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Abstract

A central challenge in meta-reinforcement learning (meta-RL) is enabling agents trained
on a set of environments to generalize to new, related tasks without requiring full policy
retraining. Existing model-free approaches often rely on context-conditioned policies learned
via encoder networks. However, these context encoders are prone to overfitting to the
training environments, resulting in poor out-of-sample performance on unseen tasks. To
address this issue, we adopt an alternative approach that uses an abstract representation
model to learn augmented, task-aware abstract states. We achieve this by introducing
a novel architecture that offers greater flexibility than existing recurrent network-based
approaches. In addition, we optimize our model with multiple loss terms that encourage
predictive, task-aware representations in the abstract state space. Our method simplifies the
learning problem and provides a flexible framework that can be readily combined with any
off-the-shelf reinforcement learning algorithm. We provide theoretical guarantees alongside
empirical results, showing strong generalization performance across classical control and
robotic meta-RL benchmarks.

1 Introduction

Achieving robust generalization to new environments is challenging for agents trained within a single setting.
While such agents may perform well in the training environment, they often fail when faced with even minor
changes to dynamics. Meta-reinforcement learning (meta-RL) addresses this limitation by training across
a distribution of tasks, thereby enabling the few-shot adaptation of classical RL agents (Beck et al., |2025;
Nagabandi et al., 2018]).

One of the most promising directions in meta-RL is context conditioning (Zintgraf et al., 2021} [Lee et al.,
2020). The core idea is to learn a context representation that captures task-specific information from a
distribution of environments. At test time, the agent can explicitly infer the context of a new, unseen
environment and adapt its behavior accordingly. Recent work (Lee et al., |2020; |Rimon et al., [2024) has
shown that context-conditioned dynamics models are particularly effective to meta-RL settings.

A key limitation of context-based meta-RL approaches is that the agent’s performance depends heavily on
the encoder’s ability to accurately distinguish between tasks. Consequently, if the context encoder overfits
to the training distribution - or fails to generalize - its out-of-sample performance can degrade substantially
(Zintgraf et al.| [2021)).

This work aims to improve generalization in meta-RL by leveraging abstract representation models (ARMs),
which learn high-level representations of environmental states using a pretrained model. Our goal is to
produce task-aware, augmented abstract state representations. We obtain task-aware states with a neural
architecture that encodes states into an abstract space through a state-space encoder and infers task en-
codings with a recurrent neural network (RNN). These representations are optimized jointly using a set of
complementary loss functions. Our approach offers two main advantages: (1) ARMs are straightforward
to train and generalize well, reducing reliance on the context encoder; and (2) they integrate seamlessly
with any off-the-shelf model-free reinforcement-learning algorithm, giving the agent direct access to task
information.
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Our network architecture integrates abstract state representation learning with task inference in a unified
framework. Unlike previous approaches that rely primarily on task-encoders that are trained separately,
we introduce a joint optimization framework based on predictive losses in the abstract space—capturing
transitions, rewards, and task structure.

We call our methodology Environment-aware Meta Encoding and Representation Abstraction for Latent
Domains—EMERALD. It is a novel reinforcement learning framework that learns task-aware abstract
representations capturing both environmental dynamics and task-specific factors, enabling improved gener-
alization and task disambiguation in meta-RL settings. Our key contributions are:

e EMERALD shows state-of-the-art performance across a suite of meta-RL benchmarks by outper-
forming existing approaches in few-shot adaptation and transfer tasks, and is compatible with stan-
dard reinforcement learning algorithms such as SAC and PPO.

e We provide theoretical justification for EMERALD’s design, showing how incorporating contextual
information into the abstract state space promotes faster generalization to unseen tasks.

2 Related Work

Meta Reinforcement Learning Meta-reinforcement learning (meta-RL) enables RL agents to rapidly
adapt to new, unseen tasks or environments (Beck et al., |2025; [Nagabandi et al., |2018). The goal is to
learn a policy trained on a set of tasks 7; ~ p(Tirain) that can quickly adapt to new tasks. Achieving this
requires the agent to generalize effectively across tasks, leveraging experience from the training distribution
to perform well in novel settings (Finn et al., 2017)). Meta-RL can also be viewed through the lens of partially
observable Markov decision processes (POMDPs), where the true task identity is unobserved and must be
inferred through interaction, making context inference analogous to belief state estimation (Humplik et al.,
2019; Rakelly et al.| 2019)).

Context-based Meta-RL Context-based meta-RL approaches learn a context encoder to capture variations
across tasks. PEARL (Rakelly et al., 2019) and VariBAD (Zintgraf et al.| [2021]) formulate the context-
encoding problem using a Bayesian Adaptive MDP (BAMDP), where a context variable z is modeled as a
belief state inferred from past transitions and used to condition the policy, yielding 7 (s; | z). VariBAD passes
an augmented state—consisting of the current state and the belief variable—to the policy. This allows the
agent to adapt its behavior based on the inferred task identity. We build on this idea of an augmented state
space, but rather than concatenating the state and context, we feed the learned context variable directly
into the state-space encoder of the representation model.

Model-based Contextual Meta-RL MAMBA (Rimon et al., [2024) extends VariBAD to the model-
based setting by integrating context encoding into Dreamer’s latent imagination process. A related method,
CaDM (Lee et al., [2020)), learns contextualized dynamics models by conditioning both the reward and tran-
sition models on context, and employs a backward-and-forward transition mechanism to stabilize training.
Our approach builds on these methods, but uses only forward predictions in the abstract space. As in
Dreamer-based methods such as MAMBA, we allow the policy to operate in an abstract space with lower
cardinality than the raw state space, |X| < |S x T|. However, our state—task encoder can also be deployed
in model-free settings via abstract representation models. Figure [l illustrates the high-level architectural
differences between our approach and other context-based methods.

Abstract Representation Models in Deep RL Abstract representation models (ARMs) are widely used
in deep reinforcement learning to improve generalization and sample efficiency (Botteghi et al.| [2022; [Starre
et al., |2022; [Ni et al., |2024). These models map high-dimensional states S to compact latent spaces X
via encoders ¢ : § — X', enabling more structured learning. Unlike “standard” auto-encoders, abstract
representation models in the context of RL are typically used to obtain generalizable abstractions of the
reward and transition dynamics. Several works illustrate this: for instance, |Zhang et al. (2018)) decouple
dynamics and rewards for domain generalization, while |Li et al.| (2021) apply abstract models to adversarial
settings with shared dynamics but varying visual observations. We build on these insights and extend ARMs
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to the meta-RL setting. Similar to prior combined RL approaches (Francgois-Lavet et al., [2019; Lee et al.|
2020)), our method is flexible and can be integrated with both model-free and model-based agents.

Separate Task Approach RNN-based Approach EMERALD
hi¢ hit RNN | Recurrent Network
Fully Connected Layers
( Task-aware Abstract State
e -
z Task-Encoding
Hj State Space
z z —> Input/output
C U N 5 hist Full Trajectory up to t
28 28 28
Separate Context (Encoder Learned) z Separate Context (RNN Learned) z Augmented State Space (RNN + Encoder)

Figure 1: Comparison of state and context representation strategies. Left: Methods such as CaDM learn
state (s) and context (z) representations independently, without temporal modeling. Middle: VariBAD-like
approaches use RNNs to learn z from trajectory history hi_,:, but still treat s and z as separate components.
Right: Our proposed EMERALD ARM architecture integrates the trajectory-derived context z with the
current abstract state to form a task-aware shared latent state representation x, enabling unified and task-
aware modeling of the environment dynamics.

3 Task-aware Abstract Representation Models

Notation We define a task 7; as a Markov Decision Process (MDP), represented by the 5-tuple 7; =
(S, A, P;,r;,7), where S is the state space, A the action space, P;(sty1 | St,a¢) the transition kernel, and
r; the reward function mapping state-action pairs to real-valued rewards. The discount factor is denoted
~v € [0,1). We index time steps by the subscript ¢, e.g., s; and s¢11.

We sample N independent and identically distributed (i.i.d.) training tasks 7; ~ p(7). From a task, we can
collect data sets of transitions D; = {(Sk,t, Gk.ts Sk t+1, rk,t)}};’zl. The combined dataset across all IV tasks is
denoted D = Uivzl D;. We let m; = |D;| denote the number of transitions collected from task 7;. We denote
the entropy of a random variable X as H(X), and the conditional entropy as H(X | Z). £;(f) denotes the
loss of a model with parameters 6 in a single environment i and E,7)L7(0) the loss over all tasks in the
distribution.

Model Components The abstract state space is denoted as X and the task embedding space as Z. Note
that, in our architecture, X contains both the information about the task as well as the state in that
task. The ARM has four components: (1) the contextual state-space encoder ¢ : S x Z — X, (2) the
transition function 7 : X x A — X, (3) the reward predictor p : X x A — R. Lastly, (4) a learned
encoder ¢ : (S x A x R)!"! x & — Z, mapping a history of transitions to an environment embedding
Z € RF: z; = ¢(host—1), where ho_ys—1 = (80,00, 71,51, 01,25« St—1,0t—1,T¢, 5¢)- Figure (right) shows
a schematic overview of the model architecture.

Policy We denote the policy as 7 : X — A. The value function V™ (x) is defined as the expected return
when starting from abstract state x and following policy 7:
o = .T] .

o0
VT(z) =E, lz iy
t=0
The Q-function Q™ (x,a) denotes the expected return when taking action a in abstract state x, and thereafter
following 7r:

oo
Z’ytn

t=0

Q" (z,a) = Ex

xozx,aoza].
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Goal The aim is to learn a policy that maximizes the expected return across tasks sampled from the task
distribution p(7). Formally, we optimize:

max Brp7) [E($07a077'174~-)~ﬂ77 [Z ’VtTtH ;
’ t=0

where the expectation is taken over both the task distribution and the rollout distribution induced by the
policy 7 across a task distribution, operating in the abstract state space X.

3.1 Task-Aware Augmented State-Representations in Meta-RL

Necessity of task-aware ARMs in meta-RL Despite the capacity of representation models to generalize
well in simple meta-RL settings such as a variety of different mazes, we argue that only through the addition
of task-specific information can their potential be fully realized. We prove this in Proposition

Proposition 1 (Task-aware Encoding Yields a Strictly Lower Loss) Let Ty and T3 be two tasks such
that, for some state-action pair (si,at), the transition dynamics differ: Pi(sir1 | St,a1) # Pa(Sir1 |
s¢,at). Consider an encoder ¢ : (S x A x R)!'™1 x & — R that maps a history of transitions hy; =
(S0,G0,71, 81, --,01—1,Tt,5t) to a task embedding z = ¢(h14). We say z is task-aware if it retains task-
specific information from the transition history, quantified as I(hy.+;2) > 0, and task-agnostic if it does not,
i.e., I(h1.t;2) = 0. Then, for any model composed of encoder v, transition model T, reward model p, and
task encoder ¢, the minimum achievable loss under this embedding is greater than or equal to that under a
task-aware embedding:

inf [Etransition(e) + A Ereward(e)] Z inf [Etmnsition(a) + A Ereward(o)} .
»,7,0,¢ P, 7,0,
I(h1:¢;2)=0 I(hy.4;2)>0

The intuition (full proof in Appendix is that without task-awareness (measured by how much task
information is retained by the encoder), the abstract representation model will not be able to learn a
representation that can differentiate based solely on the input it receives. As such, task-agnostic state-
space encoders essentially introduce a one-to-many mapping, which collapses into a single point during
optimization. We provide an illustration of this insight in Figure
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Figure 2: Illustration of Proposition Raw input states, where 57 maps to state Ss in task red and to Ss in
task green. Left: Optimal encoding where both follow-up abstract states are mapped to different regions in
space. Right: Suboptimal encoding we would expect if the encoder does not retain contextual information.
In that case, we may observe a collapse of the two states, because 1/}(5;(1) and w(sgé) are pushed to the same
point in order to minimize the loss.

How can task-awareness be achieved? We introduce a novel approach that integrates task information
directly into the abstract state space X via the encoder 1, producing representations to be both compact and
task-relevant. Unlike prior meta-RL methods that condition downstream components (such as dynamics,
reward models, or policies) on context (e.g., VariBAD, PEARL), our method performs early context injection
by embedding task identity during the state abstraction phase. This design allows our agent to resolve task
ambiguity upstream, providing a strong inductive bias and leading to more robust representations that
generalize better to unseen tasks.

By shifting task uncertainty into the encoder, we also simplify the overall architecture and training objective,
eliminating the need for amortized inference or latent variable optimization at test time. Furthermore, this
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abstraction-first formulation is highly modular and integrates seamlessly with both model-based and model-
free RL algorithms. We formally justify this design through the lens of entangled versus disentangled
modeling: in the latter, state abstraction and task representation are learned separately, whereas in the
former — our setting — they are integrated into a single representation. We then empirically show that our
approach leads to improved generalization across standard meta-RL benchmarks.

Proposition 2 (Entanglement Yields Lower Entropy) Let T; and T3 be two tasks such that for some
state-action pair (s, at), the transitions differ: Pi(si¢t1 | st,a1) 7# Pa(St41 | Stoar). Let 2 = ¢(hi ) € Z
be a deterministic task embedding computed from transition history. Consider two model variants: (1) a
task-state entangled version, where xy = (st 2), the transition prediction is given by xiy1 = xy + 7(T¢, at)
and the estimated reward 7y = p(x¢, ar); and (2) task-state disentangled version, where xy = ¥*(St), Te41 ~
e +7(24, ar, 2) and the estimated reward ¥y = p*(xy, at, z). Then, assuming ¥, p and T are deterministic and
trained to perfectly fit the transition loss and reward loss, the total entropy of the representations satisfies:

H(¢(se,2)) < H(w*(s¢)) + H(z).

That is, the task-state entangled version yields strictly lower joint entropy due to resolving task ambiguity in
the representation, resulting in simpler transitions and reward functions.

We provide the full proof in Appendix [C. Intuitively, Proposition [2] states that entanglement causes context
ambiguity to be resolved before it reaches downstream tasks (e.g., before computing transition probabilities
or state-to-action mappings via the policy). As such, following a general “conditioning reduces entropy”
rule (Cover & Thomas, [1999; |Gray, [2011; MacKay, 2003), which has been explored extensively in the
machine learning literature (Bounoua et al., |2025; [Pandey & Dukkipati, [2017; |Shamir et al., [2010), early
conditioning effectively ensures that all model components are one-to-one mappings. We call the task-aware
abstract state space produced by the the state-task encoder the augmented abstract state space.

4 EMERALD: Architecture & Objectives

ARM: Architecture Blocks We introduce a parameterized abstract representation model, consisting
of (1) a state-space encoder 1, (2) a latent transition function 7, (3) a reward predictor p, and (4) a
transitions-to-context function ¢ to adjust for environment-specific dynamics (see Appendix |G| for a more
detailed overview). Formally, we have four parameterized model components:

¢(st,z;9¢) — Ty, Tyl = Ty + T(:Et, ag; 97), = p(mt, ag; Gp), z = gﬁ(ht; 9¢).
We combine the model parameters into a jointly optimizable model via 6, where 6 = (6, 0, 6,, 6,).

ARM: Objectives The transition and reward dynamics are effectively captured by the loss functions
defined below. We define the transition and reward losses as:

L:(g)transition = E(st,at,‘st+1,rt)~D “W(Swh 23 0¢> - (¢ (st7 23 0w> + T<¢(st7 23 ew ata )) || i|

LO)rewara = Etsa,sermnn | [re = p((s1,2:0),0:6,) ]

The formulations above follow standard practice (e.g., Francois-Lavet et al.| (2019)), but we introduce context
vectors z retrieved from the context encoder ¢ and include it directly into the optimization objective. To
prevent a potential state space collapse, we also include a regularizer:

L:(g)reg = exp <_Cd||w(s+vz;0¢') - w(s_,z;alll)HZ) )

where st and s~ are two randomly sampled states and Cj is a constant. Intuitively, this term enforces that
any two states are some distance apart.
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Algorithm 1 EMERALD Abstract Representation Model Training

Require: ARM (transition encoder, reward predictor, abstract state encoder, task-encoder), task distribu-

tion p(7T), learning rate ay, batch size B, epochs per task nepochs, initialize replay buffers D; for every
task 7;, context horizon H

1: Offline Data Collection: For each task 7;, collect a dataset D?mi“e = {(st, at, St41, 7))}y of offline

transitions following policy .

2: while not converged do

© P NP Rw

10:
11:
12:
13:
14:
15:
16:
17:
18:
19: end while

for each task 7; do
Reset context window: h* < ()
for epoch =1 to nepocns do
for each batch {(s¢, a, si11,7¢)} ~ Dine do

Sample task embedding z ~ ¢(- | h';0)

Encode states: @y = (¢, 2;0y) 237 = ¥(St41, 25 0y)

Predict transition and reward: #;11 = x¢ + 7(2¢, as;6;)

Predict reward: 7, = p(a, as;6),)

Compute loss: EO = Etransition + Ereward + /8 ‘Creg

Update 1) parameters: 6y < 0y — ag, 5 Zf;l Vo, Li

Update ¢ parameters: 0, < 05 — ag, % Eile Vo, Li

Update p parameters: 6, — 6, —ay, % 2?:1 Vo, Li .

Add to context window: ¢* <— ¢ U {(s, ar, e, Se41)} until [bY| < H

end for
end for

20: return Trained ARM.

> ARM training loop

> Parameter updates

Putting everything together, we obtain the following joint objective:

ﬁ(g) = ‘C(Q)transition + E(G)rcward + ﬂﬁ(@)rcg,

where 5 > 0 determines the regularization strength. We minimize this objective using standard mean
squared error losses for the transition and reward terms. Algorithm [1f shows the pseudocode for the ARM
training process. Throughout the experimental section, we sample the offline data for training (line 1 of the
algorithm) the model using a random policy. However, in practice, the offline data might also be collected
via a non-random or expert policy. A Python implementation can be found at https://anonymous.4open.
science/r/EMERALD-F324.

Training of the policy The policy is trained after ARM training. We freeze the representation model’s
parameters and pass the online transitions through the model. The augmented abstract state approach allows
us to combine the learned representations with any reinforcement learning algorithm (e.g., SAC, PPO). We
define the optimal policy as:

7" =argmax V" (¢¥(s¢, 2;0y)), Vs €S.

Algorithm [2 shows the pseudo-code for policy training (full version shown in Appendix D).
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Algorithm 2 EMERALD Policy Learning

Require: Trained ARM, tasks 7; ~ p(T), learning rates a,, @y, batch size B, rollout length n,., updates
N, horizon H; parameters 0, 0y; buffers D; <
1: while not converged do

2 for all 7; do > Rollout
3 B+ 0, hi <0

4 fort=1...n, do

5 2~ (- | W5 0p); 2 = (84, 250y), ar ~ o, (- | 1)

6: env step — Sey1,7Tt, Tir1 = ¢(5¢+1, z;0y)

7 add (zy,as,re,x441) to B and h* (truncate to H)

8 end for

9: D, +D;UB

10: end for

11: foru=1...n, do > Update
12: for all 7; do

13: minibatch b ~ D;; compute L, L},

14: end for

15: Or < 6, — O/,7TV97r ZZ L;; Oy < Oy — avvev ZZ L%/

16: end for

17: end while
18: return mo_, Vp,,

5 Experiments

Our evaluation consists of three complementary experimental sets, each designed to test a distinct aspect of
EMERALD. First, we compare EMERALD with strong baselines on out-of-distribution tasks. Second, we
evaluate the effect of training on multiple environments by measuring performance on in-distribution tasks.
Third, we perform two ablation studies: (i) we examine how the quality of the ARM affects policy learning,
and (ii) we visualize the learned task-aware latent space to assess how effectively the policy exploits it.

| | sy

Figure 3: Illustration of the Experimental Setup. Left: Cartpole with different sizes. Middle: Three
HalfCheetah with volumes. Right: Pendulum with different lengths.

5.1 Comparative benchmark on out-of-distribution tasks

We largely follow the experimental protocol of [Lee et al. (2020), using variants of the continuous-control
CartPole task and several MuJoCo benchmarks (Todorov et al.,2012)). The learning algorithms are trained
on a set of configurations and evaluated on previously unseen ones. For CartPole, for example, we train
on pole lengths 1.0, 1.5, and 2.0 and test the out-of-distribution performance on poles of length 0.5 and
2.5. The three evaluation domains are illustrated in Figure [3] EMERALD is paired with Soft Actor-Critic
(SAC) (Haarnoja et al.,2018)) (EMERALD SAC) and Proximal Policy Optimization (PPO) (Schulman et al.
2017) (EMERALD PPO). The ARM is pre-trained offline with 5 x 10k CartPole transitions, 11x ~ 4.5k
Pendulum transitions, and 5 x 100k HalfCheetah transitions. In order not to give our model an unfair
advantage, we collected the offline transitions under a random policy.
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CartPole (Lengths)

Pendulum (Lengths)

HalfCheetah (Volume)

Test (moderate) Test (extreme) Test (moderate)

Test (extreme)

Test (moderate)

Test (extreme)

Vanilla PPO
Vanilla SAC
Stacked PPO
PEARL

PPO EP

CaDM

VariBAD
EMERALD PPO
EMERALD SAC

198.2 £ 0.9 187.8 £ 4.7 -1113.2 £ 69.1
199.2 + 0.3 199.4 +£ 0.1  -402.0 £ 131.3
197.8 £ 1.3 189.2 £ 6.1 -475.7 £ 228.1
198.0 £ 1.4 187.5 £10.9  -645.3 £ 320.7
196.3 + 4.0 184.5 £ 9.7 -374.3 £ 24.6
197.9 £ 3.0 193.0 £ 3.5 -279.8 £ 42.1
199.1 + 2.8 192.0 £ 3.5 -318.5 & 56.6
199.1 £ 1.1 199.3 £ 3.5 -312.4 £ 19.0
194.6 £ 2.7 196.2 £49 -198.3 £ 23.3

-1356.8 + 48.0
-1274.2+ 133.7
-488.2 + 178.2
-1136.6 £ 251.0
-256.7 + 26.4
-426.4 + 227.0
-643.1 + 311.4
-313.7 &£ 101.5
-749.4 + 340.9

807.7 £ 553.6
1998.3 + 142.1
361.1 £ 141.7
642.1 + 488.3
895.3 £+ 445.1
1224.2 + 630.0
2964 + 179.5
2942.5 £ 213.5
5101.1 £ 151.8

574.0 + 645.6
177.4 £ 321.3
5.7 + 208.1
462.1 £ 534.5
674.2 £+ 686.8
1021.1 £ 676.6
1618.3 + 251.8
1401.4 £+ 421.3
3271.8 £ 180.2

Table 1: Performance comparison means over 10 runs (Mean Return 4 Std.) for CartPole, Pendulum, and
HalfCheetah (Volume). The best statistically significant (Welch’s t-test p < 0.01) results in each group are
boldfaced and quantify the rolling average over the last 100 timesteps.

Performance on Pendulum Moderate

—— Vanilla PPO

—— Vanilla SAC
Stacked PPO

—— PEARL

—— VariBAD

200

-400

-6001 T o

—— EMERALD + PPO

—800 EMERALD + SAC

Average Return

-1000

-1200

-1400

— PPO+EP. [ —

Performance on HalfCheetah Moderate

5000

4000

3000

2000

Average Return

1000

100K
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—— PEARL

— PPO+EP

—— CaDM

—— VariBAD

—— EMERALD + PPO
EMERALD + SAC

150K 200K 250K

Timesteps

300K 350K 400K 450K 500K

(a) Pendulum

2M 2.5M 3M
Timesteps

(b) HalfCheetah (Volume)

Figure 4: Learning Curves for two out-of-distribution Experiments from the Moderate Regime (rolling

averages over 10 independent runs and adjusted for ARM budget allocation)

We compare EMERALD PPO and EMERALD SAC with seven baselines:

1. Vanilla PPO (Schulman et al.| [2017)): Standard Proximal policy optimization (PPO).

2. Vanilla SAC (Haarnoja et al.| [2018)): Standard Soft Actor Critic (SAC).

3. Stacked PPO (Lee et al.,|2020): PPO variant that feeds a fixed window of past transitions to the

policy.

4. PEARL (Rakelly et al., 2019): Infers a context variable by maximizing expected return.

5. PPO-EP (Zhou et al.,2019): PPO version that concatenates an embedding from early interactions
to the state.

6. CaDM (Lee et al.,2020): Augments a forward-backward dynamics model with a context encoder.

7. VariBAD (Zintgraf et al., 2021): Uses an RNN to produce a belief state that is concatenated with
the environment state and passed to both the policy and value functions.

Following (2020), we evaluate all methods on unseen environments under two regimes (see Ap-
pendix E for complete specifications):

1. Moderate: Unseen test tasks differ only slightly from the training distribution.
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2. Extreme: Unseen test tasks deviate substantially from training task.

To ensure fairness, the ARM is pretrained on offline data and the corresponding transitions are deducted
from each method’s overall interaction budget, which guarantees that all agents experience the same total
number of transitions (see Appendix M for the complete allocation budget).

Table [1] shows that EMERALD surpasses most baselines; the corresponding learning curves are displayed
in Figures On the Pendulum task we do not outperform PPO-EP in the extreme regime, suggesting
at a potential limitation when the environment exhibits strong periodic dynamics. However, the difference
of EMERALD-PPO with PPO-EP is not too large. Notably, both EMERALD-SAC and EMERALD-PPO
perform well overall, underscoring the benefit of modularity: one can boost performance by combining the
ARM with a different learning algorithm. Interestingly, the performance of the vanilla learners appears
predictive of performance with EMERALD: for instance, SAC and EMERALD-SAC both outperform other
methods on the HalfCheetah tasks.

HalfCheetah (Direction)

Vanilla PPO 1448.9 + 291.3
PEARL 1491.4 + 131.5
VariBAD 2112.5 + 193.6
EMERALD PPO 2259.9 + 317.1
EMERALD SAC 1343.2 + 391.1

Table 2: In-distribution performance on HalfCheetah (Direction) over 5 runs with random seeds

5.2 EMERALD on in-distribution tasks

Comparative in-distribution performance HalfCheetah (Direction) is an experimental setup in which
one task requires to walk forward and in the other task to walk backward. The goal here is to compare
EMERALD'’s performance to established baselines such as VariBAD (Zintgraf et al., |2021) and PEARL in
the in-distribution setting (training tasks and test tasks are the same). The results are reported in Table
and show that the PPO version of our approach outperforms existing baselines, albeit within the margin
of error. The improvement over Vanilla PPO further suggests that training with augmented abstract states
provides an additional boost in performance in this experimental setting.

Table 3: EMERALD In-Distribution Performance on Training Tasks (Mean Return + Std over 5 seeds).
Mean difference statistically significant (Welch’s t-test p < 0.01)

Environment Config # Training Tasks Samples per Task Mean Return + Std

CartPole 1 1 200k 91.4 + 37.5
CartPole 2 5 40k 187.0 &£ 19.8
HalfCheetah 1 1 3M 749.2 £+ 209.3
HalfCheetah 2 5 600k 1218.0 4 338.7

Effect of Environment Diversity on Performance We ask whether training on a greater diversity
of tasks is more beneficial than training with more data drawn from a single environment. This is an in-
distribution setting, as train and test tasks are the same. We allocate a total budget of 3M transitions
for HalfCheetah (Volume) and 200k for CartPole. In Configuration 1 the entire budget is spent on one
task, whereas in Configuration 2 the budget is split evenly across multiple tasks. Table |3] summarizes
the outcomes. Configuration 2 yields higher overall performance, indicating that exposure to a wider set of
environments outweighs simply scaling up data for a single task, demonstrating that increased task-diversity
offers greater sample efficiency.
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CartPole Performance 1400 HalfCheetah Performance
—e— CartPole 10k (Task Agn.) —e— HalfCheetah 10k (Task Agn.)
CartPole 100k (Task Agn.) —e— HalfCheetah 100k (Task Agn.)
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175 e+ CartPole 100k (Task Aware) = HalfCheetah 100k (Task Aware)
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Figure 5: Average Policy Performance (10 runs) with stdev. on CartPole and HalfCheetah (Volume) for
several Training Iterations, starting from a model trained with 1 epoch up to 100 epochs. Dashed lines are
task-aware iterations, solid lines display task-agnostic versions (no context encoding).

5.3 Ablation Studies

Model Effect on Policy Performance: We study how performance varies with (i) the number of training
epochs, (ii) the amount of offline data, and (iii) the presence of task-aware encodings. Figure [5| reports the
results (each marker is the mean of 5 seeds). In the CartPole setting with 10k transitions, returns plateau
after roughly 10 epochs, whereas HalfCheetah (Volume) requires more training but reaches satisfactory
performance at about 30 epochs. Although the 100 k-transition regime converges earlier, it does not exceed
the final performance of the 10k model-——showing that comparable results can be achieved with an order of
magnitude less data. Removing task encodings (i.e., using task-agnostic abstract states) sharply degrades
performance, particularly on HalfCheetah, providing empirical support for Proposition

Latent Trajectories in CartPole Latent Trajectories in HalfCheetah Latent Trajectories in Pendulum
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Figure 6: Visualization of the Latent Space (PCA mapping) of the EMERALD ARM with Training and
Test Environments of the first 50 transitions. Left: Cartpole. Middle: HalfCheetah (Volume). Right:
Pendulum. In CartPole and HalfCheetah (Volume) the out-of-distribution trajectories are 5 and 6, while in
Pendulum 11 and 12.

Latent Trajectory Analysis Figure [f] visualizes policy behavior in both training and test environments.
For each environment, we record the first 50 transitions and project them into a three-dimensional principal
component space. The resulting training and test trajectories exhibit similar shapes but occupy distinct
regions, suggesting that EMERALD learns behaviors that transfer across tasks while remaining sensitive to
task identity.
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6 Discussion & Conclusion

We introduced EMERALD, a meta-reinforcement-learning method that leverages augmented, context-aware
abstract states. Across benchmarks, our approach outperforms other model-free context-based baselines,
showing that task-aware representation models yield substantial gains in the meta-RL setting.

Beyond improved performance, we provided justification for the representational and architectural advan-
tages of our approach: by disentangling task-relevant features early in the pipeline, we simplify training,
improve robustness, and gain compatibility with a broad class of RL algorithms as our procedure yields a
simple encoder that produces task-aware abstractions. Despite these strengths, EMERALD has limitations.
First, the optimal structure of the latent space (e.g., dimensionality) can be environment-dependent and
difficult to determine a priori. Second, as the number of training tasks grows, the latent space may need
to expand to capture task diversity, potentially increasing computational cost. In such cases, hybrid ap-
proaches that decouple task inference from state abstraction may offer better scalability. Identifying where
this trade-off becomes critical is an important direction for future work.

A natural extension of EMERALD is to integrate it into a model-based framework. Whereas the present
study focuses on using a pretrained latent model within a modular, model-free pipeline, one could instead
exploit the latent dynamics directly to train a policy, thereby opening the door to direct comparisons with
established model-based meta-RL methods.
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