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Abstract

Deep graph neural networks (GNNs) often suffer from oversmoothing, where node
representations become overly homogeneous with increasing depth. While tech-
niques like normalization, residual connections, and edge dropout have been pro-
posed to mitigate oversmoothing, they are typically developed independently, with
limited theoretical understanding of their underlying mechanisms. In this work, we
present a unified theoretical perspective based on the framework of signed graphs,
showing that many existing strategies implicitly introduce negative edges that alter
message-passing to resist oversmoothing. However, we show that merely adding
negative edges in an unstructured manner is insufficient—the asymptotic behavior
of signed propagation depends critically on the strength and organization of positive
and negative edges. To address this limitation, we leverage the theory of structural
balance, which promotes stable, cluster-preserving dynamics by connecting similar
nodes with positive edges and dissimilar ones with negative edges. We propose
Structural Balanced Propagation (SBP), a plug-and-play method that assigns signed
edges based on either labels or feature similarity to explicitly enhance structural
balance in the constructed signed graphs. Experiments on nine benchmarks across
both homophilic and heterophilic settings demonstrate that SBP consistently im-
proves classification accuracy and mitigates oversmoothing, even at depths of up to
300 layers. Our results provide a principled explanation for prior oversmoothing
remedies and introduce a new direction for signed message-passing design in deep
GNNs. Our code is available at https://github. com/kokolerk/sbpl

1 Introduction

Graph neural networks (GNNs) are a powerful framework for processing graph-structured data from
diverse application domains [[1} 2} 3 |4, 5| |6} [7]. Most GNN models follow the message-passing
paradigm, where node representations are computed by recursively aggregating information from
neighboring nodes along the edges [8, 19, [10L [11]]. Despite their empirical success, deep GNNs often
suffer from oversmoothing—the tendency of node features to become indistinguishable as layers
increase—leading to performance degradation in deeper models [12} [13} 14, [15].

Numerous techniques have been proposed to mitigate oversmoothing in GNNs, including normal-
ization layers [[16}17], residual connections [[L8} 19, 20], and random edge dropout [21} 22]. While
empirically effective, these methods are typically developed independently, with limited theoretical
understanding of the mechanisms that underlie their success. A common challenge is that many
of them introduce architectural modifications that alter the message-passing process [23]], making
it difficult to precisely characterize their effects on propagation dynamics and the resulting node
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Figure 1: Examples of signed graph structures. Blue and orange circles represent nodes from different classes.
Solid lines denote real edges, while dashed lines represent edges introduced by SBP. Black and purple lines
indicate positive and negative edges, respectively. Let x; be the node features for node ¢. (a) Initial unsigned
graph. (b) Signed graph. (c) Ideal structurally balanced graph. (d),(e) Graphs induced by Label-SBP and
Feature-SBP, respectively.

representations. Moreover, their ability to prevent oversmoothing is often limited, especially in
deep GNNs, where they are observed to fail to preserve discriminative node features at extreme
propagation depths [16} 20, 24].

In this work, we present a unified theoretical perspective on oversmoothing in GNNs, showing that
many existing mitigation techniques can be interpreted as implicitly introducing negative edges
into the graph used for message-passing. We formalize this insight using the framework of signed
graphs [25]], where edges carry either positive or negative signs (Figure[I(b)). In this view, positive
edges promote alignment, while negative edges introduce repulsion, shaping the long-term dynamics
of node features under signed propagation. However, we further show that simply adding negative
edges in an unstructured manner is insufficient, as the asymptotic behavior of signed message-passing
depends not only on the presence of negative edges but also on the strength and organization of
positive and negative edges. To address this, we turn to the theory of structural balance [26], which
characterizes graphs where positive edges connect nodes within clusters and negative edges connect
nodes across clusters (Figure[I[c)). We prove that message-passing on such graphs yields stable,
cluster-preserving dynamics, preventing oversmoothing while enhancing class separation.

Motivated by this theory, we propose Structural Balance Propagation (SBP), a simple, plug-and-
play module without introducing learnable parameters for constructing signed graphs that promote
structural balance. SBP comes in two variants: (1) Label-SBP, which assigns signs based on ground-
truth labels (Figure d)), and (2) Feature-SBP, which estimates signs from feature similarity for
label-scarce settings (Figure[I|e)). We theoretically show that Label-SBP induces structural balance
under mild conditions. Empirically, we evaluate both variants on nine synthetic and real-world
benchmarks across homophilic and heterophilic settings. Our results show that SBP consistently
improves classification performance and mitigates oversmoothing, validating our theoretical findings.
Finally, we analyze the robustness of SBP to design choices, highlighting its adaptability and reliability
across diverse GNN settings.

Our main contributions are summarized as follows:

* We provide a unified theoretical perspective showing that many oversmoothing mitigation tech-
niques such as normalization, residual connections, and edge dropout, can be interpreted as
implicitly introducing negative edges into the graph. We formalize this insight through the
framework of signed graphs and further show that the asymptotic behavior of signed propagation
depends critically on the strength and organization of both positive and negative edges.

* We identify structural balance as an ideal condition for resisting oversmoothing, proving that it
guarantees stable, class-distinct representations under signed message-passing.

» Based on this theory, we propose Structural Balanced Propagation (SBP), a simple, plug-and-play
method that constructs signed graphs designed to promote structural balance, using either label
information (Label-SBP) or feature similarity (Feature-SBP).

» Extensive experiments on nine benchmarks demonstrate that SBP consistently improves classifica-
tion and mitigates oversmoothing across both homophilic and heterophilic graphs. Our analysis
also highlights the method’s robustness and adaptability to different design choices.



2 Related Work

Theory of Oversmoothing. The notion of oversmoothing was first introduced by [12], who observed
that node representations tend to converge to a common value as GNN depth increases. Subsequent
work [13}[15] provided rigorous proofs showing that this convergence occurs at an exponential rate
for GCNs and attention-based GNNs. [24] further showed that oversmoothing can arise even in
shallow networks under specific random graph models. [23]] proved that residual connections and
normalization layers can mitigate oversmoothing, but they introduce their own limitations by altering
the original message-passing process.

Signed Graph-Inspired Methods. Several methods have drawn inspiration from signed graph
propagation to handle heterophilic graphs [27, 28}, [29} 30} |31]], where vanilla GNNs tend to perform
worse than on homophilic graphs. [29, 30] leveraged negative edges to encode dissimilarity and
introduce repulsion in message-passing. [31] made layer aggregation coefficients learnable and
observed that negative edges naturally emerge in heterophilic settings. However, [32] showed that
oversmoothing can still occur in signed propagation under certain random graph models, suggesting
that simply adding negative edges is not sufficient to guarantee expressive representations. This
highlights a broader limitation of existing approaches, which often rely on heuristic designs without
a principled understanding of when and why signed message-passing is effective. In this work, we
provide a theoretical characterization of how the strength and structure of negative edges influence
the asymptotic behavior of node representations, and we propose Structural Balanced Propagation
(SBP) to promote stable and discriminative representations on general graphs.

3 How Oversmoothing Happen in GNNs? A Signed Graph Perspective

In this section, we present a generalized message-passing framework based on signed graphs, by
incorporating both attractive (positive) and repulsive (negative) interactions. We show that many
oversmoothing mitigation techniques can be reinterpreted as implicitly introducing negative edges.
However, we demonstrate that presence of negative edges is not sufficient—the asymptotic behavior
of signed propagation depends critically on the strength of positive and negative edges.

Signed Graphs. We represent an unsigned, undirected graph with n nodes by G = (A, X ), where
A € {0,1}"*" denotes the adjacency matrix and X € R™"*4 is the node feature matrix. For node
i,j € {1,2,..,n}, A;; = 1if and only if node ¢, j are connected by an edge in G and X; € R¢
represents the features of node i. We let 1,, be the all-one vector of length n and D = diag(A1,,) be
the degree matrix of G.

A signed graph associates each edge with a positive or negative sign, capturing the notion of attraction
or repulsion between nodes. In this paper, we extend G to the signed graph G, = {AT, A=, X}
where AT, A~ € {0, 1}™*" are the positive and negative adjacency matrices capturing positive and
negative edges, with the degree matrix D, = diag(A™1,,) and D_ = diag(A~1,), respectively.

Signed Graph Propagation. Following [25| [33]], we define the signed propagation which happen
over both positive and negative edges with neighboring nodes [25] as

X =(-a+pxtY 4 S 3 X - Di S oxY, (1)
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where N;" and N, represent the set of positive and negative neighbors for node i, D} and D;”
represent the positive and negative degrees for node ¢, respectively.

To allow for a general formulation, we introduce two hyperparameters: «, 5 > 0, which control the
strength of the opagation over the positive and negative edges, respectively. In particular, when 3 =
1

Oand o =1, 1' ) _ X('kfl)

) would correspond to the unsigned graph propagation X *) = D%Jr Yjent X;
in vanilla message-passing.

Prior Methods from the Lens of Signed Graphs. Many previously proposed oversmoothing
mitigation techniques can be reinterpreted as special cases of the signed graph propagation in (I)). In
particular, we observe the following:

Proposition 3.1 Normalization layers, residual connections, and random edge dropout can all be ex-
pressed as instances of signed graph propagation in (1), where the vanilla unsigned message-passing



is modified by implicitly injecting non-trivial negative edges. A summary of these correspondences is
provided in Table 5|in Appendix|E}

To isolate the effect of signed propagation on oversmoothing, we focus our theoretical analysis on
the linear setting by removing the activation function and setting o () = x, as in prior works [9] 24]).
In the following theorem, we formally characterize how the strength of negative edges governs the
long-term behavior of node representations.

Theorem 3.2 Suppose that in a signed graph G, where AT represents a connected graph and
x® represents the value of node i after k propagation steps under . Then for any 0 < a <

K
1/ max;ex D;‘, there exists a critical value 3, > 0 such that:

k

(i) if B < B4, then we have limy,_, o XZ-( ) — Z?:l Xj(-o)/nfor all initial values XZ-(O);

(ii) if B > B, then limy,_, o | X ®)|| = oo for almost all initial values w.r.t. Lebesgue measure.

The proof is provided in Appendix [C| Theorem [3.2]highlights the pivotal role of the negative edge
weight (: it acts as a repulsive force that counterbalances the homogenizing effect of positive-
edge aggregation. When [ is small, especially in the extreme case where 8 = 0, negative edges
vanish from the dynamics, and the model degenerates into standard unsigned propagation, leading to
inevitable oversmoothing, regardless of the choice of a. Crucially, although increasing (3 can prevent
oversmoothing by preserving heterogeneity in node representations, excessively strong repulsion
causes the dynamics to become unstable, with representations diverging toward infinity. This tradeoff
poses a challenge: how can we retain the benefits of negative edges to mitigate oversmoothing without
destabilizing the model?

To address this, we turn to the theory of structural balance, which characterizes configurations of
signed graphs where the tension between positive and negative edges is globally well-structured.

4 Our Proposal: Structural Balance Propagation

In this section, we propose that message-passing over structurally balanced signed graphs exhibit
controllable and stable asymptotic behavior, making them theoretically well-suited for mitigating
oversmoothing in deep GNNs. Building on this insight, we introduce Structural Balanced Propagation
(SBP), a simple and effective approach that explicitly promotes structural balance in the constructed
signed graph.

4.1 Asymptotic Behavior of Propagation over Structurally Balanced Graphs

In the previous section, we demonstrated that oversmoothing arises when the influence of negative
edges is insufficient to counteract the homogenizing effect of positive-edge propagation. Conversely,
overly strong negative edges lead to divergence and instability. This reveals a fundamental tension
in signed message-passing: to avoid oversmoothing while ensuring stability, the distribution and
strength of signed edges must be carefully controlled.

To address this challenge, we turn to a special class of signed graphs known as structurally balanced
graphs. These graphs encode an ideal configuration in which positive edges connect nodes within
the same cluster, and negative edges span across clusters. Crucially, under signed propagation,
such structure leads to stable asymptotic behavior that preserves intra-cluster similarity and inter-
cluster distinction—precisely the property needed to resist oversmoothing and enhance classification
performance in deep GNNs [24]]. Formally, following [25} 26], we define structural balance as
follows:

Definition 4.1 (Structurally Balanced Graph) A signed graph G, is called structurally balanced
if there is a partition of the node set into V.= V1 U V, with V, and V4 being nonempty and mutually
disjoint, where any edge between the two node subsets Vi and Vs is negative, and any edge within
each Vi is positive.

The structural balance property partitions the graph into two disjoint node sets, V; and V5, such
that positive edges connect nodes within the same group, while negative edges connect nodes
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Figure 2: The visualization of the signed adjacency matrix A™ — A~ induced by SBP and resulting node
representations on 2-CSBM under Layer= 300. (a)(c): The X-axis and Y-axis denote the nodes 0-99, where
0-49 is from class 0 and 50-99 is from class 1. (b)(d): The t-SNE visualization of the node representations
learned by SBP.

across groups, as illustrated in Figure[T](c). This organization of edge signs induces well-structured
propagation dynamics. We characterize the asymptotic behavior of signed message-passing on
structurally balanced graphs as follows:

Theorem 4.2 Assume that node i is connected to node j and X i(k) represents the value of node i
after k propagation steps in (I). F(2). is a bounded function such that: if z < —c, F(2). = —c; if
z>¢, F(z2)e=c;if—c<z<c, F(z)e=z. Let 0 = « if the edge {i, j} is positive and § = —f3
if the edge {i, j} is negative. Consider the constrained signed propagation update:

XE = F(1-0)x® +oxM). 2)

Let o € (0,1/2). Assume that Gs is a structurally balanced complete graph under the partition
V = V1 U Vs. When (3 is sufficiently large, we have that

P (klim x® =cie Vi; lim x®=_cie V2> =1. 3)
— 00 — 00

The proof is provided in Appendix [D| The result above shows that if the graph is structurally
balanced and the signed graph propagation is constrained with a bounded function F., node features
converge asymptotically to group-specific values under the propagation rule defined in (T). Moreover,
nodes belonging to different groups are repelled from one another, resulting in asymptotically
distinct representations across groups. This behavior implies that structurally balanced graphs
provide a provable mechanism for mitigating oversmoothing, by assigning positive and negative edge
signs in accordance with the underlying class structure—encouraging intra-class consistency while
maintaining inter-class separation.

Remark 4.3 The two-group result above can be generalized to multiple groups by introducing a
more general notion known as weak structural balance. See detailed discussion in Appendix|G]

4.2 Method: Design Structural Balance Propagation for GNNs

Building on the theoretical insights from the previous section, we propose Structural Balance
Propagation (SBP), a principled approach for promoting structural balance in the message-passing
process of GNNs. Specifically, we introduce two variants: Label-SBP and Feature-SBP, which
inject signed edges that approximate structurally balanced configurations using label supervision and
feature similarity, respectively.

Label Induced Structural Balance Propagation (Label-SBP). We extend the original adjacency
matrix to the positive and negative ones. Let the positive adjacency matrix be the original adjacency
matrix AT = A, we then construct a label-informed negative adjacency matrix A; , designed to
introduce repulsion between classes and promote attraction within classes. Specifically, for node
pairs with known labels, we assign a value of 1 if the labels differ (to repel), —1 if the labels match
(to attract), and 0 otherwise to preserve the original structure when labels are unknown. Formally:
1 ify #y5,
(A7 )ij=q -1 ifyi=y;, (4)
0 otherwise ,



where y; is the ground truth label for node ¢. We theoretically show that Label-SBP induces a
structurally balanced graph under mild conditions (see formal statement and proof in Appendix [H).

Theorem 4.4 (Informal) Assume class labels are balanced, and let p denote the ratio of labeled
nodes. As p increases, the degree of structural balance improves, and the graph becomes fully
structurally balanced when p = 1.

Figure [2a) shows the signed adjacency matrix AT — A;", constructed by Label-SBP on the the
Contextual Stochastic Block Model with two blocks (2-CSBM) [34]], highlighting its structural
balance: positive edges appear within label blocks, and negative edges span between them. Figure [2b]
visualizes the learned node representations, demonstrating that Label-SBP achieves clear class
separation even at depth L = 300, attaining a high classification accuracy of 97.50%, which is
consistent with Theorem [£.2]

Furthermore, to tackle scenarios where labels are scarce, we propose a variant of SBP that estimates
the negative adjacency matrix based on feature similarities.

Feature Induced Structural Balance Propagation (Feature-SBP). We retain the positive adjacency
matrix in Feature-SBP as in Label-SBP, settingA™ = A. To construct the negative adjacency matrix
A;, We leverage feature similarity to assign positive and negative edges—promoting attraction
between similar nodes and introducing repulsion between dissimilar ones—without relying on labels.
Specifically, we define:

A7 = -xOxOT )

where X () denotes the initial node features. While this approach may be less precise than Label-SBP
due to the absence of label supervision, it leverages the full feature set, including test nodes, to
improve the overall alignment with structural balance across the graph.

Figur and illustrate the signed adjacency matrix AT — A; and learned node representations on
°SB

the 2- M data. Notably, Feature-SBP preserves structural balance patterns similar to Label-SBP
and achieves strong classification performance with an accuracy of 80.00%.

Implementation Details. We implement the constrained function F, in Theorem by Layer-
Norm [35]. To avoid numerical instability for repeated message-passing, we ensure that the sum
of the coefficients combining the node representations X (*) and the node representations updates
by our SBP remains 1. We employ a row-stochastic adjacency matrix A as the positive adjacency
matrix, denoted A Additionally, we apply the softmax function to the negative matrix, resulting in
A== softmax(A ™). As a result, Label/Feature-SBP can be written as:

XD — (1 = N x®) ¢ A(aA+X<k> - M*X(’“)).

where 0 < A < 1, a, 8 > 0 are the hyperparameters controlling the strength of positive and negative
edges.

Scalability on Large-Scale Graphs. Although SBP improves the structural balance property for
message-passing in GNNs, it may reduce graph sparsity and cause out-of-memory issues on large-
scale graphs. To adapt SBP in large-scale graphs, we propose Label-SBP-v2, which removes only
inter-class edges instead of explicitly adding negative ones. This preserves sparsity by avoiding the
addition of new edges, thereby reducing computational overhead while still encouraging structural
balance.

For Feature-SBP, the original negative adjacency matrix has quadratic complexity O(n2d), which is
prohibitive for large n. To improve efficiency, we replace the node-level similarity matrix —X X T €
R™*™ with its transposed form —X " X € R4*4, following [[16]]. This shifts repulsion to the feature
dimension and reduces complexity to O(nd?), which is significantly more scalable when n > d.
More detailed analysis is provided in Appendix [[.3]

5 Experiments

In this section, we conduct a comprehensive evaluation of SBP on various benchmark datasets,
including both homophilic and heterophilic graphs. We aim to answer the following three key
research questions:



Table 2: Node classification accuracy using standard-depth GNNs (%). Best results are highlighted in blue;
second-best results are shown in gray. Overall, SBP performs best on both homophilic and heterophilic datasets.

H(G) 0.81 0.74 0.80 0.22 0.38 0.21 0.11 0.30
Dataset Cora Citeseer PubMed Squirrel Amazon-ratings  Texas Wisconsin Cornell
MLP 48.82+0.98 47.89+1.21 69.20+0.83 3258 £0.19 38.14 +0.03 7351 +236 70.98 £1.18 68.11 +2.65
SGC 80.21 +£0.07 71.88+0.27 7699 +0.38 43.30 +£0.30 42.83 +0.04 4595 +0.00 47.06+0.00 48.11 £3.15
BatchNorm ~ 77.90 £0.00  60.85+0.09 77.15+0.09 4422 +0.11 39.68 £ 0.01 39.73 +£1.24 5294 £0.00 46.49 +1.08
PairNorm 80.30 £0.05 70.83 £0.06 77.69 +£0.26 46.21 £0.09 42.30 £+ 0.05 51.35+£0.00 58.824+0.00 51.354+0.00
ContraNorm ~ 81.60 +0.00 7225 +0.08 79.30+0.10 48.63 £0.16 42.98 4 0.04 4838 +4.43  49.61 +£1.53 48.63 +0.16
DropEdge 7358 £2.76  65.63 £1.76 74.64 £137 4230+0.62 42.30 £ 0.09 59.46 +£8.11 52.55+445 45.95+7.05
Residual 77.81 £0.03 71.61 £0.17 77.40+0.06 43.63 £0.34 42.69 £0.03 65.95+1.32 63.73+£098 61.89+3.91
APPNP 7778 £0.93 6742+ 131 7452+049 42.15+0.17 4247 +0.03 68.38 £4.37 65.10+ 1.71 64.59 +3.30
JKNET 7820 £0.20 66.80+0.33  75.62+037 48.16+025 42.21 £0.05 60.00 +£2.36 4255 +292 39.73+2.72
DAGNN 6598 £149 60.04 +£1.98 72.39+090 33.39+0.19 40.61 +0.03 61.35+1.73 5745+1.97 4487 +3.24

Feature-SBP  82.46 £0.07 70.63 £0.52 77.41 £0.21  49.16 £0.19 42.31 +0.03 78.38 £0.00 80.39 £0.00 72.97 +0.00
Label-SBP 82.90 £0.00 73.04 £0.10 80.32+£0.04 45.60+0.11 4241 +0.02 78.38 £0.00 80.39 £0.00 70.27 + 0.00

* RQ1 How does SBP perform in node classification tasks using standard-depth GNNs?
* RQ2 How effectively does SBP mitigate oversmoothing in deep layers?

* RQ3 How sensitive, robust, and scalable is SBP to different hyperparameters, model backbones,
and graph homophily levels?

Datasets. We use nine widely-used node classifi-
cation benchmark datasets (Table[7), where four of ~Taple 1: Summary of datasets. H(G) denotes the
them are heterophilic (Texas, Wisconsin, Cornell, edge homophily level, with higher values indicat-
Squirrel, and Amazon-rating [36]), and the remain- ing more homophilic graphs.

ing four are homophilic (Cora [37]], Citeseer [38],

and PubMed [39]), including one large-scale dataset D%t H(G) Classes Nodes  Edges

: : : : Cora 0.81 7 2,708 5429
(ogbn-arxw [4Q]). Details of these dat.asets., including  Geseer 074 6 3327 1730
their homophily levels, are summarized in Table[I]  PubMed 0.80 3 19717 44338
We also experiment on the Contextual Stochastic =~ Texas 0.21 5 183 295
Block Model (CSBM) [34] to show the performance gz:;‘:(‘)'n_mﬁngs e SO O
of SBP on different homophily levels with detailed  wisconsin 0.1 5 251 466
settings in Appendix [I.] Squirrel 0.22 4 198493 2,089

ogbn-arxiv 0.65 40 169343 1,166,243

Baselines and Experiment Settings. We implement
SBP along with the following 10 baselines, all using
the Simplified Graph Convolution Network (SGC) as the backbone GNN to ensure a fair compar-
ison. 1) Classic models: MLP, vanilla SGC [9]. 2) Normalization methods: BatchNorm [41]],
PairNorm [[17] and ContraNorm [16]. 3) Edge dropping methods: DropEdge [22]. 4) Residual
connections: Residual, APPNP [42], JKNET [18] and DAGNN [19].

All methods are trained using the same setting, following [43]. For SBP, we select the optimal value
of X from the set {0.1, 0.5, 0.9}, fix & = 1, and then choose the best value for 3 from {0.1, 0.5, 0.9}.
Ablation studies on the influence of hyperparameters and the effectiveness of SBP with other GNN
backbones can be found in Section [5.3

5.1 RQ1: Node Classification Performance Using Standard-Depth GNNs

To evaluate the effectiveness of SBP under typical GNN settings, we assess its performance on
node classification tasks using standard-depth models. Table [2|reports the mean node classification
accuracy and standard deviation across 10 random seeds, using a 2-layer SGC backbone [44]. The
results show that SBP improves node classification performance in standard-depth GNNss, yielding
an average gain of 3 percentage points on homophilic graphs and 5 points on heterophilic graphs.
Overall, SBP achieves superior performance across 8 datasets, with Label/Feature-SBP attaining the
highest accuracy on 7 datasets.
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Figure 3: (a) Model performance under varying the number of layers. SBP remains effective up to 300 layers,
while normalization methods degrade with depth due to oversmoothing. The X-axis denotes number of layers
and the Y-axis denotes accuracy. (b) Sensitivity of Label-SBP to training label ratio. Label-SBP’s performance
improves with increasing label ratio, aligning with our theory. The X-axis denotes training label ratio and the
Y-axis denotes accuracy.
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Figure 4: Impact of negative edge strength 3 in SBP under different homophily levels on CSBM. ¢ controls
the homophily level H(G). The X-axis denotes /3 and the Y-axis denotes accuracy. Homophilic graphs favor
smaller 5, while heterophilic graphs benefit from larger 8 values.

5.2 RQ2: Anti-Oversmoothing Analysis

We further evaluate SBP’s ability to counter oversmoothing in deep GNNs by varying the number
of layers K. Figure[3[a) compares Label-/Feature-SBP against BatchNorm and PairNorm on both
homophilic (Cora, Citeseer) and heterophilic (Cornell) benchmarks. For homophilic graphs, we test
K € {2,10,50, 100,300}, and for the heterophilic graph, K € {2, 5,10, 20,50}.

Notably, SBP maintains strong performance even at 300 layers, effectively mitigating oversmoothing
in deep GNNs. In contrast, normalization-based methods exhibit substantial performance degradation
as depth increases, reaffirming their vulnerability to oversmoothing [23]. Interestingly, we also
observe that to maintain performance on heterophilic datasets, SBP requires a larger repulsion
strength 8 than typical settings (e.g., 8 € {0.1,0.5,0.9}). As shown in Table setting 8 > 1
enables SBP to sustain approximately 60% accuracy in deep-layer regimes on the Cornell dataset.

5.3 RQ3: Robustness, Sensitivity, and Scalability of SBP

Sensitivity of Label-SBP to Training Label Ratio. Since Label-SBP relies on ground-truth labels to
construct the negative graph, we conduct an ablation study to examine its sensitivity to the proportion
of labeled training data. As shown in Figure [3[b), Label-SBP’s performance on the CSBM and Cora
datasets improves with increasing label ratio when using a 2-layer SGC backbone. This aligns with
our theoretical result that greater label availability leads to better structural balance in the signed
graph, enhancing classification performance.

Nonetheless, even with a modest training ratio of 20%, Label-SBP achieves over 80% accuracy, while
models trained with 80% labels approach 100% accuracy. Furthermore, as shown in Table 2 Label-
SBP outperforms existing methods even under the default training splits of standard benchmarks,
highlighting its robustness and practical effectiveness in real-world graph settings.

Analysis of Negative Edge Strength 5 Under Different Homophilic and Heterophilic Levels. In
order to evaluate the performance of SBP on graphs with arbitrary levels of homophily, we conduct
an ablation study in the CSBM setting with controllable homophilic and heterophilic levels, following
the setup from [31]]. We examine a wide range of (3 values, while keeping A = 0.5, & = 1 and using
a hyperparameter in CSBM, ¢, to control the homophily level. The graph homophily is measured by
H(G).
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85 Table 3: Node classification accuracy (%) on the large-scale
dataset ogbn-arxiv. Best results are highlighted in blue.
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Figure [d] shows the performance of Feature/Label-SBP across different /3 values. In Figures [f(a) and
(b), where ¢ < 0 indicates heterophilic graphs, increasing /3 significantly improves performance.
Conversely, in Figures[d{c) and (d), where ¢ > 0 corresponds to homophilic graphs, performance
deteriorates as /3 increases. We observe similar trends on real-world homophilic and heterophilic
graph datasets, as shown in Figure [5| These results further highlight the role of 3 as a repulsive
force in the message-passing process, supporting our signed graph perspective for understanding and
mitigating oversmoothing.

Performance on Large-Scale Dataset. To preserve graph sparsity and reduce computational
overhead, we adopt SBP variants designed for large-scale graphs, as detailed in Section[d] Results
on the ogbn-arxiv dataset are shown in Table 3] Overall, Label-SBP-v2 matches or outperforms
existing normalization methods, particularly in the deep setting L = 16. These results demonstrate
the empirical robustness and scalability of SBP-v2, which effectively leverages label information to
mitigate oversmoothing even at large scale.

SBP with Different GNN Backbones. Beyond the SGC backbone, SBP can be seamlessly integrated
into other GNN architectures, consistently yielding performance gains. Table 4] shows the results for
SBP applied to GCN and GCNII across various model depths. SBP improves GCN performance
by up to 47 points, particularly at depth L = 16, and also boosts the performance of GCNII, a
state-of-the-art model explicitly designed to address oversmoothing. These results further support our
insight that promoting structural balance is an effective strategy for mitigating oversmoothing in deep
GNNE.

Time Efficiency of SBP. SBP is highly efficient, adding only minimal overhead compared to vanilla
backbones. Figure[6]reports the actual runtime of various methods integrated with SGC on CSBM.
Feature-SBP is the fastest among all methods, while Label-SBP ranks third—slightly slower than
DAGNN but still more efficient than the normalization-based approaches. Additional analysis of
SBP’s runtime on large-scale graphs is provided in Appendix [[.4.6]

6 Conclusion

In this work, we present a unified signed graph perspective on oversmoothing in GNNs, identifying
structural balance as an ideal condition for preserving expressive node representations. Building
on this insight, we propose Structural Balanced Propagation (SBP), a simple and plug-and-play
method that constructs signed graphs to promote structural balance and mitigate oversmoothing.
Extensive experiments demonstrate SBP’s robustness, scalability, and consistent performance gains



across diverse settings. Beyond practical improvements, our work provides a theoretical foundation
for understanding message-passing dynamics beyond vanilla GNNs and opens new directions for
principled signed message-passing design.
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A Limitations

This work evaluates a wide range of GNNs. However, due to the diversity of GNN methods, it is
impractical to assess all of them. Therefore, the proposed method focuses on classic techniques that
utilize normalization, dropout, and residual connections. Moreover, due to limited computational
resources and time, the proposed method has not been evaluated on super-large graphs, such as those
with 1G nodes. SBP focuses on the oversmoothing problem, which leads to degraded performance in
GNNSs. Other factors that can negatively impact GNN performance are not discussed in this paper.

B Background on GNNs

B.1 Graph Convolution Networks

To deal with non-Euclidean graph data, Graph Convolution Networks (GCNs) are proposed for direct
convolution operation over graph, and have drawn interests from various domains. GCN is firstly
introduced for a spectral perspective [8]], but soon it becomes popular as a general message-passing
algorithm in the spatial domain. In the feature transformation stage, GCN adopts a non-linear
activation function (e.g., ReLU) and a layer-specific learnable weight matrix W for transformation.
The propagation rule of GCN can formulated as follow:

Hpy = ReLU ((AH,_1)) W) (6)

B.2 Simplified Graph Convolution Networks

Simplified Graph Convolution Networks (SGC [9]]) simplifies and separates the two stages of GCNs:
feature propagation and (non-linear) feature transformation. It finds that utilizing only a simple
logistic regression after feature propagation (removing the non-linearities), which makes it a linear
GCN, can obtain comparable performance to canonical GCNs. The propagation rule of GCN can
formulated as follow:

Hgy = AHe1))Weey = A"Ho)) Wiy Wi ™

Moreover, SGC transforms W z)...W(q) to a general learnable parameter W', so the formula of SGC
can be this: .
Hy = AYH o)W ®)

B.3 Signed Graph Propagation

Classical GNNs [8l9,[10, [11] primarily focused on message-passing on unsigned graphs or graphs
composed solely of positive edges. For example, if there exists a edge {, j} or the sign of edge {4, j}
is positive, the node x; updates its value by:

=z +alr;—x)=1—-a)z, +az;,ac (0,1). )

Compared to the unsigned graph, a signed graph extends the edges to either positive or negative.
Notably, if the sign of edge {4, j} is negative, the node x; update its value using the following
expression:

i‘i Zl‘i—ﬁ(l‘j—l‘i) = (1+ﬁ)$i—ﬂ$]‘,ﬁ€ (0, 1)- (10)
In words, the positive interaction equation [J] indicates the attraction while the negative interac-
tion equation[I0|indicates that the nodes will repel their neighbors.

More generally, when considering all of the neighbors of node z;, let N;r denote the positive neighbor

set while N, denote the negative neighbor set, where N;" U N, = N; and N;" N N;” = (). The
representation of x; is thus updated by:

b (1— S _ B |
Zi=(1—-a+pBa; + R Z T N Z xj. (11)
J

en;t JEN,

i

In particular, the two parameters « and 5 mark the strength of positive and negative edges, respec-
tively.

14



For further proofs of the theorems and propositions in the paper, we give a more simple and detailed
definition in this section.

Let Dg+ = diag(degy’, ..., degl) and Do = diag(deg; , ..., deg; ) be the degree matrices of
the positive subgraph and negative subgraph, respectively. Let Ag+ be the adjacency matrix of the
graph Gt with [Ag+];; = 1if {i,j} € E* and [Ag+];; = 0 otherwise. The adjacency matrix Ag-
of the negative subgraph G~ is defined by [Ag-];; = —1 for {i,j} € E~ and [Ag-];; = O for
{i.jt ¢ E™.

The Laplacian plays a central role in the algebraic representation of structural properties of graphs.
In the presence of negative edges, more than one definition of Laplacian is possible; see [25]. The
Laplacian of the positive subgraph G is Lo+ := Do+ — A+, while for the negative subgraph
G~ the following two variants can be used: L¢,_ := Dg- — Ag- and Ly,_ := —Dg- — Ag-.
Consequently, we have the following definitions.

Definition 1. Given the signed graph G, its opposing Laplacian is defined as

LOG = Lo+ + L‘(’;f = Dg+ + Dg- — Ag+ — AGf7 (12)
and its repelling Laplacian is defined as

Ll =Lg+ + L}, =Dg+ — Dg- — Agr — Ag-. (13)
Time is slotted at ¢ = 0,1, .... Each node 4 holds a state x;(¢) € 2 at time ¢ and interacts with its

neighbors at each time to revise its state. The interaction rule is specified by the sign of the links. Let
a, 8 > 0. We first focus on a particular link {i, j} € E and specify for the moment the dynamics
along this link isolating all other interactions.

The DeGroot Rule:
Ts(t+ 1) = x5(t) + alz_s(t) — 25(t)) = (1 — a)xs(t) + ax_4(t), (14)
where —s € {i,5}\ {s} witha € (0, 1)
The Opposing Rule:
2s(t+ 1) =a5(t) + B(—x—s(t) —x5(t)) = (1 = B)as(t) — Br_s(t); (15)
or The Repelling Rule:
Ts(t+1) = as(t) = Bla—s(t) — x5(t)) = (L+ B)ws(t) — Br_s(t). (16)

The Repelling Negative Dynamics:
it +1) =ai(t) o Y () —ait) =8 Y (a(t) —wi(t))

JEN; JEN; (17)
= (1 — adeg;” + Bdeg; )zi(t) + a Z x;(t) — B Z x;(t).
JEN; JEN,
Denote x(t) = (x1(t) ...z, (t))T. We can now rewrite|17|in the compact form
x(t+1) = Mgx(t) = (I — aLg, — BLg_)x(t). (18)
Here,
MG =1- Ong+ — ﬂLgf =1- TGw7 (19)

with LY = aLg+ + BL,- being the repelling weighted Laplacian of G. From Equation (18]
Ma1 = 1 always holds. We present the following result, which by itself is merely a straightforward
look into the spectrum of the repelling Laplacian Lg3°.

C Proof of Theorem 3.2

Now consider the combined theorem.

Theorem C.1 Suppose that the positive edges are connected. Then along Equation |I7] for any
0 < a<1/max;cy deg?, there exists a critical value B, > 0 for B such that

(i) if B < Bs, then we have limy ;o0 2;(t) = 3°7_, ;(0)/n for all initial values x(0);

(ii) if B > P, thenlim;_, o ||2(t)|| = oo for almost all initial values w.r.t. Lebesgue measure.
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Proof. we change the signed graph update to the equivalent version of x;(t) read as:

zilt+1) =ai(t) +a Yy () —wi(t) =B Y (a(t) —wilt)).

JEN; JEN;
This can be expressed as:
2(t+1) = (1—adeg’ +Bdeg )ai(t) + @ Y a;(t) =B D z;(t). (20)
JENT JEN—
Algorithm 20| can be written as:
z(t+1) = Mgz(t) = (I — aL{, — BLG)x(t). 1)

Here, Mg = I — oL}, — BL,, with Lg = aLg + L being the repelling weighted Laplacian
of G, defined in Sec From Eq.equation 21} M1 = 1 always holds. We present the following
result, which by itself is merely a straightforward look into the spectrum of the repelling Laplacian
L.

So theorem [C.T|can be changed to the following version:

Suppose G is connected. Then along Eq.equation for any 0 < o < 1/ max;ey deg}L, there
exists a critical value 8 > 0 for /3 such that:

(1) if 8 < P, then average consensus is reached in the sense that lim; . x;(t) =
= >_0_y ;(0) for all initial values z(0);

(i) if B > B, then lim;_, o ||z(t)|| = oo for almost all initial values w.r.t. Lebesgue measure.

Proof. Define J = 117 /n. Fix a € (0,1/max;cy deg;") and consider f(3) = Amax(I — aLf —
BLg — J), and g(B) = Amin(I — oL, — BLg — J). The Courant—Fischer Theorem implies that
both f(-) and g(-) are continuous and nondecreasing functions over [0, c0). The matrix J always
commutes with I — aLg — BL, and 1 is the only nonzero eigenvalue of J. Moreover, the eigenvalue
1 of J shares a common eigenvector 1 with the eigenvalue 1 of I — oL — BL.

Since G is connected, the second smallest eigenvalue of Lg+ is positive. Since 0 < a <
there holds A\pin(I — aLg+) > —1, again due to the Gershgorin Circle Theorem.

max;cy deg;
Therefore, f(0) < 1, g(0) > —1. Noticing f(co0) = oo > 1, there exists 3, > 0 satisfying
f(B«) = 1. We can then verify the following facts:

« There hold f(8) < 1 and g(8) > —1if B < B,. In this case, along Eq.equation [21]
lim¢_, oo (I — J)x(t) = 0, which in turn implies that z(¢) converges to the eigenspace
corresponding to the eigenvalue 1 of M. This leads to the average consensus statement in
®.

* There holds f(3) > 1if 8 > (.. In this case, along Eq.equation 21| x(¢) diverges as long
as the initial value x(0) has a nonzero projection onto the eigenspace corresponding to
Amax(Mg) of M. This leads to the almost everywhere divergence statement in (ii).

The proof is now complete.

D Proof of Theorem

Theorem D.1 let A > 0 be a constant and define F(z). by F(2). = —c¢,z2 < —¢, F(2)c = 2,2 €
[—c, ], and F(z2). = ¢,z > c. Define the function 0 : E — R so that 0({i,j}) = a if {i,j} € ET
and 0({i,5}) = =B if{i,j} € E~. Assume that node i interacts with node j at time t and consider
the following node interaction under the signed propagation rules:

2ot +1) = F(2)((1 - O)a,(t) + 02 (1)), s € {i,j}- 22)

let « € (0,1/2). Assume that G is a structurally balanced complete graph under the partition
V = V1 U Vo, When (3 is sufficiently large, for almost all initial values x(0) w.r.t. Lebesgue measure,
there exists a binary random variable [(x(0)) taking values in {—c, c} such that

P (tgr& 2i(t) = U@ (0)),7 € Vi lim a;(t) = —U(2(0)), i € v2) =1 (23)
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Proof. The proof is based on the following lemmas.

LemmaD.2 Fixa € (0,1) with « 75 . For the dynamlcsngth the random pair selection process,
there exists *(a) > 0 such that

P (hmsup max |a;(t) — 2, (t)] = 2A> -

t—oo HJEV

for almost all initial beliefs if B > (.

Lemma D.3 Fix o € (1/2,1) and 8 > 2/(2a — 1). Consider the dynamics 22| with the random
pair selection process. Let G be the complete graph with (G1) > 2. Suppose for time t there are
i1,j1 € V withz;,(t) = —cand x,(t) = c. Then for any ¢ € [0, (2a — 1)¢/2a] and any i, € V,
the following statements hold:

(i) There exist an integer Z(e) and a sequence of node pair realizations, Giys(w), for s =
0,1,...,Z — 1, under which z;, (t + Z)(w) < —A + e

(ii) There exist an integer Z(c) and a sequence of node pair realizations, Gy s(w), for s =
0,1,...,Z — 1, under which x; (t + Z)(w) > A — e

Proof. From our standing assumption, the negative graph G~ contains at least one edge. Let
k., m, € V share a negative link. We assume the two nodes ¢1,j; € V labeled in the lemma are
different from k., m., for ease of presentation. We can then analyze all possible sign patterns among
the four nodes 71, j1, k«, m.. We present here just the analysis for the case with

{il, k*} € E+, {il,m*} € E+, {jl, k‘*} S E‘-"_7 {jl,m*} S ET.
The other cases are indeed simpler and can be studied via similar techniques.

Without loss of generality we let x.,,, (t) > x, (¢t). First of all we select G; = {i1, k.} and
Gyi41 = {j1, ms}. Itis then straightforward to verify that

T, (t+2) >y, (¢ + 2) + 2ac.
By selecting G415 = {m., ki« } we know from 8 > > 1 1) > L that
k(t+3) = —c, :vm*( +3) =
There will be two cases:
(a) Leti. € {m.,k.}. Noting that x(G") > 2, there will be a path connecting to k. from i,
without passing through m, in G It is then obvious that we can select a finite number Z; of

links which alternate between {m.., k. } and the edges over that path so that ;, (t+3+271) >
—c + e. Here Z; depends only on « and n.

(b) Let i, € {m., k.}. We only need to show that we can select pair realizations so that ,,,
can get close to —c, and ., gets close to c after ¢ + 3. Since G is connected, either m., or
k. has at least one positive neighbor. For the moment assume m’ is a positive neighbor of
m, and k' is a positive neighbor of k, with m’ # k’. Then from part (a) we can select Z5
node pairs so that

T, (t+34+Z2) < —c+e€, x, (t+3+72) >c—e
Thus, selecting the negative edge {m., k. } for t+5+ Z5 implies z,,,, (t+6+Z3) = cfor 5 > o _1).
The case with m’ = k' can be dealt with by a similar treatment, leading to the same conclusion.
This concludes the proof of the lemma.

In view of Lemmas[D.2]and [D.3] the desired theorem is a consequence of the second Borel-Cantelli
Lemma.

E A Signed Graph Perspective on Existing Oversmoothing Countermeasures

We defined the signed graph propagation over the whole graph G written in the matrix form as:

X=(Q-a+B8)X+al X -BAX, (24)
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Table 5: The mathematically equivalent raw normalized positive and negative adjacency matrices in
signed graph propagation of various anti-oversmoothing methods.

Method Characteristic Positive A+ Negative A~
GCN K-layer graph convolutions A 0

SGC K-layer linear graph convolutions A 0
BatchNorm Normalized with column means and variance A 1,17/ nA
PairNorm Normalized with the overall means and variance A 1 1T L/ nA
ContraNorm Uniformed norm derived from contrastive loss A (XXT)A
DropEdge Randomized augmentation A A,
Residual Last layer connection A 1
APPNP Initial layer connection st lal Al a¥k_oal AI
JKNET Jumping to the last layer Sk galAl 4 AR+ wk ol AR
DAGNN Adaptively incorporating different layer vF jad Al 4 AR Z;?':Ooziflk

Feature-SBP (ours) Label-induced negative graph softmax(A;)

softmax(A; )

s

Label-SBP (ours) Feature-induced negative graph

where A is the raw normalized version of the positive adjacency matrix A € {0,1}"*" and A= s
that of the negative adjacency matrix A~ € {0, 1}"*™.

We summarize eight specific methods with their corresponding positive and negative graphs in
Table 8l

E.1 Normalizations

BatchNorm BatchNorm centers the node representations X to zero mean and unit variance and

can be written as BatchNorm(z;) = ﬁ( i E" ' ,2;), where e > 0 and o2 is the variance of
node features. We rewrite BatchNorm in the si gned graph propagation form as follows:

n 1 _ v 1 177;
“non AXT; = AX - TmAX (25)

n

X =Axr,' Lnly

where I'y = diag(oq,...,04) is a diagonal matrix that represents column-wise variance with
2 = Ly ((AX),, — 1] AX/n)? and X = XT"' is a normalized version of X. We can
n j= ji n d

correspond to the positive graph A" to A and the negative graph A~ to %IZX in equation

PairNorm We then introduce another method called PairNorm where the only difference between
it and BatchNorm is that PairNorm scales all the entries in X using the same number rather than
scaling each column by its own variance. The formulation of PairNorm can be rewritten as follows:

T ‘ T
X—74X—%1 1”AX—1(A4X—11"AX) (26)
n

where I' = |[(A — 1,17 /n)X||p//n. We observe that PairNorm shares the same positive and
negative graphs (up to scale) as BatchNorm. Another normalization technique, ContraNorm, turns
out to extend the negative graph to an adaptive one based on node feature similarities.

Proposition E.1 Consider the update:

N 1,17
X = AX — T AX, 27
n

where A € {0 1}™*™ is the adjacency matrix. Define the overall signed graph adjacency matrix A

as A — ol A Then we have that the signed graph is (weakly) structurally balanced only if the
original graph can be divided into several isolated complete subgraphs.
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Proof. Assume that there is no isolated node and no node has edges with all the other nodes.
(As)ij = (A)i; — %. If (A);; = 1, then we have (A;), ; > 0. If (A); ; = 0, then we have
(As)iJ <0.

If the nodes can be divided into several isolated complete subgraphs, then the nodes set V' =
Vi UVs...V,, where |V;| > 1, m is the number of the isolated complete subgraphs. So only the
nodes within the same set have edges, thus relative entries of A; > 0, while nodes from different sets
do not, thus relative entries of A, < 0.

On the other hand, if A, is (weakly) structurally balanced, then the nodes set can be expressed as
V =V1UVa... Vg, where |V;| > 1, k is the number of the separated parties in the signed graph. The
entry of A, in the same parties is positive, while between different parties is negative. According to

(As)ij = (A)ij — deﬁ‘” , we know that nodes in the same parties are connected in the original graph

while not connected in the original graph between different parties. So the graph can be divided into
several isolated complete subgraphs.

Overall, the signed graph is (weakly) structurally balanced only if the original graph can be divided
into several isolated complete subgraphs, the proof is over.

The Proposition shows that in order for the structural balance property to hold for the signed graph of
normalization, the graph needs to satisfy an unrealistic condition where the edges strictly cluster the
nodes.

ContraNorm ContraNorm is inspired by the uniformity loss from contrastive learning, aiming to
alleviate dimensional feature collapse. For simplicity, we consider the spectral version of ContraNorm
that takes the following form:

X=(014a)lX —a/r(XXT)AX, (28)
where a € (0,1) and 7 > 0 are hyperparameters. We can see that Alis again the positive graph and
(X XT) A is the negative graph in the corresponding signed graph propagation.

Consider the update:

T
X:AX—XX

AX, (29)
Define the overall signed graph adjacency matrix A, = A — Xf}fTA where (As);; = (A)i; —
F SRy (A -

Assume that the nodes feature is normalized every update, that is ||z;||2 = 1 for every i.

If (A);; = 1, then we have that
1
(As)ig = (A)iy = —Tiosmizy (A
1
=1- gEZ:lxi‘T{(A)k,j

! (30)
>1- EEZ:NAMJ

_1-%y
n
That means if (A); ; = 1, then (A;); ; > 0. However, if (4); ; = 0, then we have that
1 n
(Ae)ij = (A)ig = —Tpamia (Awg
1
= T (A D

1
T
= _Ezkeijixk .

Intuitively, if ; has similar features to x;’s neighbors, then we have that (AS)Z-, j < 0, which means
trying to repel nodes with similar representations. If x; has different features to x;’s neighbors,
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then we have that (A;); ; > 0, which means trying to aggregate nodes with original different
representations.

If graph G is a completed graph, then all entries of (As) > 0, however, when all of the nodes coverage
to each other, ©7_, x;27 (A)g,; = X0_,x;2} will also become bigger.

E.2 Dropping

For DropMessage [21]], it is a unified way of DropNode, DropEdge and Dropout but with a more
flexible mask strategy. We have discussed the DropNode and DropEdge in our paper. DropMessage
can be viewed as randomly dropping some dimension of the aggregated node features instead of the
whole node or the whole edge. We give the unified positive and negative graph of DropMessage
in the term of the signed graph. The propagation of DropMessage can be expressed as H(¥) =

AH®=1 — M, where if dropping AHZ-(;“*”, then M;; = AHi(]kil) else M;; = 0.

E.3 Residual Connections

The standard residual connection [44}45] directly combines the previous and the current layer features
together. It can be formulated as:

X=(1-a)X+adX =X +alX —alX. (32)

For residual connections, the positive adjacency matrix is A and the negative adjacency matrix I in
the corresponding signed graph propagation.

APPNP We reformulate the method APPNP [42]] as the signed propagation form of the initial node
feature. Another propagation process is APPNP [42] which can be viewed as a layer-wise graph
convolution with a residual connection to the initial transformed feature matrix X (9, expressed as:

X(k+1) _ (1 - a)X(O) + aAX(k). (33)

Theorem E.2 With A+ = Zfiol oAt and A = aZ?:Oozj A9, the propagation process of APPNP
following the signed graph propagation.

Proof. Easily prove with mathematical induction.

In addition to combining with the last and initial layer features, the last type integrates several
intermediate layer features. The established representations are JKNET [18]] and DAGNN [19].

JKNET JKNET is a deep graph neural network which exploits information from neighbor-
hoods of differing locality. JKNET selectively combines aggregations from different layers with
Concatenation/Max-pooling/Attention at the output, i.e., the representations "jump" to the last layer.
Using attention mechanism for combination at the last layer, the k£ 4 1-layer propagation result of
JKNET can be written as:

XED — 00 XO© 40, XD 4. g X®

Ny (34)
=¥k o AXO

where g, a1, - - - , i, are the learnable fusion weights with Efzoai =1.

DAGNN Deep Adaptive Graph Neural Networks (DAGNN) [19] tries to adaptively add all the
features from the previous layer to the current layer features with the additional learnable coefficients.
After decoupling representation transformation and propagation, the propagation mechanism of
DAGNN is similar to that of JKNET.

XD =5k 0, AAHO | HO = fy(X(©) (35)

H© = (X)) is the non-linear feature transformation using an MLP network, which is con-
ducted before the propagation process and «g, oy, - - - , o are the learnable fusion weights with
E?ZOOQ =1.
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Theorem E.3 With A+ — Ei‘:‘,'n’fl/ + AF and A- = E?;&ajflk, the propagation process of
JKNET and DAGNN following the signed graph propagation.

Proof. Easily prove with mathematical induction.

As for more residual inspired methods [20} 46|47, 148], we select GCNII and wGCN to give a detailed
discussion as follows.

* As for GCNII [20], it is an improved version of APPNP with the learnable coefficients a;
and changes the learnable weight W to (1 — 3;)I + ;W each layer, so it shares the same
positive and negative graph as APPNP.

* As for the wGCN [46], it incorporates trainable channel-wise weighting factors w to learn
and mix multiple smoothing and sharpening propagation operators at each layer, same as
the init residual combines but change parameters « to be learnable with a more detailed
selection strategy.

F Oversmoothing Metrics

There exist a variety of different approaches to quantify over-smoothing in deep GNNs, here we
choose the measure based on the Dirichlet energy on graphs [[15}149].

1
(X (1) = ~TievTjen|li(t) — ;(1)]l3, (36)

where v is the number of the nodes, z;(t) is the node feature of node 7 at time t. N; represents the
neighbor set of node ¢, In the signed graph, it including nodes connected to ¢ by both positive and
negative edges. Oversmoothing means that when the layers are infinity, all of the node features will
converge, that is to say lim; o, €(X (¢)) — 0.

In Theorem [3.2] there are 2 cases:

n

* ifB < P, then we have lim¢ oo 2;(t) = > 5_, 2;(0)/n for all initial values z(0)

* if > By, thenlim; ,o ||z(t)|| = oo for almost all initial values w.r.t. Lebesgue measure.

In the first case, all the node features will coverage to the mean of them and therefore
lim;, o0 €(X (¢)) — 0, then oversmoothing happens. In the second case, the node features will
diverge to infinity and thus lim;_,~, €(X (¢)) — 0 or co which is also not what we want.

Theorem [3.2] demonstrated that both insufficient repulsion and excessive repulsion caused by the
negative graph can hinder performance in signed graph propagation. From this, we conclude
that relying solely on the negative signs is insufficient to alleviate oversmoothing. Therefore, we
propose the provable solution: a structurally balanced graph to efficiently alleviate oversmoothing in
Theorem[4.2] Specifically, we have the following conclusion from the structurally balanced graph in
Theorem 4.2}

P (tlggo 2i(t) = 1w (0)),7 € Va; lim a;(t) = —U(2(0)), i € VQ) ~1. (37)
Then we have:

. . ]'
tlgrolo e(X(t) = tlgélc ;Eievzjem

ri(t) — 2,03 (38)

1
i) = 2 (Ol + ~DievsTjen,llzi(t) — 2 (1]l (39)

1
lim 7ZiEV12j€Ni
—o0 U

t

.1 1
m =Yicv, Sjen, yiry; | |[7:(t) — 2; ()| [5 + 5 ZieVa XieN: yity; [lzs (£) — 25(£)]13

t—oo vV
(40)
1 v 1 v
= lim *Eievlf X 2¢c+ *Eigvzf X 2¢ (41)
t—oo v 2 v 2
o 1lov o ow v
:tli)l’]é.lo;(gx 5 X2C+§X 5 X2C) (42)
e >0 43)
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(a) structural balance (b) weakly structural balance (c) unbalance

Figure 7: Examples of structural balanced (left), weakly structural balanced (middle), and unbalanced
signed graphs (right). Here red lines represent positive edges; black dashed lines represent negative
edges; gray and blue circles represent nodes from different labels

So Theorem [4.2] proves that under certain conditions, structural balance can alleviate oversmoothing
even when the layers are infinity.

G Weakly Structural Balance

To clarify the concept of structural balance, weakly structural balance and unbalance signed graph,
we give the examples as shown in Figure[/| The notion of structural balance can be weakened in the
following definition [G.T}

Definition G.1 A signed graph G is weakly structurally balanced if there is a partition of V into
V=VuWu...UVy m>2withVy,...,V,, being nonempty and mutually disjoint, where any
edge between different V;’s is negative, and any edge within each V; is positive.

Then we show that when G is a complete graph, weak structural balance also leads to clustering of
node states.

Theorem G.2 ([25], Theorem 10) Assume that node i interacts with node j and x;(t) represents
the value of node i at time t. Let 0 = « if the edge {i, j} is positive and 0 = (3 if the edge {i, j} is
negative. Consider the constrained signed propagation update:

xi(t+ 1) = Fo((1 — 0)xy(t) + Ox5(t)). (44)
Let o € (0,1/2). Assume that G is a weakly structurally balanced complete graph under the partition
V=ViUVy---UV,,. When § is sufficiently large, for almost all initial values x(0) w.r.t. Lebesgue
measure, there exists m random variable 11 (x(0)), l2(x(0)), ..., l,(2(0)), each of which taking
values in {—c, c} such that

P(hm xi(t):lj(x(O)),iEVj,jzl,...,m) ~ 1. 45)

t—o00

H Statement and Proof of Label-SBP

In this section, we show that our method Label-SBP can create a structurally balanced graph under
certain conditions and thus provably alleviate oversmoothing as the number of propagation steps
increases. To achieve this, we introduce a metric, structural imbalance degree (SID), to quantify the
level of structural balance in arbitrary signed graph. Specifically, SZD counts the number of edges
that must be changed to achieve the structural balance.

Definition H.1 (Structural Imbalance Degree) For each node v in a signed graph G4 of n nodes,
let P(v) denote the subset of nodes that has the same label as v but connected to v by a non-
positive edge; let N'(v) denote the subset of nodes that has a different label from v but connected
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Table 6: SZD on CSBM (Contextual Stochastic Block Model ) with different methods. We set the

two class means u; = —1 and us = 1 respectively, the number of nodes N = 100, intra-class edge
probability p = 21log 100/100 and inter-class edge probability ¢ = log 100/100.
Method P N SID
DropEdge 92.62 100.00 96.31
Residual 90.87 100.00 95.44
GCN/SGC 89.87 100.00 94.94
APPNP 0.00  100.00  50.00
JKNET 0.00  100.00  50.00
DAGNN 0.00  100.00  50.00
BatchNorm 89.87  4.56 47.22
PairNorm 89.87 4.56 47.22
ContraNorm 89.87  4.56 47.22

Feature-SBP (ours) 89.87 4.56 47.22
Label-SBP (ours) 32.46 36.16  34.31

to v by a non-negative edge. Then the structural imbalance degree of G is defined as SID(Gs) =
; P)|+ N (v)]).

2n vegs(

SZID exhibits a fundamental characteristic: it increases as more edge signs deviate from the criteria
of a structurally balanced graph, suggesting a higher degree of structural imbalance. Specifically,
when the signed graph achieves the structural balance, we can assert that SZD = 0 as follows:

Proposition H.2 For a structural balanced complete graph G, we have STD(Ggp,) = 0.

Proof If the graph is structurally balanced, we can see that for a node v, P(v) = 0 and N'(v) = 0
due to the structural balance complete graph assumption. So SZD(G) = 0.

Based on the SZD, we can quantity the degree of structural balance in the equivalent signed graphs
induced by anti-oversmoothing methods discussed in the previous section, as shown in Table[6] Our
results show that previous anti-oversmoothing methods either remain a high SZD or an imbalance P
and . In contrast, our methods effectively reduce the SZD, resulting in a more structurally balanced
graph, or at least be on par with previous methods.

Besides the empirical observation, we present the following theoretical result which demonstrates
that Label-SBP can be guaranteed to achieve a certain level of structure balance:

Proposition H.3 Assuming balanced node label classes with |Y1| = |Ya|, a labeled node ratio
denoted as p, and the signed graph G' created by Label-SBP, then we have SID(G.) < (1 — p)n/2.

Proof Without loss of generality, assume that the node feature has been normalized which means that
||z;||2 = 1 for every i. If z;; and x; has the same label, then we have that, (A,); ; = (A); ; +1 > 1.
If 2; and x; has different labels, then we have that (A;); ; = (4);; —1 < 0.

We first prove that SZD(G,p) < (1 — p)§ where n is the nodes number and p is the label ratio. We
have that
P)+N(v) <(1—-p)n, (46)

because for a single node v only the remaining (1 — p)n nodes’ labels are unknown and therefore
their edges may need to change so that

SID(G) = 5= S(P)|+ W)

vEG

<5 (l—pmn “7)



We know that when SZD(G) = 0, then we have that the nodes V' set can be divided into V; U V7 - - - U
V1, where L is the number of the node classes. There are only positive edges with the node subset
and only negative edges between the node subset.

Since C' = 2, the node set can be divided into V; and V5, the signed graph is structurally balanced.
According to Theorem 4.2} we have that the nodes in V4 will converge to the ¢ where ||c||2 = 1 and
the nodes in V5 will converge to —c. Thus under Label-SBP propagation, the oversmoothing will only
happen within the same label and repel different labels to the boundary.

Proposition suggests that Label-SBP constrains SZD linearly with the training ratio p, indicating
that SZD diminishes with an increase in the labeling ratio p. In particular, it implies that Label-SBP
can strictly establish a structurally balanced graph for any graph under the full supervision condition,
making the model easier to distinguish nodes with different labels as the number of layers increases:

Theorem H.4 Under full supervision (p = 1), the signed graph C;é induced by Label-SBP achieves

SID(QAQ) = 0. Consequently, under the constrained signed propagation as given by equation
nodes from distinct classes will converge towards unique constants.

P ( lim XM = cieh; lim XM = —c,ie \/2) —1. (48)
— 00

k—oo

I Details of Experiments

I.1 Details of the Dataset

Table 7: Summary of datasets. H(G) refers to the edge homophily level: the higher, the more
homophilic the dataset is.

Dataset H(G) Classes Nodes Edges
Cora 0.81 7 2,708 5,429
Citeseer 0.74 6 3,327 4,732
PubMed 0.80 3 19,717 44,338
Texas 0.21 5 183 295
Cornell 0.30 5 183 280
Amazon-ratings  0.38 5 24,492 93,050
Wisconsin 0.11 5 251 466
Squirrel 0.22 4 198,493 2,089
Ogbn-Arxiv 0.65 40 16,9343 1,166,243

We consider two types of datasets: Homophilic and Heterophilic. They are differentiated by the
homophily level of a graph.

2y — 1 Z Number of v’s neighbors who have the same label as v
V] Number of v’s neighbors '

The low homophily level means that the dataset is more heterophilic when most of the neighbors
are not in the same class, and the high homophily level indicates that the dataset is close to ho-
mophilic when similar nodes tend to be connected. In the experiments, we use four homophilic
datasets, including Cora, CiteSeer, PubMed, and Ogbn-Arxiv, and four heterophilic datasets, includ-
ing Texas, Wisconsin, Cornell, Squirrel, and Amazon-rating [36]). The datasets we used covers
various homophily levels.

CSBM Settings. To quantify the structural balance of the mentioned methods, we simplified the
graph to 2-CSBM(N, p, q, fi1, pi2, 02) following [24]. It consists of two classes C; and Cs of nodes of
equal size, in total with IV nodes. For any two nodes in the graph, if they are from the same class, they
are connected by an edge independently with probability p, or if they are from different classes, the
probability is g. For each node v € C;,4 € {1, —1}, the initial feature X, is sampled independently
from a Gaussian distribution NV (u;, o), where u; = C;, 0 = I. In this paper, we assign N = 100
and the feature dimension is 8.
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I.2 Experiments Setup

For the SGC backbone, we follow the [44] setting where we run 10 runs for the fixed seed 42 and
calculate the mean and the standard deviation. Furthermore, we fix the learning rate and weight
decay in the same dataset and run 100 epochs for every dataset. For the GCN backbone, we follow
the [[16] settings where we run 5 runs from the seed {0, 1,2, 3,4} and calculate the mean and the
standard deviation. We fix the hidden dimension to 32 and dropout rate to 0.6. Furthermore, we fix
the learning rate to be 0.005 and weight decay to be 5e — 4 and run 200 epochs for every dataset. We
use the default splits in torch_geometric. We use Tesla-V100-SXM2-32GB in all experiments.

I.3 Time Complexity Analysis and the Modified SBP

Label-SBP  As shown in equation we maintain the positive adjacency matrix AT = A and
construct the negative adjacency matrix A; by assigning 1 when nodes i, j have different labels, -1
when they share the same label, and 0 when either label is unknown. We then apply softmax to
A; to normalize the negative adjacency matrix. The overall signed adjacency matrix is Agign =
aAt — Bsoftmaz(A;), where o and 3 are hyperparameters. Given n; training nodes and d edges
in the graph, our Label-SBP increases the edge count from O(d) to O(n?), thereby increasing the
computational complexity to O(n?d).

Feature-SBP When labels are unavailable, we propose Feature-SBP, which uses the similarity
matrix of node features to create the negative adjacency matrix. As depicted in equation we
design the negative adjacency matrix as Ay = — XX . We then apply softmax to A to normalize
it. The overall matrix follows the same format as Label-SBP: A, , = oAt — Bsoftmazx(Ay),
where « and 3 are hyperparameters. The additional computational complexity primarily stems from
the nQegative graph propagation, which involves Xo X! € R™*", increasing the overall complexity to
O(n?d).

We show the computation time of different methods in the Table [§] On average, we improve
performance on 8 out of 9 datasets (as shown in Table [2)) with less than 0.05s overhead—even faster
than three other baselines. We believe this time overhead is acceptable given the benefits it provides.

Table 8: Estimated training time of SBP on Cora dataset. All experiments are run under 2 layers. s is
the abbreviation for second. Precompute time is the aggregation time across layers, train time is the

update time of the SGC weight W, total time is the sum of them.
Label-SBP  Feature-SBP  BatchNorm ContraNorm Residual JKNET DAGNN SGC

Precompute time ~ 0.1809s 0.1520s 0.1860s 0.1888s 0.0604s  0.0577s  0.1438s  0.1307s
Train time 0.1071s 0.1060s 0.1076s 0.1038s 0.1368s  0.1446s  0.1348s  0.1034s
Total time 0.2879s 0.2580s 0.2935s 0.2926s 0.1972s  0.2023s  0.2786s  0.2341s

Rank 6 4 8 7 1 2 5 3

Scalability of SBP on large-scale graph For large-scale graphs, we introduce a modified version
Label-SBP-v2 by only removing edges when pairs of nodes belong to different classes. This approach
allows Label-SBP-v2 to eliminate the computational overhead of the negative graph, further enhancing
the sparsity of large-scale graphs. For Feature-SBP, as the number of nodes n increases, the complexity
of this matrix operation grows quadratically, i.e., O(n?d). To address this, we reorder the matrix
multiplication from — X X{ € R™*" to — X' X, € R4, This preserves the distinctiveness of
node representations across the feature dimension, rather than across the node dimension as in the
original node-level repulsion. The modified version of Feature-SBP can be expressed as:

(Feature-SBP-v2) X% = (1 — \)X* D 4 A\(aAX ) — gX Fsoftmax(— XTI Xo))  (49)

This transposed alternative has a linear complexity in the number of samples, i.e., O(nd?), signifi-
cantly reducing the computational burden in cases where n >> d.

We compare the compute time SBP with other baselines on ogbn-arxiv dataset over 100 epochs for
a fair comparison. Among all the training times of the baselines, our Label-SBP-v2 achieves the
3rd fastest time while Feature-SBP-v2 ranks 5th. Therefore, we recommend using Label-SBP-v2
for large-scale graphs since they typically have a sufficient number of node labels. We believe that
although there is a slight time increase, it is acceptable given the benefits.
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Table 9: Estimated training time of SBP on ogbn-arixv dataset. All experiments are run under 2 layers
and 100 epochs. s is the abbreviation for second.
Label-SBP  Feature-SBP  BatchNorm ContraNorm DropEdge  SGC
Train time (s) 5.5850 6.1333 5.3872 5.8375 9.5727 53097
Rank 3 5 2 4 6 1

The code for the experiments will be available when our paper is acceptable. We will replace
this anonymous link with a non-anonymous GitHub link after the acceptance. We implement all
experiments in Python 3.9 with PyTorch Geometric on one NVIDIA Tesla V100 GPU.

1.4 Results Analysis
L4.1 CSBM results

The comparative results of Label-SBP and Feature-SBP against SGC are presented in Table [T0}
As the number of layers increases, SGC’s node features suffer from oversmoothing, causing the
two classes to converge and accuracy to drop by nearly 30 points from its peak at 2 layers, down
to 45%. Conversely, after 300 layers, SBP maintains strong performance, with node features of
different classes repelling each other. This effect limits oversmoothing to within-class interactions,
and improves performance from 85 to 91 in Label-SBP and from 48 to 82 in Feature-SBP, further
substantiating our approach to mitigating oversmoothing.

We visualize the node features learned by Label-SBP in Figure 0] We can see that from layer 0 to
layer 200, the node features from different labels repel each other and aggregate the node features
from the same labels. And we also visualize the adjacency matrix of Label-SBP and Feature-SBP in
Figure[I0|and Figure[T|respectively, further verifying the effectiveness of our theorem and insights.
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(a) SGC, acc= 47.50 (b) Feature-SBP, acc= 80.00 (c) Label-SBP, acc= 97.50

Figure 8: The t-SNE visualization of the node features and the classification accuracy from 2-CSBM
and Layer= 300. Left is the result of the vallina SGC, and the middle and right are the results of SBP.

Table 10: CSBM test accuracy (%) comparison results. The best results are marked in blue on each
layer. The second best results are marked in gray on each layer. We run 10 runs for the seed from
0 — 9 and demonstrate the mean = std in the table.

Model #L=2 #L=5 #L=10 #1.=20 #L=50 #L=100 #1.=200

SGC 73.25+6.90 4450 +£9.34 45754936 45.75+936 4575+936 45.75+936 45.75+9.36
Feature-SBP  48.75 £5.62 53.75+645 63.75+625 77.00+545 82.00+458 82.50+5.12 82.00+545
Label-SBP 85.75 £4.04 9350+4.06 93.50£357 93.50£357 9225+344 93.25+372 91.25+6.05

1.4.2 GCN Results

The results for GCN are detailed in Table |11} respectively. Overall, SBP consistently outperforms all
previous methods, especially in deeper layers. Beyond 16 layers in GCN, SBP maintains superior
performance, affirming the effectiveness of our approach. Notably, SBP exceeds the best results of
prior methods by at least 10% and up to 30% points in GCN’s deepest layers, marking significant
improvements. Moreover, unlike previous methods that perform best in shallow layers, SBP excels in
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Figure 9: CSBM node features visualization. We update the features by Label-SBP. L is the propaga-
tion layer number. 0,1 represent different classes.
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Figure 10: The visualization of the adjacency matrix of Label-SBP. Here left is the positive graph;
middle is the negative graph; right is the overall signed graph.

moderately deep layers, as observed in GCN across all datasets. This further confirms the effectiveness
of SBP.

L4.3 [ Analysis on Heterophilic Datasets

Our method SBP can outperform other baselines under 5 = 1 across different layers, so we do not
tune our hyper-parameters carefully. However, since S is the weight of the negative adjacency matrix
(equation [4.2)) representing the repulsion between different nodes, as seen in Figure i and[3] the best
performance of SBP appears when (3 is larger in the heterophilic graphs, so the result in Figure 3afa)
is not the best performance of our SBP. To further show the effectiveness of our SBP, we conduct
experiments on Cornell with different 3 in Table[I2] the best /3 is 20 where the performance increases
25 points in deep layer 50.

1.4.4 SBP on more benchmarks

We further compare our SBP with SGC on six additional datasets [36] in Table[T3] Our SBP out-
performs SGC on five out of these six datasets. We believe that these six datasets, combined with

27



10 100
Overall Adj

Ad) Edge Presence
Overall Edge Presence

-0.75

- e
Ye—— T 0
0 10 20 30 40 S0 60 70 80 90

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 S0 60 70 80 90

(a) positive graph (b) negative graph (c) overall signed graph

Figure 11: The visualization of the adjacency matrix of Feature-SBP. Here left is the positive graph;
middle is the negative graph; right is the overall signed graph.

the nine datasets presented in Table[T3]of our paper, provide sufficient evidence to demonstrate the
effectiveness of our approach.

1.4.5 Different Backbones

In this paper, we focus on introducing a novel theoretic signed graph perspective for oversmoothing
analysis, so we do not take many tricks into account or carefully fine-tune our hyperparameters.
Thus, our results in the paper are not as comparable to previous baselines [20} 47, 48]. However,
existing oversmoothing researches are indeed hard to compare, because they are often composed
of multiple techniques — such as residual, BatchNorm, data augmentation — and the parameters
are often heavily (over-)tuned on small-scale datasets. And it becomes clear that to attain SOTA
performance, one needs to essentially compose multiple such techniques without fully understanding
their individual roles. For example, GCNII uses both initial residual connection and identity map,
futher combined with dropout.

Our goal is to provide a new unified understanding of these techniques, so we justified it by showing
that SBP as a single simple technique can attain good performance. And we believe that it would
work complementarily with other techniques in the field, because oversmoothing is still challenging
to solve with a very larger depth.

To further verify the effectiveness, we combine our SBP to one of the SOTA settings GCNII [20]
and the results are as seen in Table@ The results indicate that after combining our method, GCNII
demonstrates greater robustness as the layers go deeper, particularly in the middle layers (layer=8),
highlighting the efficacy of our signed graph insight.

1.4.6 SBP on Large-scale graphs

We conducted experiments with a larger graph ogbn-products than ogbn-arxiv under 100 epochs and
2 layers in Table [T5] The results indicate that our SBP outperforms the initial GCN baselines. Given
the results presented for ogbn-arxiv in Table 5 of our paper, we believe these findings adequately
demonstrate the performance of our SBP on large-scale graphs.

1.4.7 Further Optimization

Based on the experiment results, we want to propose 2 strategies for further optimization.

1) hyper-parameter tuning on the negative weight 3. As seen in Figures [ and [5] we found that /3
influences the performance a lot, our default 5 = 1 for Table[2and [3]is certainly not optimal for the
above 4 homophilic datasets. We suggest tuning higher  for the heterophilic graphs since they need
more repulsion and smaller for the homophilic datasets. As the layer deepens, maybe greater weight
should be placed on the negative adjacency graphs to alleviate oversmoothing.

2) adapt our SBP to more effective GNNs. Our method is simple, architecture-free, without addi-
tional learnable parameters, and thus can be flexibly applied in various architectures. As seen in
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Table 11: GCN test accuracy (%) comparison results. The best results are marked in blue and the
second best results are marked in gray on every layer. We run 5 runs for the seed from 0 — 4 and
demonstrate the mean = std in the table.

Model #L=2 #L=4 #L=8 #L=16 #1.=32 #L.=64
Cora 37]
GCN [8] 80.68 +£0.09  79.69 +0.00 74.32 +£0.00 30.95 £0.00 30.95 +£0.00  24.85 +7.46
GAT [10] 81.48 £0.48 80.69 =093  58.59 + 1.95 25.17 £ 5.67 31.93 £0.21 28.38 +0.00
wGCN [46] 80.97 £0.28 80.51 £ 0.00 80.46+1.77 7053 +22.09 80.02+0.12 27.90 + 6.09
BatchNorm [41] 78.09 +0.00 77.87 £0.02 73.62 £0.57 70.79 +0.00 53.90 £2.19 35.32 £3.41
PairNorm [17] 79.01 £0.00  78.26 £0.50 73.21 £0.00 62.96 +0.00 48.13 £0.91  44.01 +3.46
ContraNorm [16] 81.55 £0.21  79.61 +0.75 77.71 £0.00 63.35 +0.00 44.56 +£4.83  38.97 +0.00
DropEdge [22] 78.38 +0.00 74.47 +£0.00 26.91 +0.83 22.24 +£3.04 27.18 +0.00 25.98 +6.00
Residual 80.68 +£0.09  78.77 +£0.00 79.26 +£0.21 40.91 £0.00 30.95 £0.00 27.90 +£6.09
Feature-SBP 80.44 £0.83  79.26 +£1.18 78.56 +0.59 77.22 +£0.55 73.65 £0.48  61.62 +5.24
Label-SBP 80.31 +0.70 79.16 +1.30 79.50 +0.00 77.43 +1.49 74.52 £0.36  65.02 £2.97
CiteSeer [38]
GCN [8] 67.45 +0.54  65.62 +0.25 37.22 +£2.46 22.03 +4.76 19.65 +0.00 19.65 +0.00
GAT [10] 6991 £0.86 6747 022 4471 +3.07 2348 +1.36 2440 £0.40 2595 +2.17
wGCN [46] 66.21 £0.63 6649 +0.69 66.79+0.00 57.544+ 1894 19.65+0.00 19.65+ 0.00
BatchNorm [41] 63.44 +0.94 62.34 +£0.25 61.36 0.00 50.58 +1.24 41.41 +£0.00 35.00 £1.09
PairNorm [17] 63.58 £0.63  64.32 +£0.95 61.95 +1.24 50.06 +0.00 37.21 £1.87  36.09 +0.07
ContraNorm [16] 66.83 £0.49  64.78 +0.92 60.70 +0.60 4479 £1.65 37.36 £0.25  30.85 +0.81
DropEdge [22] 63.86 +0.03 62.24 +0.90 24.73 £5.72 20.65 +0.00 20.04 £0.19 19.95 +0.09
Residual 67.45 £0.54 66.21 +0.16 67.34 +£0.00 33.21 £0.00 19.65 +0.00 19.65 +£0.00
Feature-SBP 67.38 £0.66 = 66.94 +0.00 66.29 +0.02 65.35 +1.99 61.43 £0.00 42.09 +£1.65
Label-SBP 67.23 +0.64 66.72 +0.00 66.29 +0.89 65.50 +2.13 59.93 £0.85 44.41 £1.57
PubMed [39]
GCN [8] 76.44 +£0.34  76.52 +0.32 69.58 +5.89 39.92 +£0.00 39.92 £0.00  39.92 +0.00
+BatchNorm [41] 75.52 £0.12 77.15 +£0.00 77.10 £0.00 76.92 +0.00 7543 £0.00  69.33 £1.01
+PairNorm [17] 75.66 +0.11 76.71 +£0.00 77.99 £0.00 77.22 +£0.39 75.52 £2.02  71.22 £3.68
+ContraNorm [16] 76.05 £0.33 ~ 78.42 £0.00 OOM OOM OOM OOM
+DropEdge [22] 73.41 +£0.03 73.96 £0.79  52.51 £10.91 40.27 £0.00 39.90 +£0.59  40.08 +0.39
+Residual 76.44 +£0.34  77.28 £0.00 77.38 +£0.00 63.14 +£3.05 39.92 £0.00  39.92 +0.00
Feature-SBP 75.72 £0.06  76.84 £0.00 78.39 +0.00 79.71 +£0.00 77.59 £0.23  78.06 +0.13
Label-SBP 76.33 +0.25 76.91 +0.00 77.60 +0.49 76.31 +0.00 77.17 £0.67  78.01 £0.16
Table 12: Ablation study of negative weight 5 on Cornell dataset.
Layer 2 5 10 20 50
5 =0.1 7297 £0.00 67.57+£0.00 51.53+£000 35.14+£0.00 29.734+0.00
8 =1 (default) 72.97 £0.00 67.57 £0.00 51.53+0.00 4595+0.00 35.14+0.00
B8 =10 70.27 £0.00 67.57£0.00 58.11 135 51.53£0.00 51.53+0.00
8 =20 (best) 70.27 +£0.00 70.27 £0.00 67.57 £0.00 59.46+0.00 59.46 4+ 0.00
B =50 64.60 £ 0.00 40.54 £0.00 40.54 £0.00 40.54+£0.00 40.54+0.00

Appendix [[.4.5] we adapt our SBP to the GCNII models, and the results increase more than adaptation
in vanilla GNN as shown in Table@] andE} Besides, compared to the GCNII, our SBP is more robust
and stable to the layers as seen in Table

Table 13: Performance Comparison on more datasets

actor penny94 roman-empire Tolokers Questions Minesweeper

SGC 29.18 £0.10 7256 £0.05 40.83+0.03 78.18+£0.02 97.09+0.00 80.43 & 0.00
Feature-SBP 3493 £0.02 75.68 £0.01 6648 £0.02 7824 £0.04 97.14£0.02 80.00 %+ 0.00
Label-SBP 3494 +0.00 7574 +£0.01 6632£0.01 78.46+0.08 97.15+0.02 80.00 =+ 0.00
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Table 14: Performance Comparison between SBP and GCNII under the GCNII settings on Cora and
Citesser datasets

2 4 8 16 32 64

GCNII 7858 £0.00 7776 £024 73.47+£382 78.12+£132 8254+0.00 81.34+0.53

Cora Label-SBP  78.74 +1.54 78.87+0.00 79.14+0.35 79.17 £041 80.86+0.32 81.38£0.30
Feature-SBP  77.95+ 091 78.82+0.00 78.11 £1.62 78.82+029 81.82+047 81.65+0.40

GCNII 61.66 £0.67 6323 £231 6458+£266 6621+£064 6938+£083 69.73+0.26

Citesser ~ Label-SBP  65.31 £0.63 6393 £3.66 6833+£099 6646+0.00 70.00+0.81 69.47=+0.25

Feature-SBP  65.63 = 0.87 6443 £355 6844 £1.19 6694 +0.00 69.98+093 69.66+0.28

Table 15: Performance of different models on ogbn-products dataset. Time means the runtime, the
format is (hour: minutes: seconds).

Method Accuracy Time

GCN 73.96 00:06:33
BatchNorm 74.93 00:06:18
Feature-SBP 74.90 00:06:43
Label-SBP 76.62 00:06:39
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Question: Do the main claims made in the abstract and introduction accurately reflect the
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Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
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e The answer NA means that the abstract and introduction do not include the claims
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* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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by formal proofs provided in appendix or supplemental material.
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of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Refer to Section [5]for implementation. We will release the code and models
when this paper is published.
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* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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* The answer NA means that there is no societal impact of the work performed.
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: This paper describes safeguards that have been put in place for the responsible
release of data or models that have a high risk.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Justification: We cite all papers that produced the code package or dataset.
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» The answer NA means that the paper does not use existing assets.
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* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented and the documen-
tation is provided.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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