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Abstract

Human motion is inherently intentional, yet most motion modeling paradigms fo-
cus on low-level kinematics, overlooking the semantic and causal factors that drive
behavior. Existing datasets further limit progress: they capture short, decontextual-
ized actions in static scenes, providing little grounding for embodied reasoning. To
address these limitations, we introduce Intend to Move (I12M), a large-scale, multi-
modal dataset for intention-grounded motion modeling. I2M contains 10.1 hours of
two-person 3D motion sequences recorded in dynamic realistic home environments,
accompanied by multi-view RGB-D video, 3D scene geometry, and language an-
notations of each participant’s evolving intentions. Benchmark experiments reveal
a fundamental gap in current motion models: they fail to translate high-level goals
into physically and socially coherent motion. I12M thus serves not only as a dataset
but as a benchmark for embodied intelligence, enabling research on models that
can reason about, predict, and act upon the “why” behind human motion. Data and
code are available at https://ummaaa.github.io/intend-to-move.

1 Introduction

To endow embodied Al with the ability to understand, predict, and seamlessly interact with humans,
we must first teach it the fundamental grammar of human behavior: intention. Humans do not move
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Figure 1: Dataset overview. Our dataset, I2M, captures complex, intention-driven human motion
in realistic home environments, featuring rich interactions both between humans and with their
surrounding scene.

in a vacuum; our actions are purposeful, driven by a complex interplay of goals, environmental
context, and social dynamics. As Figure 1 illustrates, even a simple domestic scene is a stage for a
complex web of intersecting intentions. Anticipating human actions in everyday scenarios represents
a critical frontier for embodied Al applications, from assistive robots that collaborate with humans in
daily tasks to intelligent environments that adapt to human needs.

However, existing human motion datasets, while foundational, have largely focused on the kinematics
of what a person does, not why. Seminal datasets such as Human3.6M [lonescu et al., 2014] and
CMUMocap capture isolated, short-term actions in sterile lab environments. While invaluable
for kinematic modeling, they lack the semantic richness and contextual complexity necessary for
embodied agents to reason about human goals and adapt their behaviors accordingly. Consequently,
while current models are capable of predicting trajectories, they lack an understanding of the intentions
driving those movements. This gap hinders the development of truly interactive, intention-aware
embodied systems, including robots and virtual agents that act in accordance with human goals.

To bridge this gap, we introduce Intend to Move (I12M), a large-scale, multimodal dataset designed
to catalyze research in intention-aware embodied motion modeling. 12M provides 10.1 hours of
long-duration, two-person motion sequences captured in realistic, dynamic home environments. Each
sequence is enriched with synchronized multi-view RGB-D video, detailed 3D scene geometry, and,
most critically, fine-grained, timestamped natural language annotations of each individual’s evolving
intentions.

Our dataset is built on three core principles that advance embodied motion understanding beyond
prior work:

* Intention-Grounded Motion: All captured motions are explicitly motivated by a hierarchy
of goals, from long-term activities like “cleaning the house” to short-term needs like “getting
a drink,” enabling models to learn the causal link between intention and action.

* Rich Human-Scene and Human-Human Interaction: Every scenario involves two in-
dividuals interacting with each other and a cluttered, object-rich environment—crucial for
modeling the social and environmental grounding that embodied Al systems must master.

* Dynamic and Realistic Scenes: Unlike static lab settings, our environments evolve over
time, with objects moving and environmental states changing, challenging models to reason
about adaptive, context-aware behavior in real-world settings.

To benchmark the challenges posed by I2M, we conduct extensive evaluations using a diffusion-based
generative model. Our experiments reveal a fundamental limitation: while current models excel when



Table 1: Summary of existing human motion datasets and ours. “Modality” denotes the types of
data provided in the dataset. “Annotation” denotes the semantic annotation (e.g., “object” for object
category and pose). “MultiHuman” indicates whether multiple people appear in one clip. “Natural
Clothing” indicates if subjects wear everyday clothes instead of mocap suits in RGB data. “Capture
Method” indicates the method used to obtain the human motion.

Multi Natural ~ Capture

Dataset Name Modality Annotation . Hour Frame Seq
Human Clothing Method
KIT WBHM [Mandery et al., 2015] | RGB motion text optical 7.68 3.7k
PiGraphs [Savva et al., 2016] 3D scan interaction graph kinect 2 63
PROX [Hassan ., 2019] RGB, 3D scan v kinect 100k 60
i3DB [Monszpart et al., 2019] RGB object manual 2.4k 8
GRAB [Taheri et al., 2020] 3D scan contact optical 1.3m 1.3k
MoGAZE [Kratzer et al., 2020] 3D synthe gaze, contact, object optical 3
GTA-IM [Cao et al., 2020] RGB-D synthe synthe Im 120
HPS [Guzov et al., 2021] RGB, 3D scan v W) imu 300k
SAMP [Hassan et al., 2021] 3D synthe optical 1.6 185k
MultiDex [Li et al., 2022] 3D synthe contact synthe 436k 436k
COUCH [Zhang et al., 2022b] RGB-D contact imu,kinect 3 > 500
HUMANISE [Wang et al., 2022] 3D scan motion text synthe 1.2m 19.6k
GIMO [Zheng et al., 2022] 3D scan gaze W) imu 130k 217
RICH [Huang et a 22] multi-view RGB, 3D scan contact v pseudo-labeling 540k 134

BEHAVE [Bhatnagar et al., 2022] multi-view RGB-D contact, object v pseudo-labeling 152k 321
CIRCLE [Aratjo et al., 2023] 3D synthe optical 10 4.3m > 7k
Human-M3 [Fan et al., 2023] multi-view RGB, 3D scan v v pseudo-labeling 12.2k
JRDB-Pose [Vendrow et al., 2023] panorama RGB v v manual 1.1 577k 54
CHAIRS [Jiang et al., 2023] multi-view RGB-D, 3D scan object W) optical, imu 17.3

HiK [Tanke et al., 2023] multi-view RGB object, motion category v v pseudo + manual 7.3

TRUMANS [Jia a synthesized multi-view RGB-D  contact, motion text optical 15 1.6m
InterCap [Huang et al., 2024] multi-view RGB-D v pseudo-labeling 67k 223
HOI-M? [Zhang et al., 2024] multi-view RGB, 3D scan object v W) imu 20 180m > 199
Nymeria [Ma et al., 2024] RGB+Grayscale, point cloud motion text, gaze, traj v imu 300 260m 1200
I2M (Ours) multi-view RGB-D, 3D scan intention text v v optical 10.1  873m 215

conditioned on low-level cues like joint trajectories, they struggle to translate high-level semantic
intentions into physically and socially plausible motion. This finding reveals a fundamental bottleneck
in the development of embodied Al—the grounding of abstract goals into embodied physical behavior.
By offering a rich, intention-centric dataset, I2M provides a foundation for advancing research toward
embodied Al systems that can not only predict human motion, but also understand, anticipate, and
act upon the underlying intent.

2 Related Work

Large-scale motion datasets are foundational for developing robust algorithms for human motion
prediction, generation, and recognition. Pioneering works like AMASS [Mahmood et al., 2019]
unified existing motion capture (mocap) data to power learning-based approaches. Subsequent efforts
have expanded dataset scale and diversity by incorporating rich scene and object contexts [Jiang
etal., 2024, Kim et al., 2024, Pan et al., 2023, Ma et al., 2024]. The quality of these datasets can be
assessed across several dimensions, including their semantic richness, motion accuracy, and visual
realism. Existing datasets have often excelled in one area at the expense of others. In this section,
we review prior work through the lens of these dimensions and position our dataset, I2M, as a novel
contribution that makes significant advances on all fronts.

2.1 Semantic Annotation: From Action Description to Intention

Understanding the meaning behind human movement requires rich semantic annotations. As summa-
rized in Table 1, the nature of these annotations has evolved significantly over time. Early datasets
provided sparse labels like motion categories [lonescu et al., 2013, Guo et al., 2020, Ghorbani et al.,
2021, Harvey et al., 2020, Shahroudy et al., 2016, Cai et al., 2022] or semantic attributes [Punnakkal
et al., 2021]. While useful for classification, these labels lack the descriptive power to capture the
nuances of complex actions. To address this, subsequent work introduced free-form text annotations
that describe the physical execution of the motion itself. The KIT dataset [Plappert et al., 2016] was
among the first to use full sentences, and more recent efforts like HumanML3D [Guo et al., 2022] and
Motion-X [Lin et al., 2023] have provided large-scale, fine-grained textual descriptions. However,



these annotations do not explicitly capture the underlying goal or motivation driving the action. This
is a critical limitation, as human behavior is not merely a sequence of movements but a series of
actions performed to achieve a higher-level objective.

Our work makes a key contribution by annotating motions with intentions. Instead of describing
the motion (e.g., “The person walks to the fridge, takes out a drink, and drinks it. ), we annotate
the motivation (e.g., “The person is thirsty.”). This shifts the focus from motion representation to
goal-oriented reasoning. GIMO [Zheng et al., 2022] shares a similar motivation, leveraging gaze as
an implicit proxy for intent. In contrast, our dataset provides explicit, text-based intentions, offering
more direct and specific supervision. This enables a new class of problems where models must infer
a sequence of plausible actions to satisfy a stated intention, rather than simply translating a motion
description into kinematics.

2.2 The Challenge of Uniting Motion Accuracy and Realism

The fidelity of a motion dataset is determined by its capture methodology, which has historically
presented a challenge in simultaneously achieving high motion accuracy and visual realism. Various
methods have been developed, each with distinct advantages and disadvantages.

Optical motion capture systems are the gold standard for accuracy, providing high-fidelity kinematic
data [Taheri et al., 2020, Mandery et al., 2015, Hassan et al., 2021, Aratjo et al., 2023, Jiang et al.,
2023, 2024, Kratzer et al., 2020]. However, most existing datasets captured with this method required
subjects to wear specialized mocap suits, creating a significant visual domain gap from natural attire.

Other capture methodologies allow for the use of everyday clothes, but these methods present their
own set of compromises. Vision-based systems—such as monocular [Lin et al., 2023, Cai et al., 2023,
Riza Alp Gueler, 2018, Pavlakos et al., 2019, Kanazawa et al., 2019, Shimada et al., 2020, Rong
et al., 2021, Goel et al., 2023, Ye et al., 2023, Luvizon et al., 2023], multi-view [Joo et al., 2015,
2017, Zhang et al., 2022a, Khirodkar et al., 2023, Grauman et al., 2024], and RGB-D tracking [Savva
et al., 2016, Hassan et al., 2019, Fan et al., 2023, Huang et al., 2022, Bhatnagar et al., 2022, Huang
et al., 2024, Tanke et al., 2023]—are accessible, but they tend to be less accurate and are susceptible
to occlusions. Full-body inertial measurement units (IMUs) [Trumble et al., 2017, von Marcard et al.,
2018, Kaufmann et al., 2021, Guzov et al., 2021, Zhang et al., 2022b, Zheng et al., 2022, Zhang
et al., 2024, Jiang et al., 2023, Kaufmann et al., 2023, Lee and Joo, 2024, Yang et al., 2024, Kim
et al., 2024, Cong et al., 2024, Ma et al., 2024] are another popular choice, offering robustness to
occlusions while better preserving natural attire compared to mocap suits, but the motion data is
typically less precise than optical systems due to issues like drift. Finally, while simulation offers
scalability [Cai et al., 2021, Akada et al., 2022, Black et al., 2023, Jiang et al., 2024, Aratjo et al.,
2023, Liet al., 2024, Cao et al., 2020, Wang et al., 2022], it struggles to replicate the diversity and
subtlety of real-world behavior.

This review highlights that existing datasets have generally necessitated a compromise between
motion accuracy and visual realism. Our work, I2M, is among the first datasets to jointly provide both
high-fidelity motion capture and visually realistic, natural-clothing RGB-D observations. As shown
in Table 1, we provide a large-scale dataset that features both the high accuracy of an optical capture
system and the visual realism of subjects in natural clothing. We achieve this by affixing small,
visually unobtrusive markers to everyday garments (see Section A for details). This approach allows
us to capture highly accurate motion and visually authentic RGB-D data simultaneously, providing a
unique and valuable resource for the community.

In summary, I12M addresses both the semantic limitation of existing datasets, which overlook hu-
man intentions, and the methodological trade-off between motion accuracy and realism, offering a
comprehensive foundation for intention-aware motion modeling.

3 I2M Dataset

3.1 Dataset Overview

The I2M dataset contains 10.1 hours of 3D human motion data across 215 temporally continuous
sequences. The data was collected from 16 participants (9 males, 7 females), recruited to ensure a
balanced distribution across age (20-50) and a variety of body shapes. The dataset is multimodal,
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frame_id: @, subject: pl, text: The person plans to
clean the room with her partner.

frame_id: @, subject: p2, text: The person plans to
clean the room with her partner.

frame_id: @, subject: pl, text: The area under the
carpet has not been cleaned for a long time.

frame_id: 2817, subject: p2, text: The person
discovered that there were magazines under the sofa.

(c) 3D Point Cloud & Mesh (d) Intention Text

Figure 2: Dataset modalities. (a) Human motion sequence, (b) Multi-view RGB-D video, (c) 3D
scene point cloud and mesh, and (d) Textual intention annotations.

Table 2: Examples of the four categories of human intentions in our dataset.

Category Intentions

Long-term Activities leisure, studying, online meetings, entertaining friends, cleaning, exercising
Short-term Needs drinking, eating, resting, going to the bathroom, turning on the TV
Responses to the Environment electrical troubles, furniture damages, items falling over, answering calls
Interactions with Partner call for help, share, make way, collaborate, correct

providing synchronized SMPL-based human motion, multi-view RGB-D videos, detailed 3D scene
information, and natural language descriptions of human intentions. For each sequence, the 3D scene
information includes a colored, instance-labeled point cloud of the entire scene, along with a 3D mesh
model in which the scanned meshes of the objects are correctly positioned within the scene. The
motion data captured at 240 fps consists of 17.5M frames in total, with a reliability flag provided for
each frame to indicate data trustworthiness (e.g., for moments when a subject is temporarily outside
the capture volume). The RGB-D video data comprises 436K frames recorded at 30 fps from four
perspectives. Each sequence has an average duration of 169 seconds. The dataset includes a total of
1,388 textual annotations for intentions. Figure 2 showcases the modalities available in our dataset.

3.2 Data Collection Design

To capture motions that are both realistic and grounded in purpose, our data collection was built upon
three key design pillars.

3.2.1 Human Intention Design

In our dataset, human intentions are classified into four main categories: long-term activities, short-
term needs, responses to the environment, and interactions with partner. Table 2 provides illustrative
examples for each category.

Long-term Activities. We defined several common indoor activities, such as leisure, studying,
cleaning, and exercising. These activities typically span longer periods and form the primary context
for each motion sequence in the dataset. Further examples are detailed in Table 5.



Short-term Needs. These include intentions like drinking water, eating, or resting. Such needs are
not always directly related to the ongoing long-term activity and can arise at any point, causing shifts
in the subsequent human motion.

Responses to the Environment. Individuals continuously perceive and react to their surroundings.
This type of response, such as answering an unexpected phone call or reacting to a falling object, is
treated as a latent intention that influences motion.

Interactions with Partner. As our scenes always include two individuals, interaction is a key
element. This includes intentions to collaborate, seek help from the partner, or respond to actions
initiated by them.

3.2.2 Designing for Behavioral Diversity

A core challenge in modeling human behavior is its inherent ambiguity: a single high-level goal
can lead to a wide variety of plausible physical actions, framing the task as a one-to-many mapping
problem. While an intention provides a strong constraint, it does not completely eliminate this
ambiguity. For instance, the intention “get a drink” could result in walking to the kitchen to use the
tap, opening the refrigerator for a bottle of water, or asking a partner to pass a drink. Each outcome
involves a distinct motion sequence. To facilitate the study of this complex distribution, we therefore
captured this behavioral diversity by having a range of participants perform similar tasks multiple
times under varied conditions.

3.2.3 Scene Design

Our scenes are realistic home environments constructed with common household furniture and items,
designed to facilitate natural interactions based on the subjects’ intentions. The scenes have the
following key characteristics:

Dynamic Nature. Beyond interactions from the subjects, we incorporated dynamic elements common
in a home environment, such as an electric kettle boiling water or a phone ringing, to create a more
realistic and unpredictable setting.

Partial Visibility. We distinguish between visible and invisible parts of the scene. Areas perceived
by the sensors are considered visible. However, other rooms or the contents of containers like
cabinets and refrigerators are invisible, reflecting real-world scenarios where complete information is
unavailable.

Human Perception. Subjects perceive the visible parts of the scene, including dynamic changes, and
their actions are driven by their intentions in response to what they perceive. Their knowledge of
invisible parts may be incomplete or unreliable, and it is updated through interaction. For example, a
person might discover a magazine under the sofa while cleaning or mistakenly search for an item in
the wrong cabinet.

3.3 Data Acquisition and Annotation

Our process for creating the dataset involved careful planning of scenarios, a high-fidelity recording
setup, and a detailed annotation pipeline.

3.3.1 Recording Environment and Procedure

The dataset was collected in a motion capture studio arranged to simulate a home environment. The
setup includes a synchronized system of 12 OptiTrack Prime X13 optical motion capture cameras and
4 Kinect sensors. After calibrating all sensors and participants’ skeletons, we guided their actions with
textual instructions according to pre-designed scenarios that combined several long-term activities
and short-term needs. To enhance data diversity, the specifics of the activities and scene layouts were
frequently changed. Subjects wore everyday clothing fitted with small, unobtrusive optical markers,
allowing us to capture high-precision kinematics while maintaining a natural visual appearance in the
RGB-D data. Following the approach of [Zheng et al., 2022], we captured high-quality 3D meshes
by scanning the environment using the Scaniverse' app on an iPhone 15 Pro equipped with a LIDAR
sensor. Further details of the recording environment are provided in Section A.

"https://scaniverse.com
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3.3.2 Processing and Annotation

The collected raw data was processed and annotated to generate the final dataset modalities:

Human Motion Data. The captured marker data was processed using Motive 3.0.3 to compute 3D
joint positions and orientations. We then fit this data to the SMPL model to obtain full-body pose.
To handle situations where motion capture might be unreliable—for instance, when subjects are
temporarily outside the capture volume to retrieve an item from another room or when a guest enters
the scene mid-sequence—we provide a reliability flag for each motion frame indicating whether the
data is available and trustworthy.

Intention Annotations. After collection, we reviewed the synchronized video and motion data to
manually annotate the precise start frame for each textual goal, creating a detailed, timestamped log
of each participant’s intentions.

3D Scene Data. For each sequence, we provide two forms of 3D data: (1) a comprehensive colored
3D point cloud of the entire scene, where each point is annotated with an object instance label, and
(2) a 3D mesh model of the scene in which the scanned object meshes are accurately placed. The
dynamic aspects of the scene are captured by the multi-view RGB-D videos.

3.4 Intended Uses

I2M opens up new possibilities for studying human behavior and motion. Its long-term, intention-
driven sequences support research in areas such as motion generation, motion prediction, and action
planning, where agents must reason about high-level goals in complex environments. The inclusion
of text and scene information enables multimodal approaches with potential applications in real-world
settings. Additionally, the dataset offers rich data on multi-person interactions, facilitating studies in
social robotics and human-human collaboration. Beyond specific prediction tasks, I2M provides a
foundation for exploring how human intentions can be inferred from observed motions—a crucial
step toward developing more intelligent and empathetic Al systems.

4 Experiment

4.1 Problem Setting

We tackle the task of long-term human motion prediction in dynamic home environments using
the I2M dataset. This task aims to predict a person’s future motion in contexts with rich scene
information and human-human interactions. Specifically, we formulate the task as predicting the next
5 seconds (150 frames at 30 fps) of motion, conditioned on the past 3 seconds (90 frames). Motions
are represented as 3D joint positions based on the SMPL joint format. Data sequences were generated
using a 60-frame stride sliding window. This process resulted in 25,000 training data samples and
606 test data samples.

4.2 Prediction Model and Evaluation Metrics

Prediction Model. We adapt the AffordMotion model [Wang et al., 2024], a diffusion-based motion
generation framework. The prediction task is formulated as a conditional inpainting problem. The
model is trained to denoise a full 240-frame sequence (90 past, 150 future). We start with a random
noise sequence and replace the first 90 frames with the ground-truth past motion. The model then
denoises the whole frames to generate the future motion prediction, conditioned on the provided past
motion and other semantic inputs.

Conditioning Modalities. In addition to the standard scene point cloud input, we investigate
various conditioning modalities, each embedded into a 512-dimensional vector. These include:
Intention Text, natural language descriptions of human intentions encoded via CLIP’s text
encoder [Radford et al., 2021]; RGB Images, multi-view frames encoded by a ResNet-50 [He et al.,
2016]; Trajectory, the past root joint trajectory encoded by an MLP; and MotionCLIP, semantic
embeddings of past motion from the MotionCLIP model [Tevet et al., 2022].



Table 3: Quantitative evaluation results under different input conditions. We use colors to denote
the first and second places respectively.

Condition ADE@1 | FDE@l| MPIPE@1]  ADE@20 FDE@20 | MPIPE@20 ]
Self Intention Text 1.5734+0.002 1.584+0.010 1.606+0.002 0.867 +0.002 0.785 £ 0.004 0.942 + 0.002
RGB Images 1.651 £0.002 1.671 +£0.005 1.709 +0.003 0.659 £ 0.001  0.634 £ 0.004  0.776 = 0.001
Self Trajectory 1.175 £ 0.002 1.255+0.008 1.264 +£0.001 0.583 & 0.002 0.556 & 0.003 0.732 & 0.001
Pair Trajectory 1.013 £0.002  1.099 & 0.004 1.155+0.002 0.490 +0.002 0.479 +0.002 0.678 + 0.002
Self MotionCLIP 1.434 £0.002 1470 £0.006 1.474+£0.002 0.831 £0.001 0.787 +0.002 0.915 + 0.001
Pair MotionCLIP 1.3554+0.002  1.406 + 0.004 1.407 +0.002 0.653 £ 0.002 0.613 £ 0.005 0.756 = 0.002
Self Multimodal 1336 £0.002 1423 +0.005 1.390 +£0.002 0.749 +0.002 0.731 £ 0.004  0.840 = 0.002
Pair Multimodal 1220 £ 0.002  1.260 +0.004 1289 +0.002 0.657 =0.001 0.621 +0.003 0.761 + 0.001
Condition MMADE@20 | MMFDE@20], MCE@20],  APD@201 Non-coll@l 1 Contact@1 1
Self Intention Text  1.140 +0.001  1.087 +0.002 1499 +0.003 5.530+0.005 0.998 +0.000 0.672 =+ 0.005
RGB Images 1159 £0.000 11524+ 0.001 1.321 +0.003 | 7.461 = 0.002  0.998 + 0.000  0.730 = 0.002
Self Trajectory 0.820 +0.000  0.828 +0.001 1.125+0.002 4.666+0.001 0.997 = 0.000 | 0.858 = 0.002
Pair Trajectory 0709+ 0.000  0.729 £0.000 1.191 +0.003 4281 £0.002 0.997 + 0.000 0.848 + 0.003
Self MotionCLIP 1.045+0.001  1.039 +£0.001 1218 +0.002 4.546+0.002 0.998 + 0.000 0.806 + 0.001
Pair MotionCLIP 0.985+0.000  0.973 +0.001 | 1.112+£0.003  5.310+0.004 0.997 +0.000 0.849 + 0.002
Self Multimodal 0.970 £0.000  0.998 +0.001 1.181 £0.004 4.350 £ 0.003 0.997 + 0.000 0.822 + 0.003
Pair Multimodal 0.853+0.000  0.835+0.001 1.149 +0.003 3.992+0.001 0.998 +0.000 0.812 + 0.002

Experimental Setup. We design eight distinct conditioning configurations: Self Intention
Text, RGB Images, Self Trajectory, Pair Trajectory, Self MotionCLIP, Pair
MotionCLIP, Self Multimodal, and Pair Multimodal. “Self” configurations use infor-
mation pertaining only to the person whose motion is being predicted, while “Pair” configurations
additionally incorporate information from the interaction partner. The Self Multimodal and Pair
Multimodal configurations combine all respective “Self” and “Pair” modalities to assess their
synergistic effect. For each configuration, we fine-tune the pretrained AffordMotion model for
20,000 steps. We repeat each experiment 5 times with different random seeds and report the mean
and standard deviation of the metrics. Further details are provided in Section B.1

Evaluation Metrics. We evaluate the generated motions using a comprehensive set of metrics. For
prediction accuracy, we use the standard Average Displacement Error (ADE), Final Displacement
Error (FDE), and Mean Per Joint Position Error (MPJPE). We report these for a single prediction and
the best among K=20 samples. To evaluate the model’s ability to capture the multimodal nature of
human behavior, where multiple future paths are plausible, we use Multimodal ADE (MMADE) and
Multimodal FDE (MMEFDE) [ Yuan and Kitani, 2020]. These metrics assess how well the distribution
of generated samples covers the multiple potential ground truth futures. Furthermore, we introduce
MotionCLIP Error (MCE) to measure perceptual similarity based on the L2 distance between the
MotionCLIP embeddings of the predicted and ground truth motions. To measure the diversity of the
generated samples, we use Average Pairwise Distance (APD). For physical plausibility, we adopt
Non-collision (Non-coll) and Contact from [Wang et al., 2024] to evaluate realism within the scene
context. Detailed definitions for these metrics are provided in Section B.2.

4.3 Quantitative Results

Table 3 shows the quantitative results. Trajectory-only models showed superior performance across
all metrics, likely due to their clear spatial-temporal structure. The performance boost from Pair
Trajectory over Self Trajectory indicates that even simple conditioning enables the model to
capture human-human interactions.

In contrast, conditioning on semantically rich inputs such as RGB images and intention text led to
greater motion diversity, as measured by APD. However, this increase in APD does not necessarily
correspond to semantically meaningful diversity. In particular, the limited improvement observed
in multimodal metrics such as MMADE and MMFDE suggests that the generated samples do not
consistently align with the distribution of plausible future motions. Instead, the higher APD likely
reflects increased model uncertainty in grounding semantic cues into motion, resulting in more
divergent but less well-grounded predictions.



(c) Today's work is donel (d) Clean the room.

Figure 3: Qualitative results. Qualitative examples from our Pair Multimodal model illustrate
both successful outcomes (a—c) and a common failure mode (d). The input motion is shown in dark
pink, and the predicted future motion is in light purple. While the model can generate motions
consistent with the given intention, it sometimes produces physically implausible results (e.g., object
penetration), highlighting key challenges for future research.

4.4 Qualitative Results

To provide a qualitative assessment of our baseline model’s performance, Figure 3 presents several
examples under the Pair Multimodal condition. We first examine successful cases where the
model generates motions semantically consistent with the given intentions. For instance, given the
intention “Receive an item handed over by the partner,” the model correctly predicts a motion of
walking toward the partner and extending an arm to receive the item (Figure 3-a). For “Want to take
out the bento,” it generates a plausible sequence of the human standing up from a sofa and walking to
the refrigerator (Figure 3-b). For “Today’s work is done,” the model produces a natural sequence of
the human standing up from their desk and moving away (Figure 3-c).

However, the results also highlight common failure modes. As shown in Figure 3-d, the model
can generate physically implausible motions. In this example, the generated motion for “Clean the
room” shows the human’s body passing through a bookshelf while their feet float above the ground.
This example illustrates the remaining challenges in grounding high-level intentions into physically
realistic and scene-aware motion, underscoring the research opportunities enabled by our dataset.

4.5 Discussion

A key finding is that the Pair Multimodal model, despite having access to all available data modalities,
exhibited weaker performance on quantitative metrics than models conditioned solely on trajectory
information. This suggests that incorporating semantically rich inputs—such as intention text, RGB
images, and MotionCLIP embeddings—does not directly translate into reduced positional error under
current modeling choices. Importantly, this behavior does not indicate a limitation of the dataset
itself, but rather exposes a gap between rich semantic observations and existing motion generation
architectures. Pre-trained encoders such as CLIP and ResNet, while effective for general semantic
representation, may not yield embeddings that are readily compatible with temporally coherent and
physically plausible motion generation in complex scene contexts. Taken together, these observations
highlight a fundamental architectural challenge: current models struggle to translate high-level
semantic goals into the low-level kinematics required for motion generation.

Furthermore, a critical limitation in the field is the absence of metrics designed to evaluate whether
a generated motion fulfills the underlying human intention. Current geometric metrics like ADE
and FDE measure positional accuracy but fail to capture this higher-level concept of success. For



example, consider the intention “take a book from the shelf.” A predicted motion might bring the
person close to the shelf, resulting in a low geometric error. However, if the person never actually
touches the book, the motion has failed to achieve the core intention. Even our semantic metric,
MotionCLIP Error (MCE), only assesses consistency within a learned feature space and falls short of
evaluating whether the intention was truly fulfilled.

Based on these findings, future work should address two key areas. The first is the development of
new architectures capable of aligning high-level semantic intention with low-level motion trajectories
over time. The second is the establishment of a new evaluation framework that moves beyond
geometric error to directly measure how successfully a generated motion achieves its stated intention.

The 12M dataset provides the resources to tackle these fundamental challenges. It provides rich,
multimodal data grounded in explicit human intention. This creates a foundation for developing
models that can reason about high-level goals, alongside evaluation frameworks capable of measuring
their successful execution.

5 Limitations and Future Directions

Our data collection methodology presents clear directions for future extensions. While our focus was
on full-body kinematics, the current dataset does not include fine-grained hand and finger articulations,
which are critical for detailed interaction analysis. Furthermore, our setup lacks egocentric vision or
gaze tracking, modalities that offer a direct window into a human’s focus of attention and intent, and
our use of textual instructions precluded the capture of natural conversational audio.

To further enhance value and generalizability, future efforts should aim to capture a broader spectrum
of behavioral diversity. This would involve recruiting a wider range of participants, considering
factors like age and personality traits which can lead to significant variations in motion patterns.
Expanding the scope beyond the current two-person, indoor scenarios to include outdoor environments
and larger group interactions would also be a valuable direction, enabling the study of more complex
social and environmental dynamics.

Beyond the data itself, our work highlights the urgent need for new evaluation paradigms within
intention-aware motion modeling. Traditional geometric metrics such as ADE and FDE are insuffi-
cient for this task, as they primarily measure spatial similarity and cannot confirm if a semantic goal
was successfully achieved. A critical avenue for future research is therefore the creation of robust
“intention-aware” metrics that move beyond positional accuracy to measure true goal fulfillment. This
might involve defining task-specific success criteria or leveraging multimodal large language models
to assess the semantic plausibility of generated motions.

6 Conclusion

We introduced Intend to Move (I2M), a large-scale multimodal dataset designed to shift human
motion research from describing “what” humans do to understanding “why” they move. By capturing
long-duration, multi-person motion sequences grounded in explicit intentions and rich, dynamic
scenes, [2M establishes a foundation for studying socially aware, intention-driven behavior in realistic
contexts. Our experiments reveal a persistent gap between the high-level semantic reasoning required
to interpret human intention and the capabilities of current motion generation models. This gap
highlights that advancing the field demands more than scaling data—it requires rethinking the
architectures and objectives of motion modeling itself. We thus present I2M not merely as a dataset,
but as a catalyst for developing models that can ground abstract goals into physical action, and for
designing evaluation paradigms that assess true semantic goal fulfillment. Ultimately, I2M aims
to pave the way toward the next generation of embodied Al systems—ones that can genuinely
understand, predict, and collaborate with humans in the complex, dynamic environments we share.
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* The proofs can either appear in the main paper or the supplemental material, but if
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4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We describe the detail of model architecture and training method.
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* The answer NA means that the paper does not include experiments.
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to make their results reproducible or verifiable.
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nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We provide the url of data and code.
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» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We describe the training and evaluation detail in the experiment section.
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the mean and standard deviation over 5 runs with different random
seeds.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
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* The assumptions made should be given (e.g., Normally distributed errors).
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* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide the potential negative impact section.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: Details are described in Section D.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We only use the standard models in the research topic and off the shelf sensing
devices.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We describe the details of the proposed dataset in the dataset section.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: Details are written in Section C.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: As described in Section C, this study was reviewed and approved by the
Research Ethics Committee of the University of Tokyo.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20



16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Dataset Details

We constructed a multimodal capture environment within a 7m x 7m space, as illustrated in Figure 6.
This environment was equipped with a system of 12 OptiTrack Prime X13 optical motion capture
cameras (processing the captured marker data with Motive 3.0.3) for high-fidelity motion tracking. Si-
multaneously, four Kinect cameras were positioned at the corners of the space to record synchronized
multi-view RGB-D video.

Our data collection process was meticulously designed to address the challenges outlined in Section 2,
specifically the need to unite high motion accuracy with visual realism. The key to our approach lies in
bridging the visual domain gap inherent in many optical capture datasets: instead of using specialized
mocap suits, subjects wore everyday clothing onto which we affixed small, visually unobtrusive
optical markers, as shown in Figure 4. This method allowed us to capture both high-precision
kinematic data and visually authentic footage of subjects in natural attire.

To ensure the captured interactions were grounded in a realistic context, the scene was furnished
with common household items and furniture, creating a dynamic and interactive home environment.
A comprehensive list of these items is provided in Table 4. Samples of the resulting synchronized
motion and RGB data can be seen in Figure 7.

B Experimental Details

B.1 Implementation Details

All models were trained on a single NVIDIA A100 GPU (80GB) using a batch size of 256 and a
learning rate of 1 x 10~%. For motion feature extraction, we utilized the MotionCLIP [Tevet et al.,
2022] model with the officially released pretrained weights. For RGB image feature extraction, we
employed a ResNet-50 [He et al., 2016] model sourced from torchvision version 0.19.1 [maintainers
and contributors, 2016].

B.2 Maetrics Definition

We use the following metrics to measure the performance. The “@K” notation indicates that the metric
is evaluated over K generated samples. For instance, ADE@1 considers only a single prediction,
while ADE@20 considers the best among 20 samples.

(a) OptiTrack Prime X13 Camera

(b) Kinect Camera (c) Clothes with Optical Markers

Figure 4: Devices and marker-fitted clothing used for data collection.
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(1) Average Displacement Error (ADE): The average Lo distance over all 7" time steps between
the ground truth motion p and the closest predicted sample p among K samples. It is computed as:

ADE@K = -
@ ke{r}nnK} (T Z [Pkt Pf||2>

where py, ¢ is the predicted pose at timestep ¢ for sample k, and py is the ground truth pose at timestep
t.

(2) Final Displacement Error (FDE): The L, distance between the final ground truth pose pr
and the final pose of the closest sample pj 7 among K samples:

FDE@K = min _||prr — Drl2
ke{l,...,K}

seees

(3) Mean Per Joint Position Error (MPJPE): The average Lo error across all J joints and T’
timesteps for the closest sample among K predictions:

T J
MPIPE@K = min | 7 Jggllpk,t,j—f)t,j\b

where py, ¢,; is the position of joint j at timestep ¢ for sample k.

(4) Average Pairwise Distance (APD): The average Lo distance between all pairs of K motion
samples, measuring diversity:

T
1
R = DDl COSIE
i=1 j#i,j=1 t=1
A higher APD indicates greater diversity among the generated samples.

(5) Multimodal ADE (MMADE) and Multimodal FDE (MMFDE): These are multimodal
versions of ADE and FDE, respectively [ Yuan and Kitani, 2020]. They are designed to evaluate
a method’s ability to produce diverse predictions that cover multiple potential ground truth future
motions, particularly when the future is inherently ambiguous.

Standard metrics like ADE@K evaluate KX generated samples against a single ground truth sequence.
This penalizes diverse but plausible predictions that deviate from that specific ground truth. To
address this, MMADE and MMFDE evaluate the generated distribution against a set of plausible
ground truth futures.

First, for a given input motion, we construct a set of plausible ground truth future motions, G. This
set is formed by collecting all motions from the test set whose starting pose is within a predefined
distance threshold to the final pose of the given input motion. Let P = {py, ..., px } be the set of
K predicted motions generated by the model.

MMADE @K is calculated by first finding the ADE between each predicted motion p; € P and
its closest motion in the plausible set G. These “best-match” ADEs are then averaged over all K
predictions. This rewards models that generate a diverse set of samples, where each sample is close
to at least one of the plausible future outcomes. The formula is:

K
1
MMADE@K = - kz (fgné? < Z [Pk, — gt||2>>

where py, ; is the pose of the k-th prediction at time ¢, and g; is the pose of a ground truth motion
from the plausible set G at time .

MMFDE @K follows the same logic, but for the final displacement error. For each of the K predicted
motions, we find the FDE to its closest counterpart in the plausible set G and then average these

values.
K

1
MMFDE@K = — min —g
K kz:; (geg Hpk,T gT||2>

where py 7 and g7 represent the final poses of the predicted and ground truth motions, respectively.
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Figure 5: Instructions presented to the subjects for the data collection.

C Ethics Statement

The human subject study in this paper has been reviewed and approved by Research Ethics Committee
of the University of Tokyo. In the study, we informed the subjects in advance that their facial and
motion data would be publicly disclosed for research purposes. With their consent, we had them sign
both a consent form and a consent withdrawal form. The instructions presented to the subjects in the
experiment are shown in Figure 5.

D Potential Negative Impact

The dataset we provide is intended for human motion modeling, and it could lead to surveillance of
individuals or privacy violations if misused with malicious intent. Furthermore, because we provide a
set of human motion and intentions, it may be harmful if a model is trained to infer intentions from
behavior. To reduce such risks, we implement the access control and strictly review those who are
eligible for access. We will also suspend the access permission at any time if we discover someone
using it improperly.
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Figure 6: Layout of the data collection environment. The 7m x 7m capture area (left) is surrounded
by sensors. The workstation (right) is located outside the sensors’ field of view, allowing researchers
to monitor the process and instruct subjects. The furniture positions shown are illustrative, as the
scene layout was frequently changed.

Motion

Figure 7: Synchronized RGB images and their corresponding motion data.
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Table 4: Items appearing in the I2M dataset.

Object categories

Items

Furniture
Appliances

Housekeeping-related items

Study / office items
Food-related items

Personal items
Leisure / sports items

sofa, table, chair, bed, book shelf, cabinet

television, TV remote, refrigerator, kettle, printer, monitor, lamp,
washing machine

vacuum cleaner, trash bin, garbage bag, towel, mop, broom, laun-
dry detergent, clothes, clothes hanger, pillow, pillowcase, newspa-
per, tissue box

book, laptop, paper, whiteboard, whiteboard marker, headphones

teapot, teacup, paper cup, tray, dish, beverage bottle, beverage
carton, fruit, beverage can, snack, bento, paper-wrapped food, ice
cream, cup noodles, straw, tea leaves in a box, chopsticks, spoon,
coffee maker, capsule for coffee maker

mobile phone, watch, wallet, handbag
dumbbell, yoga mat, comics, chess, Jenga

Table 5: Examples of intentions related to long-term activities.

Long-term Categories

Descriptions

Leisure

Want to watch TV

Have nothing to do

Want to sleep

Want to read comics for fun
Want to enjoy music

Studying

Is studying
Have to study afterward
There are unclear points in the knowledge from the book

Want to use reference books in study

Online Meeting

Is attending an online meeting

Have to attend an online meeting afterward
Want to prepare materials for an online meeting
Have to give a presentation in an online meeting

Entertaining Friends

A friend is about to visit

A friend is visiting

Serving tea to a friend
Playing games with a friend
Seeing a friend off

Giving a gift to a friend

Want to organize clothes
Want to wash clothes

Cleaning )
Want to tidy up clutter
Want to clean the room
Want to do warm-up exercises
.. Want to use dumbbells for strength training
Exercising

Want to do abdominal exercises

Want to practice karate
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