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Cluster-specific nonignorably missing,
endogenous, and continuous regressors
in multilevel model for binary outcome

Gi-Soo Kim,1 Youngjo Lee,1 Hongsoo Kim2,3,4 and Myunghee Cho Paik1

Abstract

In multilevel regression models for observational clustered data, regressors can be correlated with cluster-level error

components, namely endogenous, due to omitted cluster-level covariates, measurement error, and simultaneity. When

endogeneity is ignored, regression coefficient estimators can be severely biased. To deal with endogeneity, instrument

variable methods have been widely used. However, the instrument variable method often requires external instrument

variables with certain conditions that cannot be verified empirically. Methods that use the within-cluster variations of the

endogenous variable work under the restriction that either the outcome or the endogenous variable has a linear

relationship with the cluster-level random effect. We propose a new method for binary outcome when it follows a

logistic mixed-effects model and the endogenous variable is normally distributed but not linear in the random effect. The

proposed estimator capitalizes on the nested data structure without requiring external instrument variables. We show

that the proposed estimator is consistent and asymptotically normal. Furthermore, our method can be applied when the

endogenous variable is missing in a cluster-specific nonignorable mechanism, without requiring that the missing

mechanism be correctly specified. We evaluate the finite sample performance of the proposed approach via

simulation and apply the method to a health care study using a San Diego inpatient dataset. Our study demonstrates

that the clustered structure can be exploited to draw valid analysis of multilevel data with correlated effects.
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1 Introduction

Consider observational health care data collected in San Diego, California,1 where the subjects are 41,179 elderly
inpatients who were admitted and discharged alive from 20 acute care hospitals from April to September 2006.
Among the patients, about 11.03% experienced unscheduled rehospitalizations (UR) within 30 days. Thirty-day
UR are likely to be due to a lack of discharge planning and care coordination from the index hospital.2 Moreover,
the cost of UR of Medicare patients has been estimated to be up to $17.4 billion per year.3 In October 2012, the
Centers for Medicare & Medicaid Services adopted rehospitalizations for certain conditions within 30 days as a
quality measure and implemented a pay-for-performance scheme related to the indicator for Medicare
beneficiaries.4 This policy change has increased the interest in identifying the factors affecting UR.

Our specific interest is the effect of health care cost on UR. We can fit a generalized linear mixed model
(GLMM) with hospital-level random effects using the indicator of UR as a binary outcome and the patient-
level and hospital-level observed characteristics as regressors. In a naive GLMM, however, the true effect of the
cost can be confounded if the cost variable is correlated with unmeasured hospital conditions represented by the
random effects. When correlation exists, the cost variable is called endogenous and the unmeasured hospital
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variables are called confounders. Potential hospital-level confounders may include general service quality,
competence of the hospital crew, and policies for discharged patients such as education programs or
connections to other health facilities. Our goal is to remove such endogeneity and estimate the effect of the cost
associated with illness or patient condition but not with hospital condition.

In this paper, we propose a new method for estimating the regression coefficients in a logistic GLMM when a
normally distributed regressor is correlated with cluster-level random effects due to omitted cluster-level
covariates, measurement error, and simultaneity. As will be shown in section 6, the variance component of the
random effects is not significant using the standard GLMM, while the proposed method shows otherwise. Also, by
ignoring endogeneity the effect estimate of health care cost can be misleading.

When endogeneity is present, naive methods that ignore endogeneity yield substantial bias for parameter
estimates. Ebbes et al.5 showed through simulation studies that even a moderate correlation between a
regressor and random component can result in severe bias in the parameter estimates. Most of the existing
methods that deal with endogeneity are instrumental variable (IV)-based methods.6 An instrument is an
external variable that is required to be uncorrelated with the random component while partially explaining
variability in the endogenous regressor. In the simple linear models, the IV method replaces the endogenous
variable with its conditional expectation given the instrument and exogenous regressors, assuming a linear
relationship. As long as the conditions of the IV are satisfied, the resulting coefficient estimates are consistent.
The method requires at least as many linearly independent instruments as the number of endogenous regressors to
avoid identifiability problem. This method was later extended to the case of nonlinear models.7–9

A drawback of the IV method is that the necessary conditions of an instrument cannot be verified empirically
and its selection is mostly based on a priori subject-matter knowledge. Such external instrument, if available, yields
inefficient estimates when the correlation with the endogenous regressor is weak. Moreover, Bound et al.10 showed
that the IV estimates can be more biased than the already inconsistent naive estimators if a weak relationship exists
between the instrument and the random component. Mundlak,11 Hausman and Taylor,12 and Kim and Frees13

proposed an alternative approach applicable to linear mixed-effects models (LMM) where regressors are
correlated with cluster-level random effects. Instead of using an external IV, their method exploited the
clustered structure of the data. However, this method does not work in the case of nonlinear models. For
GLMMs, Neuhaus and McCulloch14 proposed to decompose the endogenous variable into between- and
within-cluster components using either conditional or partitioning methods. The conditional likelihood method,
however, does not provide estimates of the cluster-level covariate effects, while the partitioning method requires
that the endogenous variable has a linear relationship with the cluster-level random effects.

In this paper, we proposed a new method that capitalizes on the clustered structure of the data to draw valid
analysis in logistic GLMMs when a normally distributed regressor is endogenous. A caveat of the new method is
to utilize a link-preserving imputation introduced by Paik and Sacco15 and Chen et al.16 This strategy was initially
proposed to deal with missing regressors in logistic regression models. The proposed estimator is consistent and
asymptotically normal, and does not require a linear relationship between the endogenous variable and random
effect. Our method can also be applied when the endogenous regressor is missing under a cluster-specific non-
ignorable (CSNI) mechanism,17 where missingness depends on the observed variables and cluster-level random
component, but not on the missing regressor. It takes a nonparametric approach to the missing mechanism in the
sense that the functional form of the missing probability needs not to be specified. To the best of our knowledge,
our method is the first to provide a consistent estimator for parameters in the logistic mixed-effects model when the
endogenous variable is not missing at random.

Section 2 describes various forms of endogeneity in regression models and existing methods established in the
literature. Section 3 presents the proposed estimator using link-preserving imputation. Section 4 extends the
proposed method to allow missingness in the endogenous variable. Section 5 evaluates finite sample properties
of the proposed estimator through simulation. We then apply the existing methods and the proposed method to
the 2006 San Diego inpatient dataset in section 6. The conclusion follows in section 7.

2 Literature on endogeneity

In this section, we describe various forms of endogeneity in regression models and the existing estimation methods.
Suppose that

EðYijXi,Zi,�iÞ ¼ hð�0 þ Xi�1 þ ZT
i b2 þ �iÞ, i ¼ 1, . . . ,N ð1Þ
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where Yi is an outcome, h(�) is a known twice differentiable function, �i is an unobserved random component with
mean 0, Zi is a vector of exogenous regressors, Xi is an endogenous variable, correlated with �i, and b ¼ ð�0,�1, b

T
2 Þ

is a vector of unknown parameters. In equation (1), �i can represent an omitted variable term, �i¼Zui�u, where Zui

is the omitted variable correlated with Xi and �u is the coefficient. If we fit equation (1) assuming �i is not
correlated with Xi, estimates of b can be severely biased. Let

"i ¼ Yi � EðYijXi,Zi,�iÞ

so that Eð"ijXi,Zi,�iÞ ¼ 0. For simplicity, we assume that Xi is a scalar.
In linear models, i.e. when h(�) is the identity function, (�iþ "i) can be considered as a single error term and the

IV method by Bowden and Turkington6 can be used. We denote an external IV for Xi by X�i , which is required to
be uncorrelated with both �i and "i while explaining some variability in Xi. When Z is null, the method obtains
ordinary least squares estimator after replacing X ¼ f1, ðX1, . . . ,XNÞ

T
g with bX ¼ H�X where H� ¼

X�ðX�TX�Þ�1X�T and X� ¼ f1, ðX�1, . . . ,X�NÞ
T
g. Denoting Y ¼ ðY1, . . . ,YNÞ

T, and E ¼ ð�1 þ "1, . . . ,�N þ "NÞ
T, the

resulting estimator of b ¼ ð�0,�1Þ
T, say bbIV is consistent since bbIV ¼ ðbXTbXÞ�1bXTY ¼

ðXTH�XÞ�1XTH�½Xbþ E� ¼ bþ opð1Þ, regardless of the relationship between X and X*.
When h(�) is nonlinear, �i and "i may not be combined as a single error term. Terza et al.9 proposed to use the

two-stage residual inclusion method, which is analogous to the IV method by Bowden and Turkington.6 Instead of
replacing Xi with X̂i, it uses the fitted residual ðXi � X̂iÞ as an additional regressor, which has an effect of
accounting for �i and thus removing the endogeneity issue. Unlike in the linear h(�) case, the regression model
for the endogenous variable should be correctly specified to achieve consistency. When h(�) is linear, the two-stage
residual inclusion method is shown to be numerically equivalent to the IV method by Bowden and Turkington.6

In this paper, we consider clustered data Yij for the ith cluster, i ¼ 1, . . . ,K and the jth unit, j ¼ 1, . . . , ni.
Suppose that

EðYijjXij,Zij,�iÞ ¼ hð�0 þ Xij�1 þ ZT
ijb2 þ �iÞ

where �i represents a cluster-level unobserved random component correlated with Xij. When data are clustered,
new methods do not require external IV X*. A simple approach is to treat �i as fixed effects and introduce cluster-
level dummy variables, thereby removing endogeneity. However, even without endogeneity, such analysis is shown
to yield severely biased estimates when the response is not normal and clusters are not large, due to a large number
of incidental parameters.18 Also, the parameter estimates are available only for unit-level regressors.19

Kim and Frees13 andHausman and Taylor12 derived an internal IVmethod for LMMs. They eliminate the source
of endogeneity, �i, by subtracting the clusterwise means from both sides of the model equation and use the within-
cluster variations of the endogenous variable as instruments. Mundlak11 called the resulting estimator the ‘‘within’’
estimator. Details are presented in Appendix 1. Though the method is novel, it is not easily extendable to the case
of nonlinear models as it capitalizes on the linearity of the outcome as well as the clustered structure.

When Yij follows a distribution from the exponential family and h(�) is the canonical link function, Neuhaus and
McCulloch,14 Brumback and He,20 Brumback et al.,21 and Brumback et al.22 proposed to maximize the
conditional likelihood that removes �i by conditioning on sufficient statistics for �i. This method yields
consistent estimates for the unit-level covariate effects without requiring correct specification of the distribution
of �i, but does not provide estimates for the cluster-level covariate effects as they are conditioned out as well.
Goetgeluk and Vansteelandt23 developed a related, conditional method based on estimating equations that enables
estimation of the cluster-level covariate effects in a two-step procedure. However, their method is restricted to the
case where h(�) is either the identity or exponential function. When h(�) is not canonical or the cluster-level
covariates effects are of interest, Neuhaus and Kalbfleisch24 and Neuhaus and McCulloch14 derived the
partitioning method as a ‘‘poor man’s’’ approximation to the conditional likelihood approach. The partitioning
method decomposes the endogenous variable into between- and within-cluster components, i.e. �1Xij ¼

�1B �Xi þ �1WðXij � �XiÞ, where �Xi is the ith cluster mean of X, and fits a GLMM utilizing both ðXij � �XiÞ and �Xi

as separate predictors. The resulting estimate of �1W is shown to be consistent for �1 under the restrictive
assumption that �i is a linear function of �Xi plus an independent Gaussian error term.25–27 Also, as we can
verify in the simulation studies of Neuhaus and McCulloch,14 the estimate of the intercept is severely biased
due to the presence of �Xi in the model.

To generalize the partitioning method, Brumback et al.25 and Brumback et al.26 proposed a method that
capitalizes on the full knowledge of the parametric form of E½�ijXi�, where Xi ¼ fXi1, . . . ,Xinig

T. Under the
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assumption that  ðXi; nÞ :¼ E½�ijXi� is a known, linear function in the parameter vector n and that
�i :¼ �i �  ðXi; nÞ is i.i.d. Gaussian independent of Xi, the authors proposed to fit a GLMM with both b and n

as fixed parameters. In the special case where  ðXi; nÞ ¼ ½1, �Xi�
Tn, the method is numerically identical to the

partitioning method.14,24 However, this method is inapplicable when  (�) has no closed form and �i is still
correlated with Xi.

In this paper, we propose a new method that can be applied to logistic mixed-effects models for binary data,
without the need for external IVs and without requiring a linear relationship between the endogenous variable and
the cluster-level random effect. The main strategy is to apply the link-preserving imputation method of Paik and
Sacco,15 which was originally developed in the missing data context to impute regressors that are missing at
random (MAR). Paik and Sacco15 proved that when a binary outcome follows a generalized linear model
(GLM) with logistic link and the missing regressor belongs to an exponential family, then the marginal
distribution of the outcome without conditioning on the missing regressor is a GLM with logistic link as well
with the missing regressor replaced with a function of completely observed regressors. Hence, the logistic link is
preserved after marginalization. We extend this method to binary GLMMs that contain a continuous regressor
that is both endogenous and missing. Our method can allow CSNI missingness in the endogenous variable,
without requiring to correctly specify the missing mechanism.

3 Proposed method

In this section, we show that if data are collected in a clustered structure, we can develop consistent estimation
procedure for logistic mixed-effects models under endogeneity without using external IVs. Suppose that Yij is a
binary outcome of the jth unit (j ¼ 1, 2, . . . , ni) in the ith cluster (i ¼ 1, 2, . . . ,K). Let Xij be an endogenous unit-
level scalar regressor and Zij be a p-dimensional vector of exogenous regressors. Suppose that the outcome follows
a GLMM with logistic link

logitfPðYij ¼ 1jXij,Zij,�iÞg ¼ �0 þ Xij�1 þ ZT
ijb2 þ �i ð2Þ

where ð�0,�1, b
T
2 Þ is a vector of unknown parameters and �i’s are independent and normally distributed random

effects with mean 0 and variance D, correlated with Xij. Our goal is to obtain consistent estimates of
b ¼ ð�0,�1, b

T
2 Þ.

The proposed strategy is to derive a marginal model for the outcome without the endogenous regressor using a
link-preserving imputation of Paik and Sacco.15 Following terminology of Chen et al.,16 a marginal model is
called link-preserving if the part of the linear predictor concerning the exogenous regressors is preserved under the
same link function after marginalization. Thus under link-preserving imputation, the marginal mean has a form of
replacing the endogenous regressor with some imputation value.

3.1 Construction of the marginal model

Our approach differs from the previous approaches in that instead of modeling PðYij ¼ 1jXij,ZijÞ, we model
PðYij ¼ 1jZij,�iÞ. Let f(�) denote the conditional distribution of X given Z, Y and �. Using Bayes’s rule, we have

log
PðYij ¼ 1jZij,�iÞ

PðYij ¼ 0jZij,�iÞ
¼ log

PðYij ¼ 1jXij,Zij,�iÞ

PðYij ¼ 0jXij,Zij,�iÞ
þ log

f ðXijjZij,Yij ¼ 0, �iÞ

f ðXijjZij,Yij ¼ 1, �iÞ
ð3Þ

We also have

expð�1xÞ ¼
PðYij ¼ 1jXij ¼ x,Zij,�iÞ

PðYij ¼ 0jXij ¼ x,Zij,�iÞ

PðYij ¼ 0jXij ¼ 0,Zij,�iÞ

PðYij ¼ 1jXij ¼ 0,Zij,�iÞ
¼

f ðXij ¼ xjZij,Yij ¼ 1, �iÞ

f ðXij ¼ xjZij,Yij ¼ 0, �iÞ

f ðXij ¼ 0jZij,Yij ¼ 0, �iÞ

f ðXij ¼ 0jZij,Yij ¼ 1, �iÞ

ð4Þ

where the first equality is due to logistic assumption in equation (2) and the second can be derived from
equation (3). Thus, the last term of equation (3) can be rewritten as

log
f ðXijjZij,Yij ¼ 0, �iÞ

f ðXijjZij,Yij ¼ 1, �iÞ
¼ �Xij�1 þ log

f ðXij ¼ 0jZij,Yij ¼ 0, �iÞ

f ðXij ¼ 0jZij,Yij ¼ 1, �iÞ
ð5Þ
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Now, suppose that

Xij ¼ �0 þ ZT
ij c1 þ Yij�þ ��i þ eij ð6Þ

where ð�0, c
T
1 , �, �Þ is a vector of unknown parameters, eij’s are independent and normally distributed with mean 0

and variance �2, and �i o eij. Note that when D> 0 with � 6¼ 0 or � 6¼ 0, Xij is an endogenous regressor of model (2).
When �¼ 0, equation (6) reduces to the X-model of Neuhaus and McCulloch.14 However, when � 6¼ 0, ðXij � �XiÞ is
still correlated with �i through ðYij � �YiÞ in a nonlinear fashion, where �Yi is the ith cluster mean of Y. Hence, the
partitioning method of Neuhaus and McCulloch14 cannot be applied. Due to the distributional assumption in
equation (6), the right-hand side of equation (4) can be further computed and gives

expð�1xÞ ¼ exp
�

�2
x

� �
for every x 2 R

This leads to a relationship between the parameters from the YjX model and XjY model

�1 ¼
�

�2
ð7Þ

Also, the right-hand side of equation (5) can be further computed to give

log
f ðXijjZij,Yij ¼ 0, �iÞ

f ðXijjZij,Yij ¼ 1, �iÞ
¼ �Xij�1 þ

�

�2
	1ðZijÞ þ 	0ðZijÞ

2
þ ��i

� �
¼ �Xij�1 þ �1

	1ðZijÞ þ 	0ðZijÞ

2
þ ��i

� �
ð8Þ

where 	yðZijÞ ¼ �0 þ ZT
ij c1 þ y�, y ¼ 1, 0. The second equality is due to equation (7). Let

X�ij ¼ f	1ðZijÞ þ 	0ðZijÞg=2 ¼ �0 þ ZT
ij c1 þ

�
2. Combining equations (2), (3), and (8) leads to the marginal model

logitfPðYij ¼ 1jZij,�iÞg ¼ �0 þ X�ij�1 þ ZT
ijb2 þ ð1þ ��1Þ�i ð9Þ

The marginal probability PðYij ¼ 1jZij,�iÞ without conditioning argument Xij using a link-preserving
imputation model (6) results in simply replacing Xij in PðYij ¼ 1jXij,Zij,�iÞ with X�ij, and �i with bi¼ (1þ ��1)�i.
The internal IV X�ij explains some variability in Xij not associated with the omitted variable term �i. However, we
still cannot apply standard GLMM methods to equation (9) because X�ij is linear in Zij, rendering �0, �1, and b2

unidentifiable. This is a new problem which was not encountered in Paik and Sacco,15 where the regressor is
partially missing but not endogenous, and thus Xij can be replaced only for the missing records. In our case, we
need to replace Xij with X�ij for all the records, whether or not they are missing.

3.2 Estimation

From equation (9), we have

logitfPðYij ¼ 1jZij,�iÞg ¼ �0 þ
�

2
�1 þ �0�1

� �
þ ZT

ij ðc1�1 þ b2Þ þ bi ¼ 
0 þ ZT
ij
1 þ bi ð10Þ

where 
0 ¼ �0 þ
�
2�1 þ �0�1 and 
1 ¼ c1�1 þ b2. Standard GLMM procedure produces consistent and

asymptotically normal (CAN) estimates 
̂0 and b
1. To estimate �0, �1, and b2, we can borrow information
from the imputation model (6). Estimating the parameters of equation (6) faces endogeneity problem, due to
equation (2). However, unlike Yij, the conditional mean of Xij is linear in the regressors, so we can use the
Hausman–Taylor estimator.12 We describe the whole procedure in Appendix 1. The resulting estimates
ð�̂0, ĉ

T
1 , �̂, �̂

2Þ are CAN. Then from equations (7) and (10)

�̂0 ¼ 
̂0 �
�̂

2
þ �̂0

 !
�̂1
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�̂1 ¼
�̂

�̂2

b̂2 ¼ 
̂1 � ĉ1�̂1 ð11Þ

which are CAN as well due to delta method. In summary, we estimate b ¼ ð�0,�1, b
T
2 Þ

T using the following three
steps:

STEP 1: Compute the Hausman–Taylor estimates ð�̂0, ĉ
T
1 , �̂, �̂

2Þ of the parameters in equation (6).
STEP 2: Using standard GLMM procedures, compute estimates 
̂0 and 
̂1 of the parameters in equation (10).

STEP 3: Calculate ð�̂0, �̂1, b̂
T

2 Þ using equation (11).
The methodology can be extended to the case where the imputation model (6) includes a nonlinear term with

respect to Z and an interaction term between Y and Z. When there is an interaction term, the outcome model (2)
should also include an interaction term between X and Z. Derivation is analogous, so we skip the details.

4 Extension of the proposed method to allow missingness in X

In the methods introduced in section 2 that either use external instruments or the within-cluster deviations of X,
endogeneity and missingness are two separate challenges that should be respectively dealt with. In our method, X�ij
is a function of completely observed exogenous regressors, so the replacement resolves the endogeneity and
missingness issue simultaneously.

Let rij denote a binary variable indicating whether Xij is observed. Suppose that given the random effect and
observed variables, the missingness is independent of Xij

�ij � Pðrij ¼ 1jXij,Yij,Zij,�iÞ ¼ Pðrij ¼ 1jYij,Zij,�iÞ ð12Þ

Since rij depends on unobserved �i, the missingness is nonignorable. Yuan and Little17 called this missing
mechanism cluster-specific non-ignorable (CSNI). Note that if rij depends only on Yij and Zij, the missing
mechanism is MAR. Therefore, equation (12) covers MAR missingness as a special case.

In our method, estimating PðYij ¼ 1jZij,�iÞ does not change when Xij is missing. Estimating the imputation
model (6) needs to take care of missing Xij. Under equation (12), EðXijjZij,Yij,�i, rij ¼ 1Þ ¼ EðXijjZij,
Yij,�i, rij ¼ 0Þ, so the estimating procedure based on the records with observed Xij yields CAN estimates of
ð�0, c

T
1 , �, �

2Þ. Therefore, the proposed method can be easily extended to the missing X case by replacing
estimation of ð�0, c

T
1 , �, �

2Þ with complete record analysis. It is notable that even if the missingness is
nonignorable, we do not require to specify the model for the missing probability.

5 Simulation studies

We conducted simulation studies to evaluate the finite sample properties of the proposed estimator. We set K, the
number of clusters, and ni, the number of units in one cluster, as (K, ni)¼ (50, 20) or (100, 10). We generated Zij

from Uniform(0, 1), �i from N(0, D), Yij from (10), and Xij from (6) with �0 ¼ �1, �1 ¼ �1,
� ¼ 3, �2 ¼ 1, �0 ¼ �1, �1 ¼ 3, �2 ¼ 1:5,D ¼ 1, and �¼ 0.7. Consequently, Yij follows equation (2). The
observation indicator rij of Xij was generated from Ber(�ij) where �ij satisfies equation (12) and

logitf�ijg ¼ ’0 þ ’1Yij þ ’2Zij þ ’3�i

with ’0¼ 1, ’1¼ 1, ’2¼ –1, and ’3¼ –0.5. The overall missing probability was 28.57%.
We compare the proposed method with the partitioning method14 and the naive method, which ignores the

presence of endogeneity. As an alternative to the proposed method, we also report the results of maximizing the
following joint observed likelihood of X, Y, and r using the mdhglm package28 with second-order Laplace
approximation YK

i¼1

Z Yni
j¼1

Z
f ðYijjZij,�iÞ gðXijjYij,Zij,�iÞ�

rij
ij ð1� �ijÞ

1�rijkð�iÞdXij,missd�i ð13Þ

6 Statistical Methods in Medical Research 0(0)



where f(�) is the marginal distribution (10) of ðYjZ,�Þ, gð�Þ is the normal distribution (6) of ðXjY,Z,�Þ, and k(�) is
the normal distribution of �. We denote the results by HGLM (1). Note that unlike the proposed method, �ij
should be correctly specified. This is because due to dependence on �, �ij cannot come out of the outer integration.
Additionally, we maximize the joint likelihood specified by Neuhaus and McCulloch14YK

i¼1

Z Yni
j¼1

Z
~fðYijjXij,Zij,�iÞ ~gðXijjZij,�iÞ�

rij
ij ð1� �ijÞ

1�rijkð�iÞdXij,missd�i

where ~f ð�Þ is the conditional distribution (2) of ðYjX,Z,�Þ and ~gð�Þ is the misspecified distribution of ðXjZ,�Þ
assuming that equation (6) holds with �¼ 0. We denote the results by HGLM (2).

To compute the naive estimators, we applied a standard GLMM method to equation (2). When X was missing,
we used only the complete records for the naive and partitioning methods. The R codes to compute the proposed
estimators and their standard errors are given in the Supplementary Material. The variance of the proposed
estimators was estimated using Jackknife variance. We calculated the 95% confidence intervals based on
normality of the estimator.

Tables 1 and 2 show the bias, simulation variance, and coverage probability of each estimate, for full data and
for data with missing regressor, respectively. We indicated significant bias in bold. The naive, partitioning, and
HGLM (2) estimators show large bias compared to the proposed and HGLM (1) estimators. Since � 6¼ 0, the
partitioning and HGLM (2) estimates of �1 have larger bias than the proposed method. Also, the naive and
partitioning estimates have large standard errors, especially when X is missing and the cluster size is small. The
coverage probabilities of the proposed and HGLM (1) estimators are close to the nominal value in all cases.

Despite correct specification of the likelihood, HGLM (1) estimators appear to have significant bias and larger
standard errors than the proposed method. HGLM (1) maximizes the joint likelihood (13) of X, Y, and r given Z.
If the exact joint likelihood is available the resulting maximum likelihood estimator would be the most efficient.
However, this joint likelihood involves a high-dimensional integration. The proposed method maximizes the
marginal likelihood of ðYjZÞ, which is lower-dimensional than HGLM (1) when covariates are missing. Even
without missingness, the proposed method maximizes the marginal likelihood of ðYjZÞ instead of the joint

Table 1. Bias, standard error (S.E.), and coverage probability (C.P.) of the simulation estimates based on 500 samples, when X is fully

observed.

Estimator

(K, ni)¼ (50, 20) (K, ni)¼ (100, 10)

Bias S.E. C.P. Bias S.E. C.P.

Proposed method

�̂0 0.022 0.346 0.948 �0.014 0.322 0.952

�̂1 0.000 0.169 0.948 0.003 0.180 0.944

�̂2 �0.021 0.521 0.952 0.012 0.515 0.950

HGLM (1)

�̂0 0.018 0.416 0.948 �0.011 0.399 0.960

�̂1 0.027 0.170 0.954 0.068 0.166 0.928

�̂2 �0.094 0.587 0.940 �0.108 0.594 0.954

Partitioning method

�̂0 0.020 0.452 0.954 �0.048 0.434 0.970

�̂1 0.160 0.353 0.960 0.237 0.497 0.966

�̂2 0.055 0.772 0.958 0.191 0.770 0.958

HGLM (2)

�̂0 0.167 0.534 0.886 0.120 0.461 0.926

�̂1 0.100 0.347 0.944 0.060 0.367 0.932

�̂2 �0.361 0.854 0.880 �0.278 0.803 0.918

Naive method

�̂0 �0.210 0.441 0.922 �0.274 0.430 0.966

�̂1 0.410 0.358 0.868 0.494 0.516 0.900

�̂2 0.483 0.748 0.892 0.606 0.750 0.930
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Table 3. Estimates of � by proposed and naive method, with the standard errors (S.E.).

Regressor

Proposed Proposed_CR Naive

Estimate S.E. Estimate S.E. Estimate S.E.

Intercept �2.812*** 0.412 �2.783*** 0.413 �3.051*** 0.254

log Cost 0.031 0.043 0.031 0.043 0.061* 0.026

Age

50–59 . . . . . .

60–69 �0.069 0.086 �0.093 0.098 �0.094 0.059

70–79 �0.006 0.064 �0.008 0.071 �0.009 0.064

>80 0.145 0.088 0.127 0.099 0.131* 0.064

Sex

Male . . . . . .

Female �0.154*** 0.033 �0.160*** 0.038 �0.158*** 0.035

Race

White . . . . . .

Black 0.182* 0.087 0.189 0.113 0.192* 0.085

Hispanic �0.062 0.041 �0.079* 0.037 �0.078 0.053

Others 0.068 0.066 0.082 0.067 0.080 0.068

Income

High �0.082 0.046 �0.078 0.050 �0.079 0.044

Medium . . . . . .

Low �0.0001 0.080 �0.012 0.094 �0.011 0.054

Insurance

Medicare . . . . . .

Medicaid 0.202** 0.062 0.195** 0.064 0.198** 0.067

Private �0.459*** 0.073 �0.497*** 0.075 �0.499*** 0.063

Othersa
�0.174 0.124 �0.185 0.126 �0.183* 0.092

(continued)

Table 2. Bias, standard error (S.E.), and coverage probability (C.P.) of the simulation estimates based on 500 samples, when X is

missing.

Estimator

(K, ni)¼ (50, 20) (K, ni)¼ (100, 10)

Bias S.E. C.P. Bias S.E. C.P.

Proposed method

�̂0 0.032 0.357 0.948 0.004 0.352 0.948

�̂1 0.000 0.194 0.954 0.011 0.216 0.948

�̂2 �0.014 0.570 0.952 0.020 0.589 0.946

HGLM (1)

�̂0 0.072 0.347 0.946 0.158 0.358 0.934

�̂1 �0.025 0.192 0.940 0.020 0.200 0.950

�̂2 �0.113 0.578 0.948 �0.109 0.602 0.948

Partitioning method

�̂0 0.110 0.542 0.940 �0.031 1.227 0.954

�̂1 0.233 0.472 0.970 0.776 3.416 0.936

�̂2 0.296 0.959 0.936 0.616 2.309 0.934

HGLM (2)

�̂0 0.348 0.355 0.930 0.324 0.359 0.842

�̂1 0.133 0.479 0.886 0.232 0.450 0.920

�̂2 �0.916 0.504 0.538 �0.793 0.460 0.616

Naive method

�̂0 �0.086 0.539 0.946 �0.265 1.009 0.954

�̂1 0.508 0.517 0.944 1.081 3.117 0.918

�̂2 0.728 0.937 0.896 1.073 2.138 0.894
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Table 4. Estimates of � by partitioning method, HGLM (1), and HGLM (2), with the standard errors (S.E.).

Regressor

HGLM (1) Partitioning HGLM (2)

Estimate S.E. Estimate S.E. Estimate S.E.

Intercept �3.292*** 0.385 �0.097 1.268 �2.96*** 0.239

log Cost 0.029 0.039 0.068* 0.027 0.047 0.024

Age

50–59 . . . . . .

60–69 �0.069 0.086 �0.093 0.059 �0.069 0.056

70–79 �0.006 0.064 �0.01 0.064 �0.007 0.061

>80 0.145 0.088 0.13* 0.064 0.146* 0.06

Sex

Male . . . . . .

Female �0.154*** 0.033 �0.16*** 0.035 �0.153*** 0.032

Race

White . . . . . .

Black 0.182* 0.088 0.188* 0.085 0.183* 0.078

Hispanic �0.061 0.041 �0.078 0.053 �0.062 0.05

Others 0.068 0.066 0.086 0.068 0.067 0.066

Income

High �0.082 0.046 �0.071 0.044 �0.082 0.043

Medium . . . . . .

Low 0 0.08 �0.014 0.054 0 0.05

Insurance

Medicare . . . . . .

Medicaid 0.202** 0.062 0.198** 0.067 0.202** 0.066

Private �0.459*** 0.073 �0.497*** 0.063 �0.459*** 0.058

Othersa
�0.174 0.124 �0.182* 0.092 �0.174 0.091

N.chro.cond. 0.147*** 0.015 0.153*** 0.012 0.147*** 0.011

Length.Stay 0.032*** 0.007 0.028*** 0.003 0.031*** 0.003

Bed Size

Small 0.225 0.555 0.224 0.142 0.224 0.152

Medium . . . . . .

Large 0.119 0.07 0.133** 0.043 0.122* 0.051

(continued)

Table 3. Continued

Regressor

Proposed Proposed_CR Naive

Estimate S.E. Estimate S.E. Estimate S.E.

N.chro.cond. 0.147*** 0.015 0.153*** 0.016 0.153*** 0.012

Length.Stay 0.031*** 0.007 0.030*** 0.007 0.028*** 0.003

Bed size

Small 0.226 0.554 0.238 0.707 0.240 0.143

Medium . . . . . .

Large 0.119 0.070 0.156** 0.054 0.160** 0.041

Ownership

Profit 0.093 0.601 0.071 0.617 0.064 0.089

Non-Profit . . . . . .

Public �0.014 0.083 �0.049 0.070 �0.043 0.046

Teaching

Yes 0.055 0.076 0.020 0.058 0.020 0.053

No . . . . . .

OprMargin �0.002 0.005 �0.004 0.005 �0.004 0.002

aOthers include self-pay, no-charge, county indigent programs, charity care, etc. *p< 0.05, **p< 0.01, ***p< 0.0001.
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likelihood ðX,YjZÞ, so that the proposed method seems less biased due to approximation. This may explain the
smaller biases and standard errors for the proposed estimators over the HGLM (1) estimators.

We should also note that HGLM (1) requires the missing probability �ij to be correctly specified, while the
proposed method does not. In simulations, �ij was correctly specified for HLGM (1). In practice, it is hard to
identify the missing mechanism. Thus, we recommend using the proposed method.

6 Application to study on health care cost among San Diego inpatients

We applied the proposed method, naive method, partitioning method, HGLM (1), and HGLM (2) to the 2006 San
Diego inpatient dataset. The response Y is the binary variable which takes value 1 if the patient experiences UR,
and 0 otherwise. The endogenous variable X is the logarithm of health care cost in U.S. dollars ($). The hospital-
level exogenous regressors, Z1, include Staffed beds size, Ownership (profit, public, or nonprofit), Educational
status (teaching hospital or not) and Operational margin (OprMargin). The patient-level exogenous regressors, Z2,
include Sex, Age, Insurance status, Income status, Race, Number of chronic conditions (N.chro.cond.),
and Length of Stay (Length.Stay). We assume that Y follows a GLMM with logistic link as described in
equation (2). In the data, X is missing up to 13.06% and the missing proportion varies widely among clusters,
possibly representing a CSNI mechanism. To verify this, we fitted a logistic model with a cluster-level random
effect using the indicator of whether the cost variable is observed as a binary outcome and all the observed
characteristics as regressors. We conducted hypothesis testing on whether the variance component is zero via a
likelihood ratio test when the null value lies on the boundary of the parameter space,29 and rejected the null
hypothesis (p< 0.0001). The Operational margin was also missing for one hospital and the average of the other
19 hospitals was imputed.

Table 3 shows the estimates of b by the proposed and naive method. As the difference between the two methods
is due to both endogeneity and missingness, we also included the results of applying the proposed method to only
complete records (Proposed_CR). Table 4 shows the same estimates by HGLM (1), partitioning method, and
HGLM (2). Since HGLM (1) and HGLM (2) require to specify the functional form of the missing probability of
X, we used a logistic GLMM with Y, Z1, Z2 as covariates. The proposed method and HGLM (1) have similar
results, which may imply that the specification of the missing mechanism would be reasonable.

The proposed and HGLM (1) estimates of �1 show that the effect of log Cost on the experience of UR is
nonsignificant after adjusting for the unmeasured hospital-level confounders such as general service quality,
competence of the hospital crew, and policies for discharged patients. The results are also reflected in the
following plots (Figure 1), where the adjusted log Cost was computed as

ðadjusted log CostÞ ¼ X� �̂0 � ZTĉ1 � Y�̂�c��
where c�� is the h-likelihood predictor of ��. The HGLM (2) estimate of �1 shows a nonsignificant effect as well,
but with p¼ 0.054. The naive and partitioning estimates show a significant effect.

The effects of age and bed size in the previous hospital are also shown to be significant by the naive method,
partitioning method, and HGLM (2), whereas the proposed method and HGLM (1) indicate a nonsignificant
effect. The naive method ignoring endogeneity reports that the variance component of the random effects is not

Table 4. Continued

Regressor

HGLM (1) Partitioning HGLM (2)

Estimate S.E. Estimate S.E. Estimate S.E.

Ownership

Profit 0.092 0.601 0.074 0.089 0.085 0.104

Non-Profit . . . . . .

Public �0.014 0.083 �0.124* 0.058 �0.01 0.058

Teaching

Yes 0.056 0.075 0.071 0.057 0.055 0.069

No . . . . . .

OprMargin �0.002 0.005 �0.003 0.003 �0.002 0.003

aOthers include self-pay, no-charge, county indigent programs, charity care, etc. *p< 0.05, **p< 0.01, ***p< 0.0001.
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significant (p¼ 0.5), while the proposed method shows otherwise (p¼ 0.048). We speculate that with the naive
method, the effects of the unmeasured hospital condition cannot be distinguished from the effect of the
endogenous health care cost variable.

The proposed method suggests that people who tend to experience UR are male, black, have relatively more
chronic conditions and have stayed longer in the previous hospital. Strategies for better care coordination
targeting people at risk for readmissions may help prevent UR.

7 Conclusion

We proposed a consistent and asymptotically normal parameter estimator of a logistic GLMM for binary
outcome when one of the regressors is endogenous due to cluster-level omitted effects. The method does not
require external IVs and can be implemented using existing software. The proposed method can also be applied to
the case of missing data without requiring it to correctly specify the missing mechanism. The derivation of the
method demonstrates that a clustered data structure can be exploited to draw valid analysis of multilevel data with
correlated effects.
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Appendix 1

Hausman–Taylor estimator

In this section, we derive the Hausman–Taylor estimator of ð�0, c
T
1 , �, �

2Þ from equation (6). Without loss of
generality, let Zij ¼ ðZ

T
1i,Z

T
2ijÞ

T where Z1i is a vector of cluster level regressors and Z2ij is a vector of unit level
regressors. Accordingly, we have bT

2 ¼ ðb
T
21, b

T
22Þ and cT1 ¼ ðc

T
11, c

T
12Þ. Due to linearity, we can remove the ��i term

by substracting the clusterwise means from both sides of equation (6), and have

Xij � �Xi ¼ ðYij � �YiÞ�þ ðZ2ij � Z2iÞ
Tc12 þ eij � �ei

where �Xi, �Yi, Z2i, and �ei are the ith cluster mean of X, Y, Z2, and e, respectively. Therefore, the within-cluster
variations ðYij � �YiÞ and ðZ2ij � Z2iÞ serve as internal instruments. The new error term ðeij � �eiÞ has still mean 0 and
since we know the correlation structure, we can apply the generalized least squares (GLS) method to estimate
�, c12, and �

2.
Let

Xc
i ¼

Xi1 � �Xi

Xi2 � �Xi

..

.

Xi,ni�1 �
�Xi

0BBBB@
1CCCCA, Yc

i ¼

Yi1 � �Yi

Yi2 � �Yi

..

.

Yi,ni�1 �
�Yi

0BBBB@
1CCCCA, Zc

2i ¼

ðZ2i1 � Z2iÞ
T

ðZ2i2 � Z2iÞ
T

..

.

ðZ2i,ni�1 � Z2iÞ
T

0BBBB@
1CCCCA

Then, Xc
i follows a multivariate normal distribution

Xc
i � NðYc

i �þ Zc
2ic12, �2DiÞ

where Di is an ðni � 1Þ � ðni � 1Þ matrix with 1� 1
ni

� �
for the diagonals and � 1

ni

� �
for the off-diagonals.

Multiplying both sides by Li ¼ D
�1

2

i , we have

LiX
c
i � NððLiY

c
i Þ�þ ðLiZ

c
2iÞc12, �2Ini�1Þ

Then, ordinary least squares procedure yields consistent and normal estimates �̂, ĉ12, and �̂
2.

As for �0 and c11, we can fit a linear mixed-effects model (LMM) on

ðXij � Yij�� ZT
2ijc12Þ ¼ �0 þ ZT

1ic11 þ ��i þ eij

with �̂ and ĉ12 plugged in the left-hand side. As the endogenous Yij is moved to the outcome, standard methods
produce CAN estimates �̂0 and ĉ11.
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