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Abstract

Solving time-dependent parametric partial differential equations (PDEs) remains a
fundamental challenge for neural solvers, particularly when generalizing across
a wide range of physical parameters and dynamics. When data is uncertain or
incomplete—as is often the case—a natural approach is to turn to generative
models. We introduce ENMA, a generative neural operator designed to model
spatio-temporal dynamics arising from physical phenomena. ENMA predicts future
dynamics in a compressed latent space using a generative masked autoregressive
transformer trained with flow matching loss, enabling tokenwise generation. Irreg-
ularly sampled spatial observations are encoded into uniform latent representations
via attention mechanisms and further compressed through a spatio-temporal convo-
lutional encoder. This allows ENMA to perform in-context learning at inference
time by conditioning on either past states of the target trajectory or auxiliary context
trajectories with similar dynamics. The result is a robust and adaptable framework
that generalizes to new PDE regimes and supports one-shot surrogate modeling of
time-dependent parametric PDEs. Project page: https://enma-pde.github.io/

1 Introduction

Neural surrogates for spatio-temporal dynamics and PDE solving have emerged as efficient alterna-
tives to tradltlonal numerlcal solvers, driving raprd advances in the field. Early work (
, ) laid the groundwork followed
by a wave of models leveraglng diverse archltectural designs ( , ; ,
; R s ). Neural operators (NOs) ( , ; R
, ) expanded the paradigm by learning mappings between infinite- d1mensronal
functlon spaces. Recent models have widely adopted this framework, improving scalabrhty and
flexibility ( ;
). While earlier approaches focused on ﬁxed PDE mstances current research tackles the more
general task of learning parametric PDEs ( ;
), and is now moving toward foundation models capable of handling multi- phys1cs regimes

’

( ’ , 2 , ’ 5 bl 5 l

).

Most neural PDE solvers to date have focused on learning deterministic mappings, limiting their
ability to capture complex or uncertain physical behaviors. This has spurred interest in stochastic
modeling through generative probabilistic methods. A primary motivation arises from chaotic
systems like weather forecasting ( , ; , ) and turbulent flows (

, ). Another challenge is error accumulation in autoregressive models which hampers
long-term predictions and could be mitigated through probabilistic forecasters ( , ;

*Equal contribution. Correspondence: armand.kassai[at]isir.upmc.fr, lise.leboudec[at]isir.upmc.fr

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://enma-pde.github.io/
mailto:armand.kassai@isir.upmc.fr
mailto:lise.leboudec@isir.upmc.fr

| Generation ‘ LI I
L process
- MLP Spatial

Spatial generation
R Transformer

remes o (LTI TIITITT]
l Zom MASK Continuous VAE
2 detokenizer
Continuous VAE Spatio-Temporal -
tokenizer Causal Transformer
Irregular input grid l I T
Temporal autoregressive
Zinos g
‘ ITTTTTTT]
{ TTITITITITITIT] ] aeneeeremeemeneremeememernecenesd
Z0L-1 [Zsos,ZD:Lﬂ ] Qutput grid

Figure 1: ENMA: Continuous Spatio-Temporal Autoregressive Generation. Given an initial
sequence of latent states Z%L'~1, a causal transformer predicts the next latent frame Zx,; using block-
wise attention for temporal autoregression (Sec.3.1.1). This state is concatenated with masked tokens
and passed to a spatial transformer, which performs masked spatial autoregression by progressively
decoding tokens across multiple steps. A lightweight MLP trained with flow matching produces
per-token predictions conditioned on spatial transformer predictions (Sec.3.1.2). The completed
frame Z~ is appended to the history for rollout. The full latent sequence is then decoded into the
physical domain using a continuous VAE decoder (Sec. 3.2).

, ). More generally, data-driven surrogates must handle both aleatoric and epistemic
uncertamty ( , , ), often under conditions of partial observability,
Sensor noise, or coarse space- t1me resolution. Additionally, they face distribution shifts at test time,
where PDE parameters may deviate from training data. Epistemic uncertainty may also stem from
model mismatch or limited training data, reducing generalization to out-of-distribution regimes

( , )-

Generative neural surrogates for time-dependent PDEs increasingly draw on advances from computer
vision and, more recently, language modeling. These approaches typically fall into two categories.
The first includes diffusion models, which operate in continuous spaces—pixel -level or latent—and
model the joint distribution of future states by reversing a noising process. Based on U-Nets or
transformer encoders ( ; s ), they have been extended to PDE
forecasting via iterative den01smg ( ; ,

). The second family follows an autoregresszve (AR) paradlgm predlctlng per—token cond1t10na1
distributions ( , ). These models discretize physical fields using vector quantization
( s ; , ), and generate sequences either sequentially ( s

) or via masked decoding ( s ; s ), with recent adaptations for PDE
surrogates and in-context learning ( , ). Each approach comes with trade-offs.
Diffusion models are robust to distribution drift and support uncertainty quantification via noise
injection, but require expensive training and inference ( , ). AR models offer efficient,
causality-aligned generation via KV caching and support in-context learning ( ),
but suffer from reduced expressiveness due to discretization and often yield uncalibrated uncertalnty
estimates ( R ). They are also more sensitive to error accumulation from teacher
forcing. Recently, continuous-token AR models have emerged as a promising alternative to discrete
decoding in vision ( , ), motivating their application to scientific modeling. We address
fundamental limitations in existing generative surrogate models for PDEs—particularly their reliance
on discrete tokenization or full-frame diffusion, which hampers scalability, uncertainty modeling,
and physical consistency. We introduce ENMA (presented in Figure 1), a continuous autoregressive
neural operator for modeling time-dependent parametric PDEs, where parameters such as initial
conditions, coefficients, and forcing terms may vary across instances. ENMA operates entirely
in a continuous latent space and advances both the encoder-decoder pipeline and the generative
modeling component crucial to neural PDE solvers. The encoder employs attention mechanisms to
process irregular spatio-temporal inputs (i.e., unordered point sets) and maps them onto a structured,
grid-aligned latent space. A causal spatio-temporal convolutional encoder ( , ) then
compresses these observations into compact latent tokens spanning multiple states.

Generation proceeds in two stages. A causal transformer first predicts future latent states autore-
gressively. Then, a masked spatial transformer decodes each state at the token level using Flow



Matching ( , s ) to model per-token conditional distributions in continuous
space—providing a more efficient alternative to full-frame diffusion (

; , ). Finally, the decoder reconstructs the full physical trajectory from the generated
latents. ENMA improves state-of-the-art generative surrogates by combining flexible per-token
generation wrth expressive and compact latent modeling. It extends language-inspired AR models
( , ) to continuous tokens, avoiding the limitations of quantization.
Compared to dlffusron models, it offers lower computational cost by sampling tokens via a lightweight
MLP instead of full-frame denoising. At inference, ENMA supports uncertainty quantification and
in-context adaptation—conditioning on either past target states or auxiliary trajectories governed by
similar dynamics. Our contributions are as follows:

* We introduce ENMA, the first neural operator to perform autoregressive generation over
continuous latent tokens for physical systems, enabling accurate and scalable modeling of
parametric PDEs while avoiding the limitations of discrete quantization.

» Using a masked spatial transformer trained with a Flow Matching objective to model
per-token conditional distributions, ENMA offers a principled and efficient alternative to
full-frame diffusion models for generation.

* ENMA supports probabilistic forecasting via tokenwise sampling and adapts to novel
PDE regimes at inference time through temporal or trajectory-based conditioning—without
retraining.

* To handle irregularly sampled inputs and support multi-state tokenization, ENMA leverages
attention-based encoding combined with causal temporal convolutions.

2 Problem Setting

We consider time-dependent parametric partial differential equations defined over a spatial domain
Q0 C R? and a time interval [0,7]. Each instance is characterized by an initial condition u® €
L%(Q,R%) and a set of parameters v = (b, f, ¢), which include boundary conditions b € L2 (9 x
[0, T],R%), aforcing term f € L2(2x [0, T],R%), and PDE coefficients c. The system of equations
is:

Nlu;e, f] (z,t) =0, for (z,t) € Q x (0,7, (1)
B [u; b] (x,t) =0, for (x,t) € 00 x [0,T], 2)
u(z,0) = u'(z), for z € Q, 3)

where N denotes a (potentially nonlinear) differential operator, and B encodes the boundary condi-
tions. From an operator learning point of view, the objective is to approximate with a neural network

G the temporal evolution operator Gy ul A = Gai(ul).

For training, we assume access to a dataset of N solution trajectories, {u; }.¥;, where each trajectory
is characterized by an initial condition u) ~ 1,0 and environment-specific parameters y; ~ v.,, and
is observed over a spatial grid X; and on a temporal horizon [0, T]. Since the parameters ~; are
unobserved, we supply the neural network with additional information beyond the current state u! to

help resolve this ambiguity. Specifically, we consider two predictive settings:

(i) Temporal conditioning. The model G observes an initial trajectory segment of L states
u%L~1 and must autoregressively forecast future states up until 7":

uL _ é(uO:L—l)’ uL+1 — G\(UO:L)’

(i) Generalization from a context trajectory. In this setting closer to the one of classical
numerical solvers, the model observes only the initial state u° of the target trajectory, along
with a separate context trajectory ud:L . governed by the same , but from a different initial
condition. The model uses this context to forecast the evolution from u":

1 0.,,0T 2 O (a,0:1. 0 O:T

u g(u Ueonext)s U = G(U Uehnext)

In these two settings, the surrogate model must emulate the underlying dynamics from data to unroll

the target trajectory. These settings highlight the challenges of forecasting time-dependent systems

under partial observability and unobserved parameters.



3 ENMA

We introduce ENMA, a neural operator tailored for continuous tokenwise autoregressive generation of
spatio-temporal dynamics. ENMA follows an encode—generate—decode pipeline to approximate the

solution operator G, and can be decomposed in the three corresponding steps G ~ G= DyoPyol,,.

The encoder &,, maps irregularly sampled spatio-temporal inputs u%=~1 € RI*|XLxc_observed at
| X| spatial locations over L time steps with ¢ physical channels—into a structured latent representation
Z0:L—1 ¢ RMXLxd The generative model Py then autoregressively predicts future latent states in a
tokenwise fashion, and the decoder D,, maps the generated latents back into the physical domain.
The full process for a one-step prediction can be summarized as:

L— encode L— generate ;5 / decode
uO.L IG]RLX\XLXC ZO‘L 1ERM><LXd ZLG]R]WXd ’II,LGR'XIXC (4)

Here, M is the number of spatial latent tokens per state Z and d the latent embedding dimension.
The generative model can be repeatedly applied to roll out predictions autoregressively over a horizon
of T steps. We describe the generative model in Section 3.1, and the encoder—decoder in Section 3.2.
For simplicity, we describe the model for the temporal conditioning setting, the adaptation for the
generalisation from context setting is immediate.

3.1 Tokenwise Autoregressive Generation

The core contribution of ENMA lies in its continuous autoregressive architecture, designed for
modeling spatiotemporal dynamics. The generative model proceeds in two stages (5): it first extracts
a spatio-temporal representation Zx%,; from the encoded trajectory Z% £~ using a causal transformer,
and then predicts the spatial distribution of the next time step via a tokenwise decoding mechanism.
This distribution is estimated with a flow-matching component, with the help of a spatial transformer
and a lightweight MLP, inspired by recent autoregressive models such as MAR ( , ).

0:L—1 M x Lxd Causal Transformer L
~ausa’ ranstorher,
Z eR zk, e

RM wxd AR Spatial Generation ZL c R]w X d. (5)
This two-stage design enables ENMA to capture both long-range temporal dependencies through
the causal transformer and fine-grained spatial structure with the generative spatial decoder, in a
scalable, autoregressive manner. This choice is further motivated by the distinction between temporal
and spatial dimensions: temporal prediction naturally benefits from the sequential ordering of the
trajectory, whereas there is no such ordering for spatial generation. We provide architectural and
training details for each stage, respectively, in Sections 3.1.1 and 3.1.2, following the temporal
conditioning setup introduced in Section 2.

3.1.1 Causal Transformer

The causal transformer is designed to extract spatio-temporal representations of a trajectory while
enabling scalable training. At each time step i, all tokens within the current state Z* can attend
to one another, as well as to all tokens from preceding states Z7 for j < 4. Formally, given a
sequence of latent states Z:L—1 = (Z° ... ZE~1), the transformer produces the dynamic context
representation for time step t: Zk, = CausalTransformer(Zggs, Z%*~1), where Zggs is a learned
begin-of-sequence (BOS) token. Zk, can be seen as a latent context capturing the dynamics, from
the observed time-steps [0, L — 1], to predict the next step L.

To support parallel training and efficient inference, this factorization is implemented using a block-
wise causal attention mask (see Appendix D). The model’s causal structure also enables key-value
caching at inference, allowing reuse of past computations and facilitating fast autoregressive rollout.

During training, we apply teacher forcing—conditioning the model on the full sequence of ground-
truth latent states. At inference, the causal Transformer can accept arbitrary sized sequence inputs
Z%L=1 for L € [0, T). Zky is then used as a context for the spatial transformer described in 3.1.2.

3.1.2 Masked Autoregressive Generation

To perform tokenwise continuous autoregression, ENMA employs a masked decoding scheme
conditioned on the context Z%, . This is implemented with a spatial transformer that produces



conditioning intermediate representations Z = (2f,... 2L )—which capture spatial correlations
and temporal context for each token—combined with a lightweight MLP that models the per-
token output distribution p(2F | 2F)),i = 1,..., M. We adopt the masked autoregressive (MAR)
strategy ( , ), which enables permutation-invariant autoregressive generation over the

spatial domain. Training and inference pipelines for spatial generation are illustrated in Figure 2.
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Figure 2: Training and inference for the spatial transformer. For training, a random subset of
tokens is masked and decoded in a single step. At inference, generation proceeds iteratively: starting
from a fully masked state Z©, a subset \V, of tokens is selected at each step to be generated by the
MLP, conditioned on spatial transformer outputs. This process is repeated .S steps to produce Zr.

Spatial Transformer. During fraining, a random subset of token indices M C {1,..., M} is
selected to be masked in the ground-truth latent frame Z %, with the masking ratio sampled uniformly
between 75% and 100%. These tokens are replaced with a learned [MASK] embedding to form the
partially masked input Z.,. The spatial transformer processes the concatenated pair (Zky, Zih o)

and outputs contextual representations Z™. The tokens 2k = zZr [M] are then used independently
to condition a lightweight MLP trained with a Flow Matching objective. For each i € M, the
MLP maps a noisy sample—conditioned on ZX—into a denoised latent prediction £7. The loss is

computed only over the masked positions M.

At inference, tokenwise autoregression proceeds over S autoregressive steps to predict ZL. At step
s = 0, ZL0 s initialized with the mask embedding, i.e. 2?’0 = [MASK] fori € {1,..., M}. Ateach
step, asubset Ny C {i € {1,..., M} | 2LLS = [MASK]} of the masked positions (not previously
selected if s > 0) are selected for generation. The spatial transformer processes (Zky, VA 5} and

predicts ZL3; the selected positions to be generated EZL ** are used to condition the flow matching

MLP, generating the selected tokens zAlL ** These tokens are inserted back into Z%** to form Z Lys+1

and the process continues until all positions are generated at step S, yielding ZL = ZLS, Multiple
tokens can be generated at each step. The number of decoded tokens per step follows a cosine
schedule: [N| = LM - cos? (%)J Compared to fully parallel decoding, this approach provides
fine-grained control over uncertainty and sample diversity, while enabling efficient generation through

vectorized MLP sampling.

Flow Matching for Per-Token Prediction To model per-token conditional distributions in continu-
ous latent space, ENMA employs Flow Matching (FM).

Let 21 € R? denote the ground-truth latent token at position i in the frame Z1 = (zf,..., 2L),

and let 2% be its contextual embedding produced by the spatial transformer. We drop the superscripts
for clarity here. We seek to learn the conditional distribution p(z | Z) via a flow-based transport from
a base distribution py = N(0, I) to the target p; = p(z | £). This is parameterized as an ordinary
differential equation (ODE):

dz"

s v(z",r), (6)



where 7 € [0, 1] is a denoising index for the flow matching, and v is a velocity field implemented by
a neural network. During training, we sample intermediate points along the probability path using:

z'=rz+[l-rle, e~N(0,I), ™)
We train a lightweight MLP, conditioned on the context 2z, to approximate the velocity field. It takes
as input (z", Z, r) and predicts the transport direction. The flow matching training objective is:

Lew = Ec, |[MLP(z", 2,7) — z + €|3] (8)
which encourages the model to match the velocity that would move z" along the interpolating path
toward z. At inference, token generation is performed by solving the ODE:

% = ODESOLVE (MLP(z", 2,7)), withz® ~ N(0,]),
from r = 0 to r = 1 using the midpoint method. This enables efficient of continuous latent tokens

conditioned on their spatial context, without requiring discrete quantization or full-frame denoising.
We present the full inference method of ENMA for latent generation in the pseudo-code 1:

Algorithm 1: ENMA Inference: Autoregressive Latent Generation with Cosine Masked Decoding

Input: Encoded latents Z%*~! from observed inputs u} = ~*

Output: Predicted latents {Z%, ..., ZT}
fort =L toT do
Z} < CausalTransformer(Z%!~1);
Z' « [MASK]:
for s = 1to S do
Z' + SpatialTransformer([Z}yy; Z*]);
ns < CosineSchedule(s, S);
Sample ng masked indices: N5 C {i | 2/ = [MASK] };
€ ~ N(07 I)ns ><d;
Z'[N,] + ODESOLVE(MLP, Z[N,], €);

B Zt « Zt,

3.2 Auto-Encoding

Encoding irregular spatio-temporal data into a compact latent representation is a central component
of ENMA. Inspired by recent advances in vision models ( , ), ENMA combines two key
elements. (7) a cross-attention module performs spatial interpolation, mapping the irregular inputs
u%*L=1(X), defined over an arbitrary spatial grid X" at L time steps, onto a regular grid =, yielding
intermediate representations ©%*~1(E). (i), a temporally causal CNN processes the intermediate
sequence u%*~1(E), across space and time into tokens Z%£~!, Mapping irregular inputs onto a
regular grid-aligned space, allows ENMA to leverage convolutional inductive biases of the CNN
for efficient and coherent compression. Decoding mirrors the encoder structure. The encoder and
decoder are optimized jointly with a VAE loss: £ = Liecon + 8 - L. To improve robustness to
varying input sparsity, we randomly subsample the spatial grid at training time: the number of input
points varies between 20% and 100% of the full grid X'. These two elements are described in more
details below.

() Interpolation via Cross-Attention For interpolation, we modify the cross-attention module
from ( ) to favor spatial locality, by introducing a geometry-aware attention bias.
This bias, exploits the geometry of the inputs and induces locality in the cross-attention operation,
enabling the regular gridded interpolation u%*~1(E) to capture the spatial structure of the physical
field.

Formally, we define the cross-attention from queries located at X’ to keys and values located at = as:
QK" +B

Attention(Q, K, V') = Softmax <
Vdy

) V, B@j = —m-dist(xi—gj), forz; € X,fj e=



where Q = ¢(X), K = k(E), V = v(E) are query, key and value tokens defined on the respective
spaces X and E, dj, denotes the key and query dimension, and m is a scaling factor (either fixed
or learned, as in ALiBi ( , )). Intuitively, larger distances between query and key
positions induce stronger negative biases, reducing attention weights and promoting locality in the
interpolation.

(1) Processing via Causal Convolution Following the interpolation mod-
ules, ENMA compresses latent trajectories using a causal 3D convolutional

causal padding

— encoder, enabling efficient representation across space and time. Unlike
T prior work (e.g., ( )), our use of causal convolutions sup-
5 ,,\\ ports variable-length inputs, allowing the model to process both temporally
‘ conditioned settings and initial value problems. For 2D spatial domains se-
— H quences, we use 3D convolutions with kernel size (k¢, ky, k., ) and a causal
‘ v padding in the temporal dimension ( , ). This techniques only
l w applies a k; — 1 padding in the past of the temporal dimension. This design
\T‘ ensures that outputs at time ¢ depend only on inputs up to ¢, enabling inference
from a single initial frame (see Figure 3). Spatial and temporal compression
. f H are applied independently, with the overall compression rate controlled by the
number of stacked blocks—each reducing the corresponding dimension by a

v factor of 2. The overall architecture design is detailed in appendix D.

Decoding Decoding mirrors the encoder structure. Transposed convolutions
reverse the spatio-temporal compression, and a final cross-attention layer
interpolates latent outputs to arbitrary physical grids. Here, the desired output
coordinates serve as queries, while the latent tokens provide keys and values,
enabling high-resolution reconstruction independent of the training grid.

Figure 3: Causal in
time convolutional
layer.

4 Experiments

We conduct extensive experiments to evaluate ENMA. Section 4.2 assesses the encoder—decoder
in terms of reconstruction error, time-stepping accuracy, and compression rate, comparing against
standard neural operator baselines. Section 4.3 evaluates ENMA’s generative forecasting ability
for both temporal conditioning and Initial Value Problem with context trajectory. Dataset, training,
and implementation details are provided respectively in Appendices C, E, and E. We also provide
additional experiments and ablations in appendix F.

4.1 Datasets

We evaluate ENMA on five dynamical systems: two 1D and three 2D PDEs. Data is generated in
batches where all trajectories share PDE parameters -y, but differ in initial conditions. The PDE
description is provided in Appendix C. For each system, we generate 12,000 training and 1,200 test
trajectories, using a batch size of 10. In 1D, we use the Combined equation ( , ),
where coefficients («, 3, ) vary for the terms f%—f, +%, and f%; and the Advection equation,
where both advection speed and initial condition vary. In 2D, we consider: the Vorticity equation
with varying viscosity v; the Wave equation with varying wave speed ¢ and damping coefficient
k; and the Gray-Scott system ( , ), where the reaction parameters F' and k vary across
batches.

4.2 Encoder/ decoder quality evaluation

Setting We evaluate the encoder-decoder quality across baselines that use latent-space repre-
sentations — a key component of neural surrogates. Since prediction accuracy depends on the
encoder—decoder pair, we first assess its limitations and show ENMA’s improvements. We conduct
two tests: (i) reconstruction, evaluating auto-encoding fidelity, and (ii) time-stepping, where a small
fixed FNO, trained per encoder, performs rollouts in latent space. All models are trained with the
same objective as ENMA, using input subsets varying between 20% and 100% of the grid X. At
test time, inputs use irregular grids with 7 = 20%, 50%, or full (100%) sampling; reconstruction is
always evaluated on the full grid. See appendix E for more implementation details and experimental
protocol.



Baselines We compare ENMA’s encoder-decoder against representative neural operator architec-
tures: two transformer-based models—OFormer ( , ) and AROMA ( ,

); the INR-based CORAL ( , ); the neural operator GINO ( , ).
These baselines differ in compression: OFormer performs no compression (point wise), AROMA,
CORAL, and GINO compress spatially, while ENMA compress both spatially and temporally. All
baseline are compared with similar token dimension (e.g. d = 4 for 1d datasets and d = 8 for 2d
datasets), but the compression rate can vary as some baselines do not compress in time and/or in
space.

Table 1: Reconstruction error — Test results and compression rates. Metrics in Relative MSE. The
compression rate reflects how much the latent representation is reduced compared to the input data.
A compression rate of x2 indicates that the latent space contains half as many elements as the input.

1 X, Dataset — Advection Vorticity
te
Model | Reconstruction  Time-stepping  Compression rate  Reconstruction — Time-stepping ~ Compression rate
OFormer 1.70e-1 1.11e+0 x0.25 9.99e-1 1.00e+0 x0.125
GINO 3.15e-1 8.55e-1 X2 5.63¢e-1 9.83¢-1 X8
= 100% AROMA 5.41e-3 2.23e-1 X2 1.45e-1 1.13e+0 X8
- ®  CORAL 1.34e-2 9.64e-1 X2 4.63e-1 9.18e-1 x8
ENMA 1.83e-3 1.64e-1 X4 9.20e-2 2.62e-1 X15
OFormer 1.79e-1 1.11e+0 - 9.99¢-1 1.00e+0
GINO 3.21e-1 8.64-1 - 5.69¢-1 9.91e-1
= 50% AROMA 2.34e-2 2.29¢-1 - 1.64e-1 1.14e+0
- ®  CORAL 7.57e-2 9.74e-1 - 4.95¢e-1 9.22¢-1
ENMA 4.60e-3 1.72¢-1 - 9.90e-2 2.68e-1
OFormer 2.50e-1 1.13e+0 - 9.99-1 1.00e+0
GINO 3.54e-1 9.11e-1 - 5.90e-1 1.04e+0
— 20% AROMA 1.67e-1 3.21e-1 - 2.29e-1 1.14e+0
T =29 CORAL 477e-1 1.06e+0 - 6.89%-1 9.37e-1
ENMA 3.05e-2 3.13e-1 - 1.37e-1 3.11e-1

Results Table | presents the reconstruction and time-stepping errors for ENMA and baseline
methods. These results highlight the robustness of ENMA across different grid sizes and datasets,
in both 1D and 2D settings. While most baselines struggle as the grid becomes sparser, ENMA’s
encoding—decoding strategy consistently provides informative representations of the trajectories, even
under limited observations. When the full grid is available (i.e., 7 = 100%), ENMA outperforms the
baselines, reducing the reconstruction error by up to a factor of 3x. As the observation rate drops to
50% and 20%, the performance gap widens even further. Notably, at 7 = 20%, ENMA maintains
strong performance, while other methods degrade significantly. This demonstrates ENMA’s ability to
generalize and infer latent dynamics under sparse supervision. For the time-stepping task, the higher-
quality tokens produced by ENMA significantly improve forecasting accuracy. We also emphasize
that ENMA compresses the temporal dimension more effectively than baselines: even with fewer
tokens (x4 compression in 1d and x 15 in 2d), it remains competitive. This improvement is attributed
to ENMA’s ability to leverage causal structure during encoding, which leads to more informative
and temporally coherent representations. Additional analysis about the ENMA’s encoder/decoder
architecture are provided in appendix F.

4.3 Dynamics forecasting

Setting We evaluate our model on the standard dynamics forecasting task, which predicts the future
evolution of spatio-temporal systems. We consider two settings: (i) temporal conditioning, where
the model observes the first L time steps and predicts up to horizon 7'; and (ii) initial value problem
with context, where only the target’s initial state u is given, along with an auxiliary trajectory
governed by the same parameters v but from a different initialization. The model must infer dynamics
from this context and forecast from u°. We evaluate both settings under in-distribution (In-D) and
out-of-distribution (Out-D) regimes, where the latter involves PDE parameters not seen during
training. Each Out-D evaluation uses 120 held-out trajectories. See Appendix C for details.

Baselines We evaluate ENMA against a diverse set of baselines, both deterministic and genera-
tive. For temporal conditioning, the deterministic models include the transformer-based solvers:



BCAT ( , ) and AViT ( , ) both designed for multi-physics forecasting,
and the Fourier Neural Operator (FNO), a classical reference. For the generative models we consider
a continuous autoregressive diffusion transformer AR-DiT ( , ), and Zebra (

, ), a language-model-style decoder operating in a quantized latent space. For the initial
value problem with context, we compare with the deterministic In-Context ViT that concatenates
the context trajectory to the target initial state, and with a [CLS] ViT variant that uses a learned token
to summarize the PDE parameters . For the generative baselines, we include Zebra ( ,

).

Table 2: Comparison of model performance for temporal conditioning and initial value problem tasks
across 5 dynamical systems. Metrics in Relative MSE. Lower is better.

Setting | Dataset — Advection Combined Gray-Scott Wave Vorticity

Model | In-D Out-D In-D Out-D In-D  Out-D In-D Out-D In-D  Out-D

FNO 2.47e-1 7.95e-1 133e-1 2.66e+1 5.04e-2 1.92e-1 69le-1 2.64e+0 6.07e-2 2.15e-1

BCAT 5.55e-1 9.23e-1 2.68e-1 9.28e-1 3.74e-2 1.57e-1 2.19e-1 5.38e-1 5.39e-2 3.00e-1

N AVIT 1.64e-1 5.02e-1 5.67e-2 3.05e-1 4.26e-2 1.68e-1 1.57e-1 5.88e-1 1.76e-1 3.77e-1

Temporal Conditioning .

AR-DiT 2.36e-1 8.56e-1 2.95e-1 1.80e+0 3.69e-1 4.99e-1 1.12e+0 7.52e+0 1.98e-1 4.80e-1

Zebra 2.04e-1 1.39e+0 1.82e-2 2.20e+0 4.21e-2 1.82e-1 1.40e-1 3.15e-1 4.43e-2 2.23e-1

ENMA 3.95e-2 5.30e-1 7.86e-3 1.02e-1 3.40e-2 1.44e-1 1.45e-1 4.89%e-1 7.58e-2 3.45e-1

In-Context VIT 1.15e+0 1.20e+0 5.79e-1 1.36e+0 6.90e-2 1.94e-1 1.72e-1 6.24e-1 1.53e-1 3.92e-1

.. [CLS] ViT 1.15e+0 1.36e+0 9.60e-2 1.16e+0 4.80e-2 2.19e-1 5.56e-1 1.02e+0 4.30e-2 2.59-1

Initial Value Problem

Zebra 3.16e-1 1.47e+0 4.78¢-2 9.63e-1 4.40e-2 1.22e-1 1.69e-1 3.52e-1 5.90e-2 2.29e-1

ENMA 2.02¢-1 8.07e-1 1.56e-2 3.30e-1 4.80e-2 1.34e-1 1.54e-1 5.02e-1 8.58e-2 3.20e-1

Results Table 2 summarizes performance across five PDE benchmarks under both temporal condi-
tioning and IVP settings. ENMA achieves state-of-the-art results on most tasks, outperforming both
deterministic solvers (FNO, BCAT, AViT) and generative baselines (AR-DiT and Zebra). Unlike
most methods that operate in physical space, ENMA performs autoregressive generation entirely in a
continuous latent space (time and space compression), which reduces the computational complexity,
but represents a much more challenging setting. Only Zebra shares this property (compression in
space only) but relies on quantized tokens, which favor low-frequency reconstruction but can limit
expressiveness. ENMA shows strong performance on Advection, Combined, and Gray-Scott, and
remains competitive on Wave, despite the added challenge of temporal compression. Performance
on Vorticity is slightly lower than the best competitor, likely due to the combined effect of temporal
and spatial compression, which makes accurate reconstruction more challenging. We analyze this
aspect in appendix F.1.2, where we obsreve that reducing the compression ratio naturally lead to
better prediction performance. ENMA’s continuous modeling allows finer control over generation
and uncertainty estimation. This aspect is explored in appendix F.1.1.

4.4 Evaluation on High-Dimensional Physics Systems

We evaluate ENMA on standard public benchmarks (Rayleigh—Bénard and Active Matter, (

, )). These datasets feature highly nonlinear spatio-temporal dynamics, multiple interacting
physical fields, and dense spatial grids, making them representative of complex, high-dimensional
physical systems. We compare against the same competitive deterministic baselines used in section 4.3.

Table 3: Temporal Conditioning setting on complex physical systems (Relative MSE |)). Compression
ratios are reported per dataset.

Rayleigh-Bénard Active Matter
Model Temporal Conditioning |  Comp.  Time-stepping | Comp.
BCAT 1.06e-1 x1 4.56e-1 x1
AVIT 1.01e-1 x1 4.62¢-1 x1
ENMA (ours) 9.87e-2 x64 3.33e-1 x176

Results ENMA attains the lowest error on both systems while operating at high compression (e.g.,
% 64 on Rayleigh—-Bénard and x176 on Active Matter), demonstrating that accurate time-stepping



is achievable even under aggressive latent compaction. Deterministic baselines (BCAT, AVIT) are
faster but lack compression and yield higher errors.

4.5 Generative Capabilities of ENMA

ENMA is a generative neural operator capable of producing stochastic and physically consistent
trajectories. We highlight two core experiments that demonstrate its generative ability; extended
analyses and qualitative visualizations are provided in appendix F.1.1.

Uncertainty quantiﬁcation. ENMA performs un- Table 4: Uncertainty metrics (l{ is better) on
certainty estimation by sampling multiple trajecto- the Combined dataset.
ries from its continuous latent space through flow

matching. Unlike discrete autoregressive baselines  Model RMSCE | CRPS |

such as Zebra, which rely on categorical sampling, - — —
ENMA’s continuous formulation yields sharper and AR-DiT 2.68x10 1.27x10
better-calibrated probabilistic forecasts. As shownin ~ Zebra 2.19x107!  9.00x10~*
table 4, ENMA achieves the lowest calibration (RM- ENMA (ours)  8.68x1072  1.70x1073

SCE) and probabilistic (CRPS) errors, confirming its
ability to produce both reliable and diverse uncertainty estimates.

Data generation. We further assess ENMA’s ability to generate full trajectories without condi-
tioning on the initial state or PDE parameters. Given only a context trajectory, ENMA infers the
latent physics and synthesizes coherent spatio-temporal fields. In table 5, ENMA achieves the lowest
Physics Fréchet Distance (FPD) and highest Precision, indicating superior fidelity and physical
consistency. Zebra attains slightly higher Recall, reflecting greater diversity but lower sample quality.

Table 5: Generative metrics on the Combined dataset. Lower FPD and higher Precision/Recall
indicate better quality and diversity.

Model FPD | Precision T Recall 1
Zebra 1.03x107! 0.77 0.86
ENMA (ours) 9.50x1073 0.79 0.78

5 Conclusion

Discussion We presented ENMA, a generative model leveraging a continuous latent-space autore-
gressive neural operator for modeling time-dependent parametric PDEs. ENMA performs generation
directly in a compact latent space, at the token level, using masked autoregression and a flow matching
objective, enabling efficient forecasting and improves over alternative generative models based either
on full-frame diffusion or on discrete quantization. Across 5 dynamical systems, experiments demon-
strate that ENMA is a strong neural surrogate that competes with neural PDE solvers operating in the
physical space, in both temporal conditioning and initial value problem settings. Reconstruction and
time-stepping evaluations confirm the effectiveness of its encoder—decoder design, showing improved
latent modeling and robustness to unordered point sets compared to existing neural operator baselines.

Limitations ENMA'’s performance is slightly reduced on vorticity, where latent compression can
hinder the accurate recovery of fine-scale features. This highlights a central trade-off in latent-
space surrogates: while compression enables scalability, it may limit expressiveness in certain
regimes. Regarding computation efficiency, ENMA is computationally efficient compared to full-
frame diffusion or next-token models. However, ENMA’s model’s cost increases with respect to the
number of latent tokens per state. This motivates future work on adaptive generation strategies—for
instance, using a coarse-to-fine decoding scheme where a token directly synthesizes the frame, and
remaining tokens act as refinements ( , ).

Broader impact PDE solvers are key to applications in weather, climate, medicine, aerodynamics,
and defense. While ENMA is not deployed in such settings, it offers fast, uncertainty-aware surrogates
adaptable to new regimes.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly state our claims in the introduction and illustrate them with an
extensive experimental analysis.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss some limitations in the conclusion, in a dedicated paragraph. More-
over additional discussion on computational efficiency wil be provided in the appendices.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper do not contain theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide as much as possible details regarding dataset generation, archi-
tectures and training strategy in the appendices. Code will be released upon acceptance for
reproductibility.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We will release the code upon acceptance for reproducibility. In the mean time,
we precisely detail all training and inference details in the appendices.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: training details, hyperparameters, architecture, optimizers... are listed in the
appendices.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Training all models and baselines on dedicated datasets can be computationally
demanding. Thus we did not report errors bars of our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Computational resources details are presented in the appendices.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Authors have reviewed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss broader impact in the conclusion.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper do not make use of scraped or personal data.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Origin of existing assets used are detailed in the code (mainly baselines).
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Code and instructions for use will be released upon acceptance.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Appart from for writing or formatting purposes, we did not make use of LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Notation

We summarize the main notations used throughout the paper:

Symbol Description

T Spatial coordinate

t Temporal coordinate

u(z,t) Solution of the PDE at (z, t)
Final time

Observation ratio (proportion of available inputs)
Input spatial grid

Test-time input spatial grid

PDE parameters

Differential operator

Boundary condition operator

True temporal evolution operator

Neural approximation of the evolution operator
True latent state from VAE tokenizer

Number of spatial tokens in Z

Spatial token, with Z = (z1,...,2zp)

Number of observed time steps (history)

|
A

Latent sequence of past states

Predicted latent state from the Causal Transformer
Contextualized latent tokens from Spatial Transformer
Spatial token in Z = (Z21,.-,20M)

Predicted latent state

Spatial token in Z = (21,..., 2)

Masked token indices during training

Number of autoregressive steps

Autoregressive step index (s € [0, S—1])

Masked token indices to predict at step s

Flow matching step index

Velocity field for flow matching

Gaussian noise

Regular interpolation grid

Interpolation grid point (£ € E)

Loss function

Query tokens for attention

Key tokens for attention

Value tokens for attention

T IRODMMN ST 2 e pNNNNTN 2 NOO T 22 xR
2 <

Scaling factor in cross-attention bias

26



B Related Works

B.1 Operator Learning

Operator learning has emerged as a powerful framework for modeling mappings between infinite-
dimensional function spaces. Foundational works such as DeepONet and the Fourier Neural Operator
(FNO) established neural operators (NOs) as effective tools for learning these mappings ( ,

, ). Subsequent research has sought to improve both expressiveness and efficiency,
explormg factorized representations for reduced complexity, wavelet-based techniques for multi-scale

modeling ( , ), and latent-space formulations to support general geometries (
, ). Implicit neural representations, as in CORAL, have also been proposed
to accommodate variable spatial discretizations at inference time ( s ).

A recent direction in operator learning leverages transformer-based architectures, inspired by their
success in vision and language tasks. OFormer introduced a transformer model for embedding
input-output function pairs demonstrating the potential of transformers for operator learning (

R ). This has since led to more advanced architectures such as GNOT and Transolver
which improve input function encoding and generalization to irregular domains (

, ). Aroma and UPT further adopt perceiver-style designs to learn compact and adaptable
latent neural operators ( , ; , ).

One close work is CViT, which learns compressed spatio-temporal representations using transformer
encoders and decoders ( , ). In contrast, our approach first applies an attention-based
encoder to map irregularly sampled fields to a uniform latent representation, followed by a causal
spatio-temporal convolutional encoder that accommodates a flexible number of input states, enabling
both regular and irregular conditioning.

B.2 Generative Models

While most operator learning methods are deterministic, generative modeling introduces critical
capabilities for modeling physical systems—most notably the ability to represent uncertainty and
capture one-to-many mappings, which are especially relevant in chaotic or partially observed regimes.
Two primary generative paradigms have emerged in this context: diffusion models and autoregressive
transformers.

Diffusion Transformers Diffusion models synthesize data by learning to reverse a progressive
noising process, typically through a sequence of denoising steps ( , ). In computer
vision, Latent Diffusion Transformers (DiTs) have demonstrated strong performance by applying
this principle in the latent space of a VAE ( , ). More recently, diffusion-based
techniques have been adapted to scientific modeling. For example, ( ) proposed
an autoregressive diffusion framework tailored for PDEs, particularly in turbulent settings where
capturing stochasticity is essential. Similarly, ( ) enhanced the modeling of high-
frequency chaotic dynamics via noise variance modulation during denoising. ( )
extended DiTs to the physical domain, generating PDE data from textual prompts.

Despite their expressiveness, diffusion models often require many sampling steps and lack efficient
in-context conditioning. As an alternative, Flow Matching has recently gained attention. Instead of
discrete denoising steps, it learns a continuous-time velocity field that transforms one distribution
into another via an ODE. This leads to significantly faster sampling with far fewer steps, making it
well-suited for scientific applications ( s ,

Autoregressive Transformers Autoregressive models, originally designed for language modeling,
have been successfully extended to image and video domains by treating spatial and temporal data
as sequences. These models often couple a VQ- VAE with a causal or bidirectional transformer to
model discrete token sequences ( s , ; s ). In video
generation, frameworks such as Magvit and Magvzt2( , , ) encode spatiotemporal
information via 3D CNNs and generate frames autoregressively over quantized latent tokens. In the
context of PDE modeling, Zebra adapts this paradigm by combining a spatial VQ-VAE with a causal
transformer for in-context prediction( s ). However, the use of discrete codebooks
limits expressiveness and may hinder the ability to represent fine-grained physical phenomena, which
are inherently continuous.
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To address this, recent advances in vision have introduced masked autoregressive transformers that
operate directly on continuous latent tokens ( , ). These Masked Autoregressive (MAR)
models predict subsets of tokens using a diffusion-style loss, allowing multi-token generation without
relying on vector quantization. Notably, block-wise causal masking enables efficient inference while
preserving temporal consistency ( , ). ENMA builds on this approach by adapting
MAR for neural operator learning: our model learns to autoregress over continuous latent fields,
supporting in-context generalization while maintaining high fidelity and computational efficiency.

B.3 Parametric PDEs

Generalizing to unseen PDE parameters is a central challenge in neural operator learning. Approaches
span classical data-driven training, gradient-based adaptation, and emerging in-context learning
strategies.

Classical ML Paradigm A standard approach trains models on trajectories sampled from a dis-
tribution over PDE parameters, aiming to generalize to unseen configurations. This often involves

stacking past states as 1nput channels ( , ) or along a temporal axis, analogous to video
modeling ( , , ). However, such models typically degrade under dis-
tribution shifts, where small parameter changes lead to significantly different dynamics. Fine-tuning
has been proposed to address this ( , ), but often requires substantial data per
new PDE instance ( , ; , ).

Gradient-Based Adaptation To improve generalization, several methods train across multiple
PDE environments. LEADS( , ) employs a shared model with environment-specific
modules, updated during inference. Similarly, ( ) introduce a hypernetwork
conditioned on learnable context vectors c®, enabling adaptation to new environments. Building
on this, NCF( , ) uses a Taylor expansion to dynamically adjust context vectors,
offering both uncertainty estimation and inter-environment adaptation.

In-Context Learning for PDEs Inspired by LLMs, recent work explores in-context learning (ICL)
for PDEs. ( ) propose a transformer that processes context-query pairs, but scalability
is limited to 1D or sparse 2D settings. ( ) extend this to PDEs via patches for a vision
transformer. They introduce a special conditionning mechanism, where input-output function are
given as inputs to the transformer, allowing to handle flexible time discretizations at inference.

( ) propose unsupervised pretraining of neural operators, followed by ICL-style inference
via trajectory retrieval and averaging—without generative modeling. ( ) address
this by introducing a causal transformer over discrete latent tokens, paired with an effective in-context
pretraining strategy, allowing adaptation to new PDE regimes via in-context learning and probabilistic
predictions.
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C Datasets details

To evaluate the performance of ENMA, we generate several synthetic datasets based on diverse
parametric PDEs in 1D and 2D. Each dataset consists of 12,000 trajectories for training. For
evaluation, we generate two test sets: 1,200 trajectories for in-distribution (/n-D) and 120 for out-of-
distribution (Ouz-D) evaluation. In the In-D case, test parameters -y differ from the training set but are
sampled from the same distribution; in Ouz-D, they lie outside this range. Parameter ranges for the
in-D and Out-D are presented in Table 6 and further detailed in each dataset section.

Data generation proceeds as follows: for each sampled set of PDE parameters v (as described in
section 2), we simulate a batch of 10 trajectories using a numerical solver from 10 different initial
conditions. Trajectories are computed over a time horizon ¢ € [0, T on a spatial grid X". This pipeline
yields datasets with diverse and complex dynamics.

We detail below the PDEs and parameter ranges used. In 1D, we consider the Combined equation
(appendix C.1) and the Advection equation (appendix C.2); in 2D, we study the Wave equation
(appendix C.3), the Gray-Scott system, and the Vorticity equation (appendix C.5).

Table 6: In-distribution (In-D) and out-of-distribution (Out-D) parameter ranges for each dataset.

Dataset Parameter In-D Out-D

a 24([0.3,0.5]) 2([0.3,0.5))

. 3 24([0.0005, 0.5)) 2(]0.0005, 0.5))

Combined 4([0.01,1]) 4([0.01, 1))

5 — 1([0.5,1])
Advection « U([-5,5]) U(-7,-5]U[5,7])

c U([100,500)) U([500,550))
Wave k u([0,50)) U([50, 60])

F U(0.023,0.045])  1([0.045,0.0467))
Gray-Scott 24([0.0590,0.0640])  24(]0.0570, 0.0590])
Vorticity v U([1073,1072]) U([107°,1074))

C.1 Combined Equation

The Combined equation ( , ) unifies several canonical PDEs—such as the heat
and Korteweg—de Vries equations—by varying a set of coefficients («, 3, ), enabling the modeling
of diverse dynamical behaviors. It is defined as:

du(z,t) 0 s 0u(z,t) OPu(x,t)\
oet) - L (autw - p2500 4, B o g eax .1y

u(z,0) =ul(z), x€Q,

with parameters sampled uniformly as o ~ 2£([0.3,0.5]), 8 ~ U([0.0005, 0.5]), and v ~ U£([0.01, 1])
for both training and in-domain test sets.

Simulations are run over the domain 2 x [0, 7] = [0, 27] x [0, 1]. The initial condition is defined as

follows:
N 2ml;x
u’(x) =) A;sin (1 + i),
() ; R

with domain length L = 27, amplitudes A; ~ U([—0.5,0.5]), phases ¢; ~ U([0, 27]), and frequen-
cies I; ~ U({1,2,3}). Each trajectory is simulated for 100 time steps over a spatial grid of 256
points. To train our models, we subsample each trajectory to retain only 20 time steps over a spatial
grid of 128 points.
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Out-Domain For out-of-distribution evaluation, we consider a more complex scenario by adding a
fourth-order spatial derivative. The resulting PDE is:

ou(z,t) 0 2 LOu(z,t) | Oulx,t)  Bulx,t))
ot ox (au(:z:,t) —h oz T 02 9 oz =0,

with parameters sampled as o ~ U([0.3,0.5]), 8 ~ U([0.0005,0.5]), v ~ U([0.01,1]), and § ~
U([0.5,1]). Aside from this modification, simulations follow the same configuration as the in-
distribution setup. Visualizations of the combined equation for in and out-domain trajectories are
showed in Figure 4 and 5 respectively.

Combined Equation Trajectory Combined Equation Trajectory
Parameters: @=0.73, 4 =0.15,y = 0.41 10 Parameters: a = 0.95, 8 =0.38, y = 0.62 10
0.6
0.2
0.8 04 0.8
0.2
0.14
0.6 0.6
0.0
s s
c c
g g g g
3 £ 3 £
3 3
L 9 02
0.0
0.4 0.4
-0.4
-0.1 0.2 -0.6 0.2
-0.8
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x x
(a) (b)

Figure 4: Samples from the Combined Dataset.

Combined OOD Equation Trajectory
Parameters: a=0.39,=0.48,y=0.55,6=0.72

0.8

0.6 0.8

0.4

0.6
0.2

Time

Solution u

0.4

0.2

-0.6

0.0

0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 5: OOD sample of the Combined equation.
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C.2 Advection Equation

The advection equation models the transport of a quantity at constant speed. For out-domain sets, the

advection speed is sampled from

For our experiments, it is solved over the domain (2 x [0,T]) = ([0, 1] x [0,1]) and is defined as:
Ou(x,t) n aau(x, t)

ot Ox
u(z,0) = u’(z) x €,

=0 (x,t) € Q x (0,7,

where the advection speed « is sampled from U ([—5, 5]). For out-of-distribution (Out-D) evaluation,
we increase the difficulty by sampling the advection speed « from a uniform distribution /([ 7, —5]U
[5,7]). explicitly excluding the training range [—5, 5. For both in-domain and out-domain sets, we
generate trajectories defined by three types of initial conditions:

¢ Sine sum:

¢ Cosine sum:

0 al . 21l x 27l x
u(x) = ZAi {sm < 7 —|—¢>i) + cos (T + ¢l>}

where L = 1, A; ~ U([-0.5,0.5]), ¢; ~ U([0,2x]), and I; ~ U({1,2,3}). Each trajectory is
simulated for 100 time steps over a spatial grid of 1024 points. To train our models, we subsample
each trajectory to retain only 20 time steps over a spatial grid of 128 points. Visualizations of the
advection equation for in and out-domain trajectories are shown in Figures 6 and 7.

Advection Equation Trajectory

Advection Equation Trajectory
Parameter: @ =0.58

Parameter: a = 0.24
10 0
0.15 1.0
0.8
0.10 08 0.8
0.05 0.6
0.00 0.6 04 o6
S >
c
g g 3 g
3 005 F 3 02 =
2 8
0.4 0.4
-0.10 0.0
-0.15 =02
0.2 0.2
-0.20 -0.4
-0.25 -0.6
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0
X X
(@) (b)

Figure 6: In-domain samples from the Advection Dataset.
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C.3 Wave Equation

We consider a 2D damped wave equation defined over the domain 2 x [0, T = [0, 1] x [0, 0.005],
given by:

Pw(z,t) Ow(x,t)
5z ¢ Aw(x,t)—l—kT—O, (x,t) € Q x (0,77,
w(z,0) = w'(2), x €,

where ¢ ~ U([100, 500]) is the wave speed and k ~ U([0, 50]) the damping coefficient for the In-D
datasets. For Out-D, we sample ¢ ~ U([500, 550]) and k& ~ U[50,60]. We focus on learning the
scalar field w. The initial condition is defined as a sum of Gaussians:

N
:c—a:iLz—i— — iLQ
xy)zZexp(—( )202(31 y ))’
i=1 ?

with z;,y; ~ U([0,1]), oy ~ U([0.025,0.1)), L = 1, and N ~ U({2,3,4}). Simulations are
performed on a 64 x 64 spatial grid with 30 time steps. Two in-domain trajectories can be visualized
in Figure 8 and in Figure 9 for out-domain trajectories.

Wave Equation Trajectory

Parameters: c =42.42,k =285.86
t=14

Solution u

0.5

0.0

-0.5
(a)

Wave Equation Trajectory
Parameters: c =15.66, k = 168.69

t=7 t=14 t=21 t=28
0.5
X X X X
b

Figure 8: Samples from the Wave Dataset.

Solution u

Wave Equation Trajectory

Parameters: ¢ = 52.50, k = 525.00
t=14

1.0
0.5
0.0
-0.5

Figure 9: OOD sample of the Wave equation.

Solution u
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C.4 Gray-Scott Equation
The PDE describes a reaction-diffusion system generating complex spatiotemporal patterns, governed
by the following 2D equations:
du
gt
v
d

i DyAv — wv? — (F + k),

= DyAu —uwv® + F(1 — u),

where u, v represent the concentrations of two chemical species over a 2D spatial domain .S, with
periodic boundary conditions. The diffusion coefficients are fixed across all trajectories: D,, = 0.102
and D,, = 0.204. Each PDE instance +y is defined by variations in the reaction parameters. For In-D
datasets, we sample F' ~ 1/(]0.023,0.045]) and k& ~ 2([0.0590, 0.0640]). For Out-D evaluation, we
sample F' ~ U([0.045,0.0467]) and k ~ 2/(][0.0570,0.00590]). The spatial domain is discretized
as a 32 x 32 grid with spatial resolution As = 2. Trajectories are presented in Appendix C.4 for
in-domain and in Figure 11 for out-domain.

Gray-Scott Equation Trajectory

Parameters: F=0.04, k= 0.06
t=10

058
0.6 g
0.4 3
2]
0.2
0.0

()
Gray-Scott Equation Trajectory

Parameters: F=0.04, k=0.06
t=10

Figure 10: Samples from the Gray-Scott Dataset.
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Gray-Scott OOD Equation Trajectory
Parameters: F=0.05,k=0.06

Figure 11: OOD sample of the Gray-Scott equation.
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C.5 Vorticity Equation

We consider a 2D turbulence model and focus on the evolution of the vorticity field w, which captures
the local rotation of the fluid and is defined as w = V X u, where u is the velocity field. The
governing equation is:
0

a—;” +(u-Vw— V2w =0, ©)
where v denotes the kinematic viscosity, defined as v = 1/Re. For In-D datasets, we sample
v ~ U([1073,1072]), while for Out-D, we consider a more challenging turbulent regime with
v ~ U([1075,1074)). The initial conditions are generated from the energy spectrum:

4 kN1 k>

Ek) =< — ] — — | — 10

0 =397 (1) koexp< (,ﬁ)) (10)

where ko denotes the characteristic wavenumber. Vorticity is linked to energy by the following
equation :

E(k)
k) = 11
wlk) = ) = an

In-distribution and out-distribution trajectories can be visualized in Figure 12 and fig. 13 respectively.

Vorticity Equation Trajectory

Parameter: v=4.3e - 03
t=14 t=

21 t=28
r
| (5 @ o5
0.0
-0.5
- ~ N ]
X X X

(@)
Vorticity Equation Trajectory

Parameter: v=9.6e - 03
t=14

t=21 t=28
0.5
0.0
-05
(b)

Figure 12: Samples from the Vorticity Dataset.

Solution u

Solution u

Vorticity Equation Trajectory

Parameter: v =1.8e — 05
t=0 t=14

10

Solution u

-10

Figure 13: OOD sample of the Vorticity equation.
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D Architecture details

D.1 ENMA encoder-decoder

We describe the architecture of the encoder—decoder module in detail below. The overall encoding
and decoding pipeline is illustrated in Figure 14. Starting from an input physical field u%Z~! defined
on a (possibly irregular) spatial grid &, , the encoder first applies an attention-based interpolation
module (appendix D.1.1) to project the field onto a regular intermediate grid =, producing u%£~1(Z).
This interpolation operates purely in space and is applied independently at each timestep.

Next, u%L~1(Z) is passed through a causal convolutional network that encodes the data in both
space and time (appendix D.1.2), yielding latent tokens Z%%<~1 of length L. < L when temporal
compression is used. Temporal compression is optional, for notation simplicity, we will assume we
do not compress time dimension. These latent tokens form the input to the autoregressive dynamics
model.

The decoder mirrors the encoder’s structure. It first upsamples the latent tokens back to the intermedi-
ate grid = (appendix D.1.2), then uses a cross-attention module to reconstruct the physical field on any
desired output grid X,,;. This yields the predicted trajectory 4% “~1(X,,;). The final stage employs

the same cross-attention mechanism as the encoder’s initial interpolation module (appendix D.1.1).

W)

fon via Cross-Atent ‘

m

Latent Regular
Representation

uU:L 1(5)

-«

N

\Causal compression Iayers/ 011 Causal upsampling Iayers/

I | |

Figure 14: General architecture of ENMA’s encoder/decoder.

D.1.1 Interpolation via cross-attention

Figure 15 shows the detailed architecture of the interpolation module used in the encoder. The
decoder mirrors this structure by directly reversing its operations.

The interpolation module takes as input a spatio-temporal field u®“—! € RI¥inIxLx¢ defined on a
potentially irregular spatial grid X},,. Positional encodings are first applied to the input coordinates as
in ( ), and the physical field is projected into a higher-dimensional representation
using a linear layer, yielding embeddings p. and h, which serve as the keys and values for the
cross-attention module. Following ( ), the queries are learned latent embeddings
that act as an intermediate representation.

To promote structured and localized interactions, we also initialize a learned coordinate grid = for
these latent queries. These coordinates are used to compute attention biases, encouraging stronger
attention between spatially adjacent tokens. The cross-attention module outputs an intermediate field
€ RIEIX% which is further refined using Physics Attention ( , ) to reduce computational
overhead.
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Figure 15: Detailed architecture of the Interpolation module.
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Geometry-aware encoding As presented in section 3.2, we introduce a geometry-aware attention
bias that promotes attention locality. Appendix D.1.1 illustrates how this penalization is applied.
Formally, we define the cross-attention from queries located at X’ to keys and values located at = as:

K"+ B
Attention(Q, K, V') = Softmax <Q+
Vdy

where Q = ¢(X), K = k(E), and V = v(E) are the query, key, and value embeddings defined over
X and E, respectively; dy, is the key/query dimensionality; and m is a scaling factor, either fixed
or learned as in ALiBi ( , ). Intuitively, the bias B imposes stronger penalties for
distant pairs (z;, §;), reducing their attention weights and encouraging the model to focus on local
interactions during interpolation.

) V, B@j = —m-dist(xi—gj), forz; € X,fj e=

different inputs different positions
for keys/values for keys/values

< Attention scores:

S +

[ QKT .
Q

Attention penalization

low ——— > high

Figure 16: Geometry-aware Alibi bias.

D.1.2 Compression via causal convolutions

For the architecture of the CNN, we adopt a design similar to that of ( ). In our
case, it takes as input the output of the interpolation module, u«%*~!(Z), and lifts it to a higher-
dimensional representation of size hcomp Using a causal convolution layer (see fig. 3). The lifted
tensor is then compressed through a stack of three building blocks: residual, compress_space,
and compress_time. Finally, a concluding residual block projects the representation back to the
target latent dimension. The up-sampling module strictly mirrors this compression pipeline. This
type of architecture has been shown to be effective for spatio- temporal compression ( ,

, ). The three types of layers used in the compression module are detailed below,
and the full architecture is shown in fig. 17.

residual blocks: The residual block processes the input while preserving its original shape. It
consists of a causal convolution with kernel size k, followed by a linear layer and a Global Context
layer adapted from ( ). If the output dimensionality differs from the input’s, an
additional convolution is used to project the spatial channels to the desired size.

compress_space blocks: The compress_space block reduces spatial resolution by a factor of
24 i.e., each spatial dimension is downsampled by a factor of 2 using a convolutional layer with
stride s = 2. The kernel size k and padding p are set accordingly, with p = k//2. To ensure that
only spatial dimensions are compressed, inputs are reshaped so that this operation does not affect the
temporal axis.

compress_time blocks: The compress_time block performs temporal compression similarly to
the spatial case, but operates along the time dimension. To preserve causality, padding is applied
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only to the past, with size p = k — 1, so that a frame at time ¢ attends only to frames at times < £. A
convolution with stride s = 2 is used to reduce the temporal resolution by a factor of 2.

Interpolated intermediate field

temporal padding |—7|FI_‘

causal conv
h — hcompy kin

Compression layers

LXxEXh

F\L

[

Residual

] [ Compress space ] [

Compress time

I
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;

Residual h — d

Compressed tokens
ZO:L—l

V4 Residual \
————

Group norm

Causal conv b — h, k

Actlvatlon
T

l J
[ ]
[ ]
( Group norm )
l J
[ ]
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Linear h — h

Actlvatlun
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[/ Compress space \

[Reshape h,t,2 — *,h,E]

convh — h k s =2
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[
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Figure 17: Detailed architecture of the Compression module.
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D.2 Tokenwise Autoregressive Generation

We provide additional details about our generative process for tokenwise autoregression of physical
fields.

D.2.1 Patchification of Latent Codes

Given a sequence of physical states ugéL ~1, the VAE encoder produces a sequence of latent represen-

tations Z%L—1 ¢ RM*Lxd where M is the number of spatial tokens. For 2D physical systems, the
latent representation has spatial dimensions Zyy, x ar,, With M = M; x My and M; = Ms in our
setting. The number of tokens per frame plays a critical role in capturing fine-grained spatial details.
However, it also directly impacts the computational cost of tokenwise autoregressive generation,
which scales with the number of tokens in each latent state.

To mitigate this cost while preserving spatial structure, we adopt a patchify strategy, commonly used
in vision transformers. Specifically, we apply spatial down-sampling to the latent representation
by dividing it into non-overlapping patches, reducing the token count per frame while retaining
local coherence (see Figure 18). This significantly improves inference efficiency without sacrificing
modeling fidelity.

O
. DnD - DODODD00E

with patch sizes p1,p2 My My .
’ Y D D D Rt o dP:prlXp2
RM,XM;xa'

Figure 18: Illustration of latent patchification. The spatial latent map Zj,, x pr, is partitioned into
coarser patches to reduce the number of autoregressed tokens.

D.2.2 Causal Transformer

The causal Transformer introduced in section 3.1.1 captures the dynamics necessary to predict the
next latent state Z* from the past sequence Z%*~1. We implement a next-state prediction strategy
using a block-wise causal attention mask, where tokens within each frame can attend to one another,

and tokens in frame ¢ can attend to all tokens from earlier frames j < ¢. The attention mask used is
defined as:

Tyxnv Ovxm o0 Omxm
Tyxym Ivxm o0 Opxwm
Maten = . . . . T rows
Iyxnv Ivxm o0 Iyxw
T columns

This structure ensures that temporal causality is respected while allowing rich intra-frame interactions.
It predicts a latent code Z%,, = CausalTransformer(Zggs, Z%%~1) that captures the dynamics given
the input sequence history.

For positional information, we apply standard sine-cosine embeddings along spatial dimensions. In
the temporal direction, we omit explicit positional encodings, relying instead on the causal structure
to encode temporal ordering implicitly ( , ).

D.3 Spatial Transformer

At inference time, given a target number of steps .S, the spatial Transformer generates the final latent
frame Z” in an autoregressive manner over .S steps. Each step selectively predicts a subset of masked
tokens, conditioned on the dynamic context Zk, = CausalTransformer(Zzgs, Z%L~1). The token
prediction schedule follows a cosine scheduler, progressively revealing tokens in a smooth, annealed
fashion. Figure 19 illustrates how tokens are generated at inference for .S = 4 steps.
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Figure 19: Illustration of tokenwise autoregressive generation at inference with a spatial Transformer

over S = 4 steps. At each step, a subset of tokens is selected for generation based on a cosine
schedule.

42



E Implementation details

The code has been written in Pytorch ( , ). All experiments were conducted on
a A100. We estimate the total compute budget—including development and evaluation—to be
approximately 1000 GPU-days.

E.1 Dynamics forecasting: implementation Details

This section outlines the implementation details related to the autoregressive time-stepping and
generative experiments with ENMA, along with the corresponding baseline configurations.

E.1.1 Architecture Configuration

To enable a fair comparison with existing baselines, we disable the interpolation component of
ENMA'’s encoder-decoder when conducting autoregression on a fixed grid, consistent with the setup
used in ( ). The hyperparameter settings for ENMA’s generation architecture across
all datasets are summarized in table 7.

Table 7: Model hyper-parameters configuration for all datasets for the ENMA'’s generation process.

Hyperparameters Combined Advection GS Wave Vorticity
Vae embedding dimension 4 4 4 8 8
Number of tokens 16 16 64 256 256
Patch size 1 1 1 4 4
Spatial Transformer depth 6 6 6 6 6
Causal Transformer depth 6 6 6

hidden size 512 512 512 512 512
mlp ratio 2 2 2 2 2
num heads 8 8 8 8 8
dropout 0 0 0 0 0
QK normalization True True True True True
Normalization Type RMS RMS RMS RMS RMS
activation Swiglu Swiglu Swiglu  Swiglu  Swiglu
Layer Norm Rank 24 24 24 24 24
Positional embedding Sinus Sinus Sinus Sinus Sinus
MLP depth 3 3 3 3 3
MLP width 512 512 512 512 512
number of steps .S 6 6 16 16 16
FM steps 10 10 10 10 10

E.1.2 Baseline details

We detail here the architecture of the baselines used to evaluate ENMA’s dynamics forecasting

experiments. We compareed our method to FNO ( R ), BCAT ( s ), AVIT
( s ), AR-DiT ( s ), Zebra ( R ), an In-Context ViT
and a [CLS] ViT as done in ( , ).

FNO For FNO, we followed the authors guidelines and concatenanted the temporal historic directly
with the channels. We considered 10 modes for both 1D and 2D datasets and used a width of 128.
We stacked 4 Fourier layers.

BCAT BCAT is a deterministic block-wise causal transformer approach for learning spatio-temporal

dynamics. It has been proposed for tackling multi-physics problems, and we adapted it for parametric
PDEs. BCAT performs autoregression in the physical space. As vision transformers (
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, ), it relies on patchs to reduce the number of tokens. We report the model hyper-parameters
details for the Transformer in table 8.

Table 8: Model hyper-parameters configuration for all datasets for the BCAT process.

Hyperparameters Combined Advection GS Wave Vorticity

Patch size 8 8 8 8 8
Transformer depth 6 6 6 6 6
hidden size 512 512 512 512 512
mlp ratio 2 2 2 2 2
num heads 8 8 8 8 8
dropout 0 0 0 0 0
QK normalization True True True True True
Normalization Type RMS RMS RMS RMS RMS
activation Swiglu Swiglu Swiglu  Swiglu  Swiglu
Positional embedding Sinus Sinus Sinus Sinus Sinus
AVIT We evaluate against the Axial Vision Transformer (AViT) introduced in ( ),

which performs attention separately along spatial and temporal dimensions. Their proposed MPP
model extends AViT to multi-physics settings by incorporating strategies for handling multi-channel
inputs and system-specific normalization. In our parametric setting, such mechanisms are unnecessary.
We adopt the same hyperparameter configuration as in table 8, which we found to yield the best
results.

AR-DiT Our autoregressive diffusion transformer follows the setup proposed in ( ),
where known frames are concatenated with noise and denoised progressively to generate the next
physical state. As in ( , ), we employ AdaLayerNorm to condition the model
during the diffusion process. The corresponding hyperparameters are provided in table 9.

Table 9: Model hyper-parameters configuration for all datasets for the AR-DIT process.

Hyperparameters Combined Advection GS Wave Vorticity
Patch size 8 8 8 8 8
Transformer depth 6 6 6 6 6
hidden size 512 512 512 512 512
mlp ratio 4 4 4 4 4
num heads 8 8 8 8 8
dropout 0 0 0 0 0
Normalization Type AdalLayer  Adalayer AdalLayer Adalayer AdalLayer
Positional embedding Sinus Sinus Sinus Sinus Sinus
Diffusion steps 100 100 100 100 100

Zebra Zebrais atoken-based autoregressive model that combines a VQ-VAE for discretizing spatial
fields with a causal transformer for modeling temporal dynamics. At each time step, it autoregressively
predicts discrete latent tokens corresponding to the next frame, allowing for uncertainty quantification
through stochastic sampling in latent space. The full set of hyperparameters for both the VQ-VAE
and the transformer components is provided in table 10.

In-Context ViT We implement an in-context Vision Transformer ( , ) to
address the initial value problem using a context trajectory. The model is trained to forecast the next
frame in a target sequence, conditioned on both the observed context and preceding frames. For
architectural configuration, we adopt the same hyperparameters as reported in table 8.
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Table 10: Hyperparameters for Zebra’s VQVAE and Transformer components.

Hyperparameters Advection Combined GS Wave Vorticity
VQ-VAE
start_hidden_size 64 64 128 128 128
max_hidden_size 256 256 1024 1024 1024
num_down_blocks 4 4 2 3 2
codebook_size 256 256 2048 2048 2048
code_dim 64 64 16 16 16
num_codebooks 2 2 1 2 1
shared_codebook True True True True True
tokens_per_frame 32 32 256 128 256
start learning_rate 3e-4 3e-4 3e-4 3e-4 3e-4
weight_decay le-4 le-4 le-4 le-4 le-4
scheduler Cosine Cosine Cosine  Cosine Cosine
num_epochs 1000 1000 300 300 300
Transformer

max_context_size 2048 2048 8192 8192 8192
batch_size 4 4 2 2 2
num_gradient_accumulations 1 1 4 4 4
hidden_size 256 256 384 512 384
mlp_ratio 4.0 4.0 4.0 4.0 4.0
depth 8 8 8 8 8
num_heads 8 8 8 8 8
vocabulary_size 264 264 2056 2056 2056
start learning_rate le-4 le-4 le-4 le-4 le-4
weight_decay le-4 le-4 le-4 le-4 le-4
scheduler Cosine Cosine Cosine  Cosine Cosine
num_epochs 100 100 30 30 30

[CLS] ViT This variant of the Vision Transformer is adapted to a meta-learning setting, where a
dedicated [CLS] token captures the environment-specific variations across different PDE settings.
During inference, the [CLS] token is updated via 100 gradient steps to adapt to new environments.
We use the same model configuration as in table 8.

E.1.3 Training details

Models for 1D datasets were trained for approximately 8 hours, while training on 2D datasets took
around 20 hours. Unless otherwise specified, all datasets followed the same training objective.

Optimizer and Learning Rate Schedule We use the AdamW optimizer with §; = 0.9 and
B2 = 0.95 for all experiments. The learning rate follows a cosine decay schedule, starting from an
initial value of 10~ and annealing to 10~° over the course of training. To stabilize the early training
phase, we apply a linear warmup over the first 500 optimization steps.

Baselines All baselines were trained following the same protocol as ENMA. Each model was trained
from scratch for 1000 epochs, and the best-performing checkpoint was selected based on training
performance. A cosine learning rate scheduler was used across all methods, which consistently
improved prediction quality. All models were trained with a learning rate of 1e 3, except for AR-DiT,
which required a lower rate of 1le~* due to unstable training dynamics.

45



Table 11: Training hyper-parameters configuration for all datasets for the ENMA’s generation process.

Hyperparameters Combined Advection GS Wave Vorticity
Epochs 1000 1000 1000 1000 1000
batch size 128 128 128 64 64
learning rate le-3 le-3 le-3 le-3 le-3
weight Decay le-4 le-4 le-4 le-4 le-4
grad clip norm 1 1 1 1 1
betas [0.9,0.95] [0.9,0.95] [0.9,0.95] 1[0.9,0.95] [0.9,0.95]

E.2 Encoder-Decoder implementation protocol

E.2.1 Architecture details

We present in table 12 the hyper parameters for the architecture of ENMA’s auto encoder.

Table 12: Architecture details of the auto encoder as presented in table 1. We refer the reader to
appendices D.1.1 and D.1.2 for the notation.

Module Block Parameter Advection Vorticity
token dim 4 8
intermediate grid size =] 128 16 x 16
positional encoding Nerf Nerf
Positional encoding  positional encoding num freq 12 12
positional encoding max freq 4 4
intermediate grid dim ¢4 64 16
. . hidden dim A 16 16
Interpolation module ~ Cross attention block n cross-attention heads 4 4
cross-attention dim heads 4 4
Geometry-aware bias alibi scaling m 1,2,3,4 1,2,3,4
y n alibi heads 4 4
depth 2 2
. . n attention heads 4 4
Physics self attention attention dim heads 4 4
physics-attention n slice 16 64
residual residual
compress_space compress_space
residual residual
compress_space compress_time
: Compression layers residual residual
Compression layers
compress_space -
residual -
Compression module compress_time -
residual -
heomp 16 16
compression kernel size &k 7 7
causal input layer kernel size k;y, 7 7
causal output layer kernel size ko 7 7

E.2.2 Baseline details

We detail here the architecture of the baselines used to evaluate ENMA’s auto encoding. Hyper-
parameters are chosen from the original papers and/or closest available implementation. We recall
that Oformer acts pointwise in the physical space, and thus does not make any spatial nor temporal
compression. CORAL, AROMA and GINO act at a frame level i.e. they compress space but not time.
Finally, our ENMA’s auto encoder architecture performs both a spatial and a temporal compression.
We provide a comparison in table 13.
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Table 13: Token sizes used to evaluate auto encoders as presented in table 1. We show sizes using the
following formatting: temporal size X spatial size X token dimension.

Model Advection Vorticity
Trajectory sizes 50 x 128 x 1 30 x (64 x 64) x 1
Oformer 50 x 128 x4 30 x (64 x 64) x 8
) x 8

GINO 50 x 16 x4 30 x (16 x 16
AROMA 50 x 16 x 4 30 x 64 x 8
CORAL 50 x 64 30 x 512
ENMA 26x16x4 16 x (8 x 8) x 8

Oformer Oformer models are trained point wise i.e. no spatial neither temporal compression are
processed. We used 4-depth layers with Galerkin attention type and 128 latent channels.

GINO GINO architecture is a combination of 2 well-known neural operator architecture (GNO (

, ) and FNO ( , )). The GNO uses the following architecture parameters: a
GNO radius of 0.033 with linear transform. The latent grid size is 16 for 1d datasets and 16 x 16 for
2d. As a consequence, we adapt the FNO modes to 8 for 1d datasets and 8 x 8 for 2d’s.

AROMA AROMA makes use of a latent token of size 16 in 1d and 64 in 2d. Other architecture
parameters are kept similar i.e. 4 cross and latent heads with dimension 32. The hidden dimension of
AROMA’s architecture is set to 128. The INR has 3 layers of width 64.

CORAL Finally, CORAL is a meta-learning baseline that represents solution using an INR (SIREN
( , )), conditioned from a hyper-network. The hyper-network takes as input a
latent code, optimized with 3 gradient descent steps. The inner learning rate is set to 0.01. The hyper
network has 1 layer with 128 neurons. SIREN models have 6 layers with 256 neurons.

As a comparison between baselines, we show on table 13 the latent token sizes that are created with
the hyper parameters detailed above.

E.2.3 Training details

Reconstruction performances For training the auto-encoder (as well as the baseline models, unless
stated otherwise), we followed a unified training procedure. The loss function combines a relative
mean squared error term with a KL divergence term: £ = Lrecon + - LKL, where 5 = 0.0001.

To enhance robustness to varying levels of input sparsity, we randomly subsample the spatial input
grid during training. The number of input points ranges from 20% to 100% of the full grid X'. The
output grid used for loss computation remains fixed to the full grid. Grid subsampling is performed
independently for each sample in a batch and is refreshed at every iteration.

Models are optimized using the AdamW optimizer with an initial learning rate of 0.001, sched-
uled via a cosine decay down to le~" over the course of training. Training batch sizes for each
encoder—decoder architecture are listed in table 14.

* ENMA: Trained with a learning rate of 0.001 and batch size of 64 in 1D. The autoencoder
is trained for 1, 000 epochs in 1D and 150 epochs in 2D.
* AROMA: Training procedure follows ENMA. 2D datasets are trained for 1,000 epochs.

* CORAL: To stabilize training, the KL loss term is removed. The model is trained as a
standard autoencoder minimizing relative MSE, with an initial learning rate of 1le—6.

* Oformer: Follows the same training procedure as ENMA. 2D datasets are trained for 1, 000
epochs.

* GINO: Training setup is similar to ENMA. 2D datasets are trained for 100 epochs due to
the inner loop over batches in the forward pass.
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Table 14: Batch size used for training autoencoders as presented in table 1.
Model  Advection Vorticity

Oformer 64 4
GINO 64 32
AROMA 128 8
CORAL 128 8
ENMA 64 8

Time-stepping The time-stepping task consists in training a small FNO to unroll the dynamics in
the latent space created by the different models. This allows us to assess the quality of the extracted
features for dynamic modeling. Training proceeds as follows: Starting from a trajectory, we encode
the entire trajectory. We then take the 2 first tokens in the temporal dimension as input for the FNO.
By concatenating this to the PDE parameters, we unroll the dynamic in the latent space, to build
the full sequence of tokens. We compute the loss (Relative MSE) in the latent space directly and
at each step in the auto regressive process. All models are trained using an initial learning rate of
0.0001 with and AdamW optimizer. The learning is also scheduled using a cosine scheduler. 250
epochs are performed for all baselines in 1d and in 2 GINO and CORAL performs 50 training epochs,
while Oformer and CORAL are trained for 150 epochs. This trainings can differs depending on the
computational cost of the encoder.

The FNO used for processing is a simple 1d/2d FNO, with 3 layers of width 64. FNO modes are set
to 8 and the activation function is a GELU fonction.

E.3 Dynamics forecasting on complex systems: implementation details

This section outlines the implementation details related to the auto-regressive time-stepping experi-
ments with ENMA on the two complex physical systems: Rayleigh-Bénard and Active Matter (

. )-

On these two datasets, we disabled the interpolation component of ENMA’s encoder-decoder and
used a standard auto-encoder to boost reconstruction performance, instead of using a variational
formulation. Autoregression is then performed on a fixed grid with a sequence length of size 3. 12
and 17 time-steps are predicted respectively for Rayleigh-Bénard and Active Matter. We report the
hyper-parameteres used for the experiments in table 15.

Table 15: Model hyperparameter configuration for ENMA on the Active Matter and Rayleigh—Bénard.

Hyperparameters Active Matter Rayleigh—-Bénard
VAE embedding dimension 32 32
Number of tokens 256 256
Patch size 2 2
Spatial Transformer depth 6 6
Causal Transformer depth 6 6
Hidden size 512 512
MLP ratio

Num heads 8 8
QK normalization True True
Normalization type RMS RMS
Positional embedding Sinus Sinus
MLP depth 3 3
MLP width 512 512
Number of steps .S 16 16
FM steps 10 10
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F Additional experiments

We conduct a wide range of experiments to evaluate the capabilities of our model ENMA:

* Generative capabilities (appendix F.1.1): evaluation on uncertainty quantification, sample

diversity, solver fidelity, and latent distribution alignment.

» Compression study (appendix F.1.2): Dynamics forecasting evaluation with reduced latent

compression on 2D datasets.

* Inference speed comparison (appendix F.1.3): benchmarking ENMA against generative

baselines.

 Ablation studies (appendix F.1.4): investigating the impact of history length, autoregressive

steps, flow matching iterations and the dynamics modeling objective.

* OOD reconstruction (appendix F.2.2): testing under high sparsity with only 10% of the

spatial input grid.

* Super-resolution (appendix F.2.3): evaluation on finer output resolutions beyond the training

grid.

* Encoder-decoder variants (appendix F.2.4): ablations on positional bias and time-stepping

architectures.

* Geometry-Aware Attention Analysis (appendix F.2.5): qualitative inspection of the geometry-

aware attention module

» Token space visualization (appendix F.2.6): qualitative visualization of the encoded tokens

F.1 ENMA process task

F.1.1 Generative ability of ENMA

We illustrate here additional benefits from the generative capabilities of ENMA through two example
tasks: uncertainty quantification and new trajectory generation. For all uncertainty experiments, we

focus on the Combined equation, as generating multiple samples can be costly for 2D data.

Mean prediction and confidence interval

Uncertainty quantification ENMA naturally 1 Mean Time 0
enables uncertainty quantification by generat- - — Mean, Time: 19
ing multiple stochastic samples from the learned Mean = 3xStd, Time: 19

conditional distribution. This is achieved by
sampling multiple candidates in the latent space
via different noise realizations during the spatial
decoding process. Specifically, for each autore-
gressive step, ENMA injects Gaussian noise into
the flow matching sampler, producing diverse
plausible predictions for the spatial tokens. Re-
peating this process yields an ensemble of tra-
jectories. In contrast, discrete AR models rely
on sampling from categorical distributions (e.g.,
top-k or nucleus sampling), which often leads
to overconfident outputs, limited diversity, and
poorly calibrated uncertainty estimates.

An illustration is shown in fig. 20, where the red
curve dgnotes the ground truth, .the blue curve is Figure 20:
the predicted mean at the final time step, and the
shaded region indicates the empirical confidence
interval defined by 43 standard deviations.

To evaluate uncertainty quality, we report two  ground truth (red).
standard metrics:
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* CRPS (Continuous Ranked Probability Score) measures the accuracy and sharpness of
probabilistic forecasts by comparing the predicted distribution to the true outcome. Lower
CRPS indicates better probabilistic calibration.

* RMSCE (Root Mean Squared Calibration Error) quantifies calibration by comparing pre-
dicted confidence intervals with empirical coverage. A low RMSCE suggests well-calibrated
uncertainty estimates.

CRPS and RMSCE Results ENMA sig-

Method Metric  Combined nificantly outperforms both AR-DiT and Ze-
bra in terms of uncertainty calibration and
AR-DiT RMSCE 2.68e-1 probabilistic accuracy, as shown in table 16.

CRPS 1.27e-2 These results indicate that ENMA provides
RMSCE 2 19-1 both sharper and more reliable uncertainty

Zebra estimates. The stochastic sampling in la-
CRPS 9.00e-3 tent space enabled by flow matching allows
ENMA (ours) RMSCE 8.68e-2 EI}\IH;/IA to n;qde} divterse plali.sliablf':['trajelctories
CRPS 1.70e-3 while maintaining strong calibration. In con-

trast, discrete token-based methods like Zebra
and AR-DiT tend to produce overconfident or
underdispersed forecasts. This demonstrates
the advantage of per continuous latent-space

Table 16: Comparison of uncertainty metrics ({ is
better) for Combined.

modeling for uncertainty-aware forecasting.

Temporal Uncertainty Evaluation. To further assess the quality of uncertainty calibration over
time, we report the evolution of RMSCE and CRPS across autoregressive prediction steps in fig. 21.
Ideally, both metrics should remain low and stable over time, indicating that the model maintains
well-calibrated uncertainty estimates and accurate probabilistic forecasts throughout the trajectory.
For CRPS, all models exhibit increasing scores over time due to the compounding errors typical
of neural PDE solvers. However, ENMA consistently achieves substantially lower CRPS values
than both Zebra and AR-DiT, indicating sharper and more accurate trajectory forecasts. In the
case of RMSCE, ENMA displays a distinct trend: its calibration error decreases over time. This
behavior reflects the model’s evolving confidence—initial predictions, informed by ground truth
history, tend to be overly confident, resulting in narrower (and sometimes miscalibrated) confidence
intervals. As the model progresses through the trajectory and relies more on its own predictions, it
becomes more conservative, yielding better-calibrated uncertainty estimates. ENMA maintains the
lowest RMSCE at every step, underscoring its robustness in providing reliable confidence intervals
throughout the rollout. Together, these results highlight ENMA’s superiority in delivering both
accurate and well-calibrated probabilistic forecasts over time.

RMSCE evolution per time step CRPS evolution per time step

0250 0.030 —e— ENMA
W Zebra

0225 —e— ARDIT
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0.200
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(a) RMSCE evolution over time. Lower values indi-  (b) CRPS evolution over time. Lower values reflect
cate better uncertainty calibration. sharper and more accurate forecasts.

Figure 21: Evolution of uncertainty metrics over time for the Combined dataset. (a) RMSCE and (b)
CRPS demonstrate that ENMA outperforms baselines in both calibration and predictive sharpness.

Data generation As a second demonstration of ENMA’s generative capabilities, we evaluate its
ability to produce plausible and diverse trajectories without conditioning on the initial state u®.
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Specifically, we consider the setting of generation conditioned on a context example. Unlike classical
neural approaches that typically require an initial condition and generate future states given , this
setup assumes no access to either u or . Instead, the model is provided with a context trajectory
from which it must infer the underlying parameter «y and generate a coherent trajectory, including a
plausible initial condition. This setting highlights ENMA’s capacity to function as a generative solver
for parametric PDEs.

To benchmark generative performance, we compare ENMA against baseline models using standard
metrics from the generative modeling literature. We introduce the Fréchet Physics Distance (FPD), a
physics-adapted variant of Fréchet Inception Distance (FID) ( ), along with Precision
and Recall ( ). These metrics are computed in a compressed feature space
extracted by a lightweight CNN encoder trained to regress the underlying PDE parameters -, treated
as instance classes.

The CNN processes the full trajectory and encodes it into a 64-dimensional feature vector, enabling
semantically meaningful comparisons while mitigating the curse of dimensionality. In this space,
FPD estimates the 2-Wasserstein distance between real and generated distributions, while Precision
and Recall respectively measure sample fidelity and diversity. Following standard protocol, we use
the training set as the reference distribution. Results for the Combined dataset are reported in table 17.

Table 17: Comparison of generative (FPD, Precision and Recall) metrics on the Combined dataset.
Model FPD | Precision? Recall

Zebra 1.03e-1 7.70e-1 8.61e-1
ENMA 9.50e-3 7.92¢-1 7.80e-1

Results ENMA achieves the lowest FPD, significantly outperforming Zebra— indicating that
ENMA’s generated trajectories are statistically closer to the real data distribution in the learned
feature space. This reflects ENMA’s ability to generate high-fidelity samples that are well-aligned
with physical ground truth. In terms of Precision, ENMA also outperforms Zebra, demonstrating
superior sample quality. However, Zebra obtains a higher Recall, suggesting that it covers a broader
range of modes from the data distribution. This highlights a trade-off: ENMA prioritizes fidelity and
realism, whereas Zebra exhibits slightly more diversity, potentially at the cost of precision. Overall,
these results illustrate ENMA’s strength in producing high-quality, physically plausible trajectories,
while maintaining reasonable diversity in its generative predictions.

Latent distribution alignment To further analyze the generative behavior of ENMA and Zebra,
we visualize PCA projections of feature representations extracted by a CNN trained on ground truth
data. As shown in fig. 22, ENMA’s samples (orange) closely align with the real data (blue), indicating
that the generated trajectories remain well-covered within the training distribution. In contrast, Zebra
exhibits a large number of outliers that fall outside the support of the real data distribution. This
mismatch suggests poorer calibration and lower fidelity to the training dynamics, which aligns with
the lower FPD and precision scores reported in table 17. These findings confirm ENMA’s ability to
generate physically plausible and distributionally consistent trajectories.

Fidelity with respect to the numerical solver To evaluate the fidelity of ENMA'’s generations,
we take advantage of the known parametric structure of the PDEs. For each sample, we condition
ENMA on a context trajectory and let it generate a full trajectory, including the initial state. Since
the true PDE parameters v used to generate the context are known, we can pair ENMA’s generated
initial condition with the ground-truth ~ and run the numerical solver used during dataset creation.
This produces a reference trajectory governed by the true physical dynamics. By comparing ENMA’s
generated trajectory with the solver-based rollout, we can assess how well ENMA captures the
underlying PDE. A close match indicates that ENMA has learned to infer physically consistent initial
conditions and dynamics from context.

Results As shown in fig. 23, the trajectories produced by ENMA closely match those from the
solver, both qualitatively and quantitatively. We also report a relative L2 error of 0.081 between the
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Figure 22: PCA projections of CNN features from generated (orange) and real (blue) trajectories at
the final timestep.

trajectories generated by ENMA and by the solver, demonstrating that ENMA’s generated states are
not only coherent but also physically meaningful.
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Figure 23: Comparison between trajectories generated by ENMA (top row) and the corresponding
rollouts obtained from the PDE solver using the generated initial condition (bottom row). ENMA’s
predictions yield physically consistent rollouts.

F.1.2 Dynamics forecasting with less compression

As discussed in section 4.3, ENMA exhibits lower performance on the Vorticity dataset compared to
baseline models. We hypothesize that this is due to the aggressive latent compression, which limits
the VAE’s ability to capture fine-scale, high-frequency structures—ultimately constraining generation
quality at decoding time. To investigate this, we evaluate ENMA under reduced compression settings.
While the main experiments used a spatial compression factor of 4 for Vorticity, we report additional
results on 2D datasets in the temporal conditioning setting, comparing against AVIT and Zebra with a
relaxed compression factor.

Results Table 18 shows results on Gray-Scott, Wave, and Vorticity under relaxed compression to
match baseline settings. This setup addresses ENMA'’s lower performance on Vorticity observed in
section 4.3, attributed to overly aggressive compression. ENMA outperforms AVIT and Zebra on
Gray-Scott and Wave across both In-D and Out-D settings. On Vorticity, ENMA remains competitive,
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Table 18: Comparison of model performance on Gray-Scott, Wave, and Vorticity under the temporal
conditioning setting. Metrics in Relative MSE ({).

Model Gray-Scott Wave Vorticity
In-D Out-D In-D Out-D In-D Out-D

AVIT 4.26e-2 1.68e-1 1.57e-1 5.88e-1 1.76e-1 3.77e-1
Zebra  4.2le-2 1.82e-1 1.40e-1 3.15e-1 4.43e-2 2.23e-1
ENMA 2.23e-2 1.52e-1 7.00e-2 2.83e-1 5.2le-2 2.82e-1

closely matching Zebra. These results highlight ENMA’s strong predictive performance under
comparable constraints.

F.1.3 Inference speed against generative approaches

One of the primary limitations of generative models compared to deterministic surrogates lies
in their inference speed. Diffusion-based methods, for instance, require multiple iterative passes
through a large model—typically a Transformer—to generate a single sample, resulting in high
computational cost. Similarly, autoregressive (AR) approaches like ( , ) generate
tokens sequentially, which becomes especially expensive when modeling high-dimensional spatio-
temporal data.

ENMA addresses these inefficiencies by combining the strengths of both paradigms. It adopts an AR
framework that supports multi-token generation and leverages key-value caching for faster inference,
while also benefiting from the expressiveness of generative methods through its use of Flow Matching.
Crucially, rather than relying on a large model at each step, ENMA performs flow matching through a
lightweight MLP, substantially reducing the computational overhead compared to traditional diffusion
models.

Results We compare the inference time per sam- Table 19: Inference speed comparison on the
ple for AR-DiT, Zebra, and ENMA in table 19. Combined and Vorticity datasets. Lower is bet-
ENMA achieves the fastest inference across both ter.
the Combined and Vorticity datasets, with an aver-

age of 2s and 4.5s per sample, respectively. This Model Combined Vorticity
represents a 2x speedup over AR-DiT and a 3x -

speedup over Zebra on Combined. Zebra partic- AR-DIiT 4s 6.7s
ularly exhibits slower inference on the Vorticity Zebra 6s 31s
dataset where it reaches 31s per sample. These ENMA 2s 4.5s

results highlight the efficiency of ENMA’s continu-
ous latent autoregressive generation, which scales
favorably compared to existing generative baselines.

F.1.4 Ablation Studies

Relative L2 vs. Input History Size To better understand the behavior and flexibility of
0012 ™1 our generative framework, we conduct ablations ex-
amining ENMA’s performance across three key di-
mensions: (i) sensitivity to the length of the input
history, (ii) the number of autoregressive spatial steps
S, and (iii) the number of Flow Matching (FM) steps

0.006 during generation.

0.010

ive L2

0.008

Relati

0.004

: - Impact of Input History Length In many real-
Input History Size world scenarios, the number of available historical
observations varies, making it important for a model
to adapt seamlessly to different history lengths. We
evaluate ENMA’s predictive performance as a func-
tion of the number of past frames provided as context and evaluate the predictions quality on the last
10 steps of the trajectory. As shown in fig. 24, the relative L2 error consistently decreases as the input

Figure 24: Relative L2 error vs. input history size.
ENMA benefits from longer histories.
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history length increases. This trend confirms that ENMA effectively leverages additional temporal
context to refine its predictions. Notably, the model already achieves competitive performance with
as few as 2-3 input frames and continues to improve as more information is made available. This
highlights the model’s capacity for conditional generalization across varying input regimes.

Impact of the Number of Autoregressive Relative L2 vs. Number of Autoregressive steps S

Steps The number of autoregressive steps .S’ di- mallild
rectly impacts inference efficiency: fewer steps
accelerate generation, but may reduce accuracy.
In the case of the Combined equation, each spa-
tial state of 128 points is compressed into 16 la-
tent tokens. We evaluate ENMA’s performance
as we vary S from 1 to 16 in fig. 25, where
S =1 corresponds to generating all tokens at
once, and S = 16 to generating one token per — ; : P S —

step. Number of autoregessive steps

107

Relative L2

We observe that performance is poor when
S < 4, but significantly improves at S = 6,
after which it quickly plateaus. This behavior
reflects the masking ratio used during training:
the model is trained to reconstruct frames with
75%—-100% of tokens masked. Hence, inference scenarios where a majority of tokens are already
visible (i.e., large S values) fall outside the model’s training regime, which may limit gains from
further increasing S. These results suggest that a modest number of autoregressive steps—around
6—balances speed and accuracy. Expanding the training schedule to include lower masking ratios
could further improve performance for large .S, but would increase training time due to the larger
space of masking patterns.

Figure 25: Relative L2 error as a function of the
number of autoregressive steps S. Performance
improves markedly around S = 6 and plateaus
thereafter.

Impact of the Number of Flow Matching

Relative L2 vs. Number of FM steps

Steps The number of flow matching (FM) 00110 o e
steps governs the granularity of sampling from 00105
the learned conditional distribution at each au- 0.0100

toregressive step. While more FM steps can,
in principle, yield smoother and more accu- -
rate trajectories, they also increase inference
cost—even if the MLP used for token decod-
ing remains lightweight. In fig. 26, we evaluate
ENMA’s performance as a function of FM steps. P . - - -
We observe a sharp drop in relative L2 error be- Number of FM steps

tween 2 and 5 steps, after which the performance )
plateaus. Beyond 10 steps, improvements are Figure 26: Relative L2 error versus number of flow

marginal or even slightly inconsistent. This indi- Matching steps per token. Performance quickly
cates that ENMA captures most of the necessary Stabilizes after 5 steps.
detail with very few sampling steps.

0.0095

0.0090

Relative L2

0.0085

0.0080

0.0075

From a practical standpoint, this suggests that using as few as 5 FM steps can offer an optimal
trade-off between speed and accuracy, making ENMA efficient at inference without compromising
quality.

Latent Dynamics Modeling We assess the impact of the training objective on the quality of latent
trajectory generation by comparing Flow Matching (ENMA) against a Diffusion-based latent model
and a fully Deterministic variant. As shown in table 20, flow matching yields the lowest relative
MSE, outperforming both alternatives. While diffusion-based training theoretically offers strong
generative capacity, we observe convergence instability and degraded accuracy in practice. The
deterministic approach performs better than diffusion but remains inferior to flow matching, likely
due to its inability to capture stochastic variability in the latent dynamics. Overall, these results
highlight the robustness and efficiency of the flow-matching paradigm for continuous stochastic
trajectory modeling in ENMA.
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Table 20: Ablation of the training objective on the Vorticity dataset. Metrics are reported in Relative
MSE on the test set.

Training Objective Relative MSE
Flow Matching (ENMA) 0.0644
Diffusion 0.7579
Deterministic 0.0879

F.2 Experiments on the encoder-decoder
F.2.1 Additional Experiments on new datasets

We provide additional experiment on the encode-decoder of ENMA on a new dataset: Cylinder Flow
( , ). This dataset is inherently irregular and contains multiple output channels. The
results are shown in table 21 and illustrate the superior performance of ENMA on this additional
dataset.

Setting In this example, we used tokens with a spatial size of 8 x 8 and a feature dimension of 8
for all baselines except OFormer, which does not perform spatial compression. ENMA uses a latent
grid of size 32 x 32 with a feature dimension of 16, and then applies two ‘compress_space‘ and
one ‘compress_time* layers to reach the desired latent size. All other configurations follow those
described in appendix E. All models are trained as autoencoders by minimizing the RMSE loss. The
FNO architecture follows the same configuration as described in appendix E.2.3. Models were trained
for 1,000 epochs on the reconstruction task and 250 epochs for the time-stepping experiment.

Table 21: Reconstruction error — Test results and compression rates. Metrics in Relative MSE. The
compression rate reflects how much the latent representation is reduced compared to the input data.
A compression rate of x2 indicates that the latent space is half the size of the input in terms of raw
elements.

L X Dataset — Cylinder Flow
Model | Reconstruction  Time-stepping  Compression rate
OFormer 1.71e-1 7.96e-1 x0.38
GINO 8.04e-1 1.56 x10
100% AROMA 9.38e-2 6.50e-1 x10
CORAL 3.3%-1 5.35e-1 x 10
ENMA 8.78e-2 1.71e-1 %20
OFormer 1.75e-1 7.96e-1 -
GINO 8.04e-1 1.55 -
50% AROMA 1.02e-1 6.63e-1 -
CORAL 3.40e-1 5.40e-1 -
ENMA 9.06e-2 1.75e-1 -
OFormer 1.92e-1 8.08e-1 -
GINO 8.03e-1 1.54 -
20% AROMA 1.26e-1 7.22e-1 -
CORAL 3.43e-1 5.50e-1 -
ENMA 9.98e-2 1.82e-1 -

Results These additional results on a widely known dataset further validate the conclusions drawn
in section 4.2. ENMA outperforms the baselines on the reconstruction task while achieving twice the
compression. Moreover, its tokens capture informative features that enable strong performance on
the time-stepping task.
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F.2.2 OOD encoding on 10% of the input grid

We evaluate the performance of the auto-encoder in an out-of-distribution (OOD) reconstruction
setting by reducing the input grid size to m = 10% of the original spatial grid. This requires models
to reconstruct the full field from very sparse observations—only 12 points on the Advection dataset
and 409 points on the Vorticity dataset. Notably, such extreme sparsity was not encountered during
training, where input sampling ratios ranged from = = 20% to # = 100%.

Table 22: Reconstruction error using 7 = 10% of the initial grid Test results. Metrics in Relative
MSE.

1 X, Dataset —  Advection Vorticity Cylinder Flow
te
Model | Reconstruction Reconstruction Reconstruction
OFormer 5.82e-1 1.00e+0 2.19e-1
GINO 2.63e-1 6.46e-1 8.05e-1
= 10% AROMA 4.69e-1 3.28e-1 1.51e-1
o ° CORAL 1.13e+0 1.38e+0 3.58e-1
ENMA 2.45e-1 2.78e-1 1.15e-1

Results This reconstruction experiment demonstrates that ENMA maintains superior reconstruction
quality even when provided with extremely sparse input fields. Among the baselines, AROMA and
GINO also exhibit robust performance under such challenging conditions. In contrast, OFormer and
CORAL fail to reconstruct the physical field, highlighting their limited generalization in low-data
regimes.

F.2.3 Super-resolution

In this section, we assess the models’ ability to generalize to finer spatial grids. For the Advection
dataset, we evaluate reconstructions starting from input subsamplings of 7 = 20%, 50%, 100%,
and query the model on denser grids with 7y, = 200%, 400%, 800% of the original resolution. On
the Vorticity dataset, we use the same input subsamplings but perform super-resolution only at
e = 200% due to data availability constraints.

For comparison, we also report reconstruction results at g, = 100%, as in table 1, and present the
full results in table 23. The table is structured as follows: rows correspond to the input grid ratio ,
matching the setup of table 1, while columns indicate the relative query grid size 7. For instance, on
the Advection dataset with an original grid size of 128, the second row (7 = 50%) corresponds to 64
input points, and the third column (s, = 400%) corresponds to querying 512 points. Other rows and
columns follow the same interpretation.

Results As shown in table 23, all models exhibit performance degradation under the super-resolution
setting. Despite this, ENMA consistently outperforms other encoder—decoder architectures across all
resolutions. CORAL demonstrates stable performance as output resolution increases, while OFormer
struggles significantly when queried on unseen grids for both datasets. ENMA and AROMA show
similar trends as the super-resolution difficulty increases; however, AROMA’s performance degrades
more rapidly with lower input grid densities. Overall, ENMA’s auto-encoder proves to be the most
robust, both to variations in input sparsity and to changes in query resolution.
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Table 23: Reconstruction error on super resolution task. Test results. Metrics in Relative MSE.

Dataset — Advection Vorticity
tde oo 100%  200%  400%  800%  100%  200%
Model |
OFormer 1.70e-1 5.20e+0 5.19e+0 5.19e+0 9.99e-1 1.00e+0
GINO 5.74e-2 7.77e-2 8.83e-2 9.43e-2 5.63e-1 5.76e-1
= 100% AROMA  5.4le-3 3.78e-2 5.62e-2 6.54e-2 1.45e-1 1.71e-1
- ° CORAL 1.34e-2 4.00e-2 5.76e-2 6.66e-2 4.50e-1 4.55e-1
ENMA 1.83e-3 3.71e-2 5.56e-2 6.49e-2 9.20e-2 1.36e-1
OFormer 1.79e-1 5.20e+0 5.19e+0 5.18e+0 9.99e-1 1.00e+0
GINO 6.64e-2 8.38e-2 9.37e-2 9.95e-2 5.69e-1 5.82e-1
= 50% AROMA  2.34e-2 4.44e-2 6.09¢-2 6.94e-2 1.64e-1 1.89%e-1
- ° CORAL 7.57e-2 8.80e-2 9.96e-2 1.06e-1 4.93e-1 4.98e-1
ENMA 4.60e-3 3.74e-2 5.59e¢-2 6.51e-2 9.90e-2 1.4le-1
OFormer  2.50e-1 5.18¢+0 5.17e+0 5.16e+0 9.99e-1 1.00e+0
GINO 9.13e-2 1.04e-1 1.12e-1 1.17e-1 5.90e-1 6.0le-1
= 20% AROMA  1.67e-1 1.72¢-1 1.78e-1 1.81le-1 2.29¢-1 2.45e-1

CORAL 4.77e-1 4.79e-1 4.82e-1 4.84e-1 7.59-1 7.62e-1
ENMA 3.05e-2 4.94e-2 6.49e-2 7.31e-2 1.37e-1 1.69e-1

F.2.4 Ablation studies

We conduct two additional ablation studies to evaluate specific architectural components of the
encoder—decoder framework: (i) the effect of using a geometry-aware attention bias (table 24), (ii)
the impact of the additional temporal causal compression, and (iii) the impact of the time-stepping
process used in the decoder (table 26).

Geometry-aware attention bias. Table 24 reports the reconstruction error when ENMA is trained
with and without the geometry-aware attention bias described in appendix D.1. This positional bias
encourages spatial locality in attention by penalizing interactions between distant query—key pairs.
The results show consistent improvements across all input sparsity levels, with relative gains ranging
from 25% to 40%. We provide additional analysis and some visualizations in appendix F.2.5.

Table 24: Reconstruction error with and without geometry-aware attention bias. Metrics are Relative
MSE. Relative improvement is reported in parentheses.

m Input Ratio Model Variant Reconstruction |

w/o bias 3.09e-3
100% Full w/ bias 1.83¢-3 (-10%)

w/o bias 6.84e-3
0% Half ) bias 4.60e-3 (-33%)

w/o bias 4.13e-2
20% Sparse w/ bias 3.05e-2 (-26%)

Causal vs Non-causal encoder We compare a causal convolution module in the encoder with a
non causal encoder, to assess its impact on temporal feature representation. Table 25 presents an
ablation of the causal component in ENMA. Compared to the non causal autoencoder, the causal
version adds temporal compression, reducing the number of tokens by half. Despite this, it matches
or outperforms the non causal version—especially in low-data settings— indicating that the causal
layer helps in providing more informative tokens.
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Table 25: Reconstruction error: Ablation of the Causal component on the Advection dataset.
Metrics in Relative MSE on the test set (please refer to table 1 for the sampling operation).

™ Input Ratio Model Variant Reconstruction |
oo Rl O 15563
50% Half lglacl)llllsg}:lusal 6.6(.)323?;21
0% spse ol 200

Time-stepping architecture. We further
examine the impact of the time-stepping
module by replacing the FNO used in
ENMA with a 4-layer U-Net. Both models
use identical lifting and projection layers to
match the latent token dimensions. The U-
Net adopts convolutional layers with kernel
size 3, stride 1, and padding 1.

Table 26 summarizes the reconstruction
performance on the Advection dataset
across three input sparsity levels. We ob-
serve that ENMA maintains superior accu-
racy under both architectures. While the
U-Net variant exhibits slightly degraded
performance compared to the FNO, it re-
mains competitive and stable. A dash (-)
indicates that the model diverged and pro-
duced NaNs during training.

These results confirm the robustness
of ENMA across different architectural
choices for the time-stepping component
and further emphasize the benefits of the
geometry-aware attention mechanism.

Table 26: Reconstruction error for different time-
stepping processes (FNO vs U-Net) on the Advection
dataset. Metrics are Relative MSE.

s Model FNO U-Net
OFormer 1.11e+0 1.54e+0
GINO 7.89e-1 7.52e-1
100% AROMA 2.23e-1 6.43e-1
CORAL 9.64e-1 -
ENMA 1.64e-1 3.51e-1
OFormer 1.11e+0 1.04e+0
GINO 7.87e-1 7.50e-1
50% AROMA 2.29e-1 6.49e-1
CORAL 9.74e-1 -
ENMA 1.72e-1 3.58e-1
OFormer 1.13e+0 1.03e+0
GINO 7.96e-1 7.53e-1
20% AROMA 3.21e-1 7.32e-1
CORAL 1.06e+0 -
ENMA 3.13e-1 4.15e-1

58



F.2.5 Geometry-Aware Attention Analysis

We visualize the attention mechanism in ENMA’s encoder-decoder using the Advection dataset to
better understand the effect of the geometry-aware attention bias.

Attention Bias Figure 28 displays the geometry-aware bias B

introduced in Section D.1. Each plot corresponds to one attention beamed iinerGrid Goords

head, with rows representing different input sizes (128, 64, and 25
points from top to bottom) and columns corresponding to different H 2 ,'
heads. Bias values near zero (white) indicate minimal distance be-  °° /.f"
tween query and key coordinates, promoting attention, while larger ~ °° ‘/;"«
distances produce strongly negative biases (dark blue), which sup- %4 e

press it. Because the input grid is irregular, attention patterns in the — °2 el

second and third rows are not strictly diagonal. Additionally, since oo «*""

the intermediate coordinates are learned (see fig. 27), the model is -0

not constrained to maintain a perfectly regular grid, which further el

contributes to these deviations. Notably, the later attention heads . .
appear to penalize distant tokens more strongly—an effect explained Figure 27: Learned coordi-
by the learned head-specific scaling factors, following the approach Mates of the intermediate regu-
of Press et al. (2022). lar grid.
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Figure 28: Geometry-aware attention bias B for each attention head, shown for 128 (top), 64 (middle),
and 25 (bottom) input points.
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Attention Scores Figures 29 and 30 present the actual attention scores produced using the geometry-
aware bias. These visualizations confirm that attention is concentrated on nearby points, enforcing a
spatially local inductive bias during interpolation. We provide visualization for the advection dataset
fig. 29 and vorticity fig. 30.

These results demonstrate that the attention mechanism learns to prioritize spatially proximate inputs,
even under varying levels of spatial sparsity.
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Figure 29: Attention scores per head using the geometry-aware bias for 128 (top), 64 (middle), and
25 (bottom) input points.

Attention visualization in the physical space We visualize the final attention weights in physical
space in fig. 30. For a selected timestep of a given trajectory, we choose a set of spatial tokens (left
panel) and display their corresponding attention scores across the physical domain (middle panel).
The resulting patterns clearly demonstrate that the cross-attention mechanism, guided by the geometry-

aware bias, preserves locality by assigning high attention weights to nearby regions—effectively
focusing on spatially relevant information.

Selected tokens Local attention scores Physical field

Attention Score

20 40 60

Figure 30: Attention scores on the vorticity dataset, on spatially selected tokens (left) at a given
timestep (¢ = 15). The resulting attention score on the output grid keeps the local behavior (middle).
Attention score are averaged across heads for visualization. The left figure is the physical field
considered.

F.2.6 Visualization in the Token Space
Figure 31 shows the latent token representations on the Advection dataset for varying input sparsity

(128, 64, and 25 points from top to bottom). The final column displays the corresponding ground-truth
physical trajectory.
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Figure 31: Token representation when using 128 (top), 64 (middle), and 25 (bottom) input points.

X

The tokens effectively capture the dynamics in a compressed form, demonstrating the encoder’s strong
inductive bias. Notably, the first latent dimension remains stable across input resolutions, encoding
coarse global structure. In contrast, the remaining dimensions vary with input density, indicating
progressive refinement of local details—a sign of partial disentanglement across token dimensions.
This behavior supports the model’s ability to encode structure hierarchically and adaptively under
compression.

Intermediate Fields in the Encoder-Decoder Figure 32 visualizes the full trajectory of latent
transformation within ENMA'’s encoder—decoder. Each row corresponds to a processing stage,
averaged across channels.

Starting from a sparse, irregular input field (top row, m = 20%), the first cross-attention layer projects
the observations onto a learned latent grid (row 2), effectively interpolating the missing spatial points.
The causal CNN then encodes the trajectory into a compact token space (row 3), capturing the
trajectory’s temporal evolution in a lower-dimensional representation. These tokens are subsequently
upsampled (row 4) and decoded onto the full spatial grid (row 5). The final reconstruction is
smooth and well-aligned with the underlying dynamics, highlighting the effectiveness of ENMA'’s
encoder—decoder architecture. Minor artifacts observed in intermediate stages—Ilikely caused by
learned positional embeddings (Yang et al., 2024)—are effectively corrected during decoding.
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Figure 32: Intermediate fields in the encoder/decoder blocks: interpolation (rows 1-2), compression
(rows 2-3), upsampling (rows 3—4), and reconstruction (rows 4-5).
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G Visualization

G.1 Combined Equation

Figure 33 and Figure 34 provide qualitative results on the Combined equation, showcasing ENMA’s
accuracy on in-distribution inputs and its generalization capability to out-of-distribution scenarios.

ENMA vs Ground Truth for 1D PDEs

Sample 1: a = 0.8434, B = 0.131, y = 0.53,6 = 0.0  Sample 2: a = 0.7475, B = 0.3855, y = 0.59, 6 = 0.0

Ground Truth

ENMA

0.008
0.005

0.006 0.004

0004 0.003

0.002

0.002
0.001

RMSE Error

0.000 0.000

&, r.

Figure 33: Qualitative comparison between ENMA prediction and ground truth for in-distribution
examples from the Combined.

ENMA vs Ground Truth for 1D PDEs

Sample 1: a = 0.3788, B = 0.498, y = 0.38, 6 = 0.5 Sample 2: a = 0.3101, B = 0.4045, y = 0.4, 6 = 0.8889

Ground Truth

ENMA

RMSE Error

X X

Figure 34: Qualitative comparison between ENMA prediction and ground truth for an OOD example
from the Combined.
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G.2 Advection Equation

Figure 35 and Figure 36 provide qualitative results on the Advection equation. These plots highlight
ENMA’s accurate forecasting on in-distribution samples and its ability to generalize to out-of-
distribution scenarios.
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Figure 35: Qualitative comparison between ENMA prediction and ground truth for in-distribution
examples from the Advection dataset.
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Figure 36: Qualitative comparison between ENMA prediction and ground truth for an OOD example
from the Advection dataset.
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G.3 Gray-Scott Equation

Figure 37, Figure 38, and Figure 39 present qualitative comparisons between ENMA and ground
truth on the Gray-Scott equation. ENMA accurately reconstructs complex spatiotemporal patterns
on in-distribution samples and demonstrates good qualitative performance on out-of-distribution
parameters.

ENMA vs Ground Truth Parameters: F=0.0332,k=0.0607
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Figure 37: Qualitative comparison between ENMA prediction and ground truth for an in-distribution
sample from the Gray-Scott dataset (F' = 0.0323, £ = 0.0606).
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Figure 38: Another in-distribution Gray-Scott example showing the agreement between ENMA
prediction and ground truth (F' = 0.0316, k£ = 0.0597).
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ENMA vs Ground Truth Parameters: F = 0.0467, k =0.058
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Figure 39: Out-of-distribution (OOD) generalization for the Gray-Scott equation. ENMA prediction
remains consistent despite being evaluated at unseen parameters (F' = 0.0467, k£ = 0.058).

G.4 Wave Equation

Figure 40, Figure 41, and Figure 42 present qualitative comparisons for the Wave equation. ENMA
accurately captures wavefront propagation in in-distribution scenarios and generalizes well to out-of-
distribution conditions.

ENMA vs Ground Truth Parameters: c = 140.404, k =23.2323
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Figure 40: Qualitative comparison between ENMA prediction and ground truth for an in-distribution
sample from the Wave dataset (¢ = 140.404, k = 23.2323).



ENMA vs Ground Truth Parameters: ¢ = 144.4444,k=21.2121

0.5

0.0

2!
.
i

ENMA Prediction Ground Truth

0.04

0.02

MSE Error

0.00

Figure 41: Second in-distribution sample from the Wave dataset (¢ = 144.4444, k = 21.2121),
showing ENMA’s prediction, ground truth, and the corresponding MSE error.

ENMA vs Ground Truth Parameters: c = 500.0,k=52.5
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Figure 42: Out-of-distribution example from the Wave dataset (¢ = 500.0, £ = 52.5), demonstrating
ENMA's generalization capabilities beyond the training regime.
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G.5 Vorticity Equation

Figure 43, Figure 44, and Figure 45 show qualitative comparisons for the Vorticity equation. ENMA
reliably captures fluid dynamics behavior on in-distribution samples and maintains accuracy in
out-of-distribution regimes.

ENMA Prediction Ground Truth

MSE Error

ENMA vs Ground Truth Parameters: v=0.0019

,.,,
I
~

;

t=14

A
-
-
»

N
.
’

!

)

A
A

FSAR

0

Figure 43: Qualitative comparison between ENMA prediction and ground truth for an in-distribution
sample from the Vorticity dataset (v = 0.0019).
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Figure 44: Second in-distribution sample from the Vorticity dataset (v = 0.0048), illustrating
ENMA’s ability to reproduce complex vortex structures.
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ENMA vs Ground Truth Parameters: v=0.0007

ENMA Prediction Ground Truth

MSE Error

Figure 45: Out-of-distribution example from the Vorticity dataset (v = 0.0007), highlighting ENMA’s
robustness in extrapolating vortex dynamics.
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