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Abstract

Can algebraic geometry enhance the sharpness, robustness, and interpretability
of modern neural reasoning models by equipping them with a mathematically
grounded inductive bias? To answer this, we introduce Tropical Attention, an atten-
tion mechanism grounded in tropical geometry that lifts the attention kernel into
tropical projective space, where reasoning is piecewise-linear and 1-Lipschitz, thus
preserving the polyhedral decision structure inherent to combinatorial reasoning.
We prove that Multi-Head Tropical Attention (MHTA) stacks universally approxi-
mate tropical circuits and realize tropical transitive closure through composition,
achieving polynomial resource bounds without invoking recurrent mechanisms.
These guarantees explain why the induced polyhedral decision boundaries remain
sharp and scale-invariant, rather than smoothed by Softmax. Empirically, we show
that Tropical Attention delivers stronger out-of-distribution generalization in both
length and value, with high robustness against perturbative noise, and substantially
faster inference with fewer parameters compared to Softmax-based and recurrent
attention baselines, respectively. For the first time, we push the domain of neural
algorithmic reasoning beyond PTIME problems to NP-hard/complete problems,
paving the way toward sharper and more expressive Large Reasoning Models
(LRMs) capable of tackling complex combinatorial challenges in Phylogenetics,
Cryptography, Particle Physics, and Mathematical Discovery. The code is available
at https://github.com/Baran-phys/Tropical-Attention/.

1 Introduction

The tropical semiring T := (R U {—o0}, max,+) (or its “min-plus” variant) replaces ordinary
addition by maximum and multiplication by addition [1]. Polynomials over this semiring evaluate
to piecewise-linear, polyhedral functions. These are the main objects of study in tropical geometry
that translates algebraic geometry into combinatorics, turning varieties into polyhedral complexes,
with wide applications across the intersection of matroid theory, combinatorial optimization, auction
theory, enumerative geometry [1-5], and recently Machine Learning [6—13]. Because it analyses the
entire polyhedral structure of solutions rather than a single Euclidean point, tropical geometry is a
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Figure 1: (top) Tropical Attention with sharp attention maps on learning the notorious ! QUICKSELECT
algorithm, showcasing a size-invariance and OOD lengths generalization behavior far beyond training
(8 — 1024). In contrast, both (middle) adaptive-softmax and (bottom) vanilla-softmax heads dilute
and uniformly disperse as sequence length grows, failing to generalize. Each column evaluates the
models on a new batch of independently drawn inputs of increasing length. Since the position of the
target k-th element is different in each batch, the pattern of attention naturally changes to reflect the
new data.
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Combinatorial Tasks aseline Transformers Universal Transformers (UT) Tropical

Vanilla Adaptive Vanilla w/ ACT  Adaptive w/ ACT Transformer

ConvexHuLL 42.75%206 48 95+0:9 43.37 53.83 97.00%"1
KNAPSACK 41.06*'7°  39.18*%%° 54.57 55.04 60.0012%
QUICKSELECT 4.6653%  22.89F24 37.05 40.44 77.067
BINPACKING 60.7512%°  64.25%1% 64.07 63.28 66.01%!%
scc 51.30%3°"  56.50%22 74.68 70.81 89.25L34
SUBSETSUM 21.13%24 227582 41.43 42.05 87.50E645
BALANCEDPARTITION 80.55+29! 91.90+5%2 80.01 91.13 96.73%350
3SUM 80.00%%82  79.75+050 81.12 81.67 82.75E1%
MINCOINCHANGE 9.25%180 17982 17.33 23.67 42.52%147
FLOYD-WARSHALL 12.81F40 1 31%0% 7.59 0.97 0.81+008

FrACTIONALKNAPSACK ~ 0.88F00° 0.86+008 0.83 0.85 0.66%010

Table 1: Out-of-distribution Micro-F; score (top) and MSE for regression tasks (bottom) under
Length OOD test. The Tropical Transformer outperforms all baselines, across combinatorial
tasks while delivering 3x-9x faster inference and using ~ 20% fewer parameters than Universal
Transformer (UT) [17] baselines with iterative attention that approximate the closure.

natural mathematical language for algorithms that must reason over families of inputs, particularly
those generating such polyhedral structures. Dynamic programming (DP) exemplifies this connection.
It is a cornerstone for numerous combinatorial optimization problems. The structure of these problems
allows DP value functions to be described as piecewise-linear functions, forming polyhedral structures.
They are just recursively constructed circuits over tropical semirings. Each such circuits, namely
tropical circuits, compute monomials as feasible solutions over the underlying semiring making the
DP update step effectively linear within this algebraic framework [14, 15].

'The challenge by Michael Galkin [16]



Many combinatorial optimization problems are specified by a family of these optimal solutions.
For example, shortest-path algorithms such as Floyd-Warshall explicitly manifest this as tropical
matrix products and closures, and their feasible solutions trace the faces of a polyhedral complex in
parameter space [18]. More broadly, if candidate solutions to combinatorial algorithms are monomials
(linear segments) in tropical space, then the computation is just a circuit of tropical gates. Several
combinatorial algorithms like shortest paths [19, 20], change making [21, 22], knapsack [23-25],
are nothing but recursively constructed tropical circuits. So the tropical circuit model can give
us a bridge between combinatorial optimization and neural architectures to perform sharp,
piecewise-linear, and polyhedral computations, offering a representation around which we can
align the attention mechanism at the core of Transformer reasoning.

However, vanilla Transformers [26] are misaligned to this objective. Softmax-normalized dot-product
attention lives in Euclidean geometry and produces smooth, quadratic decision boundaries. This
smoothness blurs the hard arg max / arg min structure on which combinatorial algorithms rely. As
input length grows, softmax distributions can disperse, resulting in an increasingly flat probability
distribution, a.k.a, dispersion [27] or attention fading [28]. Moreover, the exponential sensitivity of
softmax makes logits vulnerable to small /., perturbations, harming adversarial robustness. As a
result, Transformers equipped with softmax attention fail to extrapolate beyond the training regime of
input length or magnitude on combinatorial tasks. For non-algorithmic reasoning tasks, even though
injecting positional information [29-31] can alleviate the length extrapolation issue, we believe that
the core of the issue lies within the attention mechanism itself.

Our Contribution: As a result, we propose Tropical Attention, a novel attention mechanism that
incorporates tropical algebraic geometry to perform reasoning and information routing in tropical
projective space. In tropical projective space, the attention scores are governed by the tropical Hilbert
projective metric; consequently, the induced map is piecewise-linear, idempotent in the aggregation,
and non-expansive (1-Lipschitz). In particular, Tropical Attention preserves the polyhedral structure
characteristic of combinatorial value functions while inheriting the projective invariance and shortest-
path geometry captured by the Hilbert metric [5]. Our viewpoint is aligned with Neuroalgebraic
Geometry [32], in which neural computations are modeled by algebraic and tropical structures acting
on polyhedral complexes. The mechanism is drop-in for standard Transformer blocks where reasoning
occurs in tropical projective space and then returns to Euclidean coordinates for subsequent layers, so
training and architectures remain unchanged.

We show that multi-head Tropical Attention (MHTA) realizes the target class of dynamic programs and
approximates tropical circuits with tropical transitive closure. In particular, our expressivity theorems
construct MHTA stacks that simulate tropical circuits without super-polynomial blow-ups in network
size or the requirement for recurrent reasoning [17]. In other words, MHTA has sufficient capacity to
approximate closure by absorbing the feasible solutions into its tropical polyhedral stratification, thus
avoiding recurrent hidden state refinement [33].

Empirically on combinatorial tasks, including NP-hard/complete problems, this alignment translates
into stronger out-of-distribution generalization together with substantial inference-time and parameter
efficiencies relative to recurrent-style baselines. This study, also for the first time extends the
applicability of Neural Algorithmic Reasoning [34] beyond the polynomial-time solvable problems
to NP-hard/complete combinatorial optimization problems, such as Knapsack, Bin Packing, and
BALANCED PARTITION problems.

2 Background and Related Work

2.1 Out-of-Distribution Generalization

An important measure of a supervised learning model’s reasoning is its ability to generalize to inputs
that differ fundamentally from those encountered during training. This is known as out-of-distribution
(OOD) generalization. Following [35] notations formally, let X’ denote the feature space and ) be
the label set. A model h : X — ) is learned from training examples drawn independently and
identically distributed from a training distribution Dy, over X x ). Given a distinct test distribution
Dy on the same space, we define the OOD risk as, Rp,, (h) = E( p,. [¢(h(z),y)], where ¢



is a loss function. Its empirical estimate on a finite sample S drawn from Di. (i.e., S ~ le‘) is,

Rs(h) = b Yoyes Uh(@).y).

We say that the model h OOD-generalizes from Dy, to Dy, if its OOD risk Rp,_ (h) remains
comparable to its in-distribution risk R p,, (), indicating minimal performance degradation despite
the distributional shift. In the context of neural algorithmic reasoning, three main types of deviation
between Dy, and D, are important in measuring a model’s capabilities:

1. Length Generalization Both distributions draw their numerical entries from the same range
but the test sequences are strictly longer, Dio(X) C (R>0)"m“ with npax > nt. Here, a good
performance indicates that the network has learned a parallel or recursive scheme that scales with
input size rather than memorizing a fixed shallow circuit.

2. Value generalization The two distributions share the same support with respect to sequence length
but supp(Dye (X)) contains magnitudes never encountered during training, i.e. supp(Dye (X)) \

supp (Dtr()(' )) = @ . For arithmetic or DP-style tasks, value generalization is the clearest evidence
that the model has learned the rule rather than the lookup table of seen inputs.

3. Perturbative-noise generalization Noisy data, whether arising from measurement error, adversarial
attack, or any other source, often causes models to make mistakes and must be accounted for in
model design. To test noise robustness, Dy, is obtained from D, by an £,-bounded, perturbation map
A X — X such that 1, = A(x) with ||zp — ||, < €. Robust generalization demands that the
risk remains low even under the worst allowed .A. This regime probes the stability and smoothness of
the learned function of the architecture. The perturbative noise robustness of Neural Algorithmic
Reasoning models is very important for many real-world systems, especially for cryptographic
schemes [36].

Length, value, and perturbative noise generalization stress complementary facets of algorithmic
competence [37, 38]. Thus, a model as a true reasoning circuit [39, 40] that excels simultaneously in
all three regimes offers strong evidence of having internalized the underlying combinatorial procedure
rather than a brittle statistical surrogate.

2.2 Softmax Self-Attention Mechanism

Given an input sequence X = [xl, . ,XN]T € RV 1etQ = XW/)L, K=XW), V= XW‘T,
where the parameter matrices satisfy W, W € R4*4 and Wy, € R4 >4 Denote by g, and

ij the ¢-th and j-th rows of Q and K, respectively, and 7 > 0 for a temperature parameter. Vanilla
self-attention computes, for every token 4,

_exp({ai k;)/7)
Y, exp((ai ki) /7))

where the softmax is applied independently to each row of the score matrix QK T. The temperature T
modulates the sharpness of the resulting probability vector, as 7 — 0 the weights approach a one-hot
selection, whereas large 7 yields an almost uniform mixture. Equation |1 measures similarity with the
Euclidean inner product, which is spherically invariant, meaning that every coordinate contributes
equally, regardless of its algorithmic significance. Despite it’s success in many tasks [26, 41], its
geometric and numerical properties are ill-suited to algorithmic reasoning [35, 42]. We summarize
the main shortcomings.

N
h; = Zaijvj, ;= softmax, ((q;, k;)) i=1,...,N, (1)
j=1

1. Inherent blurriness The exponential map assigns a non-zero weight to every token; even at
low temperatures the second-largest term remains strictly positive. As problem size grows, the gap
between the top two logits often decreases (e.g. when costs are drawn from a common distribution),
so the resulting distribution cannot converge to a one-hot vector. In practice this leads to soft rather
than decisive selections, hampering tasks that require exact order statistics [27, 28]. Recent diagnostic
suites show that large language models fail on simple tasks of finding minima and second-minima
even within In Distribution (ID) length tests [43, 44]. The attention kernel’s inability to sharpen with
scale is a primary culprit.

2. Sensitivity to small perturbations Because softmax(z) o e*, a perturbation of size § in the
largest logit changes the corresponding weight by a multiplicative factor ¢®. An adversary who



can alter a single entry of QK " /7 by O(log N) may invert the ranking of two tokens, propagating
an O(1) error to downstream activations [45, 46]. This {..-fragility persists even after common
stabilisers such as temperature scaling or normalization layers [45].

3. Mismatch with polyhedral decision boundaries In a combinatorial optimization the value
function is a tropical polynomial—piecewise linear with faces aligned to coordinate hyperplanes
[5, 47]. The quadratic forms generated by Euclidean dot products carve the domain into spherical
caps [48] rather than polyhedral cones; reproducing a DP recurrence therefore demands exponentially
many heads or layers unless the desired structure is injected by hand.

4. Temperature—gradient dilemma Driving the distribution toward a hard arg max necessitates
lowering the temperature parameter 7. Yet as 7 — 0 the Jacobian of the softmax grows like 771,
causing gradient explosion/vanishing [49]. Careful schedule tuning or gradient clipping becomes
mandatory [45], adding hyper-parameter overhead.

2.3 Neural Algorithmic Reasoning

The problem of bridging symbolic algorithms and differentiable models has become known as Neural
Algorithmic Reasoning (NAR). Neural Algorithmic Reasoning involves developing neural models and
learning procedures to facilitate the internalization of algorithms directly in models’ weights. Starting
from early work [34] that aimed to demonstrate the applicability of Graph Neural Networks (GNNs)
to approximate classical algorithms [50], the community has subsequently developed and expanded
further in different directions [42, 51-58]. Some notable applications are constructing [59] and
enumerating [60] combinatorial structures of a particular type [59], and dynamic programming [40, 61].
A fundamental objective of NAR is to achieve robust out-of-distribution (OOD) generalization through
algorithmic alignment. Typically, models are trained and validated on small sets/sequences/graphs
and tested on larger sets/sequences/graphs. This is inspired by classical algorithms’ size-invariance,
where correctness of the solution is maintained irrespective of the input size. Our work pursues this
objective from a fresh, tropical geometric angle and provides universality guarantees and expressivity
for an attention core within the NAR framework.

Recent work exclusively tried to quantify NAR failures when test sequences are longer [37, 38] or
numerically larger [35], but have not assessed noise robustness scenarios. Perturbative noise itself
is also of importance since real-world deployments must withstand the worst-case inputs and noise.
Robustness in this setting is a test for whether a model has internalized genuine algorithmic structure
rather than superficial statistical cues. Hence, we introduce perturbative-noise generalization as a
third pillar for NAR benchmarking and show that Tropical Transformer demonstrates systematic gains
across all three axes.

Based on the past related works, one can establish a demand for an attention mechanism that (i) is
expressive and respects the underlying geometric structure of combinatorial algorithms, (ii) mitigates
softmax dispersion that hampers OOD generalization, and (iii) delivers OOD noise robustness
benefits. Tropical Attention positions itself at this intersection, drawing on a decade of tropical
geometric insights to advance neural algorithmic reasoning. To best of our knowledge, this level of
incorporating Tropical algebraic geometry (not just pre-post processing arithmetic [13, 40, 62])
to define a new mathematically grounded reasoning architecture has not been done before.

3 Tropical Attention: Reasoning in Tropical projective space

Tropical Attention arises from combinatorial algorithm alignment, that is information exchange
is governed by order statistics, namely maxima, minima, and interval widths rather than absolute
magnitudes. These operations live naturally in the tropical semiring, whose idempotence, translation
covariance, and projective scale invariance match the properties of tropical geometry and it’s
computational mirror, tropical circuits. By contrast, the dot-product—softmax kernel depends on
absolute scale and temperature, yields smooth (quadratic) decision boundaries, and exhibits dispersion
as sequence length grows, thereby blurring the sharp structure required for decisive reasoning.

Our goal is to replace the dor—product, Softmax-based kernel of vanilla self-attention with a reasoning
core that (i) takes place in the tropical polyhedral complex (ii) preserves the piecewise-linear geometry
of combinatorial problems, and (iii) inherits the /—Lipschitz robustness of tropical linear maps. To
do so, we perform a tropicalization map of queries, keys, and values to piecewise-linear projective



spaces carved out by polyhedral constraints, compute attention weights with the tropical Hilbert
projective metric (See Appendix B and [5] for details on tropical algebraic geometry.), aggregate by a
tropical matrix—vector product, and finally map the result back to Euclidean space so that the rest of the
original algorithm (e.g Transformer) modular stack is untouched. We present the framework relating
robustness and piecewise-linearity of maps and show how our proposed scheme offers improvements
on OOD generalization tasks.

Let X € RY*? be the token embedding of the input. We define the tropicalization map by going to
an amoeba representation of the input with a learnable valuation map, ® : RV x4 — (TIP’d_l)N

®\(X); = U; — max. U,,.14, where U = log(max(0,X)) € RV*¢ 2)
for eachrow i € 1,..., N. The constant shift enforces max; ¢ (x); = €, so the output of ¢ always

lies in the tropical simplex, A4~1 := { z € Rd’ max; z; = e}, where every vector is projectively
equivalent to exactly one point in the tropical simplex. In other words, @ is a section of the quotient
R?/R1.

Lemma 3.1. For every embedded coordinate i € [N], the function

log(z) — A, x>0,

vy(x) = x)|, =
A@) = [5r@)], {_oo, 2
where ¢y is a (projective) valuation map. Hence the shifted map v(x) = v (x)+ A = log(max(0, x))
is an Archimedean valuation in the classical sense, and ® is a matrix-valued valuation modulo
tropical scalars; its image lies in the tropical simplex.

After mapping each input token to tropical projective space, Z = ¢ (X) € TPV >4 we compute
attention independently across H heads.

Definition 3.1 (Multi-head Tropical Attention (MHTA)). Let di, = d/H be a fixed head dimension.

Then, for every head (h € [H] one can choose learnable matrices WgL ), W%)7 ng ) € Rirxd
and define the tropical linear projections [7] Q") = Z © W(Qh)T, K® =27 0 Wg?)—r, v =
Z © W&,h)T where © denotes max—plus matrix multiplication, (A © B);; = max;{A;; + By, }.
Then, using dy the tropical Hilbert projective metric, defined in B.4, we will have the tropical attention
score
h R) 1.(h .
ng):_dH(qE )7k§ ))7 Zvje[N]v

that comes with Projective Invariance and Non-expansiveness condition (discussed in B.4). Thereafter,
the head outputs are aggregated via tropical matrix—vector product,

N
h h h h h ,
CE ):@ ng) O] vj(.):m]ax{sl(.j)—kvg-)}, i € [N].
j=1
The tropical context picks the value that best aligns projectively with the query. Then, the contexts per
head, will be mapped to the Euclidean domain via a smooth inverse map (devaluation ) 1(z) = exp(z),

and concatenated back to the original dimension, H = [(CW) || ... || (CH))] € RN,

Why Tropical Attention? Every operation inside MHTA is piecewise linear and aligned with
tropical geometry (not just tropical arithmetic). Hence the entire network computes a tropical
polygonal map whose cells are polyhedral cut out by hyperplanes. This is aligned with combinatorial
algorithms, whose solutions correspond to a vertex of a polytope and every decision boundary is a
facet. Training a transformer with Tropical attention therefore starts from a hypothesis space that
already mirrors the solution structure of a combinatorial algorithms. That is what we call a polyhedral
inductive bias. By contrast, Euclidean softmax attention inserts an exponential map, blurring the sharp
decisions on their input data. Classical transformers modulate the entropy—versus—sharpness trade-off
through a temperature parameter in the softmax; MHTA sharpness is built in and temperature-free.
Moreover, since every intermediate representation of MHTA lies in the projective simplex A4~1,
going through arg max is well-defined (no equal maxima except on a set of measure 0) and is stable
by global scaling meaning that shifting the entire vector by A € R does not alter which index attains
the maximum. In other words, only relative relations between inputs matter, thus Tropical attention is
inherently robust against distribution shifts.



Furthermore, each MHTA head can function as a tropical gate in a tropical circuit. A tropical
circuit is a finite acyclic digraph whose input vertices store either a variable or a non-negative real
constant, while every internal vertex has in-degree two and outputs the maximum or the sum of its
two predecessors. The circuit’s size is the number of internal gates. Classical pure DP algorithms
are recursive tropical circuits of this kind; consequently, lower bounds for tropical circuits translate
directly into limits for such DP schemes. An MHTA head can also be interpreted as a single
tropical gate. A single head implements the composite transformation (u, v) — max;{S;; + v, },
where the score S;; itself is obtained through several applications of max and + gates. The outer
maximization provides the ®-gate, while the summand v; furnishes a ®-gate acting on two variable
inputs. Thus every head is a compact, differentiable wrapper around the two tropical primitives,
and a full multi-head layer is simply a collection of such gates operating in parallel on a shared
input tape, creating a tropical transitive closure. Training a multi-layer MHTA therefore amounts
to discovering how these gates should be wired together, rather than coaxing a Euclidean softmax
kernel to emulate max—plus algebra indirectly. As a result of developing MHTA, we prove that it is
a universal approximator of max-plus dynamic programming for combinatorial optimization with
closure (Theorem C.3, Corollary C.3.1, and Theorem 3.2).

Theorem 3.2 (Simulation of max—plus dynamic programs). Let (S, E) be a finite directed acyclic
graph with |S| = N vertices and edge weights {wyy } (u,v)cp C T. Fix a source vertex vy € S and
consider the max—plus Bellman recursion

dbt+1)= P (wwodut),  du(0)=0uu, teN.

u: (u,v)EE

Theorem 3.2, Theorem C.3, and Theorems C.4 and C.5 show upper bounds, i.e., sufficient conditions,
of T"and N such that a stack of 7" MHTA layers and /N heads can approximate any horizon tropical
circuit for a dynamic program.

Remark 3.1. A shallow MHTA is sufficiently expressive to approximate the tropical transitive-
closure map, and thereby avoids explicit recurrence, to encode a very rich polyhedral geometry
of combinatorial algorithmic reasoning into attention and provide a non-recurrent (one-shot)
solution. However, in the worst-case scenario, the non-recurrent representation requires head-width
proportional to the number of active path monomials up to O(n?2%). Depth-(T) stacks realize the
same computation with polynomial resources by distributing the computation across layers.

In other words, Tropical Attention has sufficient capacity to approximate closure by absorbing
the feasible solutions into its tropical polyhedral stratification, thus avoiding explicit recurrence.
Consequently, a MHTA module learns the closure directly rather than implementing the
recurrence step by step. By contrast, Recurrent Transformers such as the Universal Transformer [17]
incorporate a depth-wise recurrence to learn the hidden state representation per token. The recurrent
function evolves in parallel across token positions while exchanging information through self-attention.
In the next section, Section 4, we show that, Tropical Transformer provides a stronger out-of-
distribution generalization than Universal Transformer with Dynamic Halting mechanism, while
delivering substantially faster inference with much fewer parameters.

4 Experiments

We evaluate Tropical transformers on eleven combinatorial tasks (see E), several of which are NP-
hard/complete problems, and the the Long Range Arena (LRA) benchmark [63], a standard for testing
transformers on long-sequence tasks across text, image, and math domains. For each combinatorial
task we measure three complementary forms of out-of-distribution (OOD) generalization: Length
OOD (longer inputs), Value OOD (unseen magnitudes), and noise robustness (perturbed inputs). A
procedure to compare between vanilla attention and Tropical Attention is described in Appendix D.
For our experiments we custom generated both train and test datasets following procedures from the
canonical algorithmic reasoning benchmark CLRS [43]. This decision was due largely to the absence
of NP-hard and NP-complete problems in the CLRS benchmark, but also because our framework
is designed for sequence and set-based data modalities and our OOD evaluation includes two extra
new evaluation pipelines, adversarial perturbations and value generalization. All datasets, generation
scripts, and OOD protocols are described in Appendix E and F.

For our experiment we consider three variants, (i) Vanilla: Standard transformer encoder with
softmax dot-product attention. (ii) Adaptive: Transformer equipped with adaptive softmax attention



from [27]. (iii) Tropical, which every attention block is replaced by MHTA. For length OOD tests,
we also compare with 32-step Universal Transformer (UT) with dynamic halting, as a recurrent
attention model, under the vanilla softmax and adaptive-temperature softmax kernels. To ensure a
fair comparison, all variants share identical backbone hyperparameters: depth, width, and number
of heads. The only architectural difference is the attention kernel. Crucially, no model sees OOD
examples during optimization. We follow a uniform procedure in which each model is trained from
scratch under the same training regime with task specific fixed input sequence lengths and value
ranges.

Out-of-Distribution Protocols In order to assess OOD generalization, we construct three stress
tests: (i) Length OOD — inputs drawn from the same value range but with longer input sequence
lengths. (ii) Value OOD - the input sequence lengths are fixed and the values are sampled from
an increasingly large range (for example, if the models trained on inputs sampled from the range
[—5, 5] an out of distribution evaluation would be inputs sampled from the range [—10, 10]). (iii)
Perturbative noise OOD - the input sequence lengths are fixed and the values are from the same
input range, but a subset of the input values are perturbed randomly.

5 Results and Discussion

Section 2.2 elaborated why and how softmax self-attention - and its descendants - are incapable
of generalizing to OOD inputs in combinatorial problems, and Section 3 discussed why Tropical
Attention can generalize in the combinatorial regime. With our experimentation, we seek to show if
and, if so, how Tropical Attention generalizes in this domain.

To answer if Tropical Attention generalizes, we ) )
report the numerical results of our experimen- Table 2: Average inference time per sample across
tation in Tables 1 and 3. The Tropical attention ~all tasks and parameter count.

architecture achieves superior OOD performance
to both the Vanilla and Adaptive softmax atten- Model CPU (ms) GPU (ms) Params.

tion. Notably, this out performance can be seen  Vanilla UT w/ ACT 6.285 0.027 50,242
in both regression and classification combinato-  Adaptive UT w/ ACT ~ 7.898 0.018 50,242
rial tasks and across OOD protocols, validating  Tropical Transformer  1.949 0.003 40,961

our theoretical results from Section 3. The Trop-
ical architecture’s ability to generalize well across OOD protocols and problem sets, especially the
notorious Quickselect, suggests that instead of simply learning the specific data it is trained on, these
purpose-built models learn the underlying polyhedral structure of the combinatorial algorithm. The
results, from Tables 1 and 2, demonstrate two key findings. MHTA shows a strong performance,
even when compared against an iterative attention class of transformers with a dynamic Adaptive
Computation Time (ACT) mechanism where they can approximate an algorithmic closure, the Tropical
Attention model still achieves better OOD performance across all algorithmic tasks. The more
interesting results are that our model achieves these results while being on average 3 x-9x faster at
inference and using 20% fewer parameters than the Universal Transformer baselines. Evaluating on
the Long Range Arena (LRA) benchmark as shown in Table 4, Tropical Transformer achieves highly
competitive, State-of-the-art (SOTA) results, placing second overall in average accuracy across the
benchmark’s tasks. This performance shows that the benefits of Tropical Attention stand as a viable
and powerful mechanism for general-purpose sequence modeling.

In order to understand how Tropical Attention outperforms, we explore the tropical Attention maps
relative to vanilla and adaptive attention maps for both Quickselect and Knapsack. On the QuickSELECT
task the goal is to find the k-th smallest elements. For such tasks, maintaining focus means the
ability to allocate a high attention score to the correct items, creating sharp spikes in the heatmap.
Contrarily, losing focus means the attention uniformly disperses across elements, with no single item
receiving a high score. Figure 1, which depicts attention maps as sequence length increases for all
models, shows that the vanilla and adaptive models exhibit attention fading. In contrast, the Tropical
Attention consistently shows bright, distinct bands, indicating it continues to allocate sharp attention
even at larger length sequences. Figure 2, replicating visualizations from [27], depicts a normalized
attentional head for the Quickselect task for a batch of 32 sets, over the 8§ items with the largest keys
by the ¢5-norm. If the head operates correctly, it must allocate sharp attention to the position of k-th
smallest element. Again, we see that the attention on both softmax models quickly dilute/disperse as
sequence length grows OOD while the tropical Attention maintains focus.



Table 3: Out-of-distribution performance under Value OOD and Perturbative Noise tests. Top:
Micro-F; for classification tasks; Bottom: MSE for regression tasks.

Value OOD Perturbative Noise
Algorithmic Tasks Vanilla Adaptive Tropical Vanilla Adaptive Tropical
ConvexHuLL 22,7539 2377310 34.25F171 90 75222 91 00%2!®  96.00%>'6
KNAPSACK 38.87F34  26.92F'P  49.67F20 67.85531° 68.36F5  74.67FB
QUICKSELECT 74.22%23°  74.30%' 71,105 3387711 34.82%47°  p5r.22F50
BINPACKING 67.265370 7423151 78.54F'¥  5538F10 606432 61.19F4B
Nele 78.5153%  81.38+262  7486%50  70.00F%® 71.33%'%°  69.86F*"7
SUBSETSUM 34,7500 98 50E!012 79 25ESB 3 75EIS0 3 ggEIG 7o gEEI00!
BaLancepParTITION  63.40T*%  56.57FM8 557650 51.06%266  57.06%'0%  57.20%!3
3SUM 26.005310  26.25F30 22 00%210 4750947 4925892  g5.25F3
MiNCOINCHANGE 23,6447 990!l 13 33.18F5% 29 12%275 18 4qF44  33.75E4E
FLOYD—WARSHALL 87.68%%%5  56.30%30  55.30T4  7.54FIG 599256 4 ggEle

FrACTIONALKNAPSACK ~ 0.24F012 0 17%003 g, 08F00 5002 300l g o2+00!

Similarly, Figure 3 depicts length OOD on the full attention head for the Knapsack problem, a classic
dynamic program corresponding to tropical circuits. Each model begins sharp in distribution, but
the Tropical Attention head maintains the same activation pattern across each input length, strongly
suggesting it has learned and internalized the underlying combinatorial problem and polyhedral
structure vice the specific training data indicated by the vanilla and adaptive fading attention patterns.

Figure 2: Stacked attention head representations for QuickseLEcT under (a) Vanilla, (b) Adaptive,
and (c) Tropical models. Each model was trained on length 8 sequences and was evaluated from Left
to Right on length 16 to 1024 sequences. Each image was generated by a batch of 32 inputs. The
columns are the 8 largest keys by ¢2-norm. Heatmap values are the attention of the row item at the
column key.



Table 4: We report classification accuracy for each task and the average accuracy across all tasks. All
results are taken from their respective papers, except for Adaptive Softmax, which we re-implemented
and evaluated.

Models ListOps Text Retrieval Image Pathfinder | Avg. | Complexity
Transformer [26] 36.37 64.27 57.46 42.44 71.40 54.39 (’)(nz)
Longformer [64] 35.63  62.85 56.89 42.22 69.71 53.46 O(n)
Linformer [65] 35.70  53.94 52.27 38.56 76.34 51.36 O(n)
Performer [66] 18.01  65.40 53.82 42.77 77.50 51.41 O(n)
Elliptical [67] 37.8 65.6 80.3 40.2 73.2 61.24 O(nz)
Fourierformer [68] 40.73  75.02  85.35 53.17 83.43 67.54 | O(nlogn)
MEGA [69] 63.14  90.43 91.25 90.44 96.01 86.25 | O(nlogn)
AdaptiveSoft. [27] 47.15 7552 79.56 51.58 80.94 66.95 O(n?)

Tropical Transformer 68.65 70.13 64.82 60.04 97.33

7279 |  O(n?)

Figure 3: (top) Tropical Attention with sharp attention maps on learning the Knaprsack algorithm,
showcasing a size-invariance and OOD lengths generalization behavior far beyond training (16 —
1024). In contrast, both (middle) adaptive-softmax and (bottom) vanilla-softmax heads dilute and
disperse as sequence length grows, failing to generalize.

6 Conclusion

We introduced Tropical Attention, replacing softmax-normalized dot—product attention with an
attention mechanism that operates in tropical projective space. On the theory side, we showed that
multi-head Tropical Attention (MHTA) simulates tropical circuits and realizes tropical transitive
closure via finite-depth compositions, with polynomial resource bounds (Theorem C.3, Corollary
C.3.1, Theorem 3.2). These guarantees provide a principled account of scale-invariance and sharp,
polyhedral decision boundaries, properties that are essential for reasoning models expected to
generalize beyond their training distribution. Empirically, across various combinatorial problems,
Tropical transformer achieved SOTA out-of-distribution generalization, and delivered stronger noise
robustness, while being much faster at inference with fewer parameters than the recurrent/iterative
attention baselines. These findings carry an important message for both neural algorithmic reasoning
(NAR) and Large Reasoning Model (LRM) communities: tropicalization of reasoning and going
beyond softmax not only enriches the algorithmic power of attention mechanisms but also yields
tangible gains on reasoning tasks. We believe Tropical Attention opens compelling avenues for
hybrid semiring architectures and for leveraging tropical geometry to reason over discrete structures
within deep learning systems. Future work will explore sparse tropical kernels and applications to
graph-theoretic domains, aiming for ever-stronger generalization guarantees in neural algorithm and
reasoning synthesis.
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A Limitations

Although Tropical Attention is out performing in almost all algorithmic tasks, this study was conducted on
combinatorial algorithms and we have not yet demonstrated how Tropical transformers can scale to perform on
generative and autoregressive next-token prediction language tasks. In particular, the computational and memory
overhead introduced by tropical operations and the tropical Hilbert metric could incur nontrivial runtime costs or
scaling challenges.

B Tropical Geometry

The most fundamental component of tropical algebraic geometry is the tropical semiring T = (RU {—o0}, &, @) .
The two operations @ and ©, called tropical addition and tropical multiplication respectively, are defined as
follows.

Definition B.1. Forx,y € R, their tropical sum is * @y := max{x, y}, their tropical productis z Oy = z+y;
the tropical quotient of x over y isc @ y = x — y.
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Forany z € R, we have —co @z = 0Oz = x and —oo ® x = —oo. Thus —oo is the tropical additive identity
and 0 is the tropical multiplicative identity. Furthermore, these operations satisfy the usual laws of arithmetic,
namely associativity, commutativity, and distributivity. The set R U {—co} is therefore a semiring under the
operations ¢ and ©®. While it is not a ring since it lacks an additive inverse, one may nonetheless generalize
many algebraic objects over the tropical semiring, the study of these, in a nutshell, constitutes the subject of
tropical algebra. In order to have a transition from classical arithmetic to tropical arithmetic we need a series of
transition maps, which is referred to as tropicalization.

Definition B.2. (The valuation map) Let d € N and write R? the field of real numbers. A valuation on R is a
function val: R — R U —oo satisfying the following three axioms:

1. val(a) = —00 <= a=0;
2. val(ab) = val(a) + val(b);
3. val(a + b) < max{val(a),val(b)} Va,b € R.

One approach to tropical geometry, is to define a tropical variety as a shadow of an algebraic variety that involves
logarithmic limit sets. Classically, the amoeba of a variety is its image under taking the coordinate-wise logarithm
of the absolute value of any point on the variety [14]. The logarithm turns ordinary multiplication into tropical
addition:

val(z©@y) = val(z) + val(y), z,y € Ry,
and satisfies the sub-additive inequality val(z +y) < max{val(z), val(y)}+log 2. Hence val is a Archimedean
log map up to a harmless additive constant. For an input X C R? we call

Trop(X) := val(X) C T?

its tropicalization. All subsequent reasoning, including attention weight computations, will take place in this
max-plus space. When X is a smooth manifold, Trop(X) is typically a curved domain whose “tentacles” encode
asymptotic directions of X. Passing to the max-plus algebra straightens those curves into polyhedral pieces,
providing the piecewise-linear structure on which our Tropical Attention operates.

Definition B.3. (The tropical projective space [1].) We regard T¢ as a semimodule over the tropical semiring
by coordinate-wise operations. Introduce

1o :=(1,...,1) e R T = (RU{—oo})*™ \ {—oco}.

Declare two points x,y € T projectively equivalent, written = ~ v, if there is a scalar X € R such that
y = x + ALlgy1. The quotient

TP := T/~
is the tropical projective space. See [1] for more details on tropical geometry.

Every class has a unique reg)resentative with maximal coordinate equal to 0, so TIP? identifies with the standard
simplex A% := {w € R | max; w; = 0}. Attention weights produced by the softmax surrogate live in the

Euclidean simplex; Tropical Attention will instead output points of A? interpreted tropically, guaranteeing sharp
arg max behavior.

Definition B.4. (The tropical Hilbert projective metric.) Forx := (1, ...,%a11),y := (Y1, ..,Yar1) € T4
put
du(z,y) = (miax(xi — yl)) — (miin(aci — yl)) = diam(x@y)7

where x @ y denotes the coordinate-wise tropical quotient (x1 — y1, . .., Td+1 — Ya+1) and diam its range.
The metric descends to TP? and enjoys two key properties:

1. Projective invariance. du(z + clgt1,y + clay1) = du(zx,y) forall c € R.

2. Non-expansiveness of max-plus-affine maps [70]. Every tropical linear map A : T4t — T™+1 is
1-Lipschitz: dH(Am,Ay) < du(z,y).

These facts, due to Nussbaum and further developed by Akian—Gaubert, furnish tight robustness guarantees,
perturbing the inputs by € in Hilbert distance changes the output of any compositional stack of tropical linear
layers by at most € [71, 72].

C Proofs

Proof of lemma 3.1. 1f ¢, is a valuation map, hence for all a, b € R, we have
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1. vA(0) = —o0;
2. va(ab) = va(a) + va(b) — X;
3. vala+b) < max{wx(a), va(b)}.

Property (i) is immediate from the definition. For a, b > 0, (ii) follows from log(ab) = log a + log b:
va(ab) =log(ab) — A = (loga — A) + (logb — A) + A = va(a) + va(b) — A.
If either factor is non-positive, both sides equal —oo. For (iii), note that when a, b > 0 we have
log(a+b) < max{loga,logb} + log2,

so subtracting \ preserves the inequality; if @ < 0 or b < 0 the claim is trivial. Adding back the constant A to vy
eliminates the offset in (ii) while leaving (i)—(iii) unchanged, yielding the classical valuation v. Collecting the d
coordinate-wise maps gives the vector-valued projection ¢ : R — A9~!, which is therefore a valuation map
up to the projective (constant-shift) equivalence native to tropical geometry. O

The main theorem here establishes that MHTA is an expressive tropically universal approximator of max-plus
dynamic programming for combinatorial optimization such that every function that can be computed by a finite
max—plus circuit admits a realization by a finite-depth MHTA stack. The proof proceeds in three stages. First we
show that a single head can act as a tropical max gate. Second, we demonstrate that an H-head block can realize
a tropical map by computing finitely many such maxima in parallel. Finally, we prove by structural induction that
stacking a finite number of blocks suffices to emulate an arbitrary max—plus circuit. With the first lemma we
want to show that a single head can realize a weighted tropical max gate.

Lemma C.1 (Head-level Weighted @ gate). Let J be a finite index set and let {z;}jc; C T and {w;};es C T.
There exists an attention head h™ € [H|, a query—token indexi* € [N\ {t(j) | j € J}, and distinct seq indices
t(j) € [N] such that, after one forward pass, the context returned at i* is equal to

) = @(Z’j@ﬂ}j) = rj[_lg{{xj—kwj b 3)
J

Proof. Forafix h* andi*, forevery j € J, let’s select a distinct token position ¢(j). Then one can define the value
vectors by V(t’zj; = x; Ow; and v = _osoforall r ¢ {t(j)}. To enforce (3) it suffices to make S’Eftzj) =0

(") = _ o0 otherwise, because then ¢\ = B, (00 (z; 0 wy)) = maxjes(z; +w;).

forj € Jands
One can write every query / key vector in block form u = (u(l) , u<2)) € T =1 x T. Fix arbitrary first blocks
u™® and arrange
h* h* .
ql'” =(0,...,0,0), k) =(0,...,0,0), jeu,
(h™

M, k(h*)) = Oand hence s, ; = 0. For every irrelevant token r ¢ {t(j)} set

so that d(q.” ) i tzj

k") =(0,...,0, -I,), T.>0,

so that the last coordinate differs from that of the query by I',; consequently di (qif *>, kﬁhw) = I'; and
sgfi) = —I',.. Choosing I';. large enough drives the score to —oo in the semiring, ensuring that irrelevant tokens
do not influence the context. Equation (3) follows. O

Lemma C.2 (Tropical affine layer). Let A € T *YN and b € TM. Embed © = (x1,...,zN) € TN as the
values of tokens t(1), . .., t(IN) and add one bias token i, whose value is fixed to 0. There exists an MHTA layer
with H = M heads and dy, = 2 such that, for each m € [M]

N
C(m) — @(Amj ® ajj) D bm,

im

Jj=1

where i, is the query token of head m.

Proof. Form € [M] and head h = m, we can apply Lemma C.1 with J = {1,..., N}, input z; and weights
A to obtain P j (Amj ® z;). Let the bias relevant to every head by assigning its key identical to the query,

whence sﬁjjﬁb

maximum of B ; (Am; © x;) and by, completing the proof. O

= 0 for all m. Then, we give it value b,, in head m alone via Wg,m>. The context becomes the
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Definition C.1 (Tropical circuit [15]). A tropical circuit is a finite directed acyclic graph whose source nodes
are labelled by variables z1, . . ., zn € T and whose internal nodes are labelled either by the operation tropical
addition (u,v) — u @ v = max{u, v} or by the operation tropical multiplication (u,v) — u ® v = u + v.
The circuit computes a map f : T™ — T™ whose m outputs are designated sinks. A circuit is layered if every
edge points from layer { to layer £ + 1 for some topological layering {Lo, ..., Lr}. We write depth(C) = L
and size(C) = |C| for the number of internal gates.

Because tropical multiplication distributes over tropical addition, every such circuit computes a tropical
polynomial, namely a tropical sum & of finitely many monomials, each monomial being a tropical product ®
(classical summation) of a subset of the indeterminates plus a constant. A tropical polynomial in variables
z = (z1,...,2n) has an expression of the form

K

P(z) = @(Ck © @z]@ekj) = 2n<al)(({ ck+Zek]~z_7},
=1 = j=1

k=1

where ¢, € T and ex; € N. Thus P is already the maximum of finitely many affine forms in z. Lemma C.2
therefore applies directly.

Theorem C.3 (Single—layer universality for tropical polynomials). Ler P : T — T™ be a vector-valued
tropical polynomial map whose m coordinates are Py(z) = @,KK; (Aer © z) @ bek. There exists a single
MHTA layer with H = 27;1 K heads and dy, > 2 whose tropical output (the collection of all head contexts
before the de-valuation 1) = exp) equals P(z).

Proof. For each output coordinate ¢ one can allocate K, heads, one per affine term Ag, © 2 @ byg. Lemma C.2
shows that affine map in head (¢, k), depositing its value at a fresh query token i¢,. Because the score of an
irrelevant head is —oo, the contexts written to those tokens are ignored by all other heads. Finally, putting an
aggregation head per output £ whose query token reads all tokens i¢, with score 0 and returns their @, namely
maxy (A © 2z ® ber) = Pi(z). No de-valuation is applied inside the tropical computation, so the result equals
P(z) in the max—plus semiring. O

Corollary C.3.1 (Depth—L universality). Let F' : T"™ — T™ be the output of a layered tropical circuit of depth
L. Then, there exists an MHTA stack of L successive layers which, on every x € (R0)", produces

cP(z) = F(val(z)).

Proof. We can apply Theorem C.3 to each P in succession, feeding the contexts of layer ¢ (still in tropical
form) as the inputs to layer ¢ + 1. Because no Euclidean de-valuation occurs after all MHTA layers, the tropical
composition is preserved. O

Theorem C.4 (Simulation of max—plus Dynamic Programs). Let (S, E) be a finite directed acyclic graph with
|S| = N nodes and weighted edges {wuv } (u,0)ee C T. Fort € N define

dt+) = B (wnw0d®),  du(0) = b,

u: (u,v)EE

where vy € S is the source node. For every finite horizon T there exists a MHTA of depth T and N heads per
layer such that the token values at layer t equal the vector (dv (t))v cs forallt <T.

Proof. If we label the tokens by the vertices of S, at layer ¢ we store d,,(t) in the value field of token v. To
obtain d, (¢t + 1) let head h = v whose query token is v. Then, one can apply Lemma C.1 with index set
J={u]| (u,v) € E}, input scalars z,, = d.(t) and weights w.., thereby producing d, (¢t + 1) as context at
token v. Since every head acts on em disjoint query tokens, all v € S are updated in parallel. Repeating for T'
layers unrolls the dynamic program, hence layer 7" realizes the horizon-7" value vector. O

Let (I' = (V, E)) be a directed graph with (]V| = n) and tropical weighted adjacency matrix (D € T™*™).
For k > 0 the tropical power D®* encodes path weights of length k. Fix a horizon T' € N and set the finite
Kleene star

T—1
D*(T>; =; @ DO ¢ T,
k=0

For vo € T™ the horizon-T value vector is v = D*(T) @ vy.
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Theorem C.5 (MHTA learns tropical transitive closure). Given I' = (V, E) with |V| = n and adjacency
D e T"*", for every T' € N there exists an MHTA stack of depth T with n heads per layer and head dimension
dy, such that the token values at layer t equal v¢ € T"™ and

vit1;=; D®v (t=0,1,...,T —1).

In particular, the output at layer T' equals vr = D™ @ v

Proof. Indexing tokens by (V') and store (v;(u)) as the value on token (u) at depth (), we fix (v € V') and
in layer (t), we assign head (h = v) whose query is token (v). Then, we apply Lemma B.1 to the index set
(Jo =u €V : (u,v) € E) with inputs (z, = v¢(u)) and weights (wyv = Dyu). The head returns at its query
token

P (wuo © )5 =; wlax Do+ vr(u); =5 (D ® ve) (v); =5 Vi1 (v).

u€ Jy v
All (v € V) update in parallel because heads use disjoint query tokens; thus (n) heads suffice in each layer.
Iterating overt = 0, ..., T — 1 yields (vr), and by the path—semiring semantics we have (v = D*T Qug). O

Corollary C.5.1. In a tropical semiring and under the assumption that no negative cycle exist, shortest paths
exist and are cycle-free, so their lengths are realized by paths of at most (n — 1) arcs; consequently the infinite
Kleene star truncates at (n — 1) [73]. Thus, every shortest path uses at most (n — 1) arcs, hence

D= I®eD® - & DO, . p*(n)
Therefore the MHTA stack of with depth T > n — 1 learns (D* & vg).

In the embedding space of MHTA, the feasible domain is a polyhedron in parameter space on which shortest
paths exist and the Kleene star is well-defined. The MHTA stack thus implements Bellman steps in the parameter
space, thus the combinatorics of feasible solutions are absorbed in the polyhedral stratification. In particular, the
map (vo, ) — D*T)(#) ® vo is a tropical polynomial, and the Tropical Attention has a sufficient ability to
learn such maps without recurrence. Hence, in principle, MHTA can learn the closure map itself rather than the
step-by-step recurrence.

D Comparison between vanilla attention and Tropical Attention

In this section, we compare the algorithmic view between vanilla attention and Tropical Attention.

Algorithm 1 Comparison between vanilla attention and Tropical Attention
function TROP_ATTENTION(X : n X d)
Q',K’, V' + log(ReLU(linear(X)))_chunk(3)
A + Parameter (N)
Q+Q -\ K+«K —)\, V&V -

function ATTENTION(X : n X d) _ ) (Q)
Q. K,V + linear(X).chunk(3) Qbta = m]'flx(thJ +Wy)
A + einsum(id, jd — ij, Q,K) Kyg = mJaX(Kbtj + W{gﬂ)

A ¢ softmax(A/v/d, —1)

_ (W)
O « einsum(ij, jd — id, A, V) Vita = max(Voe; + Wy )

return Iinear(O) Vi, g : Dbij +— maxd(Qbid — ijd) — ming (Qbid — ijd)
end function S« —D
Vi,d: Cpiq < max; (Sbij + Vbjd)
O + exp(C)

return Iinear(O)
end function

E Dataset Details

. . . 2
Our evaluation suite covers eleven canonical problems~:

Floyd—-Warshall Dataset. Each example is a weighted directed graph with nonnegative edge weights; we
compute the all-pairs shortest-path distances with the Floyd—Warshall algorithm and use the resulting distance
matrix as the regression target. Inputs are the flattened (zero-filled for missing edges) weight matrix with
positional indices.

Code used to generate data can be found in our public repository: https://github.com/Baran-phys/
Tropical-Attention/blob/main/dataloaders.py
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QuickSelect Dataset. Each example is an unsorted list of integers together with an order statistic k; the
label is a token-wise binary mask marking all positions that contain the k-th smallest value. Inputs provide
per-element features (value and k or a normalized rank proxy) in the original list order.

3SUM-Decision Dataset. Each example consists of a list of integers and a target T'; the label is 1 if any
three distinct elements sum to 7', and O otherwise. Inputs present per-token pairs [z;, 7] so the model can
condition each element on the common target.

Subset—-Sum-Decision Dataset. Each example is a list of integers and a target T'; the label indicates
whether some subset sums exactly to 7". Inputs again use per-token pairs [x;, T, and labels are computed by an
exact dynamic-programming subset-sum solver.

Balanced Partition Dataset. Given a multiset of integers, the goal is to split it into two subsets with
minimal absolute difference of sums; the label is a token-wise 0/1 membership vector for one optimal subset
(chosen deterministically). Ground truth is produced via a standard DP over achievable partial sums with a
traceback to a canonical solution.

0-1 Knapsack Dataset. Each instance provides item pairs (v;, w; ) and a capacity C; the label is a token-wise
0/1 mask for an optimal item set that maximizes total value under the weight budget. We compute ground truth
with an exact dynamic-programming solver and repeat C' on every token as an input feature.

Fractional Knapsack Dataset. Each instance also provides (v;, w;) and a capacity C; the label is a
per-item fraction in [0, 1] from the optimal fractional solution. Ground truth is computed by the canonical greedy
algorithm that takes items in decreasing value-to-weight ratio.

Convex Hull Dataset. Each example is a set of 2-D points; the label is 1 for points on the convex hull and 0
otherwise. Hull membership is determined with a standard monotone chain construction.

Strongly Connected Components (SCC) Dataset. Each example is a directed graph; the label is a
flattened n X n matrix where entry (%, j) is 1 iff nodes ¢ and j belong to the same strongly connected component.
The graphs are generated Erd§s—Rényi. However, to make the dataset more challenging, we also added curvature
to the graph by adding communities to the graph. We obtain SCC memberships using a graph library routine and
expose adjacency plus positional indices as inputs.

Bin Packing Dataset. Each example supplies item sizes and a single bin capacity; the label is a token-wise
0/1 indicator of whether an item starts a new bin under First-Fit Decreasing applied to the clean sizes. Inputs
include each item’s size, the shared capacity, and a normalized position index after sorting.

Minimum Coin Change (0/1) Dataset. Each instance contains a multiset of coin values and a target
amount 7'; the label is a token-wise 0/1 mask for one optimal solution using the fewest coins (or the all-zero
mask if no solution exists). Ground truth is computed with an exact dynamic-programming solver with traceback.

F Training & Evaluation Protocol

This appendix complements the experimental setup outlined in Sec. 4. We focus on the conceptual pipeline. The
low-level engineering choices (e.g. logging cadence, file formats) are documented in the public code repository”.
The primary packages utilized in constructing our experiment is Pytorch [74], Pandas and Scipy [75], SciKitLearn
[76], and Numpy [77]. The basic workflow is described below:

1. Dataset generation. For the selected combinatorial task we generate input and output pairs using the
hyperparameters in Table 5

2. Model instantiation. A shallow Transformer encoder—configured with 1 layer, 2 attention heads and
hidden width 64—is equipped with one of three attention mechanisms: Vanilla, Tropical, or Adaptive.

3. Optimization. We train for Nepoch epochs using AdamW (1073, constant, no warm-up). We use one
NVIDIA Tesla V100 GPU to train each model. Models trained with a sufficiently large batch size
(500) training over 10M samples, took approximately 2.5 minutes to train. For more memory intensive
graph models, our training time was approximately 45 minutes given small batch sizes of 16. The
objective is chosen per-task:

* BCE with logits — pooled binary tasks,

3https ://github.com/Baran-phys/Tropical-Attention/
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* token-wise BCE,
* mean-squared error — regression tasks.
Nepoch =100

4. Evaluation. After training we reload the final checkpoint, generate a new test set, and compute (i)
mean loss for regression tasks and (ii) Fi for classification tasks on the generated test set. We evaluate
our models on in-distribution data (data generated using the same hyperparameters as during training)
and on out-of-distribution (OOD) data using the hyperparameters described in Table 5 using the OOD
protocol described in Section 4. For Length OOD, all models were trained on sequence length of 8 and
we evaluated them at sequence length of 64, with the exception of the graph problems (FloydWarshall
and SCC), which were evaluated on sequence length of 16. For Perturbative Noise OOD, each input
was perturbed with probability 0.5 with a random integer sampled from the task’s perturbative noise
range.

Table 5: Training hyperparameters and data ranges for each combinatorial task. Each task was trained
with 10M samples, learning rate of 0.0001, input sequence length of 8, and no perturbations. The
ranges in the table are used to draw random integer values for the given parameter within the data
generation portion of the training.

Dataset Epochs Target Range Weight Range Value Range OOD Value Range Perturbative Noise Range
SubsetSumDecision 100 (1,10) N/A (-5.5) (-20,20) (10,30)
Knapsack 100 (10,20) (1,10) (1,10) (11,21) (10,30)
FractionalKnapsack 100 (10,20) (1,10) (1,10) (11,21) (1,5)
MinCoinChange 100 (10,20) N/A (1,10) (11,21) (1,5)
Quickselect 100 N/A N/A (1,10) (11,21) (1,5)
BalancedPartition 100 N/A N/A (1,10) (11,100) (10,30)
BinPacking 100 (10,30) N/A (1,10) (11,100) (10,30)
ConvexHull 100 N/A N/A (0,10) (11,21) (1,5)
ThreeSumDecision 100 (-75,75) N/A (-20,20) (-375,375) (40,60)
FloydWarshall 100 N/A N/A (1,15) (16,30) (1,10)
scc 100 N/A N/A 0.001 0.1 N/A

*SCC uses a connectivity probability rather than an integer input value, hence the small decimal for Value
Ranges and N/A for perturbatiove noise range. For perturbative noise range the connectivity switches with
given perturbation probability.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and Introduction (Section 1) state exactly the three contributions that are later
substantiated: the Tropical Attention mechanism, its theoretical guarantees (Section 3 and Appendix
(), and the eleven-task OOD evaluation (Sections 4-5). No claims extending beyond those results are
made.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

 The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this question
will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section 5 acknowledges that our empirical validation is restricted to synthetic combina-
torial tasks and that the extra max—plus operations and tropical-Hilbert metric introduce non-trivial
memory and runtime overhead, leaving broader domain generalization and scalable efficiency as open
issues.

Guidelines:

¢ The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

» The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,

asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how

they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems

of privacy and fairness.

e While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: All assumptions are stated with each theorem in 3. Complete, formal proofs are given in
Appendix C, and every lemma/theorem is numbered and cross-referenced from the main text.
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Guidelines:

¢ The answer NA means that the paper does not include theoretical results.
¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The model, problem sets evaluated, and processes to produce problem set data are
outlined in detail in 4, E, and F. Additionally, code will be provided in the supplementary materials
and is maintained in a github repository which will be made publicly available after the review period.

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: All data for experimentation was generated as outlined in E. Code for data production,
training, and testing will be provided in the supplementary materials. This code is maintained in a
github repository which will be made public following the review period.

Guidelines:

¢ The answer NA means that paper does not include experiments requiring code.
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Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if

applicable).

Providing as much information as possible in supplemental material (appended to the paper) is

recommended, but including URLS to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Section 4 provides a high level overview of training and testing. Appendix F provides
details on optimization and data. Table 5 provides full training hyperparameter. Further details are
provided in the code repository.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

¢ The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Guidelines:

¢ The answer NA means that the paper does not include experiments.

 The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals,
or statistical significance tests, at least for the experiments that support the main claims of the
paper.

¢ The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

¢ The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
¢ It should be clear whether the error bar is the standard deviation or the standard error of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources
(type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
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9.

10.

11.

Justification: Appendix F describes the GPU used to train the models and the training time required.
Guidelines:

* The answer NA means that the paper does not include experiments.

¢ The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

¢ The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

¢ The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the Neur[PS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All experiments use synthetic; no personal, biometric, or sensitive information is
processed, and results are released under a permissive license with usage guidelines.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer:
Justification: There is no direct or implicit societal impact of our new attention mechanism.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring
misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: Released assets operate solely on small synthetic integer sequences and graphs; they
have no foreseeable dual-use risk beyond existing open-source combinatorial libraries.
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12.

13.

14.

Guidelines:

¢ The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We rely only on well-known open-source Python libraries (e.g. PyTorch, NumPy). Each
is cited in Appendix F and its BSD/MIT license is acknowledged in the supplemental material; all
other code and models were written by the authors

Guidelines:

¢ The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: The synthetic datasets and trained checkpoints are accompanied by a README describing
generation parameters, file format, and intended use (see supplemental material).

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their submissions
via structured templates. This includes details about training, license, limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: The study involves no human subjects or crowdsourcing.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
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15.

16.

¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main

paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.
Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: No human subjects research was conducted.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and locations,
and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their
institution.

* For initial submissions, do not include any information that would break anonymity (if applicable),
such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing, editing,
or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality
of the research, declaration is not required.

Answer: [NA]

Justification: Large language models are not part of the proposed method; any LLM assistance was
restricted to writing support and has no bearing on scientific results.

Guidelines:

¢ The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

 Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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