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Abstract

While signed-directed graphs have been studied using linear Laplacians in the
design of graph neural networks, relatively little research has focused on developing
non-linear Laplacian operators for such networks. We introduce a non-linear
Laplacian operator specific to signed and directed networks (NLSD). This non-
linear operator extends the concepts of the signed Laplacian for signed graphs and
the Laplacian for directed graphs. The NLSD calculates node-specific potentials
based on features More precisely, if the potential discrepancy is not aligned with
the edge direction, we ignore it (and vice versa) leveraging message-passing
techniques only across edges where potential discrepancies align with the edge’s
direction. Utilizing this novel operator, we propose an efficient spectral GNN
framework (NLSD-GNN). We conducted comprehensive evaluations focusing
on node classification and link prediction, examining scenarios involving signed,
directional, or both types of information. Our findings reveal that this spectral
GNN framework not only integrates signed and directional data effectively but also
achieves superior performance across diverse datasets.

1 Introduction

Multiple real-life systems entail interactions that may be positive or negative and not always sym-
metrical He et al.| [2024]]. Such systems are best represented as undirected or directed graphs with
signed edges, i.e. edges with an additional (+/-) sign attribute. In social networks, for example,
users may share or oppose political views, trust or distrust recommendations from others, or harbor
feelings of liking or disliking toward each other Kumar et al.| [2016], Huang et al.|[2021]]. These
diverse relationships can be effectively represented by signed graphs, where edges are assigned either
positive or negative values to reflect affinity or conflict, and directional information could model the
influence of one person on another |Ju et al.|[2020]]. Signed-directed networks are also prevalent in
contexts such as analyzing time-series data Bennett et al.|[2022]], identifying influential groups within
social networks, and generating rankings through pairwise comparisons |[He et al|[2022a]. Moreover,
these networks provide an intuitive framework for analyzing group conflicts and enhancing positive
influence during opinion formation Zheng et al.|[2015].

Not surprisingly, directed and signed graphs have attracted significant attention in graph representation
learning. Graph Neural Networks (GNNs) in this context mimic standard GNNs and employ message
passing, or equivalently, local aggregation of node features. The operators used by standard GNN's
have well-understood spectral properties, which when seen globally relate to the combinatorial
structure of the graph. However, the generalization of these operators to the signed-directed setting
is far from obvious; indeed much of the existing work revolves around definitions of various linear
operators for implementing message-passing. Table [3| summarizes the important aspects of these
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different Laplacians. Our work relies on a fragment of spectral theory that defines nonlinear
Laplacian operators to encode directed graphs, and proves their expressivity in capturing -via
Cheeger inequalities- combinatorial properties of the underlying directed graph|Yoshida [2016]. More
specifically, these Laplacians can be viewed as functions of a feature vector x, that combine two steps:
(i) Edge dropouts that enforce message-passing only along directed edges (u, v) where z,, > x,, (ii)
The action of a symmetrized Laplacian on the subgraph induced by the edge dropouts. We begin by
extending the definition of [Yoshida [2016] and propose a nonlinear Laplacian that takes into account

both edge direction and sign. While the extension is natural, it has not been discussed before.

The theoretical appeal and applied value of these nonlinear Laplacians motivate two questions: Q1:
Can these nonlinear Laplacians be extended to directed graphs with additional edge signs? Q2: Can
they be leveraged in the context of graph learning? We provide positive answers to both of these
questions. We begin by extending the definition of|Yoshidal[2016|] and propose a non-linear Laplacian
that takes into account both edge direction and sign. While the extension is natural, it has not been
discussed before. Using these nonlinear Laplacians in the context of GNNs, while simultaneously
aiming for computational efficiency, is a trickier problem. In our method NLSD-GNN, we introduce
a module that projects the node feature vectors X € R"* to scalar values. The module can be a
fixed random projection (for efficiency), or a parametric trainable function, and it can be viewed
as a function that assigns potentials to the nodes of the graph. Then, these potentials values are
used to select a subgraph of the input graph, induced by the signed-directed edges. The subgraph
is symmetrized into the signed-undirected counterpart and self-loops are added adequately. Then,
the standard linear operator of the signed-undirected graph is used for the message propagation.
Experimental validation shows that our methods improve upon the best known results on several
benchmarks for transductive node classification and link prediction.

2 Preliminary

Let G = (V, E, w) be a (weighted) directed graph, where V' represents the set of vertices, F is the
set of directed edges, and w : & — R is the weight function. Although self-loops are allowed, we
assume there are no parallel edges. For a vertex v € V, the (weighted) indegree and outdegree of v is
defined to be d™ (v) :== >_._(, ,)ep w(e) and dt(v) = > e—(v,u)er W(e), respectively. The total
degree of v is d(v) := d~ (v) + d ™ (v), which is the total weight of edges incident to v.

A signed graph G = (V, E*, E~,w) consists of a vertex set V, two sets E*, E~ of undirected
edges, and a weight function w : E* U E~ — Rxq. Similarly, a signed-directed graph G =
(V, ET, E~,w) consists of a vertex set V, two sets ET, E~ of directed edges, and a weight function
w: ETUE™ — Rso. We call edges in E™ and E~ positive edges and negative edges, respectively.
The total degree of v is the total weight of edges incident to v, including both positive and negative
ones. We discussed the related in the Appendix [A]

3 Non Linear Signed-Directed Laplacian

We review the existing Laplacians for undirected, directed, signed and propose a novel non-linear
Laplacian for signed-directed graphs.

Laplacian for undirected graphs. Let G = (V, E, w) be a weighted undirected graph. The
degree matrix of G is the diagonal matrix Dg € RY*Y, where (D), is the (weighted) degree
of v € V, ie., ZeeE:v@ w(e). The adjacency matrix of G is a matrix Ag € RV*V, where
(Ag)uww = (Ag)vu = w({u,v}) if {u,v} € E and (Ag)uw = (Ag)ouw = 0 otherwise. The
Laplacian Lg € RV*V of G is defined to be Dg — Ag. It is well known that its quadratic form
satisfies Qg (z) == v Lgr = Ye—fupyen W(e)(@y — 7,)?, and hence for a set S C V, Q(1g)

gives the cut weight of the vertex set S, where 15 € RY is the characteristic vector of S. The

normalized Laplacian L is defined as Lg := Dél/ngDal/Q.

Laplacian for directed graphs. Here, we define nonlinear Laplacian for directed graphs Yoshida
[2016]:

Definition 1. Consider a directed graph G' = (V, E, w). The Laplacian Lg : RV — RV is defined
to output a vector Lg(z) for a vector z € RV via the following procedure:



1. Construct an undirected graph G, on the vertex set V' as follows: For each directed edge
e = (u,v) € E, include an undirected edge {u, v} of weight w(e) in G if x,, > x,, and
introduce self-loops {u, u} and {v, v} of weight w(e)/2 otherwise.

2. Let Lg, € RV*V be the Laplacian matrix for the undirected graph G .

3. The vector Lg/(x) is then derived as L¢g, .

The resulting undirected graph G, and the corresponding L (x) are shown in Figure We note
that the degree of any vertex v € V' in GG, is exactly equal to the total degree of v in G.

An important feature of the Laplacian for directed graphs is that its quadratic form satisfies Q¢ () :=
x'Lgx = > em{uwrer w(e) max{z, — z,, 0}? |Yoshida [2016]. Hence for a set S C V, Q(1s)
gives the cut weight of the vertex set S.

Laplacian for signed graphs. Let G = (V,E",E~,w) be a signed graph, and let G+ =
(V,E*,w) and G~ = (V, E~,w) be the undirected graphs consisting of positive and negative,
respectively, edges. Then, let LE € RV*V be the Laplacian of G*, and Lg € RY*V be the
matrix defined as L, := Dg- + Ag- = 2Dg- — Lg-. Then, the Laplacian Lg € RV*V of G is
Lo = Lg + L |Hou et al.|[2003]]. We can observe that its quadratic form Qc(x) = 2" Leax can be
written as

Qc(®) = X fuwient w(€)(@u — zy)? + De—{unen- W(e)(Tu + 2y)?

Note that the first term is equal to the quadratic form of the Laplacian of GT. The second term
becomes small when the values for the endpoints of an edge have opposite signs. For S C V,
Qc(1ls — 1y g) is four times the total weight of positive edges cut by S plus the total weight of
negative edges uncut by .S.

3.1 Laplacian for Signed-Directed Graphs
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Figure 1: The left figures show unsigned (1a)) and signed directed graphs G and vectors x while
the right figures show undirected graphs G, and vectors Lg ().

We define nonlinear Laplacian for signed-directed graphs by naturally unifying Laplacian for directed
graphs and that for signed graphs:

Definition 2. Consider a signed-directed graph G = (V, E* U E~, w). The Laplacian Lg : RV —
RY is defined to output a vector Lg () for a vector € RY via the subsequent procedure:

1. Construct a signed-undirected graph G, on the vertex set V' as follows: For each edge
(u,v) € ET U E~, include an undirected edge of the same sign e = {u, v} in G, of weight
w(e) if &, > x,, and introduce self-loops of the same sign {u, u} and {v, v} of weight
w(e)/2 otherwise.

2. Let Lg, € RV*V be the Laplacian matrix for the signed-undirected graph G..

3. The vector L () is then derived as Lg, .

Figure [Ib|shows an example of a signed-directed graph, a vector x € RY, and the computation of the
signed-undirected graph G, and the corresponding L ().
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Figure 2: Overview of our workflow, NLSD-GNN, with a toy example. In the first block, we use
an MLP or random projection to generate the feature latent space. In the next step, by using the
nonlinear Laplacian transformation we calculate the counterpart signed-undirected graph by using
the feature representation. The last block of the pipeline consists of passing the input features and the
counterpart graph to spectral GNN layers to get the final prediction for the downstream task.

The normalized Laplacian L¢ : RY — RY of G'is defined as L¢; : @ — Dg"/* La(Dg'/*x), where
D¢ € RV*V is the diagonal matrix with total degree on the diagonal entries. For a signed-directed
graph G = (V, E*, E~,w), let Q¢ (z) = 2" Lg(x) be its quadratic form. Then, we have
Qe(x) = mTLgmx + xTLézx
= zTLG;x +a’ (2Dg- — Lg-)z
= xTLG;x + 2" (2Dg- — Lg-)z
= Z w(e) max{z, — ,,0}?
e=(u,v)EET
+ Z w(e)(222 + 222 — max{z, — x,,0}?).
e=(u,v)EE~

The second term can be written as

Z w(e)-{(xu+$”) if 2, > 2y

222 + 222 otherwise
e=(u,v)EE~ Ty + 2T

For S CV,Qg(1s — 1y g) is four times the total weight of positive edges cut by S plus the total

weight of negative edges (u,v) € E~ such that z,, < z,. Hence to minimize Q¢(z), we want to
embed vertices onto a one-dimensional line so that the tail vertices are to the left of the head vertices
for positive edges and the tail vertices are to the right of the head vertices for negative edges.

When A € Rand v € RY with v # 0 satisfy Lg(v) = Av, we say that ) is an eigenvalue of Lg
and that v is a corresponding eigenvector. The following theorems show that L and L satisfy
properties analogous to the traditional graph Laplacians. The proofs are in Appendix B.

Theorem 1. For any signed directed graph G, The operators Lg and Lq are positive semidefinite,
i.e., all the eigenvalues are nonnegative.

Theorem 2. For any signed directed graph G, all the eigenvalues of L are in the range [0, 2).

4 NLSD-GNN architecture

In this section, we show how to use a normalized or unnormalized nonlinear Laplacian introduced in
Definition[2] to define convolution on a signed-directed.

4.1 Spectral Convolution on Graphs.

Signal on graphs can be filtered using the eigendecomposition of graph Laplacian: £ = UAUT,
where U contains all of the eigenvectors of £ and A = diag(Ay,...,\,) is a diagonal matrix



Algorithm 1 Algorithm for NLSD-GNN-Fast

Input: Signed-directed graph G' = (V, ET U E~, w), features H € RY *d labeled vertices V7,
Qutput: Labels for all nodes in V' — VL

1: Apply random projection z = H - r where r € R%*!
2: Graph Transformation:
3: Construct signed-undirected graph G, on vertex set V'
4: for each edge (u,v)in ET U E~ do
5. ifx, > x, then
6: Include edge e = {u, v} in G, with weight w(e)
7. else
8: Introduce self-loops of the same sign {u, v} and {v, v} of weight w(e)/2
9: endif
10: end for

11: Set Ag, as the adjacency matrix of G,
12: for each epoch 7 do
13:  forlayer £ = 1to 2 do

14: Compute Z = softmax(Ag, ReLU(Ag, HOM)0®)
15: Update parameters ©, to minimize cross-entropy loss
16:  end for

17:  Label nodesin V' — Vi, using Z

18: end for

consisting of the corresponding eigenvalues as its diagonal. Given a signal h , the graph Fourier
transform of h can be defined as h = U Th, and its inverse operation as h = U h. The spectral
convolution filter F can be formulated as: F x h = U f(A)UT h, where f(A) is the graph convolution
filter function corresponding to the signal frequency A . By defining the graph convolution kernel as:

FoUsOUT, 1)

The following formulation connects the spectral-based and spatial-based GNNs in a unified form Bal+
cilar et al.|[2020]:

H(l+1 (Z FrLH Z)W(l k) ) )

k=1

where F}, denotes the k-th graph convolution kernel, o denotes the nonlinear activation function such
as ReLU, H( is the node representations at I-th layer, and W (-*) is the learnable parameter matrix.

4.2 The NLSD-GNN architecture

We now introduce our architecture, NLSD-GNN. At the /-th layer, each node is associated with
a Fy-dimensional feature vector in a graph, and the feature matrix for all nodes is represented as
H® ¢ RNV*F: Following the Laplacian construction steps outlined in Definition 2, we require a
vector x € RY to constructing an undirected counterpart of the graph. To effectively reduce the
dimensionality of our node feature matrix H*), we consider the following two schemes:

NLSD-GNN-MLP. We employ a simple MLP architecture with a tanh as an activation function
between the layers except for the last layer. At each layer, we progressively halve the dimensionality
until reaching dimensionality of one. Now, we can map the original directed graph to its undirected
counterpart by leveraging this one-dimensional feature vector. Figure 2] illustrates our architecture.

NLSD-GNN-Fast. As a faster alternative, we also propose an architecture inspired by |Louis|[2014],
Yadati et al.| [2019], which creates the feature vector by leveraging a simple random projection.

Let G = (V,E™, E~,w) be a signed-directed graph. Then, we train our GNN using the original
feature matrix and the nonlinear Laplacian graph generated in the previous step as inputs. Following
Equation , to generate the /-th layer from the (¢ — 1)-th layer, we compute the matrix H*) as
follows:

H" = o (Dg* A, Dg* HDE1), 3)



Table 1: Node classification accuracy (%) and its standard deviation for directed graphs. Top three
models are color-coded as First, Second, Third.

Type Method Cornell Texas Wisconsin  Cora-ML  CiteSeer
Spectral GCN 59.0 £64 58.7 £338 55.9 +54 82.0+11 66.0+15
P ChebNet 76.3 £32 792 £715 81.6 +63 80.0+18 66.7 +16
APPNP 58.7 +40 57.0 £438 51.8 +74 826 +14 669 +138

Spatial SAGE 80.0 £61 84.3 £55 83.1 £438 823 +12 66.0+15
pati GIN 579 +57 652 +65 58.2 +5.1 78.1 £20 63.3 +£25
GAT 57.6 £49 61.1 £50 54.1 42 819+10 673+13

DGCN 673 +43 T1.7+74 65.5 +47 81.3+14 66.3 +20

Directed Digraph 66.8 +62 649 +81  59.6 £33 794 +18  62.6 £22
DiGraphlB 644 +90 649 +137 64.1 £70 793 +12 61.1+17

MagNet 74.0 +45 833 +61 857 +32 79.8 +25  67.5 +13
NLSD-GNN-MLP 78.1 £45 855 +52 86.8 +43 793 12 67.6 +26
NLSD-GNN-Fast 77.8 £39 854 +42 87.2 £35 822 +25 683 +12

Table 2: Test accuracy (%) comparison the signed-directed link prediction. Top three models are
color-coded as First, Second.

Dataset Task SGCN SDGNN SiGAT SNEA SSSNET SigMaNet MSGNN NLSD-GNN

SP 64.7£09  645+1.1 629409 64.1£13  67.4=%I1.1 47.8£3.9 71.3+12 72.71+0.8
DP 60.4£1.7 615+1.0 61.9+19 609+1.7 68.1+£2.3 49.4+3.1 72.5+1.5 70.5+0.5
BitCoin-Alpha  3C 81.4+0.5 792409  77.1+£0.7 832405  783+47 37.4£16.7 8444006 85.6E1.6
4C 51.1£0.8  525+1.1 493+0.7 524£1.8 543429 20.6+6.3 58.5+0.7 58.7+0.3
5C 79.5£03 782405  76.5+03  81.1+£03  77.940.3 34.24+6.5 81.9+0.9 82.6+0.3

SP 65.6£0.9 653+1.2 62.8+13 67.7+£0.5 70.1+£1.2 50.0£2.3 73.0+1.4 73.84+0.4
DP 638£1.2 632%15 64020 653£12  69.6%£1.0 48.4£4.9 71.8+1.1 71.8£0.7
BitCoin-OTC 3C 79.0£0.7 773407  73.6+£0.7  822+04  76.9+£l1.1 26.8+£109  83.3£0.7 84.241.7
4C 51.5£04 553408  51.2+1.8 56.9+0.7 57.0£2.0 233+74 59.8+0.7 60.510.8
5C 77.4+£0.7 773408  74.1+0.5  80.5+£0.5 74.0%1.6 25.9+6.2 80.9+0.9 82.540.3

SP 747£0.5 741407  64.0+13  70.6£1.0 86.6%2.2 57.9+£5.3 92.4+0.2 93.240.6
DP 748+£09 742414 628409  T7I.1£l1.1 87.8+1.0 53.0£4.0 93.1+0.1 93.310.1
Slashdot 3C 69.7£03  663+1.8  49.1+12 725407 79.3%1.2 42.0£7.9 86.1+0.3 86.8+0.5
4C 632403  64.04+0.7 534£02  60.5+£0.6  72.7+0.6 25.7£8.9 78.2£0.3 79.1£1.3
5C 64.4£03  62.6+2.0 444+14  66.4+05  70.4+0.7 19.3+8.6 76.8+0.6 78.4£0.3

SP 629+0.5 67.74£0.8  63.6+£0.5 66.5+£1.0 785421  53.3+10.6  85.4+0.5 86.1£0.4
DP 61.7£0.5 679406 63.6+£08 66.4£1.2  73.9+6.2 49.0£3.2 86.3+0.3 86.7+0.6
Epinions 3C 70.3£0.8 732408  52.3+13  72.8+02  72.7£2.0 30.5+8.3 83.1+0.5 85.240.7
4C 66.7£1.2  71.0£0.6  62.3+05  69.5£0.7 70.2%5.2 29.9+6.4 78.7£0.9 79.710.1
5C 73.5£0.8  76.64+0.7  52.940.7 742+0.1  70.3%4.6 22.1+£6.1 80.5+0.5 81.3£0.1

where 2 € R is obtained via an MLP for NLSD-GNN-MLP and a random projection for NLSD-
GNN-Fast. Following the convolutional layers, we transform the matrix H(X) € RN*Fz into N x n,
matrix by applying a linear layer and then apply a weight matrix T (£+1) € RFz X% from the right,
where n. is the number of classes. Finally, we apply softmax on the output of the final layer. In our
experiments, we set L to 2 or 3. For link prediction, we apply the same method up to the last layer,
then concatenate the rows associated with pairs of nodes to generate the edge features. we discussed
the complexity of our method in Appendix.

5 Experiments

The node classification task consists in predicting the class label to which each node belongs. For this
task, we only consider directed graphs with nonnegative edge weights, node classification is carried
out in a semi-supervised setting. We employ 10 random data splits for all the datasets. Ten folds are
generated randomly for each dataset. For the datasets Cornell, Texas, and Wisconsin, we used the
settings from |He et al.| [2022b]]. In all experiments, we used the normalized nonlinear Laplacian and
implemented NLSD-GNN with convolution defined as in Equation (3)), which means our network
may be viewed as the nonlinear Laplacian generalization of ChebNet.



Link prediction typically aims to determine the presence of a connection between two nodes in
unsigned and undirected graphs. However, this task extends into more complex scenarios involving
signed and/or directed networks. The initial task, known as link sign prediction (SP), predicts the
existence of a directed edge from v; to v; and seeks to classify the edge as positive or negative,
determining whether (v;,v;) € ET or (v;,v;) € E~. The next challenge, direction prediction (DP),
involves predicting the directionality of the edge, i.e., whether (v;,v;) € E or (vj,v;) € E, under
the assumption that only one direction is valid. Further complexities are introduced through multi-
class prediction tasks. The three-class challenge (3C) considers three possibilities: (v;,v;) € E,
(vj,v;) € E, or neither. In the four-class scenario (4C), the predictions expand to include both
positive and negative relationships in both directions: (v;,v;) € ET, (v;,v;) € E~, (vj,v;) € ET,
and (vj,v;) € E~ . The most complex, the five-class format (5C), adds an additional category where
neither edge exists between v; and v;. Performance across these tasks is assessed using classification
accuracy. It is noteworthy that while the (SP), (DP), and (3C) tasks require methods capable of
discerning either signed or directed aspects, the (4C) and (5C) tasks necessitate methods that can
adeptly handle both signs and directions of the edges.

5.1 Results & Discussion

Node Classification. As demonstrated in Table[I} on homophilic datasets, both variants of NLSD-
GNN consistently rank among the top three models across the datasets. Notably, NLSD-GNN
outperforms MagNet and other non-spectral methods, achieving the best results on three out of
five datasets and placing second on the Cornell dataset. This superior performance underscores
the effectiveness of the nonlinear Laplacian in capturing directional information. On the Cora-
ML dataset, NLSD-GNN places third, slightly behind SAGE. In heterophilic datasets presented
in Table [} NLSD-GNN surpasses MagNet and similar spectral GNN methodologies. However,
it falls short against GNNs specifically designed for directed heterophilic environments, such as
HoloNet and Dir-GNN detailed in Koke and Cremers| [[2023]], Rossi et al.| [2024]]. Moreover, these
targeted heterophilic methods demonstrate minimal gains—and occasionally a slight decline—in
performance when applied to homophilic datasets with directional data. It is also important to note
that the models cited in [Koke and Cremers|[2023]], Rossi et al.| [2024]] cannot handle signed-directed
graphs. Additional results involving various baselines can be found in the Appendix.

Link Prediction on Signed-Directed Graphs. Table[2|summarizes the experimental results for
link prediction on signed-directed graphs. We observe that NLSD-GNN-Fast outperforms all the
baseline methods on almost all the datasets, and MSGNN generally achieves suboptimal results,
followed by SSSNET, SNEA and SDGNN. In some cases especially For the SP task, it is observed
that relying solely on signed attributes, excluding weighted features, yields favorable results. In
summary, developing features that distinctly address the positive and negative subgraphs proves
beneficial, and incorporating directional information generally enhances performance. Table [2]is
instrumental in assessing the performance of the NLSD-GNN model, specifically examining how it
handles signs and directions both individually and in combination. This constitutes the core of our
ablation study on the NLSD-GNN’s capabilities. While simpler tasks such as (SP), (DP), and (3C)
evaluate the model’s ability to address either signed or directed attributes separately, more intricate
tasks like (4C) and (5C) challenge the model to effectively manage both attributes at the same
time. We have the following observations: the performance of NLSD-GNN in task (4C) diminishes
compared to task (5C), suggesting that effectively quantifying the influence of non-existent links
and capturing the structural nuances of signed-directed graphs are crucial for modeling interactions
between positive and negative links. Additionally, we observe that integrating directionality into the
nonlinear Laplacian matrix generally enhances outcomes in tasks related to directionality (DP, 3C,
4C, 50).

6 Conclusion

In this work, we introduced a spectral GNN based on a novel nonlinear signed-directed Laplacian
and explored its application in node classification and link prediction tasks that consider both edge
sign and directionality. The NLSD-GNN not only matches or surpasses the performance of leading
GNNs s but also operates more efficiently on real-world datasets.
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Table 3: Laplacians used in spectral GNNs and their applicability
Laplacian Directed Signed-Directed No Extra Param
Ordinary Laplacian
Magnetic Laplacian|Zhang et al.|[2021]
Signed Laplacian|{Hou et al.[[2003]

Signed magnetic Laplacian|He et al.|[2022c]
Directed Laplacian|Yoshida|[2016]
Signed-directed Laplacian (This work)

CAAX A X
AX AX X X
CNAX AX &

A Related Work

Inspired by GCN architecture, graph neural networks have been extended to directed graphs.
DGCN Ma et al.| [2019] uses a (linear) directed Laplacian associated with random walk, but this
restricts the graph to be strongly connected which is not the case in most of the real-world scenarios.
On the other hand, DiGCN [Tong et al.| [2020a] explores a method using a first-order proximity
matrix and two second-order proximity matrices, and incorporates k-hop diffusion matrices. These
matrices enable detailed neighborhood analysis and the construction of multiple Laplacians with a
fusion operator for information integration. DiGraph Tong et al.|[2020b]] extended these ideas by
adapting the directed Laplacian using a personalized PageRank matrix to be suitable for non-strongly
connected graphs. They also incorporate higher-order receptive fields for enhanced data processing.
MagNet|Zhang et al.|[2021] incorporates directional information in graphs through the use of the
magnetic Laplacian, a complex Hermitian matrix. This matrix captures the undirected geometric
structure in the magnitude of its entries and encodes directional information in their phase. Moreover,
Geisler et al.|[2023]] extends Transformer GNNs for use in directed node/graph classification tasks,
while Maskey et al.|[2023] [2022] has utilized GNNs inspired by ordinary differential equations,
extending the concept of oversmoothing to the context of directed graphs. Recently, Koke and
Cremers| [2023]] tried to completely remove reliance on the graph Fourier transform and instead take
the concept of learnable functions applied to characteristic operators as fundamental.

Recent research primarily explores unsigned graphs, which only include edges of positive signs. Yet,
an expanding focus is on neural networks for signed and directed graphs, aimed at assessing link
polarity. For instance, SGCN Derr et al.| [2018]] utilizes balance theory Harary| [|[1953] for signed-
undirected graphs, whereas SiGAT Huang et al.| [2019], with a mechanism from |Velickovic et al.
[2017], employs a motif-based architecture for signed-directed graph embeddings. SDGNN Huang
et al| [2021] and SNEA |[Li et al.| [2020] further developed this area with new efficiencies and
objective functions. In contrast, SSSNET |He et al.| [2022d]], MSGNN |He et al.| [2022¢]], SLGNN |Li
et al.| [2023]] and SigMaNet |Fiorini et al.| [2023]] explore semi-supervised clustering and spectral
GNNs using signed magnetic Laplacians, respectively. Additionally, various GNNs Singh and Chen
[2022], |Schlichtkrull et al.[[2018]], Vashishth et al.[[2019]] address multi-relational graphs, which
inherently accommodate diverse edge types. Signed graphs, particularly those unweighted or with
finite weighting scales, offer simplified models of multi-relational graphs where negative edges are as
significant as positive, but with fewer parameters needed for network training.

B Proof of Theorem 1 & 2

Let (A, v) be an eigenpair of the Laplacian Lq of a signed-directed graph G. Suppose A < 0. Then,
we have

0<Qg(v)=v Lguv=v"Lgv=0v"(=Nv=-=\|v]|> <0

which is a contradiction. Hence, L is positive semidefinite. A similar argument shows that the
normalized Laplacian L is also positive semidefinite.

Now consider an operator M : z — 2z — Lg(x). To show that all the eigenvalues of L is bounded
by two, it suffices to show that M is positive semidefinite. This is equivalent to showing that the
quadratic form of M is nonnegative. For a vertex v € V, let d,, denote the total degree of v. Then,
we have

11



2" M(z) = 2|z - 2" D5"*Qa(a) (DG *x)

2
Ty Ty
:2”.’17”2— E w(e)max{dl/z—dl/Q,O}

e=(u,v)EET
S e (22, - 0}2
- w(e —max<{ — — —=,
e=(u,0)EE~ du d’u dqul/Q d}}/2
S w(e) (2“33 25 e { T @ }2>
= A — X ,
e=(u,v)EEt du dy d1/2 dil)/Q
2
':Z:TL I/U
+ Z w(e) max{ 7 i }
e=(u,v)EE~ du dy

> 0.

Hence, the claim holds. Note that the second-to-last expression is the quadratic form of the normalized
Laplacian of a signed-directed graph obtained from G by flipping signs of edges.

C Further implementation details

We configured both ChebNet and MagNet and MSGNN with K = 1 . Each model trained for up to
1500 epochs, employing early stopping when validation errors ceased decreasing after 500 epochs,
applicable to both node classification and link prediction tasks. A dropout layer set at a rate of 0.5
precedes the final linear layer. Model selection was based on peak validation accuracy. Filter counts
in the convolutional layers were tuned to [16, 32, 48]. Node classification learning rates were tested
at [le=3,5e73, 1e~2], and a more conservative rate of 1e =2 was applied to link prediction due to
the larger sample sizes. Adam optimizer and L2 regularization (hyperparameter 5e ~*) were utilized
to mitigate overfitting. The best test performances were derived by grid-search based on validation
accuracies. In link prediction, node features were derived from in-degrees and out-degrees to encode
directional information from the adjacency matrix.

For link prediction task on signed-directed graphs, all GNNs are trained for 300 epochs. Loss
functions from the original publications are employed for SGCN Derr et al.|[2018]], SNEA [Li et al.
[2020], SiGAT |Huang et al.|[2019]], and SDGNN |Huang et al.|[2021], while cross-entropy loss Lcg
is used for SigMaNet [Fiorini et al.|[2023]], SSSNET |He et al.|[2022d], and MSGNN |Fiorini et al.
[2023]]. For each input graph, 20% of edges are randomly set aside as test edges, and the remaining
edges are used for training. Five random splits are generated for each graph. For SigMaNet, SSSNET
, and MSGNN, node features are formed into four-dimensional vectors based on the signed in- and
out-degrees, excluding test edges. Default settings from He et al.| [2024] are utilized for SGCN ,
SNEA, SiGAT , and SDGNN.

Computational experiments were conducted on 1 compute nodes, equipped with 1 Nvidia Quadro
RTX 8000 GPU, 380GB RAM, and 32 Intel Xeon E5-2660 v3 CPUs.

D Datasets

D.1 Node Classification

As illustrated in Table 5, we employ ten real datasets for node classification. We define a directed
edge as follows: if (u,v) € E but (v,u) ¢ E, then (u, v) is considered a directed edge. Conversely,
if both (u,v) € F and (v,u) € E, they are treated as undirected edges; undirected edges that are not
self-loops are counted twice. For the citation datasets Cora-ML and Citeseer, we randomly select 20
nodes per class for training, 500 nodes for validation, and allocate the remainder for testing, as per.
For Chameleon and Squirrel we use the fixed GEOM-GCN [Pei et al.| [2020] splits, for Arxiv-Year we
use the splits provided in|Lim et al.|[2021]], while for Roman-Empire we use the splits from |Platonov
et al.|[2023]]. We report the mean and standard deviation of the test accuracy, computed over 10 runs
in all experiments..
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Algorithm 2 Simple MLP for Graph Feature Reduction

1: Input: H, the initial feature matrix of the graph (dimensions N x D)
2: Output: x, the one-dimensional feature vector (dimensions N x 1)
3: Initialize H yyene = H
4: Set Deyent = D
5: while Dyyene > 1 do
6:  Halve the dimensionality at each layer: Dyex = %
7:  fori =110 Dy do
8: Apply MLP layer: Hyex[:, 4] = tanh(Heyen - W1, 7] + b[i))
9: end for
10:  Update Hyrrent 10 Hpext
11:  Update Deyrrent t0 Dhext
12: end while
13: Final transformation: £ = H yrent * Whinal + Dfinal
14: Return x
Table 4: Statistics of the datasets used in Node Classification Task.
Dataset # Nodes #Edges #Feat. #C % Unidirectional Edges Edge Hom.
CiteSeer 4,230 5,358 602 6 99.61 0.949
Cora-ML 2,995 8,416 2,879 7 96.84 0.792
Chameleon 2,277 36,101 2,325 5 85.01 0.235
Squirrel 5,201 217,073 2,089 5 90.60 0.223
Arxiv-year 169,343 1,166,243 128 40 99.27 0.221
Roman-Empire 22,662 44,363 300 18 65.24 0.050
Cornell 183 295 1,703 5 86.90 0.050
Texas 183 309 1,703 5 76.60 0.050
Wisconsin 251 499 1,703 5 77.90 0.050

Table 5: Summary of various datasets with link statistics for Signed-Directed Link prediction

Dataset #Nodes #Links % Positive Links % Negative Links
Bitcoin-OTC 5,872 21,431 85.29 14.71
Bitcoin-Alpha 3,772 14,077 90.69 9.31
Slashdot 82,140 549,202 77.40 22.6
Epinions 131,828 841,372 85.30 14.7

D.2 Link prediction on Signed-Directed graphs

We assess the performance of our NLSD-GNN using four well-known signed-directed graph datasets.
The datasets include Bitcoin-Alpha and Bitcoin-OTC, which are networks of Bitcoin traders who
assign trust or distrust labels to each other. Another dataset is Slashdot, a network where individuals
label one another as friends or foes, derived from interactions on the Slashdot tech news site. The
fourth dataset, Epinions, comprises a network from the consumer review site Epinions, where users
express trust or distrust towards others. These datasets are summarized in Table 6, highlighting
the significant imbalance between the numbers of positive and negative links, where positive links
overwhelmingly predominate. In the results presented in Table 9, Following the setting of the Zhang
et al.| [2021]] on the directed graphs, we develop our datasets for training, validation, and testing,
which consist of vertex pairs from the graph, we implement the following procedures:

1. Existence Prediction: For a pair (u, v), the label is 0 if (u,v) € E, and 1 otherwise. Class
proportions are 25% and 75% for scenarios including undirected and multi-edges, and 50%

each when considering only directed edges.

2. Direction Prediction: For an ordered node pair (u, v), we assign label 0 if (u,v) € E and
label 1 if (v,u) € E, provided either (u,v) € E or (v,u) € E. Both edge types maintain a

50% proportion.
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Table 6: Node classification accuracy (%) and its standard deviation for real-world directed het-
erophilic graphs. The numbers below network names indicate the degree of homophiliy. Top three
models are color-coded as First, Second, Third.

Type Method Squirrel Chameleon Arxiv-Year Roman-Empire
0.223 0.235 0.221 0.05

Baseline MLP 28.77 £ 1.56 4621 £2.99  36.70 £ 0.21 64.94 +0.62
GCN 5343 £201 6482 +224  46.02+0.26 73.69 £ 0.74
H2GCN 37.90 +£2.02  59.39 £1.98  49.09 £ 0.10 60.11 £ 052
GPR-GNN 5435 +087  62.85+290  45.07 +0.21 64.85 +0.27
LINKX 61.81 £1.80  68.42+138  56.00 +0.17 37.55 £ 036
NON-GNN  FSGNN 7410 £ 189 7827 +£1.28  50.47 +0.21 79.92 £+ 0.56
ACM-GCN 67.40 4+ 2.21 74.76 +2.20 47.37 £0.59 69.66 + 0.62
GLOGNN 5788 £ 176 7121 £1.84 5479 £0.25 59.63 +0.69
Grad. Gating 6426 +238  71.40 £238  63.30 & 1.84 82.16 +0.78
DIGCN 37.74 £ 154 5224 £+ 3.65 OOM 52.71 £ 032
Directed MagNeT 39.01 £193 5822 +287  60.29 +0.27 88.07 +0.27
ecte DIR-GNN 75314192 79714126  64.08+026  91.23 +032
HoloNet 76.71 +1.92 80.33 £+ 1.19 64.43 +0.28 92.24 +0.43
NLSD-GNN-Fast (ours) 68.34 + 1.37 75.27 £+ 1.42 62.13 £ 0.1 88.22 £ 043

3. Three-Class Link Prediction: For a pair (u,v), the labels are 0 if (u,v) € E, 1 if
(v,u) € E, and 2 if neither condition is met, with respective proportions of 25%, 25%, and
50%.

4. Direction Prediction by Three Classes Training: This task builds on the third, evaluating
only when (u,v) € Eor (v,u) € E.

Ten random folds were generated for all datasets. We allocate 15% and 5% of edges for testing and
validation across all datasets. Also, we concatenate the original features, with the in-degree and
out-degree as the node features in order to allow the models to learn structural information from
the adjacency matrix directly. The connectivity is maintained by getting the undirected minimum
spanning tree before removing edges for validation and testing. For the results in the main text,
undirected edges and, if they exist, pairs of vertices with multiple edges between them, may be placed
in the training/validation/testing sets.

E Ablation Study and discussion

Table 8 compares different variants of NLSD-GNN on the link prediction tasks. In our analysis,
we evaluate the impact of including sign information in input node features and the consideration
of edge weights. Typically, the calculation of degrees with signed edge weights yields net degrees,
where edge weights are summed directly. This approach allows opposing signs, such as -1 and +1,
to neutralize each other. In contrast, the features aggregating absolute values of edge weights are
labeled as T” in the table. Each configuration is represented by a tuple: (inclusion of signed features,
inclusion of weighted features), where "T" and "F" signify "True" and "False," respectively. Here,
"T" indicates the sum of entries in the adjacency matrix, whereas "T’" represents the sum of the
absolute values of these entries. Based on the results there is no significant difference between the
two options, T and "T’", as weight features when signed features are excluded. Also, the results
suggest that the use of unit-magnitude weights may be either advantageous or detrimental, varying by
dataset and task.

Moreover, We achieve the best performance on the direction prediction task on all of the datasets
as shown in Table 9. In comparison to the MagNet, NLSD-GNN obtains a ~ 9% improvement on
Cornell and a ~ 7% improvement on Wisconsin, while on Cora-ML and CiteSeer it improves by ~
%3 and %35 respectively. This emphasizes the role of the nonlinear Laplacian in our model. On the
existence prediction, while MagNet has a better performance than our model, our model in three out
of four datasets, is still in the top three models narrowly behind the second.
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Table 7: Comparison of link prediction test performance across different variants of NLSD-GNN.
The ablation study investigates the effects of incorporating signed and weighted features, where "T"
and "F" denote "True" and "False," respectively. For weighted features, "T" indicates the sum of the
entries in the adjacency matrix, whereas "T’" represents the sum of their absolute values.

Data Set Link Task  (F, F) (F,T) (F,T) (T, F) (T, T)
SP 71.6£0.9 71.6x1.6 702+1.1 715209 72.7+0.8
DP 748+1.0 71.8+1.6 71.6x1.8 703%0.5 70.5+0.5
BitCoin-Alpha  3C 85.8+0.9 822404 84.4+0.6 83.6+0.6 85.6x1.6
4C 58.8+1.1 542403 56.6x1.6 58.4%1.4 58.7+0.3
5C 83.330.6 81.0£0.5 81.9+0.5 83.2+03 82.6+0.3
SP 737£1.5 72.0+03 733208 74.120.7 73.8+0.4
DP 74.8+0.7  74+0.1  72.6x14 752404 71.8+0.7
BitCoin-OTC ~ 3C 85.040.5 84.9+0.8 83.3+1.0 84.8+0.9 84.2+1.7
4C 61.4+0.4 57.4+09 559421 64.5+04 60.5+0.8
5C 82.4+0.8 77.0£2.6 80.0+0.7 81.8+0.4 82.5+0.3
SP 93.120.0  92.0£0.1 93.020.1 92.8+0.1 93.2+0.6
DP 92.1+0.1 91.1+0.1 93.120.1 92.040.1 93.3x0.1
Slashdot 3C 84.2+0.2 853+04 86.2+03 852402 86.8+0.5
4C 723+1.1  72.1%0.1 70712 79.020.6 79.1+1.3
5C 748403 72.1%0.6 72.8+03 78.5%0.6 78.4%0.3
SP 85.420.1 86.6+0.1 86.4+0.1 84.6+02 86.1+0.4
DP 86.1+0.5 86.1+0.7 86.1+0.4 83.3+0.1 86.7+0.6
Epinions 3C 83.5+0.2 83.3+0.3 83.6:04 82.620.3 85.2+0.7
4C 767403 77.3+03 762204 79.1+1.5 79.7+0.1
5C 78.5+0.5 78.1#0.2 77.320.2 80.6+0.2 81.3%0.1

Table 8: Link prediction accuracy (%) for directed graph. Top three models are color-coded as First,
Second, Third.

Method Direction prediction Existence prediction
Cornell Wisconsin ~ Cora-ML CiteSeer  Cornell Wisconsin Cora-ML CiteSeer

GCN 56.2 £8.7 71.0+40 798 £ 1.1 689 +28 75114 75119 81.6£05 769 05
ChebNet 710 £55 675+45 727415 680+ 16 80.1+23 825+19 80.0+06 774 +04
APPNP 69.5 £9.0 75.1 £35 83.7+07 779 +16 749+15 75722 825406  78.6+07
SAGE 752+11.0 720+35 682+08 68.7+15 798+24 773+29 750400 T741+£1.0
GIN 69.3 £ 6.0 748 £3.7 83.2+09 763 +14 745+21 762 +19 8254+07 779407
GAT 67.9 £ 11.1 532+26  50.0+0.1 506+05 77.9+32 7464+00 750400 75.0£00
DGCN 80.7 + 63 745+72  79.6+15 785 +23 80.0+39 828 +20 82.1+05 812404
DiGraph 793 £19 823+49 80.8+11 81.0+1.1 806425 828+26 81.8+05 822406
DiGraphIB 79.8 £4.38 82.0+49 834 +t1.1 825+13 805436 824+22 822405 81.0+05
MagNet 80.7 2.7 83.6 £ 28 86.1 + 0.9 85.1+08 80.6+38 829426 82.8+07 799 +05

NLSD-GNN-MLP 88.4 + 3.2 89.9 + 42 89.8 +23 922 +30 804+32 81.9+1.1 828 +33  80.1 £07
NLSD-GNN-Fast  89.1 +5.6 90.3 £ 4.0 89.3 0.1 90.1 £03 799+12 825+47 8244+23 798 +15

F Complexity Analysis

In this section, we evaluate the efficiency of our model against some of the directed baselines.
Assuming the DirGCN configuration for the DirGNN baseline (with higher complexities possible for
other configurations), consider a graph G with N nodes and M edges, input features of dimension d ,
and F' hidden dimensions in our architectures. The computational complexities are as follows:

 DiGCN: Typically, In its full form, DiGCN has a O(N?) complexity, which is reduced to a
O(M Fd) complexity in its approximate propagation scheme, which is used in practice.

* DirGNN: Similarly, DirGNN possesses a O(M F'd). In both cases this stems from the
sparse-dense matrix multiplications that facilitate the forward function.

* MagNet, MSGNN: Both implement their forward functions through sparse-dense matrix
multiplications, resulting in O(M F'd) complexity.
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e NLSD-GNN: NLSD-GNN is similarly implemented via sparse-dense matrix multiplica-
tions; resulting in an O(M F'd) complexity.

Number of trainable parameters:

Compared to MSGNN, our NLSD-GNN-MLP, assuming equivalent network width and depth,
introduces a slightly higher number of learnable parameters primarily in the MLP part. However, this
increase is negligible, especially when employing a shallow MLP configuration in practical scenarios.
Furthermore, for the NLSD-GNN-FAST variant, the total count of parameters aligns closely with
that of MSGNN, showing no significant difference in parameter complexity between these models.
in Algorithm 2, we present a simple pseudocode for how we can use an MLP for feature reduction
to obtain a one-dimensional vector for use in our non-linear Laplacian. This demonstrates that
enhancements in our model do not necessarily come at the cost of increased computational overhead.

G Limitations and Ethical Considerations:

In this work, we introduced a spectral GNN based on a novel nonlinear signed-directed Laplacian and
explored its application in node classification and link prediction tasks that consider both edge sign
and directionality. The NLSD-GNN not only matches or surpasses the performance of leading GNNs
but also operates more efficiently on real-world datasets. Future work will investigate additional
properties of our proposed Laplacian and extend its application to temporal and dynamic graphs,
where node features and edge information may evolve over time.

Our method extends spectral graph convolutional networks to signed-directed graphs, though scal-
ability to larger graphs remains a challenge for future development. Additionally, the potential of
NLSD-GNN in heterophilic graph contexts has not been explored, indicating further avenues for
research. The societal impact of this method aligns with that of other graph neural network algorithms,
neither significantly greater nor lesser.
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