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Abstract: Human-Robot interaction (HRI) is a key requirement to allow robotic
systems to cooperate with humans in various daily scenarios. There are differ-
ent methods for interacting with a robot, but physical contact offers the human
the best sense of collaboration. However, to make the best use of this input,
the robot’s cognitive abilities need to distinguish which of the contacts it detects
through force-torque sensing are human intentions and which are task-related en-
vironmental contacts. In this paper, we propose an energy-tank based method that
detects human intention in three different Degrees of Freedom (DoF) of Carte-
sian space, allowing the human operator to correct or provide input to a skill in
the desired direction. During the interaction, a key role is played by the controller,
which is responsible for the robot’s compliant behavior. In our novel approach, we
modulate the stiffness and reference force of an impedance controller according
to an intention index, making the collaboration smoother and more sensitive. We
demonstrate our approach with a learned-by-demonstration pick-and-place manu-
facturing task on a torque-controlled, 7-DoF robot. Thanks to the force and joint
torque capabilities of the robot, we exploit an external force observer to allow the
user to interact with any part of the robot’s body instead of just the end-effector,
as is usually the case. Overall, the user is able to interact naturally and intuitively
with the system, adding via-points in different DoF to the learned skill through a
Kernelized Motion Primitives (KMP) model.

1 Introduction

Recent advancements in robotics and artificial intelligence are enabling robotic systems to develop
increasingly sophisticated cognitive capabilities, positioning them to play a growing role in various
human activities. The fusion of robotic precision, speed, and repeatability with human perception
and decision-making is expected to yield significant advancements in areas such as cooperative
manufacturing, medical and rehabilitation assistance [1], and precision agriculture [2]. A critical
attribute of such systems is collaboration, enabling robots to work alongside humans and extend
their capabilities. This raises the question: what does it mean for a robot to be ”collaborative”? In
current research, this term is closely tied to human-robot interaction (HRI), where the key elements
of successful interaction are compliance and safety [3]. Compliance refers to the robot’s ability to
modulate its stiffness based on the level of contact required with the human operator, while safety
mechanisms ensure the system halts immediately in response to unexpected contact that could pose a
risk to the human collaborator. These factors are essential for enabling humans to share a workspace
with a cobot (collaborative robot).

Beyond safety and compliance, another crucial aspect of collaboration is the robot’s ability to learn
and adapt to tasks. Robots can acquire tasks either through demonstration [4] or programmed in-
structions, with human input provided at the start or during task execution [5]. Various modalities
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enable this input in HRI, including graphical user interfaces, voice recognition, vision-based sys-
tems, and physical-contact interaction. While the former are more ”virtual” forms of communica-
tion, physical contact provides a more direct and intuitive sense of collaboration, closely resembling
human-to-human interaction. In the context of physical-contact interaction, it is critical that in-
put from the human operator, typically measured through the robot’s force/torque sensors, is not
mistaken for task-related interactions with the environment. Therefore, the robot must be able to
accurately interpret human intention to facilitate this type of interaction.

Figure 1: The experimental setup is composed
of a torque-controlled, 7-DoF, robot mounted on
a manufacturing workstation, boxes A and B,
which contain inside them the rings that have to
be picked from A and placed to B.

Various approaches have been proposed to dif-
ferentiate between human intention and sensor
noise. For example, machine learning methods
can be trained to classify the source of input
[6], or thresholds can be established to distin-
guish between sensor noise and forces exerted
by an operator intending to collaborate on a
task [7]. Achieving compliant behavior, as dis-
cussed earlier, depends largely on how the sys-
tem is controlled. One of the most effective and
widely adopted solutions is impedance control,
which adjusts the robot’s response through its
stiffness matrix. In [8], the stiffness matrix is
modulated based on detected forces, while [9]
adjusts the matrix according to the variance of
the input data. Additionally, in [10], a system
is proposed where position or impedance con-
trol is activated based on user requirements, al-
lowing the human operator to take control of
the robot when necessary. Typically, such sys-
tems alternate between phases of autonomy and
phases where the user has direct control over
the robot.

In this work, we present a novel energy-tank-
based method, inspired by [11], that effectively
detects human intention across the three posi-
tional degrees of freedom (DoF) of the Carte-
sian space. By leveraging an external observer [12], integrated with the force-torque and joint-
torque sensors of our torque-controlled 7-DoF robot (Fig. 1), we enable interaction along the entire
robot body—not just at the end-effector. Additionally, we dynamically modulate the stiffness matrix
and force reference of the robot’s impedance controller using an intention index, ensuring a smooth
and intuitive interaction experience. We validate our approach on a torque-controlled, 7-DoF robot
performing a pick-and-place task, learned via demonstration using a kernelized motion primitives
(KMP) model. Once the task is learned, the user can interact with the system by introducing new
via-points to refine the skill further. Our method allows these via-points to be seamlessly integrated
into the task trajectory across multiple DoF, according to the detected intention.

The structure of this paper is as follows: Section 2 outlines the relevant theoretical concepts, Sec-
tion 3 details the proposed approach, Section 4 presents an analysis of the experimental results, and
Section 5 outlines the conclusions and discusses potential avenues for future research.

2 Background

2.1 Energy-tank-based intention detection and control

Energy-tank-based approaches are a common choice when designing controllers to ensure system
passivity and optimize energy efficiency [13]. In [11], Khoramshahi et al. proposed a human-
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guidance detection method which behaves as a switch. Representing the external and the estimated
human-intended forces as Fe and Fh respectively, they are related as follows

Fh “ hFe, (1)

where h P r0, 1s describes the interaction ratio. A value of h “ 0 means that no intention is detected
when an external force is applied, while h “ 1 is reached when the external force is the result of an
intentional human contact. The ı̀ntensity of the interaction can be estimated using the input Pi and
output Po powers of the system

Pi “ 9xTFe, Po “ 9xTFh, (2)

where 9x is the end-effector Cartesian velocity. An energy tank, with size Emax and state E, with
dynamics

9E “ Pi ´ Po ´ p1 ´ hqPd, (3)

is considered, where Pd ą 0 is the dissipative rate which lowers the tank energy when no input
power is applied. The energy in the tank is computed at t by integrating (3) as E “

şt

0
9Edt. The

human interaction rate h is computed according to the energy stored in the tank as

h “

"

0, if E ď E˚

pE ´ E˚q{pEmax ´ E˚q, otherwise
(4)

where Emax and E˚ are the maximum size of the tank and the energy value that triggers the start
of a possible intention detection, respectively. As per (1)–(4), externally applied forces increase
the energy in the tank through Pi, which is positive when the robot moves along the direction of
the applied force. In addition, the dissipative factor Pd helps reject high frequency, low magnitude
forces. The combination of these terms and the resulting dynamics into (4) provide a measure of
when an external force is the result of a purposeful human interaction.

2.2 Impedance control

Given a manipulator with n DoF, its rigid-body dynamics is represented by the following expression
[14]

Bpqq :q ` Cpq, 9qq 9q ` gpqq “ τ ` τ ext (5)

with the generalized coordinate vecotr q P Rn and the inertia, Coriolis and centrifugal, and gravity
matrices B P Rnˆn, C P Rnˆn, and g P Rn respectively; τ , τ ext P Rn represent the input
command and external forces.

Considering the full Cartesian space, let us define m “ 6. Thus, the compliant end-effector robot
behavior required in HRI can be achieved using a cartesian impedance control [15]

τimp “ JpqqTFimp ` gpqq (6)

Fimp “ KP x̃ ` KD
9̃x ` Fd (7)

where Fimp is the task-space wrenched needed to obtain a desired spring-damper behavior starting
from a virtual spring deflection x̃ “ x̂ ´ x, with x̂ and x P Rm the desired and actual operational-
space coordinates, respectively; KP and KD P Rm define the stiffnes and damping matrices, which
determine how force must be applied in response to deviations in both position and velocity; Fd is
the the force the robot should desirably apply on the environement, since in many tasks it is essential
to be able to control the interaction force as well. Here, the robot tracks the desired positions with a
force overley, adapting the compliant behavior thanks to KP .

2.3 Kernelized movement primitives

KMPs [16] are used in LfD to predict the distribution of ξ given observations of s. A KMP
is initialized with a reference trajectory distribution comprised of N Gaussians with parameters
tµn,Σnu

N
n“1, computed from human demonstrations for inputs sn“1,...,N using a GMM.
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Figure 2: A schematic representation of the proposed approach. Fe is the redundant set of force-
torque measurements, Feo is the generalized momentum along the body of the robot, h and Fh are
the intention rate coming from the detected intention and human-intended force respectively, τ is
the final command input, q is the robot joint state, and x̂ is the predicted point coming from the
KMP model.

For a test input s˚, the expectation and covariance of ξps˚q are given by

E rξps˚qs“k˚ pK ` λ1Σq
´1

µ, (8)

cov rξps˚qs“
N

λ2

´

k˚˚ ´ k˚ pK ` λ2Σq
´1

k˚J
¯

, (9)

where K “ rk̂ps1qJ, . . . , k̂psN qJs, k˚ “ k̂ps˚q, with k̂psiq “ rkpsi, s1q, . . . ,kpsi, sN qs,
k˚˚ “ kps˚, s˚q, kpsi, sjq “ kpsi, sjqI and kpsi, sjq is a kernel function. Moreover, µ “
“

µJ
1 . . .µJ

N

‰J
, Σ “ blockdiag pΣ1, . . . ,ΣN q and λ1, λ2, are hyperparameters. The kernel ma-

trices are denoted as K,k˚ and k˚˚. From (8)–(9) it follows that if, for a certain µn, the covariance
Σn is small, the expectation at sn will be close to µn. This provides a principled way for trajectory
modulation. Indeed, if, for a new input s̄, one wants to ensure that the expectation passes through a
desired µ̄, it suffices to manually add the pair tµ̄, Σ̄u to the reference distribution provided that Σ̄
is small enough. This both makes (8) closely match µ̄ and lowers the covariance (9) to match Σ̄.

3 Proposed Approach

The proposed approach combines the concepts outlined in Section 2 to enable the human operator
to interact directly with the robot at any point along its kinematic chain. This interaction allows the
operator to convey their intentions across various DoFs in the task space. The detected intention
modulates the underlying impedance controller, ensuring compliant contact and facilitating an intu-
itive interaction method for correcting learned models – specifically, KMPs – by incorporating new
via-points. An overview of the implemented workflow is depicted in Fig. 2.

3.1 Human Intention Detection

The main limitation of the energy-tank-based method described in Section 2, is that all dimensions of
the external force Fe contribute to the computation of h. Specifically, when the power of the system
Pi is calculated according to Eq. (2), these are combined with the Cartesian velocity resulting in a
single value, which fills the level of the energy tank. This leads to a single interaction index for all
DoFs in the operational space. As a result, it is challenging to determine which DoF the user intends
to correct.
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Let us consider only positional Cartesian coordinates Fe P R3, to allow the operator to freely express
their intention along the desired task-space axis, we propose to replicate the presented architecture
three times, one for each DoF j “ 1, . . . , 3. This decouples all the elements and creates three
different energy sub-tanks. The input of each sub-architecture is the force and Cartesian velocity of
the corresponding DoF. In this way we are able to obtain three distinct intention rates h, which we
define as hj . Furthermore, within our new architecture we also propose to change the dynamics of
how h is calculated from the tank energy. The solution in Eq. (4) is, on the one hand, potentially
discontinuous, depending on the choice of E˚, and, on the other hand, its rate of change is difficult
to modulate. To achieve a smoother behavior we introduce a logistic sigmoid function

hj “
1

1 ` e´αpEj´E˚
j q

(10)

where α is the logistic growth rate representing the steepness of the curve, while Ej is the E˚
j value

at the function’s midpoint. The parameter α provides the means to regulate the smoothness of the
change of h, making it better suited for human interaction. Equations (1)–(3) are thus reformulated
as:

F j
h “ hjF

j
e (11)

P j
i “ 9xjF

j
e P j

o “ 9xjF
j
h (12)

9Ej “ P j
i ´ P j

o ´ p1 ´ hjqP j
d . (13)

Another fundamental elements of our human intention detection approach is the learning of the
nominal energy task. It is well-known that the robot accumulates energy during his movement since
it has a velocity and can register forces due to the imperfect compensation of gravity, the gripper or
the weight of the object being transported. Indeed, to find only human intention and not be influ-
enced by these common factors, the power expressed as Eq. (13) is integrated during an execution
without interaction with the user, Ẽj “

şt

0
9Ejdt, learned by the KMP, and then subtracted from the

energy calculated during the phase of possible interaction with the operator Êj “
şT

0
9Ejdt ´ Ẽj ,

compensating for the possible noises explained previously.

Unlike [11], who used a force-torque sensor at the end-effector to measure Fe, we here rely on a
external force observer [12] which allows us to accurately measure external forces on any point of
the robot kinematic chain. This way users are not constrained to interact with only the end-effector,
when trying to correct a skill, but are able to interact with any point on the robot, making our
approach more intuitive and versatile.

3.2 Interactive impedance control

The intention captured by the architecture plays a key role in making the impedance control that
governs the robot more interactive and in making the behaviour more compliant when required.
The estimated human-intended force F j

h and the interaction rate hj modulate the impedance control
Section 2.2 at each loop, the obtained control command input τ is given by

τ “ JpqqTFimp ` gpqq (14)

Fimp “ rI ´ diagph1, . . . , hjqsKP x̃ ` KD
9̃x ` Fh (15)

where h1, . . . , hm and Fh “ rF 1
h , . . . , F

m
h s modulate the position elements of the diagonal stiffness

matrix KP and the force elements respectively. While the orientation and torque part are kept
constant because we do not deal with them in our architecture. Overall, the robot becomes softer
when the intention starts to be detected or, in other words, h reaches 1. Meanwhile, the force that is
passed as a reference within the controller, which also grows proportionally to the intention, further
facilitates the interaction with the robot because it pushes in the same direction as the user, further
cancelling out the robot’s inertia, but at the same time following the desired position target.Here, it
is clear why a regular dynamic of h is necessary, this way we are sure that the robot does not jump
during its change of behaviour, making everything as natural as possible.
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3.3 Intention-aware via-point definition

We employ the DoF-specific intention detection to selectively modulate a demonstrated skill along
the relevant DoFs. For this we use the KMP via-point definition mechanism, described in Sec-
tion 2.3, to add new via-points based on the values of hj . Consider a via-point µ̄ P Rm as intro-
duced in Section 2.3. If an intention is detected on the j-th DoF at time t, i.e. hj,t “ 1, a via-point
is created with

s̄ “ t, µ̄j “ x̄j , Σ̄ “ γI (16)

where x̄j is the value of the j-th DoF measured when hj,t “ 1 and γ is a small factor. The remaining
DoFs µ̄i, i ‰ j, are set to the values of µn in the reference trajectory distribution whose input sn is
the closest to t.

4 Results and Discussion

We evaluate our approach on a torque-controlled, 7-DoF, robot in a pick-and-place production task
learned by demonstration. This type of task often requires skill corrections due to changes in the
environment (e.g., obstacles) or variations in object tolerances that increase precision demands.
Figure 1 shows the experimental setup, where the goal is to take a ring from box A and place it in
box B. The user provided 5 demonstrations, and a KMP model was trained with hyperparameters
l “ 2ˆ10´1, N “ 500, λ1 “ 1ˆ10´5. Note that in this experiment we did not employ covariance
prediction (9) as the focus was on generating a trajectory for the robot to follow. The proposed
interactive framework (Section 3) was tested by physically interacting with the robot along its body
to correct the learned trajectory during task execution. When the interaction indices reached hj “ 1,
signaling human intention, via-points were added at the corresponding DoF at that time instant. In
our experiments demonstrations, forces and corrections are all represented in the robot base, thus the
human can interact with the desired DoF with respect to this reference frame. For the energy tank
parameters we used E˚

j “ 0.002 and α “ 4800. While this experiment validated the core features
of our approach, it was conducted in a simplified environment. Future work will focus on applying
the method to more realistic scenarios with dynamic environments and greater task complexity.

Figure 3 presents the obtained results in this experiment. On the left-hand side, the Cartesian position
of the end-effector is shown, with the dark blue trajectory representing the path learned through
demonstration and the green trajectory showing the re-generated path after the desired via-points,
marked with red stars, have been added. In the middle plots we display the intention index hj , for the
different DoFs, throughout the task. It can be observed that the two trajectories on the left-most plots
follow a similar pattern, except in the regions where via-points are introduced. Here, the green line
deviates from the original trajectory, passing through the via-points and then rejoining the initial
path, effectively performing the intended task correction. Each via-point added to the trajectory
corresponds to a peak in the corresponding hj at the same time instant, indicating that the new point
is only added when human intention is detected by the proposed method.

On the right-hand side of the figure, we show the recorded forces during task execution. Several
increases in force are observed throughout the task, but only those that contribute to increasing the
system’s energy are detected as intentions. Force increases that do not result in intention detection
are attributed to routine interactions with the environment, such as picking up or dropping the ring,
and are correctly ignored by our system. Additionally, note that the force along the vertical axis, F3,
is not zero during the ring transportation due to the ring’s weight. However, thanks to our energy
compensation mechanism described in 3.1 this force does not trigger an intention.

5 Conclusions

For a human operator to collaborate effectively with a robot in executing a skill, it is essential that
the robot can understand human intention and adapt its movements to ensure safe shared operation.
In this paper, we proposed a method for detecting human intention through physical contact along
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Figure 3: The plot shows the obtained results during the correction of a manufacturing pick and
place task performed by a torque-controlled robot along different DoF. Left: dark blue line is the
trajectory predicted by KMP model, green line is the one generated by KMP model with added via
points, red star are desired via-points, and grey the given demontrations. Center: The interaction
index h. Right: The forces measured by external observer during the human-robot body contact.

the robot’s entire body. Our approach generates an intention index, which modulates the stiffness
and force reference of the impedance controller that drives the robot. We evaluated this method on a
manufacturing task learned via demonstration using a KMP model, where intention was used to add
new via-points, correcting the trajectory.

The proposed method can also be applied in scenarios where intention is needed to activate sub-
tasks, restore a learned method to its original state after perturbations, change control policies, or
activate safety layers. As future work, we plan to extend our method to correct skills not only in
position but also in force profiles. Additionally, we aim to integrate a visualization tool, such as a
web interface, to allow real-time monitoring of skills, robot movements, detected intentions, and the
ability to adjust hyperparameters.
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