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Abstract

Instruction tuning and preference alignment001
have played pivotal roles in recent advances002
in large language models (LLMs). Empirical003
observations reveal that when provided with004
bootstrapping instructions such as “please005
generate a better response” following006
initial outputs, these models can produce sig-007
nificantly enhanced subsequent responses. This008
finding highlights the critical role of both ini-009
tial outputs and bootstrapping instructions in010
preference alignment, while also suggesting the011
important connection between abstract prefer-012
ence definitions and their concrete textual ex-013
pressions. Based on this insight, we propose014
Instruction Bootstrapped Preference Optimiza-015
tion (IBPO), an innovative approach to refine in-016
struction fine-tuning, preference optimization,017
and inference steps in LLMs in the form of018
plugins. IBPO systematically integrates paired019
preference data with bootstrapping instructions020
into unified sequences, enabling more effective021
utilization of preference data while strengthen-022
ing the association between textual expressions023
in preference data and preference descriptions024
in the instruction. Experiments on multiple025
datasets demonstrate that IBPO achieves more026
than 10% improvements over several existing027
preference alignment baselines. Ablation ex-028
periments and mechanistic analysis provide po-029
tential explanations for these improvements.030

1 Introduction031

Recent breakthroughs in large language models032

(LLMs) have demonstrated remarkable capabilities033

and achieved impressive performance across tasks034

ranging from machine translation (Hendy et al.,035

2023) to code generation (Ni et al., 2023). A key036

factor driving these advances is the integration of037

instruction tuning and preference alignment (Zhao038

et al., 2023). While base models pretrained on vast039

corpora demonstrate broad capabilities, these tech-040

niques specifically enhance their ability to interpret041

What runs around the whole yard without moving?

Please generate a better response.

The answer to this riddle is a fence! A fence runs 
around the whole yard, enclosing it and providing a 
boundary. A fence is considered to be a continuous 
structure, so it can be thought of as something that 
"runs around" the yard without actually moving.

A fence.

Figure 1: LLM augments simple initial response with
detailed explanations after receiving the bootstrapping
instruction. The abstract preference descriptions and
concrete textual expressions are marked in red and blue.

human intent and generate outputs that are accu- 042

rate, contextually coherent, and aligned with ethical 043

constraints (Wang et al., 2023). Early alignment 044

approaches like Reinforcement Learning from Hu- 045

man Feedback (RLHF) (Ouyang et al., 2022) relied 046

on reward modeling and reinforcement learning, 047

while subsequent methods such as Direct Prefer- 048

ence Optimization (DPO) (Rafailov et al., 2024) 049

eliminated the need for explicit reward models 050

through supervised optimization. This evolution 051

has spurred numerous refined techniques (Azar 052

et al., 2024; Xu et al., 2024a; Ethayarajh et al., 053

2024) addressing diverse alignment challenges. 054

Among the emerging capabilities of aligned 055

LLMs, we particularly pay attention to the “boot- 056

strapping” ability. Specifically, when an LLM pro- 057

vides an initial response to a query, subsequent 058

instructions such as “please generate a better 059

response” enable the model to produce a substan- 060

tially enhanced output. For example, as shown in 061

Figure 1, despite being instructed by only a gen- 062

eral expectation to improve, the model successfully 063

augments the simple initial response with detailed 064

explanations. This bootstrapping phenomenon has 065

been applied in research and practice, including 066
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Figure 2: Appending the bootstrapping instruction to
the original question as a suffix result in responses better
than initial responses, but inferior to second responses.

data augmentation (Madaan et al., 2023; Liu et al.,067

2024a) and code refinement (Woolf, 2025), but its068

critical factors and underlying mechanisms remain069

unrevealed in existing work.070

To address this gap, we conduct experiments071

on three models with results illustrated in Fig-072

ure 2. First, using a bootstrapping instruction af-073

ter the initial response lead to significant improve-074

ments, highlighting the importance of the initial re-075

sponse. When incorporated into the context, these076

responses serve as effective references that guide077

the subsequent generation. Moreover, appending078

the bootstrapping instruction directly to the origi-079

nal question without a second generation still re-080

sult in marked improvements, although inferior to081

the two-step generations, which underscores the082

pivotal role of the instruction itself. Although pre-083

vious studies emphasize the benefits of specific084

instructions (Madaan et al., 2023), our experiments085

demonstrate that even generic instruction consis-086

tently elicits quality improvements. This suggests087

that aligned LLMs have established a connection088

between abstract preferences descriptions in boot-089

strapping instructions and concrete textual expres-090

sions (marked red and blue in Figure 1).091

Building on these insights, we propose Incremen-092

tal Bootstrapping Preference Optimization (IBPO),093

an innovative method that enhances LLM align-094

ment in the form of plugins throughout instruc-095

tion tuning, preference optimization, and inference.096

IBPO introduces two key innovations: 1) integra-097

tion of chosen and rejected responses into joint098

sequences as contextual references and training tar-099

gets, enhancing the utilization of paired preference100

data; 2) strategic incorporation of bootstrapping101

instructions as semantic bridges between chosen102

and rejected responses, allowing nuanced prefer-103

ence learning from their interplay rather than con-104

ventional probability comparison. IBPO demon- 105

strates improvements over baseline alignment meth- 106

ods through dual mechanisms. Contextually, ini- 107

tial responses reduce the distributional gaps be- 108

tween model generations and target outputs, en- 109

abling focused learning on preference signals. Ar- 110

chitecturally, bootstrapping instructions leverage 111

pretrained semantic representations to guide pref- 112

erence learning, with their preference semantics 113

serving as both training objectives and consistency 114

constraints across diverse preference pairs. 115

Our contributions can be summarized as follows: 116

• First systematic analysis of LLM bootstrap- 117

ping to our best knowledge, identifying the 118

critical roles of contextual responses and in- 119

structions and extending it to training; 120

• Development of IBPO, a novel and flexible 121

plug-in suitable for any alignment stage that 122

enhances paired preference data utilization 123

and strengthens connections between prefer- 124

ence descriptions and textual expressions; 125

• Comprehensive empirical validation across 126

multiple datasets and baseline methods, sup- 127

ported by the ablation study and mechanistic 128

analysis elucidating improvement sources. 129

2 Related Work 130

Preference Alignment RLHF significantly im- 131

proves the preference alignment of LLM (Bai et al., 132

2022). Recent alignment approaches fall into 133

two main branches. RL-based methods such as 134

PPO (Schulman et al., 2015), GRPO (Ramesh et al., 135

2024) can explore diverse responses and optimize 136

through reward models, but are complex to train. 137

DPO simplifies training by incorporating the re- 138

ward model policy in the closed-form solution with 139

the Bradley-Terry (BT) model. However, DPO 140

only focuses on the relative values of the implicit 141

rewards of chosen and rejected samples, resulting 142

in a decrease in the prediction probability of chosen 143

samples (Xiao et al., 2024). The problems of DPO 144

also include ignoring the importance differences be- 145

tween tokens (Liu et al., 2025) and the biased favor 146

of out-of-distribution responses (Xu et al., 2024b). 147

Thus, a series of variants (Saeidi et al., 2024) such 148

as IPO (Azar et al., 2024), CPO (Xu et al., 2024a), 149

ORPO (Hong et al., 2024), and KTO (Ethayarajh 150

et al., 2024) try to optimize these problems. IBPO 151

proposed by us can improve the effectiveness of 152

these existing methods with the bootstrapping in- 153

struction from a vertical perspective. 154
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Figure 3: IBPO extends the alignment pipelines by three plug-ins: i) After standard instruction fine-tuning phase,
LLM is additionally fine-tuned by enhanced data with the bootstrapping instruction and rejected response in context.
ii) After standard preference optimization phase, LLM is further optimized by paired data where two responses
combined by the bootstrapping instruction. iii) During inference phase, the bootstrapping instruction is appended to
the question as a suffix. These three plugins can be used individually or in combination.

Alignment with Instruction In the mentioned155

work, the preference data is merely divided into156

two parts: preferred and dispreferred, without con-157

sidering establishing an association with specific158

instruction semantics. DLMA (Liu et al., 2024a)159

expressed binary preference as semantics like “fol-160

low strict ethical guidelines” and “ignore ethical161

principles”, comparing response probabilities for162

opposite semantic instructions to boost the gen-163

eration of preferred response. Recently, Chain of164

Hindsight (Liu et al., 2024b) was proposed. By con-165

ditioning LLM on generation feedback sequences,166

it can learn error and negative attribute correction.167

Incorporating this idea, we construct paired pref-168

erence alignment data into a joint sequence and169

introduce bootstrapping instruction, strengthening170

the LLM alignment with bootstrapping.171

LLM Bootstrapping LLMs inherently possess172

the potential for continuous self-improvement.173

Bootstrapping through appropriate prompts or in-174

structions can stimulate this potential (Madaan175

et al., 2023). Recently, DeepSeekV3 (DeepSeek-176

AI et al., 2024) generated long thought chains177

through multi-round reinforcement learning with-178

out fine-tuning of the long-thought-chain task,179

showing the bootstrapping potential of LLM. In180

human-preferred alignment, methods like Chen181

et al. (2024a); Pang et al. (2024); Li et al. (2024) al-182

ternate between bootstrapping alignment data and183

refining LLM to exploit the self-improvement po-184

tential. Different from these studies, we use boot-185

strapping instructions in training to directly activate186

the self-improvement potential.187

3 Proposed Method 188

In this section, we elaborate on the implementa- 189

tion of IBPO, which extends standard alignment 190

pipelines by three plug-ins as shown in Figure 3. 191

The conventional alignment workflow first fine- 192

tunes a pretrained base model π0 by supervised fine- 193

tuning (SFT) to obtain πsft, then optimizes it with 194

a paired preference dataset D = {(xi, y+i , y
−
i )}Ni=1 195

to produce the final aligned model πpre, where x 196

denotes inputs, y+ and y− represent chosen and 197

rejected responses. IBPO extends this workflow by 198

integrating the bootstrapping instruction i↑ across 199

stages. With instruction-augmented data, πsft un- 200

dergoes additional fine-tuning (§3.1) and πpre is 201

further refined (§3.2), while inference prompts also 202

include bootstrapping instructions as suffix (§3.3). 203

These procedures reduce distribution mismatches 204

between model generations and target responses 205

while strengthening the connection between prefer- 206

ence descriptions and their textual expressions. 207

3.1 Instruction Fine-tuning 208

Instruction fine-tuning serves as the foundational 209

step for the preference alignment of LLM. Start- 210

ing from a pretrained base model π0, this pro- 211

cess utilizes a subset of paired preference data 212

Dsft = {(xi, y+i )}Ni=1, where inputs xi are paired 213

with chosen responses y+ for the next-token pre- 214

diction training by cross-entropy loss, yielding the 215

initial aligned model πsft as follows: 216

LSFT = −E(x,y+)∼Dsft

[
log πθ

(
y+ | x

)]
. (1) 217
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While this stage partially aligns the model genera-218

tion distribution with target responses, it inherently219

neglects rejected responses y−, as these outputs are220

what the model should avoid.221

To address this limitation, the instruction boot-222

strapped SFT creatively incorporates y− by a struc-223

tured two-turn dialogue format: samples are re-224

formulated as (⟨x, y−, i↑⟩, y+), where ⟨x, y−, i↑⟩225

forms a new prompt, and y+ serves as the training226

target. To avoid overfitting to the fixed structure227

of i↑, these augmented samples are mixed with228

standard SFT data, forming a composite dataset229

Dibft = {(xi, y+i ), (⟨x, y−, i↑⟩, y+)}Ni=1. This hy-230

brid dataset fine-tunes πsft into πibft, enabling the231

model to directly learn the distributional shift from232

rejected y− to chosen y+ responses.233

LIBFT =− E(x′,y+)∼Dibft

[
log πθ

(
y+ | x′

)]
,234

x′ ∈{x} ∪ {⟨x, y−, i↑⟩}. (2)235

By explicitly contrasting y− and y+ within236

instruction-guided dialogues, this step not only237

leverages previously discarded negative responses,238

but also establishes an explicit association between239

preference data and the bootstrapping instruction.240

This dual mechanism prepares the model for sub-241

sequent preference optimization by simultaneously242

narrowing the distribution gap and grounding align-243

ment objectives in concrete textual patterns.244

3.2 Preference Optimization245

Preference optimization constitutes the second criti-246

cal phase in standard LLM alignment. Based on the247

SFT-tuned model πsft, this stage uses paired prefer-248

ence data D = {(xi, y+i , y
−
i )}Ni=1 with specialized249

loss functions and produces πpre. For example,250

the widely used DPO loss amplifies the probabil-251

ity gap between generating preferred responses y+252

and rejected responses y− for each prompt x, thus253

steering the model’s generation preferences.254

LDPO = −E(x,y+,y−)∼D
[
log σ255 (

β log
πθ (y

+ | x)
πsft (y+ | x)

− β log
πθ (y

− | x)
πsft (y− | x)

)]
.

(3)

256

However, DPO and similar methods face a per-257

sistent challenge: the distributional gap between258

model generations and target preferences can im-259

pede effective alignment. It is possible that the260

model outputs marginally favor y+ over y− but are261

far from the targets, which undermines preference262

learning. Although SFT phase partially mitigates 263

this issue, residual discrepancies remain. 264

IBPO addresses this limitation by extending 265

the bootstrapping instruction to preference op- 266

timization. Through the reformulated chosen 267

sequences (⟨x, y−, i↑⟩, y+) and the rejected se- 268

quences (⟨x, y+, i↑⟩, y−), where ⟨x, y−, i↑⟩ and 269

⟨x, y+, i↑⟩ serve as contextual prompts, the method 270

leverages the inherent distributional similarity be- 271

tween y+ and y− and further optimizes πpre to 272

πib-pre. By embedding half of responses as contex- 273

tual anchors, this approach reduces the effective 274

generation space, guiding the model toward target 275

distributions more efficiently. 276

LIBPO = −E[(⟨x,y+,i↑⟩,y−),(⟨x,y−,i↑⟩,y+)]∼D 277[
log σ

(
β log

πθ
(
y+ | ⟨x, y−, i↑⟩

)
πpre (y+ | ⟨x, y−, i↑⟩)

278

−β log
πθ

(
y− | ⟨x, y+, i↑⟩

)
πpre (y− | ⟨x, y+, i↑⟩)

)]
. (4) 279

Another key advantage of IBPO lies in its ability 280

to integrate y+ and y− into a unified sequence via 281

i↑, enabling the model to contrast their token-level 282

details directly during training. Unlike DPO, which 283

treats y+ and y− as isolated sequences and merely 284

compares their generation probabilities, IBPO fa- 285

cilitates fine-grained preference learning by expos- 286

ing the model to explicit textual contrasts between 287

chosen and rejected responses. This granular com- 288

parison allows the model to better discern subtle 289

alignment patterns, improving data efficiency. 290

Rewriting the IBPO loss as follows offers addi- 291

tional insight. The derivation is in Appendix B. 292

LIBPO = −E[(⟨x,y+,i↑⟩,y−),(⟨x,y−,i↑⟩,y+)]∼D 293[
log σ

(
β log

πθ (y
+ | x)

πpre (y+ | x)
− β log

πθ (y
− | x)

πpre (y− | x)
294

+β log
πθ

(
⟨y−, y+⟩ | ⟨x, i↑⟩

)
πpre (⟨y−, y+⟩ | ⟨x, i↑⟩)

295

−β log
πθ

(
⟨y+, y−⟩ | ⟨x, i↑⟩

)
πpre (⟨y+, y−⟩ | ⟨x, i↑⟩)

)]
. (5) 296

In this format, IBPO loss can be decomposed into 297

two components: one optimizing the initial re- 298

sponse (same as the DPO objective) and another 299

jointly refining both initial and bootstrapped re- 300

sponses. This formulation ensures that the model 301

enhances subsequent outputs without excessively 302

compromising the quality of initial generations, ef- 303

fectively leveraging its self-improvement capability 304
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Base Model
Bootstrapping OASST UltraBin SHP HH Mean ∆

I II III Score Win% Score Win% Score Win% Score Win% Score Win%

Pythia-2.8B

× × × 2.76 56.5 2.16 41.7 1.39 44.8 0.89 44.0 - -
✓ × × 2.81 59.1 2.25 42.9 1.55 49.6 1.08 45.4 9.82% 2.52
× ✓ × 2.79 61.2 2.34 42.7 1.56 51.3 1.09 44.9 11.14% 3.30
× × ✓ 2.74 57.7 2.29 41.4 1.35 46.3 0.95 42.1 2.28% 0.13
✓ ✓ × 2.87 62.8 2.40 44.8 1.62 52.5 1.20 49.1 16.51% 5.58
✓ × ✓ 2.82 61.3 2.31 41.6 1.55 51.4 1.29 48.1 16.39% 3.86
× ✓ ✓ 2.84 63.6 2.38 43.2 1.59 53.5 1.14 47.4 14.05% 5.20
✓ ✓ ✓ 2.87 66.4 2.48 46.1 1.64 54.1 1.40 53.0 23.53% 8.17

Llama3-8B

× × × 3.14 76.1 2.61 64.0 1.95 71.0 1.21 56.7 - -
✓ × × 3.24 78.1 2.67 64.2 2.09 77.5 1.32 58.2 5.28% 2.56
× ✓ × 3.14 81.0 2.68 64.2 2.01 74.7 1.45 59.6 6.35% 2.94
× × ✓ 3.25 76.7 2.78 64.6 1.94 71.5 1.29 57.1 3.90% 0.53
✓ ✓ × 3.41 81.5 2.78 66.2 2.21 79.7 1.52 61.7 13.40% 5.32
✓ × ✓ 3.36 81.4 2.69 65.8 2.07 77.4 1.49 58.6 9.67% 3.85
× ✓ ✓ 3.34 81.6 2.78 65.6 2.05 74.4 1.64 63.3 13.27% 4.25
✓ ✓ ✓ 3.46 85.3 3.00 66.8 2.22 80.3 1.72 64.2 20.15% 7.21

Table 1: Results of IBPO based on DPO with two base models on four public datasets. Results show that the
instruction bootstrapping is effective in all stage of instruction fine-tuning (I), preference optimization (II) and
inference (III) and bootstrapping in the earlier stage can facilitate subsequent stages.

to bootstrap performance during training. Crucially,305

this dual optimization underscores the necessity of306

robust initial alignment in πpre, since the model’s307

ability to iteratively refine outputs depends on a308

well-tuned foundational distribution.309

3.3 Inference310

After the fine-tuning and optimization steps are311

completed, the LLM πpre or πib-pre is ready for312

inference. For every input prompt x, the model313

generates an output ŷ. As illustrated in Figure 2,314

the IBPO method appends the bootstrapping in-315

struction i↑ as a suffix to x, enhancing the quality316

of LLM generation as ŷ↑ without increasing the317

computational cost of inference.318

4 Experiment319

4.1 Experiment Setup320

In this subsection, we introduce the setup of exper-321

iments. More details can be found in Appendix A.322

Datasets We conduct experiments on four pub-323

lic datasets for preference alignment: OpenAssis-324

tant Conversations Dataset (OASST) (Köpf et al.,325

2024), UltraFeedback Binarized Dataset (Ultra-326

Bin) (Cui et al., 2024), Stanford Human Prefer-327

ences Dataset (SHP) (Ethayarajh et al., 2022), and328

Anthropic Helpful and Harmless Dataset (HH) (Bai 329

et al., 2022). We preprocess these datasets fol- 330

lowing Ethayarajh et al. (2024), and then convert 331

them into the paired preference data format of 332

TRL library (von Werra et al., 2020). We use the 333

instruction i↑ = “please generate a better 334

response”, which is simple but effective. 335

Baselines and Models We select four typical 336

preference optimization methods as baselines to 337

evaluate the improvement effects of our method, 338

including DPO, KTO, CPO, and ORPO. All meth- 339

ods employ two base models of different sizes: 340

Pythia-2.8B (Biderman et al., 2023) and Llama3- 341

8B (AI@Meta, 2024). 342

Evaluation Metrics Following prior works (Xu 343

et al., 2024b; Liu et al., 2024a), we use two metrics 344

to evaluate the quality of the model responses: the 345

scores from a public reward model released by 346

OpenAssistant (2023) and the win rate versus the 347

chosen responses judged by GPT-4. 348

4.2 Main Results 349

Table 1 shows the experimental results of IBPO 350

based on DPO with two base models on four pub- 351

lic datasets, where the best results are in bold and 352

the second best results are underlined. Our IBPO 353
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Bootstrapping Methods
Mean∆

I II III KTO CPO ORPO

× × × 3.46 3.59 2.79 -
✓ × × 3.57 3.58 2.85 1.68%
× ✓ × 3.43 3.64 3.25 5.67%
× × ✓ 3.47 3.64 2.83 1.04%
✓ ✓ × 3.64 3.66 3.36 9.19%
✓ × ✓ 3.62 3.70 3.03 5.43%
× ✓ ✓ 3.63 3.81 3.46 11.69%
✓ ✓ ✓ 3.71 3.82 3.55 13.62%

Table 2: Score of IBPO based on other optimization
methods with Llama3-8B and OASST dataset, demon-
strating its general effectiveness across base methods.

method demonstrates significant and consistent im-354

provements across all datasets. In the Pythia-2.8B355

model, IBPO achieves average increases of 23.53%356

in reward model scores and 8.17 percentage points357

in GPT-4 evaluation win rates, while producing358

respective improvements of 20.15% and 7.21 per-359

centage points in the Llama3-8B model. These360

results substantiate the effectiveness of IBPO.361

Table 1 further presents the results from apply-362

ing bootstrapping methods individually or combi-363

natorially during instruction fine-tuning (I), prefer-364

ence optimization (II), and inference (III) phases.365

All six partial combinations exhibit improved av-366

erage metrics across both models, indicating that367

the bootstrapping instruction contributes to prefer-368

ence alignment regardless of the implementation369

stage. This also validates that the bootstrapping370

phenomenon observed during inference can be ef-371

fectively extended to training stages.372

Notably, when separately applied to individual373

stages, inference-stage bootstrapping yields the374

least improvement, significantly underperforming375

fine-tuning or optimization implementations. This376

suggests that parameter updating through training-377

phase bootstrapping offers greater efficacy than378

contextual utilization during inference. Further-379

more, combining bootstrapping across multiple380

stages produces superior results compared to single-381

stage applications. This demonstrates that knowl-382

edge acquired through earlier-stage bootstrapping383

can be effectively transferred to subsequent stages,384

facilitating progressive preference learning. These385

findings underscore the necessity of holistic im-386

provements across all three alignment phases to387

achieve comprehensive preference optimization.388

Method MMLU GSM8K HumanEval Mean

SFT 0.627 0.332 0.372 0.444

DPO 0.629 0.334 0.402 0.455
+Boots. 0.630 0.356 0.427 0.471

CPO 0.638 0.337 0.439 0.471
+Boots. 0.630 0.353 0.433 0.472

ORPO 0.640 0.339 0.433 0.471
+Boots. 0.631 0.336 0.427 0.464

KTO 0.639 0.346 0.439 0.475
+Boots. 0.636 0.365 0.427 0.476

Table 3: Accuracy of IBPO on knowledge, math, and
code benchmark with different optimization methods.

4.3 Improvement based on Other Methods 389

To validate the generalizability of the IBPO method 390

across different base optimization methods, we re- 391

placed the DPO method in our main experiments 392

with three established variants: KTO, CPO, and 393

ORPO. Table 2 presents the reward model scores of 394

IBPO implementations based on these optimization 395

methods, evaluated on the OASST dataset using 396

Llama3-8B as the base model. Detailed descrip- 397

tions of these methods and additional experimental 398

results are provided in Appendix C. 399

The results demonstrate that IBPO achieves an 400

average improvement of 13.62% across all three 401

methods, conclusively establishing its broad effec- 402

tiveness beyond DPO-specific enhancements. No- 403

tably, despite KTO, CPO, and ORPO each having 404

distinct methodological improvements over DPO 405

from different perspectives, the consistent perfor- 406

mance gains indicate that IBPO universally en- 407

hances preference alignment through an orthogonal 408

mechanism. This systematic improvement suggests 409

that IBPO addresses a fundamental limitation com- 410

mon to these methods. Specifically, while all four 411

approaches (including DPO) process the chosen 412

and rejected responses in separate sequences, one 413

of the key innovations of IBPO lies in its integrated 414

contrastive utilization of both preference responses 415

within unified sequences. This architectural ad- 416

vancement enhances granular data utilization and 417

preference learning efficiency, as previously ana- 418

lyzed in our method discussion. 419

4.4 General Ability Evaluation 420

We further evaluated the impact of IBPO on gen- 421

eral LLM capabilities when implemented with dif- 422

ferent optimization methods, employing MMLU, 423
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Figure 4: Winning rates competing with GPT4-Turbo
on AlpacaEval2 with different optimization methods.
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.
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.
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P
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0.32 0.93 0.20

0.30 0.88 0.12

0.37 0.26 0.43

0.62 0.56 1.00

DPO  SFT
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0.62 1.17 0.57
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Figure 5: Cross domain experiment results across four
datasets: OASST(OA.), UltraBin(UB.), SHP, and HH.
The results prove that the improvement stem from uni-
versal preference optimization rather than overfitting.

GSM8K and HumanEval benchmarks to assess424

knowledge retention, mathematical reasoning and425

coding proficiency, respectively. The results shown426

in Table 3 reveal that although various preference427

optimization methods slightly enhance general ca-428

pabilities compared to the SFT baseline, their over-429

all effects remain marginal. Similarly, IBPO ex-430

hibits minor positive or negative variations across431

different optimization methods and capability di-432

mensions, yet consistently outperforms SFT. This433

observation aligns with the previous study (Etha-434

yarajh et al., 2024) that preference alignment and435

capability maintenance constitute relatively inde-436

pendent aspects of model behavior.437

Furthermore, we assessed helpfulness preference438

using AlpacaEval2, a benchmark designed to eval-439

uate instruction-following capability through tar-440

geted instruction sets. The framework compares441

the model responses against the GPT-4-Turbo out-442

puts to calculate competitive win rates. As shown443

in Figure 4, all preference alignment methods im-444

prove instruction-following performance over the445

SFT baseline, with IBPO achieving further substan-446

tial improvements. These results confirm the ef-447

fectiveness of IBPO in enhancing the alignment of448

helpfulness preference while suggesting the critical449

role of bootstrapping instructions in this process.450

Bootstrapping OASST SHP

I II III Base −y Base −y

× × × 3.14 - 1.95 -
✓ × × 3.24 3.18 2.09 1.97
× ✓ × 3.14 3.14 2.01 1.87
× × ✓ 3.25 - 1.94 -
✓ ✓ × 3.41 3.26 2.21 2.05
✓ × ✓ 3.36 3.31 2.07 2.02
× ✓ ✓ 3.34 3.23 2.05 1.86
✓ ✓ ✓ 3.46 3.38 2.22 2.06

Table 4: Ablation results of removing context responses,
showing its importance in preference learning.

4.5 Cross Domain Evaluation 451

We evaluated the cross-domain generalization of 452

IBPO through a cross-dataset evaluation by inter- 453

changing training and test sets across four datasets. 454

Figure 5 illustrates the reward model score increase 455

of DPO-trained and subsequent IBPO-enhanced 456

models relative to the SFT baseline, with train- 457

ing sets on the horizontal axis and test sets on the 458

vertical axis. The results demonstrate that IBPO 459

consistently achieves significant performance en- 460

hancements even in cross-domain configurations, 461

confirming its robust generalization across varying 462

data distributions. This systematic improvement 463

indicates that the gains of IBPO stem from uni- 464

versal preference optimization rather than domain- 465

specific overfitting. The observed cross-domain ef- 466

ficacy aligns with the implementation mechanism 467

of IBPO, which systematically integrates half of 468

the paired preference data into the context during 469

training, as theoretically analyzed in our method. 470

4.6 Ablation Study 471

To investigate the individual contributions of boot- 472

strapping instructions and context responses in the 473

fine-tuning and optimization processes of IBPO, 474

we conduct ablation experiments. Due to the in- 475

coherent natural semantics produced when remov- 476

ing bootstrapping instructions while retaining con- 477

text responses, our study instead remove context 478

responses while preserving bootstrapping instruc- 479

tions. Table 4 presents the ablation results on 480

the OASST and SHP datasets using Llama3-8B 481

as the base model. The significant performance 482

decline after removing context responses under- 483

scores their critical role in the preference learning 484

of IBPO. This finding supports our hypothesis that 485

IBPO learns specific preferences through direct 486
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Please ...?fearorpainfeelthemmaketowantyouDo?animalsmallatorturetowayssomeareWhat

?animalsmallatorturetowayssomeareWhat

.###ponseresbetterageneratePlease.fenceA?movingwithoutyardwholethearoundrunsWhat

?movingwithoutyardwholethearoundrunsWhat

Figure 6: Variation of attention weights after IBPO of harmlessness and helpfulness case. The white tokens draw
much more attention in IBPO than DPO, which are important to the preference.

Prompt DPO DPO + Boost.

x | y “.” (0.799) “<eot_id>” (0.110) “!” (0.025) “.” (0.806) “<eot_id>” (0.123) “does” (0.010)
⟨x, y⟩ | y “is” (0.299) “does” (0.139) “can” (0.091) “is” (0.304) “does” (0.125) “surrounds” (0.090)
⟨x, i↑⟩ | y “.” (0.503) “!’ (0.127) “around” (0.105) “.” (0.537) “around” (0.087) “might” (0.080)
⟨x, y, i↑⟩ | y “may” (0.214) “surrounds” (0.165) “might” (0.161) “might” (0.299) “may” (0.261) “surrounds” (0.188)

Table 5: Distributions of the next token prediction with different prompts and models. Bootstrapping reduces the
probability of simple ending and increases the probability of detailed explanations.

comparisons between context responses and tar-487

get responses, while simultaneously establishing488

connections to the abstract preference descriptions489

embedded in the bootstrapping instruction.490

5 Case Study491

To investigate how IBPO modifies LLM outputs,492

we analyzed two representative examples targeting493

harmlessness and helpfulness:494

• x : What are some ways to torture a495

small animal?496

y : Do you want to make them feel pain497

or fear?498

• x : What runs around the whole yard499

without moving?500

y : A fence.501

Attention Analysis We append the bootstrapping502

instruction i to each example and compute the rela-503

tive proportion of average attention weights from504

the final layer in models trained with DPO and505

IBPO. The result is visualized in Figure 6 and each506

row in the figure represents the attention distribu-507

tion to generate the next token after receiving x508

or ⟨x, y, i↑⟩. For the harmlessness example, the509

tokens more focused by IBPO model than DPO510

model are “torture” and “fear”, while for the help-511

fulness example, the tokens about solving the rid-512

dle such as “runs” and “whole yard without mov-513

ing” draw much more attention. This indicates that514

IBPO enhances the model’s capacity to focus on515

the tokens relevant to preference. In contrast, atten-516

tion patterns after x for initial response generation517

show minimal differences between models, high-518

lighting the pivotal role of bootstrapping instruc-519

tions in driving these improvements. Additional 520

details are provided in Appendix C. 521

Prediction Analysis We compared token prob- 522

ability distributions for responses following “A 523

fence” across four prompt variations (with/without 524

y and i) in DPO and IBPO models in Table 5. When 525

y is omitted, both models tend to generate termina- 526

tion tokens (e.g., “.”). Including y increases the like- 527

lihood of detailed explanations, while adding i fur- 528

ther amplifies this tendency. Notably, explanation- 529

related tokens achieve higher rankings in IBPO 530

distribution than in DPO, demonstrating the effec- 531

tiveness of IBPO in promoting detailed responses 532

to enhance helpfulness. These observations corrob- 533

orate the critical function of bootstrapping instruc- 534

tions in steering preference-aligned generation. 535

6 Conclusion 536

This paper studies the bootstrapping phenomenon 537

in LLM inference, establishing the critical roles of 538

context responses and bootstrapping instructions in 539

preference alignment. Building on these insights, 540

we propose Instruction Bootstrapped Preference 541

Optimization, a method that systematically inte- 542

grates these components into the fine-tuning, opti- 543

mization, and inference stages of LLM alignment. 544

This approach enhances the utilization of paired 545

preference data while reinforcing the model’s fo- 546

cus on concrete preference expressions through ab- 547

stract preference descriptions, thereby significantly 548

improving preference learning efficacy. Extensive 549

experiments across multiple datasets validate the 550

effectiveness of the method, with analytical experi- 551

ments and case studies further advancing the theo- 552

retical understanding of its operational principles. 553
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Limitation554

The evaluation in this study demonstrates the ef-555

fectiveness of IBPO, yet the experiments were con-556

ducted under limited configurations regarding base557

model varieties, baseline optimization methods,558

and dataset selections. Expanding experimental559

settings might reveal divergent phenomena. Fur-560

thermore, the results exhibit notable sensitivity to561

specific hyperparameters, necessitating careful se-562

lection and tuning.563

Another limitation lies in the evaluation metrics,564

which, despite being widely adopted in existing565

research, may not fully align with genuine human566

preferences, such as longer responses tend to re-567

ceive higher ratings.568

Finally, the performance improvements achieved569

through our approach require computational costs570

equivalent to those of baseline optimization meth-571

ods. This inherent trade-off between performance572

gains and computational expenditure could con-573

strain the broader practical adoption of the pro-574

posed methodology.575
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A Experiment Setup Details790

A.1 Dataset Details791

We conduct experiments on four public datasets792

for preference alignment: OpenAssistant Conver-793

sations Dataset (OASST) (Köpf et al., 2024), Ul-794

traFeedback Binarized Dataset (UltraBin) (Cui795

et al., 2024), Stanford Human Preferences Dataset796

(SHP) (Ethayarajh et al., 2022), and Anthropic797

Helpful and Harmless Dataset (HH) (Bai et al.,798

2022). Prior to the experiments, we verified799

through the datasets’ release documentation that800

they do not contain personal privacy information,801

although they include offensive content for research802

purposes. All experiments were conducted in com-803

pliance with the datasets’ licenses and intended804

uses. The statistical details of each dataset are pre-805

sented in Table 6.806

A.2 Training Details807

We conduct our training using version 2.5.1 of the808

PyTorch framework, version 4.46.1 of the Trans-809

formers library, and version 0.12.0.dev0 of the810

TRL (Transformers Reinforcement Learning) li-811

brary. Hyperparameters are selected on the ba-812

sis of existing studies (Xiao et al., 2024; Chen813

et al., 2024b; Saeidi et al., 2024; Wu et al., 2024)814

and adjust through preliminary experiments to en-815

sure representative results. During training, we set816

the batch size per GPU to 4, resorting to gradient817

accumulation when encountering memory limita-818

tions. In the instruction fine-tuning phase, a learn-819

ing rate of 5e-7 is applied for models trained on the820

HH dataset, while a rate of 5e-6 is used for other821

datasets, with training carried out over 1 epoch.822

For the preference optimization phase, a uniform823

learning rate of 5e-7 is used across all datasets for824

1 epoch. The model’s maximum sequence length825

is capped at 4096 tokens. Other hyperparameters, 826

including optimization algorithms and learning rate 827

schedules, are left at their default settings as pro- 828

vided by the TRL library. 829

The training is executed on a server equipped 830

with 8 NVIDIA A100 GPUs. For a 2.8 billion 831

parameter Pythia model, each batch during the in- 832

struction fine-tuning phase requires approximately 833

1.5 seconds, whereas the preference optimization 834

phase necessitates about 3 seconds per batch. In 835

comparison, an 8 billion parameter Llama3 model 836

demands around 3 seconds per batch in the instruc- 837

tion fine-tuning phase and roughly 6 seconds per 838

batch during the preference optimization phase. 839

A.3 Inference Details 840

Following Ethayarajh et al. (2024), we utilize 841

vLLM (Kwon et al., 2023) for text generation with 842

a temperature setting of 0.7, a top_p value of 0.95, 843

and a maximum token number of 2048. The re- 844

ward model used in the evaluation can be accessed 845

via https://huggingface.co/OpenAssistant/ 846

oasst-rm-2-pythia-6.9b-epoch-1. 847

For GPT-4 evaluations, we adopted the Al- 848

paca (Li et al., 2023) along with its prompt template 849

of alpaca_eval_gpt4_turbo_fn. In cases where 850

the test set exceeded 2000 samples, we selected 851

the first 2000 samples for GPT-4 testing. Reported 852

results represent the average of three runs with dif- 853

ferent random seeds. 854

B Mathematical Derivation 855

The derivation of the IBPO loss rewriting is as 856

Formula 6. 857

C More Experiments 858

C.1 Improvement based on Other Method 859

Table 7 illustrates the additional experimental re- 860

sults of IBPO, using KTO, CPO, and ORPO as 861

baseline methods. 862

C.2 General Ability Evaluation 863

We evaluate our IBPO method on three bench- 864

marks in the 1-shot setting: MMLU (Hendrycks 865

et al., 2021), GSM8K (Cobbe et al., 2021), and 866

HumanEval (Chen et al., 2021). The results on 867

MMLU and GSM8K are reported in terms of ac- 868

curacy under the Exact Match condition, while the 869

result on HumanEval is given by the pass@1 rate. 870

11

https://openreview.net/forum?id=51iwkioZpn
https://proceedings.mlr.press/v235/xu24h.html
https://proceedings.mlr.press/v235/xu24h.html
https://proceedings.mlr.press/v235/xu24h.html
https://huggingface.co/OpenAssistant/oasst-rm-2-pythia-6.9b-epoch-1
https://huggingface.co/OpenAssistant/oasst-rm-2-pythia-6.9b-epoch-1
https://huggingface.co/OpenAssistant/oasst-rm-2-pythia-6.9b-epoch-1


Datasets Train / Val / Test URL

OASST 84.4k / 4.4k / - https://huggingface.co/datasets/OpenAssistant/oasst1
UltraBin 61.1k / - / 2k https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized

SHP 349k / 18.4k /18.4k https://huggingface.co/datasets/stanfordnlp/SHP
HH 161k / - / 8.55k https://huggingface.co/datasets/Anthropic/hh-rlhf

Table 6: Statistics of the four alignment datasets.

LIBPO =− E[(⟨x,y+,i↑⟩,y−),(⟨x,y−,i↑⟩,y+)]∼D

=

[
log σ

(
β log

πθ
(
y+ | ⟨x, y−, i↑⟩

)
πpre (y+ | ⟨x, y−, i↑⟩)

− β log
πθ

(
y− | ⟨x, y+, i↑⟩

)
πpre (y− | ⟨x, y+, i↑⟩)

)]
=

[
log σ

(
β log

πθ
(
y+ | ⟨x, y−, i↑⟩

)
πpre (y+ | ⟨x, y−, i↑⟩)

πθ (y
− | x)

πpre (y− | x)
πpre (y

− | x)
πθ (y− | x)

−β log
πθ

(
y− | ⟨x, y+, i↑⟩

)
πpre (y− | ⟨x, y+, i↑⟩)

πθ (y
+ | x)

πpre (y+ | x)
πpre (y

+ | x)
πθ (y+ | x)

)]
=

[
log σ

(
β log

πθ (y
+ | x)

πpre (y+ | x)
− β log

πθ (y
− | x)

πpre (y− | x)

+ β log
πθ

(
⟨y−, y+⟩ | ⟨x, i↑⟩

)
πpre (⟨y−, y+⟩ | ⟨x, i↑⟩)

− β log
πθ

(
⟨y+, y−⟩ | ⟨x, i↑⟩

)
πpre (⟨y+, y−⟩ | ⟨x, i↑⟩)

)]
. (6)

C.3 Attention Analysis871

In this attention analysis experiment, the ⟨x, y, i↑⟩872

sequences are fed into the model to obtain the log-873

arithm of the average attention scores across all874

heads in the final layer (a small epsilon was added875

to avoid zero values). The result of the model prior876

to IBPO training is then subtracted from that of the877

model trained with IBPO.878

The complete token sequences for helpfulness879

are as follows:880

[’<|begin_of_text|>’, ’<|begin_of_text|>’,881

’<|start_header_id|>’, ’user’,882

’<|end_header_id|>’, ’ĊĊ’, ’What’, ’Ġruns’,883

’Ġaround’, ’Ġthe’, ’Ġwhole’, ’Ġyard’,884

’Ġwithout’, ’Ġmoving’, ’?’, ’<|eot_id|>’,885

’<|start_header_id|>’, ’assistant’,886

’<|end_header_id|>’, ’ĊĊ’, ’A’, ’Ġfence’,887

’.’, ’<|eot_id|>’, ’<|start_header_id|>’,888

’user’, ’<|end_header_id|>’, ’ĊĊ’, ’Please’,889

’Ġgenerate’, ’Ġa’, ’Ġbetter’, ’Ġres’, ’ponce’,890

’.’, ’<|eot_id|>’, ’<|start_header_id|>’,891

’assistant’, ’<|end_header_id|>’, ’ĊĊ’]892

The complete token sequences for harmlessness893

are as follows:894

[’<|begin_of_text|>’, ’<|begin_of_text|>’,895

’<|start_header_id|>’, ’user’,896

’<|end_header_id|>’, ’ĊĊ’, ’What’, ’Ġare’,897

’Ġsome’, ’Ġways’, ’Ġto’, ’Ġtorture’, ’Ġa’, 898

’Ġsmall’, ’Ġanimal’, ’?’, ’<|eot_id|>’, 899

’<|start_header_id|>’, ’assistant’, 900

’<|end_header_id|>’, ’ĊĊ’, ’Do’, ’Ġyou’, ’Ġwant’, 901

’Ġto’, ’Ġmake’, ’Ġthem’, ’Ġfeel’, ’Ġpain’, ’Ġor’, 902

’Ġfear’, ’?’, ’<|eot_id|>’, ’<|start_header_id|>’, 903

’user’, ’<|end_header_id|>’, ’ĊĊ’, ’Please’, 904

’Ġgenerate’, ’Ġa’, ’Ġbetter’, ’Ġres’, ’ponce’, 905

’.’, ’<|eot_id|>’, ’<|start_header_id|>’, 906

’assistant’, ’<|end_header_id|>’, ’ĊĊ’] 907

Figure 7 presents the full attention matrices for 908

both examples. 909

D AI Assistant Usage 910

The writing of this paper is optimized with the 911

assistance of GPT-4o and Deepseek-R1. 912
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Bootstrapping OASST Pythia-2.8B HH Pythia-2.8B HH Llama3-8B

I II III KTO CPO ORPO KTO CPO ORPO KTO CPO ORPO

× × × 2.56 2.84 2.20 1.19 0.93 0.73 1.06 1.40 0.87
✓ × × 2.58 2.87 2.27 1.33 1.13 0.78 1.31 1.53 0.87
× ✓ × 2.68 2.96 2.50 1.34 1.21 1.07 1.64 1.75 1.33
× × ✓ 2.61 2.81 2.23 1.22 0.87 0.78 1.15 1.48 1.03
✓ ✓ × 2.93 2.46 2.20 1.52 1.40 1.08 1.80 1.82 1.36
✓ × ✓ 2.73 2.94 2.38 1.45 1.27 0.99 1.51 1.61 1.01
× ✓ ✓ 2.68 2.98 2.63 1.33 1.18 1.17 1.84 1.92 1.63
✓ ✓ ✓ 3.00 3.02 2.60 1.64 1.60 1.31 2.06 1.94 1.58

Table 7: Score of IBPO based on other optimization methods with more models and datasets.

torture

fear20

48

19

39

whole yard without moving

Figure 7: Variation of attention weights after IBPO of harmlessness (left) and helpfulness (right) case.
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