\omega \leftarrow \omega + \mathbf{M}_i$
 683 20: **end for**
 684 21: $\mathbf{h} \leftarrow \mathbf{h} + (\sigma_{t-1} - \sigma_t)\frac{\hat{\epsilon}}{\omega}$
 685 22: **end for**
 23: Decode latent representation \mathbf{h} to image X'
 24: **Return:** image pair (X, X')

688 The pseudo code of the interactive image synthesis algorithm is presented in Algorithm 1. For sim-
 689 plicity, this pseudo code uses a flow match-based diffusion model (Liu et al., 2022) as an example,
 690 where the parameters $\{\sigma_t\}_{t=1}^T$ is the hyperparameters representing the noise level at each step. This
 691 algorithm can be easily extended to other kinds of diffusion models.

692 **A.2** COMPARED WITH NAIVE PROMPT REFINING

693

694 We compared the interaction algorithm outlined in Section 3.1 with the naive prompt refinement
 695 approach, as demonstrated in Figure 4. In the naive prompt refinement approach, we leverage the
 696 multimodal LLM to directly generate a detailed prompt for the image generation model. This ex-
 697 ample reveals that regenerating images using only refined prompts typically results in a complete
 698 alteration of the scene’s overall composition. Conversely, our interaction algorithm is capable of
 699 enhancing the details while preserving the fundamental composition, exemplified by the flowers
 700 and light. This suggests that our interactive algorithm can ensure the consistency in image content.
 701 Therefore, the image pairs generated using the interaction algorithm are better suited for the subse-
 702 quent differential training process, which is aimed at learning the differences between two images.

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722

(a) Image generated by
the original prompt.

(b) Image generated by
the refined prompt.

(c) Image generated by
our interaction algorithm.

723
724
725

Figure 4: Comparison of naive prompt refining and our interaction algorithm.

726
727
728
729

A.3 EXAMPLES OF INTERACTIONS

730
731
732
733

Some image pairs generated by our proposed interaction algorithm are displayed in Figures 5 and 6. These images clearly demonstrate that the multimodal LLM can enhance image quality across various fundamental aesthetic aspects. The improvements in the basic aesthetic aspects include:

734
735
736
737
738
739
740
741
742
743
744
745
746

- **Lighting:** Optimizes the effects of natural and artificial light, ensuring a balance of highlights and shadows.
- **Detail:** Enhances subtle yet crucial elements of objects in the image, boosting realism and visual appeal.
- **Composition:** Adjusts the relative positions of objects within the image, enhancing compositional effects and achieving balanced spatial aesthetics.
- **Ambiance:** Optimizes the background and atmosphere of the image, creating an environment and mood that matches the theme.
- **Clarity:** Improves overall clarity, reducing noise and blur.
- **Color:** Adjusts temperature, saturation, and more, resulting in vibrant, harmonious colors while retaining the original scene's atmosphere.

747
748
749

Beyond these fundamental aesthetic enhancements, our algorithm achieves more advanced effects, including but not limited to:

750
751
752
753
754
755

- **Particle Effects:** Introduces dynamic or special effects, such as particle effects, to images.
- **Shooting Angle:** Alters camera angles for a richer visual experience.
- **Exposure Compensation:** Simulates realistic scenarios like a galaxy appearing with increased exposure.
- **Style Adjustment:** Converts images to specific artistic styles to make them aesthetically pleasing.

- **Background Blur:** Highlights main subjects while ensuring natural transitions in the background.
- **Color Gradient:** Employs color gradients to smoothly transition between colors, resulting in a softer and more harmonious image.

These improvements highlight how well multimodal LLMs can enhance image aesthetics and adapt content and style to suit human preferences. The interactive algorithm effectively transfers the multimodal LLMs' understanding of aesthetics to the text-to-image model, thereby guiding the image generation process.

766 B MULTIMODAL LLMs

768 B.1 PROMPT OF MULTIMODAL LLMs

770 The prompt used in Qwen2-VL-72B has undergone several iterations and extensive testing to ensure
771 its effectiveness in guiding the model to generate enriched and aesthetically pleasing details in the
772 image. This prompt is detailed as follows, where “`__prompt__`” denotes the original prompt of the
773 text-to-image model.

774 You are a helpful assistant. Given the image please analyze the
775 following image and complete the following tasks:

- 777 1. Add more details to this image. For example, beautiful light
778 and shadow, exquisite decorations, gorgeous clothing,
779 beautiful natural landscapes, etc. Caution:
780 The added details should be consistent with the original
781 description: `--prompt--`
- 782 2. Mark the locations where these details can be added. Caution:
783 Each entity should have only a bounding box in the format `[x1,`
784 `y1, x2, y2]` represented using absolute pixel coordinates.
- 785 3. For each bounding box, imagine that we modify it into something
786 extremely aesthetically pleasing. Please describe the image
787 content of this part using words. Do not use 'should'. Just
788 describe it. The aesthetical description should be long.

789 Please provide the results in JSON format as follows, which can be
790 directly loaded by `json.loads()` in Python:

```
791 [
792   {
793     "bbox": [x1, y1, x2, y2],
794     "aesthetical description": "..."
795   },
796   {
797     "bbox": [x1, y1, x2, y2],
798     "aesthetical description": "..."
799   },
800   ...
801 ]
```

802 B.2 COMPARISON OF DIFFERENT MULTIMODAL LLMs

804 In the interactive algorithms, the understanding model is implemented using a multimodal LLM. For
805 the selection of this model, we conduct a comparative analysis. We test multiple multimodal LLMs
806 using the prompts mentioned in Appendix B.1. The models include Qwen2-VL-7B (Wang et al.,
807 2024a), LLaMa3.2-vision-90b-instruct (Dubey et al., 2024), InternVL2-26B (Chen et al., 2024b),
808 Gemini-exp-1206 (Team et al., 2023), Claude-3.5-sonnet (Anthropic, 2025), and Qwen2-VL-72B
809 (Wang et al., 2024a). The locations that each model indicates needed modification are shown in
Figure 7, with the corresponding modification prompts described as follows:

810
811**Qwen2-VL-7B:**812
813
814
815
816
817
818
819
820
821
822
823
824

1. The couple is beautifully illuminated by the warm glow of the full moon, casting a soft light on their silhouettes.
2. The mountains in the background are adorned with a gradient of colors, transitioning from deep blues at the base to warm oranges near the peaks, creating a stunning contrast against the night sky.
3. The serene lake reflects the moon's light, creating a mirror-like surface that enhances the tranquility of the scene.
4. The trees along the shore are elegantly lit, their dark outlines highlighted by the moonlight, adding depth and dimension to the landscape.
5. The red flowers surrounding the couple add vibrant pops of color, contrasting beautifully with the cool tones of the night sky and enhancing the overall romantic atmosphere of the scene.

825
826**LLaMa3.2-vision-90b-instruct:**827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846

1. The couple's embrace is surrounded by a halo of soft, golden light that illuminates their faces and casts a warm glow on the surrounding landscape. The light is gentle and romantic, highlighting the love and affection between the two people.
2. The full moon in the background is a deep shade of orange, with a subtle gradient effect that gives it a sense of depth and dimensionality. The moon's surface is textured with craters and mountains, adding to its natural beauty and realism.
3. The mountains in the background are covered in a thick layer of mist, which adds to their mystery and allure. The mist is depicted in shades of blue and purple, with touches of pink and orange where it meets the moonlight. The mountains themselves are rugged and rocky, with steep peaks and valleys that add to their dramatic beauty.
4. The lake in the foreground is calm and peaceful, reflecting the beauty of the surrounding landscape like a mirror. The water is depicted in shades of blue and green, with touches of purple and pink where it meets the moonlight. The lake's surface is dotted with ripples and waves, adding to its sense of movement and life.
5. The red flowers in the foreground are vibrant and colorful, adding a pop of color to the otherwise muted palette of the image. The flowers are depicted in various stages of bloom, with some fully open and others still budding. They are arranged in a random pattern, adding to their natural beauty and spontaneity.

847

InternVL2-26B:848
849
850
851
852
853
854
855
856
857
858
859
860

1. A luminous full moon with a detailed cratered surface, radiating a warm glow, casting a golden light across the scene. The stars twinkle softly in the night sky.
2. Mountains with jagged peaks, their dark outlines contrasting against the twilight sky, casting deep blue shadows that blend into the cool night.
3. A serene lake reflecting the full moon, mirroring the silhouettes of the mountains and adding a touch of tranquility with its still waters.
4. A field of vibrant red flowers, their petals rich and lush, with leaves that add green highlights, creating a striking contrast to the dark silhouettes of the couple.
5. A dense cluster of coniferous trees, their dark, spiky branches reaching upwards, standing still in the night breeze.
6. The couple's outlines are refined with fluid lines, their forms bathed in the moonlight, emphasizing the romantic embrace.

861
862
863**Gemini-exp-1206:**

1. The full moon is a radiant celestial orb, its surface a tapestry of soft, glowing craters and valleys. A gentle, ethereal light emanates from it, casting a silvery sheen over the entire

864 scene. The moon's glow is subtly diffused by a thin veil of high-altitude clouds, creating
 865 a halo effect that adds a mystical quality to the night sky. The light reflects off the clouds,
 866 painting them with hues of soft orange and dusky pink, creating a breathtaking backdrop
 867 for the romantic scene below.

868 2. The tranquil lake is a mirror of serenity, its surface as smooth as glass, reflecting the moonlit
 869 sky and the surrounding landscape with perfect clarity. The water is a deep, rich blue, tinged
 870 with hints of emerald green near the edges. Gentle ripples, caused by a soft breeze, create
 871 a mesmerizing dance of light and shadow on the water's surface. The reflection of the full
 872 moon on the lake is not just a mere image but a shimmering pathway of light that seems to
 873 lead into another world, adding a touch of magic and wonder to the scene.

874 3. The couple stands in a tender embrace, their silhouettes outlined against the luminous back-
 875 drop. The woman's dress is a flowing, elegant garment made of a soft, shimmering fabric
 876 that catches the moonlight, making her appear almost ethereal. Delicate lace details are
 877 visible on the sleeves and hem, adding a touch of romantic sophistication. The man is
 878 dressed in a finely tailored suit, the fabric a deep, rich color that contrasts beautifully with
 879 the woman's dress. The suit's subtle sheen hints at luxury and refinement, and the way
 880 it drapes over his form suggests both strength and tenderness. Their pose is intimate and
 881 loving, a perfect representation of a romantic moment frozen in time.

882 4. The field of red flowers is a vibrant tapestry of color and life. Each flower is a perfect
 883 specimen, with velvety petals in a deep, passionate red. Delicate dewdrops cling to the
 884 petals, catching the moonlight and sparkling like tiny diamonds. The flowers sway gently
 885 in the breeze, creating a sense of movement and vitality. Among the red flowers, there
 886 are interspersed tiny wildflowers in shades of white and yellow, adding a touch of delicate
 887 beauty and contrast to the scene. The fragrance of the flowers is subtly hinted at, a sweet,
 888 intoxicating scent that adds another layer of sensory richness to the romantic atmosphere.

889 5. The mountains rise majestically in the background, their peaks shrouded in a soft, ethereal
 890 mist that glows faintly in the moonlight. The slopes are covered in a lush forest of pine
 891 trees, their dark green needles providing a striking contrast to the lighter hues of the sky
 892 and the lake. The trees are rendered in exquisite detail, with each branch and needle clearly
 893 defined, creating a sense of depth and texture. The play of light and shadow on the moun-
 894 tains is intricate and captivating, with the moonlight highlighting certain areas while others
 895 remain in deep shadow, adding a sense of mystery and grandeur to the landscape.

896 **Claude-3.5-sonnet:**

897 1. The night sky is a masterpiece of celestial beauty. Thousands of twinkling stars dot the
 898 deep blue-green expanse, creating a mesmerizing tapestry of light. Wispy, ethereal clouds
 899 float gracefully across the horizon, their edges tinged with a soft, warm glow from the
 900 moon's radiance. The stars seem to dance and shimmer, their light pulsating gently in the
 901 vast cosmic canvas, inviting the viewer to lose themselves in the infinite wonders of the
 902 universe.

903 2. The full moon dominates the scene, a breathtaking orb of celestial magnificence. Its surface
 904 is a intricate map of light and shadow, with every crater and maria visible in stunning detail.
 905 The moon glows with an intense golden-orange hue, casting a warm, romantic light across
 906 the landscape. Its radiance is so powerful that it seems to pulse with an otherworldly energy,
 907 bathing everything below in its enchanting luminescence. The moon's reflection on the lake
 908 below creates a perfect, unbroken circle of light, as if two cosmic entities are reaching out
 909 to touch one another across the expanse of sky and water.

910 3. The mountain range is a majestic spectacle of nature's grandeur. Each peak is intricately
 911 detailed, with rugged cliffs, deep crevices, and snow-capped summits that catch the moon-
 912 light and glisten like diamonds. The silhouettes of the mountains create a dramatic interplay
 913 of light and shadow, with each ridge and valley clearly defined. The gradual transition of
 914 colors from the deep blue-green of the closer mountains to the misty purple of the distant
 915 peaks creates a sense of depth and mystery, inviting the eye to explore every contour and
 916 crag of this awe-inspiring landscape.

917 4. The serene lake is a mirror of tranquility, its surface a flawless reflection of the sky above.
 The water is so still that every detail of the surrounding landscape is perfectly replicated,

918 creating a symmetrical masterpiece. Gentle ripples near the shore catch the moonlight,
 919 transforming into liquid gold. The lake's edge is adorned with smooth, dark stones that
 920 seem to glow with an inner light, their surfaces slick with the kiss of water. The perfect
 921 reflection creates an illusion of an infinite world, where sky and water merge into one
 922 continuous realm of beauty.

923 5. The field of red flowers is a vibrant explosion of color and life. Each blossom is exquisitely
 924 detailed, with velvety petals that catch the moonlight and seem to glow from within. The
 925 flowers sway gently in a soft breeze, creating a hypnotic dance of shadow and light. Deli-
 926 cate stems and leaves are visible among the blooms, adding depth and texture to the floral
 927 carpet. Dew drops cling to the petals, sparkling like tiny diamonds in the moonlight. The
 928 rich, deep red of the flowers contrasts beautifully with the cool tones of the surrounding
 929 landscape, creating a visual focal point that draws the eye and warms the heart.

930 6. The silhouette of the embracing couple is a poignant symbol of love and connection. Their
 931 forms are perfectly balanced, creating a harmonious shape against the backdrop of the
 932 moon. The outline of their bodies is crisp and clear, with every detail of their posture and
 933 the gentle tilt of their heads towards each other visible. The way they hold each other speaks
 934 volumes about their intimacy and affection. Their silhouette creates a powerful contrast
 935 against the bright background, making them appear as if they are the sole inhabitants of
 936 this magical world, lost in their own private moment of romance and wonder.

937 **Qwen2-VL-72B:**

938 1. The couple is dressed in elegant, flowing garments that shimmer under the moonlight.
 939 The man's suit is tailored to perfection, with intricate embroidery on the lapels, while the
 940 woman's dress is adorned with delicate lace and sequins that catch the light. Their embrace
 941 is tender and intimate, creating a sense of warmth and connection.

942 2. The mountains in the background are majestic and grand, with snow-capped peaks that
 943 glisten in the moonlight. The slopes are covered in lush, green forests that add depth and
 944 texture to the scene. The sky above is a canvas of stars, with the full moon casting a soft,
 945 ethereal glow over the landscape.

946 3. The serene lake reflects the full moon and the surrounding mountains, creating a mirror-
 947 like surface that adds tranquility to the scene. The water is calm and still, with gentle
 948 ripples that dance in the moonlight. The reflections of the moon and the mountains create
 949 a mesmerizing effect, enhancing the romantic atmosphere.

950 4. The red flowers surrounding the couple are vibrant and lush, with petals that seem to glow in
 951 the moonlight. They are arranged in a natural, wildflower style, adding a touch of whimsy
 952 and romance to the scene. The flowers are interspersed with delicate greenery and small,
 953 twinkling lights that mimic the stars in the sky.

955 This task not only requires the model to understand image content but also demands precise visual
 956 grounding abilities. Consequently, we observed that most multimodal LLMs are unable to provide
 957 viable modification suggestions. Among these models, only Claude-3.5-sonnet and Qwen2-VL-72B
 958 meet our requirements. Given that Qwen2-VL-72B is an open-source model, we ultimately decided
 959 to use it to construct our understanding module.

960 **C HUMAN EVALUATION DETAILS**

963 During evaluation, we used minimal instructions ("Which image looks better?") to prioritize partic-
 964 ipants' first impressions. Simplified instructions ensure efficient decision-making that better reflects
 965 human aesthetic intuition. Each participant was asked to pick an image with better visual quality
 966 in 100 image pairs. The user interface provided to participants is shown in Figure 8, with the text
 967 displayed in Chinese due to the participants' language background.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995

Before interaction
After interaction

(a) Lighting

(b) Detail

(c) Composition

Before interaction
After interaction

(d) Ambiance

(e) Clarity

(f) Color

1020
1021 Figure 5: Image examples improved by the interaction algorithm. The enhanced images exhibit
1022 aesthetic improvements in various aspects.
1023
1024
1025

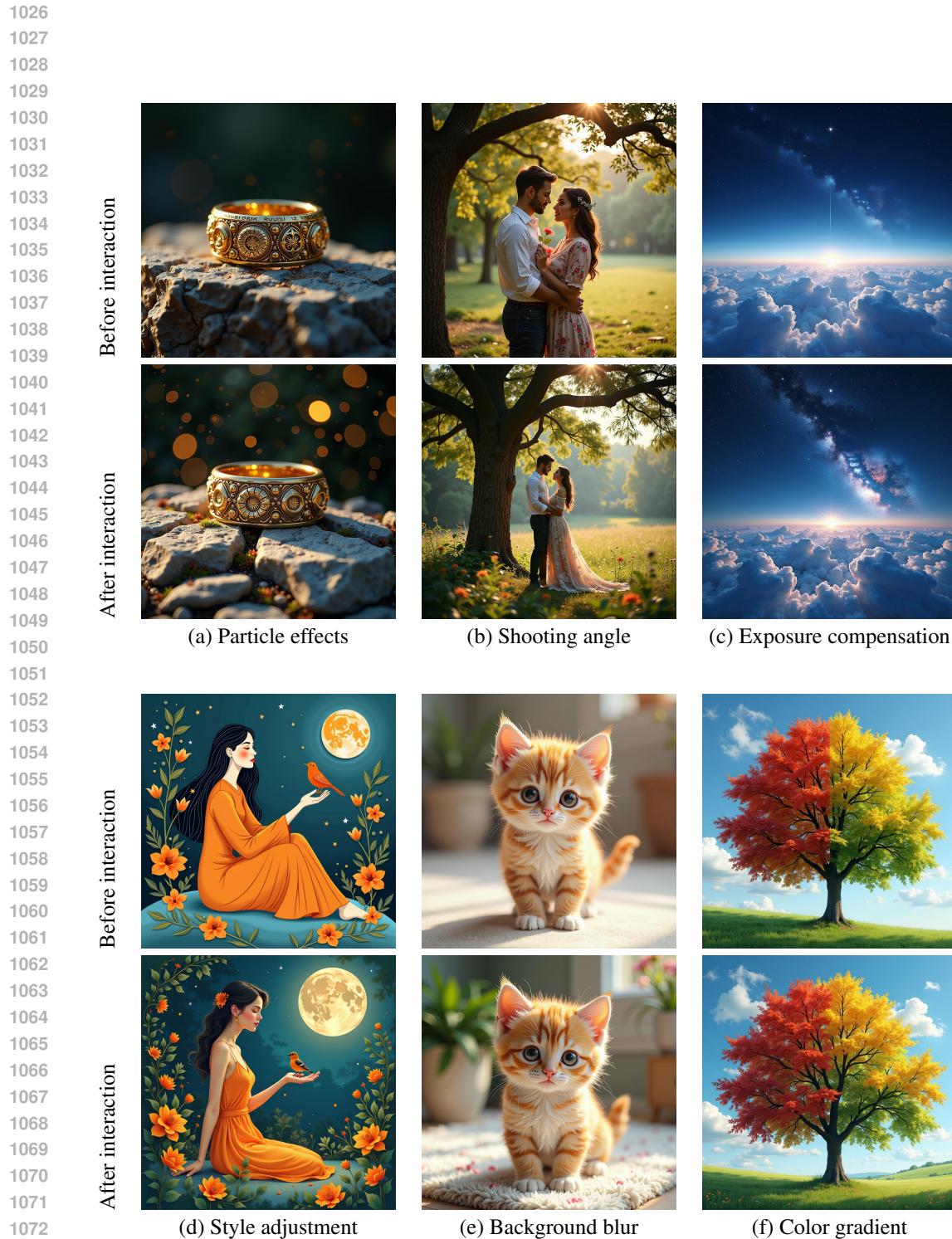


Figure 6: Image examples improved by the interaction algorithm. The multimodal LLM in the interaction algorithm is capable of understanding human preferences and making fine-grained adjustments to the content of images.

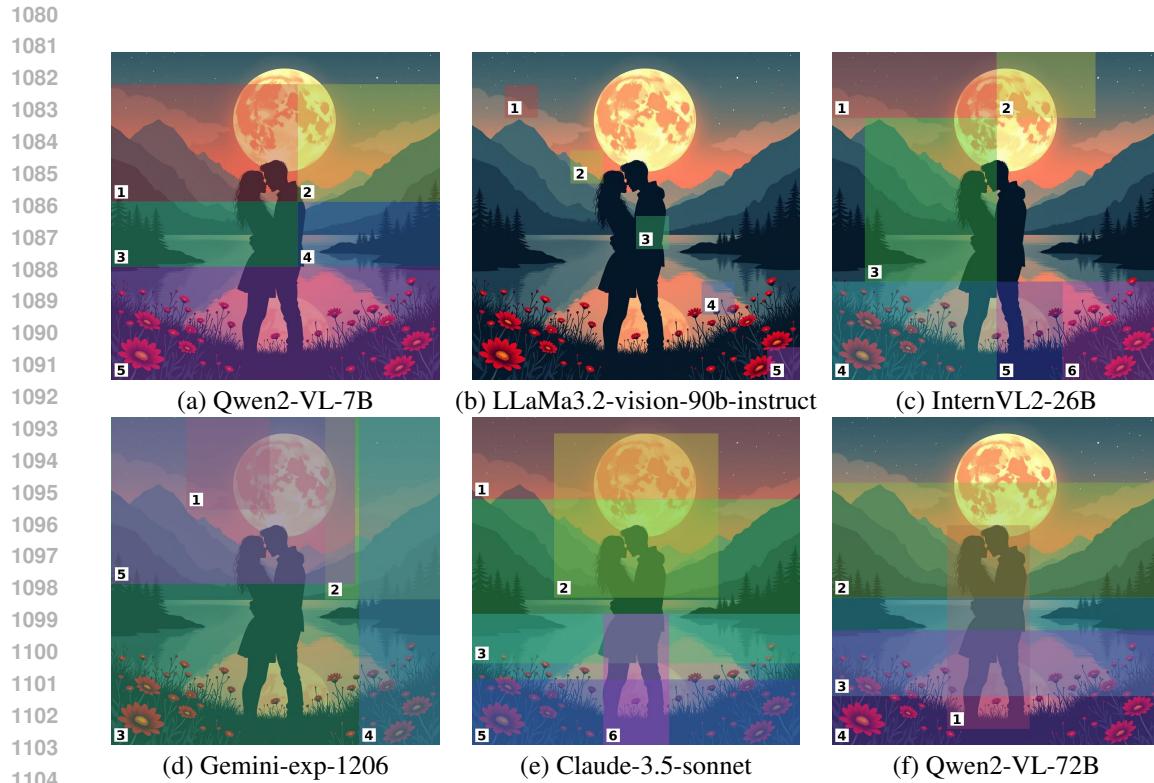


Figure 7: Comparison of image understanding and refining capabilities of multimodal LLMs. Bounding boxes indicate areas requiring modification, with related prompts provided in the Appendix B.2.

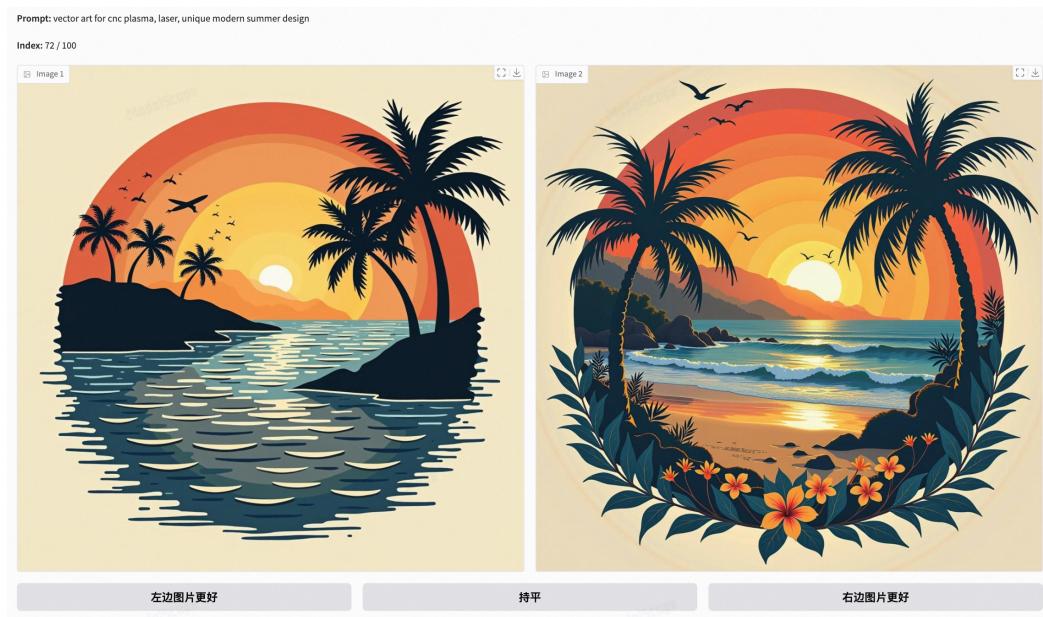


Figure 8: User interface provided to participants in human evaluation.