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Abstract

Modern virtual assistants are trained to clas-001
sify customer requests into a taxonomy of pre-002
designed intents. Requests that fall outside003
of this taxonomy, however, are often unhan-004
dled and need to be clustered to define new005
experiences. Recently, state-of-the-art results006
in intent clustering were achieved by training007
a neural network with a latent structured pre-008
diction loss. Unfortunately, though, this new009
approach suffers from a quadratic bottleneck010
as it requires to compute a joint embedding011
representation for all pairs of utterances to clus-012
ter. To overcome this limitation, we instead013
cast the problem into a representation learning014
task, and we adapt the latent structured predic-015
tion loss to fine-tune sentence encoders, thus016
making it possible to obtain clustering-friendly017
single-sentence embeddings. Our experiments018
show that the supervised clustering loss returns019
state-of-the-art results in terms of clustering020
accuracy and adjusted mutual information.021

1 Introduction022

Most virtual assistants, like Alexa, Cortana, Google023
Home, and Siri, have a Natural Language Understanding024
(NLU) component that categorizes customers’ requests025
into supported experiences, organized by domains and026
intents. However, when user requests don’t fit into these027
categories, NLU models can fail, causing friction in028
human-machine interaction. Analyzing these out-of-029
scope utterances can help expand the assistant’s capa-030
bilities, but manually inspecting all failing utterances031
is unfeasible. Therefore, automation is needed, such as032
clustering frictional utterances into new required expe-033
riences. This approach is valuable for expanding the034
assistants’ capabilities in a user-driven way.035

One way is to use pre-trained sentence embeddings036
with unsupervised clustering algorithms. Another op-037
tion is to train a clustering model in a supervised man-038
ner using utterances with known intents. This super-039
vised approach has been successful in co-reference res-040
olution (Finley and Joachims, 2005) and has been re-041
cently applied to intent clustering. A seminal work by042
Haponchyk et al. (2018) uses measures of utterance sim-043
ilarity as input to either Latent Structural Support Vector044

Machines (LSSVM) or to a Latent Structured Percep- 045
tron (LSP) (Yu and Joachims, 2009; Fernandes et al., 046
2014). The same two algorithms - LSSVM and LSP 047
- were later used by Haponchyk and Moschitti (2021) 048
to train a fully Neural Supervised Clustering architec- 049
ture (NSC) with utterances encoded through pre-trained 050
large language models - e.g. BERT (Devlin et al., 2019). 051
Supervised clustering techniques use graph structures 052
to represent clusters and are highly effective, but have a 053
quadratic complexity due to the need for edge weights 054
between all possible sample pairs. In the NSC case, 055
for example, all pairs of utterances must pass through 056
a Convolutional Neural Network at both training- and 057
inference-time. 058

To avoid this, we propose using the supervised clus- 059
tering loss to fine-tune sentence encoders, producing 060
clustering-friendly single-sentence embeddings. This 061
turns supervised clustering into a metric or represen- 062
tation learning problem where we force embeddings 063
to be globally more suitable for intent clustering. Our 064
approach has the advantage of scaling linearly with the 065
number of samples, as embeddings only need to be com- 066
puted for all utterances, not all pairs. To validate our 067
approach, we perform experiments on CLINC150 (Lar- 068
son et al., 2019), BANKING77 (Casanueva et al., 2020), 069
DSTC11 (Galley et al., 2022), HUW64 (Liu et al., 2021) 070
and Massive (FitzGerald et al., 2022): these are 5 public 071
benchmark datasets for intent clustering, both monolin- 072
gual and multilingual. For each dataset we fine-tune 073
mBERT (Devlin et al., 2019), XLM roBERTa (Conneau 074
et al., 2020) and two state-of-the-art sentence encoders 075
(All Mpnet Base and Paraphrase Multilingual Mpnet) 076
with either our supervised clustering loss or one among 077
cross entropy loss, cosine similarity loss, contrastive 078
loss or triplet margin loss. Results show that, regard- 079
less of base sentence encoder or algorithm chosen to 080
perform clustering, our proposed fine-tuning strategy in- 081
duces state-of-the-art embeddings that perform equally 082
or better than those obtained with all other tested metric 083
learning losses, when evaluated on the intent clustering 084
task. Our code has been attached to this submission and 085
will be publicly released upon acceptance. 086

2 Related Works 087

This work lies at the intersection of three research areas: 088
intent clustering, sentence embeddings, and structured 089
prediction loss - which we will briefly review below. 090
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Figure 1: A sample calculation of the supervised clustering loss on two clusters (yellow points vs green points)

2.1 Intent Clustering091

During the past few years, intent clustering has been092
a very active research topic. While it has been shown093
that pre-trained transformers perform poorly on out-of-094
scope detection (Zhang et al., 2022a), fine-tuning in a095
contrastive or semi-supervised fashion has proven bene-096
ficial (Casanueva et al., 2020; Zhang et al., 2021c; Mehri097
and Eric, 2021; Zhang et al., 2021d; Mou et al., 2022).098
Early works mostly focus on unsupervised clustering099
methods (Shi et al., 2018; Perkins and Yang, 2019; Chat-100
terjee and Sengupta, 2020), but semi-supervision has101
now gained popularity (Forman et al., 2015; Zhang et al.,102
2022b). Lin et al. (2020), for example, propose to first103
perform supervised training on known intents and then104
use pseudo-labeling on unlabeled utterances to learn a105
better embedding space. Quite similarly, and in line106
with Deep Clustering (Caron et al., 2018), Zhang et al.107
(2021b) propose to first pre-train on known intents and108
then perform k-means clustering to assign pseudo-labels109
on unlabeled data. Finally, a structured prediction loss110
was used to directly teach both support vector machines111
(Finley and Joachims, 2005; Haponchyk et al., 2018)112
and neural networks (Haponchyk and Moschitti, 2021)113
to directly output intent clusters for some input utter-114
ances. This latter thread of research is the starting point115
of our work.116

2.2 Sentence Embeddings 117

Current state-of-the-art sentence embeddings (Reimers 118
and Gurevych, 2019, 2021; Liao, 2021; Kim et al., 2021; 119
Giorgi et al., 2021) usually fine-tune pre-trained BERT- 120
based architectures on SNLI (Bowman et al., 2015) and 121
Multi-NLI (Williams et al., 2018) data with either a 122
cross entropy loss, a contrastive loss or a triplet margin 123
loss. Gao et al. (2021) and Yan et al. (2021) precisely 124
show that contrastive loss can avoid an anisotropic em- 125
bedding space. As for intent-friendly word and sentence 126
embeddings, some works propose to pre-train BERT on 127
open domain dialogs in a self-supervised manner (Mehri 128
et al., 2020; Wu et al., 2020; Henderson et al., 2020; 129
Hosseini-Asl et al., 2020). On the other hand, Zhang 130
et al. (2020) formulated intent recognition as a sentence 131
similarity task. Another common option consists in pre- 132
training with a contrastive loss on intent detection tasks 133
(Vulić et al., 2021; Zhang et al., 2021d). Finally and 134
more generally, Zhang et al. (2021a) show that com- 135
bining a contrastive loss with a clustering objective can 136
improve short text clustering. 137

2.3 Structured Prediction 138

While in optimization problems local solutions often 139
produce optimal results, structured prediction represents 140
a valid alternative to solve NLP tasks requiring complex 141
output, such as syntactic parsing (Roth and Yih, 2004), 142
co-reference resolution (Yu and Joachims, 2009; Fernan- 143
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des et al., 2014), and clustering (Finley and Joachims,144
2005; Haponchyk et al., 2018). Nonetheless, relatively145
few works extend structured prediction theory to deep146
learning (LeCun et al., 2006; Durrett and Klein, 2015;147
Weiss et al., 2015; Kiperwasser and Goldberg, 2016;148
Peng et al., 2018; Milidiú and Rocha, 2018; Xu et al.,149
2018; Wang et al., 2019). In particular, when it comes to150
clustering, designing a differentiable loss function that151
captures the global characteristics of good clustering is152
particularly hard; for this reason, when dealing with co-153
reference resolution - a closely related task - Lee et al.154
(2017) use simple losses, which already perform well155
but do not strictly take into account the cluster struc-156
ture. Haponchyk and Moschitti (2021), on the other157
hand, represent clusters using graph structures and use158
LSSVM (Yu and Joachims, 2009) and LSP (Fernandes159
et al., 2014) - two structured prediction algorithms - to160
compute an augmented loss for training a deep cluster-161
ing architecture.162

3 Supervised Clustering Loss for163

Clustering-Friendly Representation164

Learning165

In this section, we demonstrate how a structured learn-166
ing approach - which utilizes latent representations of167
graph structures for predicting clusters from a set of168
utterances - can be instead used to fine-tune sentence169
encoders to be more clustering-friendly. Our approach170
is unique in that it leverages supervised clustering prin-171
ciples for the fine-tuning of sentence-transformers using172
examples of clusters, known as gold clusters. This al-173
lows for the creation of "cluster-friendly" embeddings,174
whose cosine similarities can be used to directly clus-175
ter the embedded utterances using various clustering176
algorithms such as threshold-based, K-Means, or Hier-177
archical Clustering.178

Our fine-tuning loss represents utterances as nodes179
of a fully-connected weighted graph. The edge weights180
correspond to the cosine similarities between connected181
pairs of utterances (as defined by Eq. 2). By pruning182
the edges whose weight is below a certain threshold183
(i.e., the cosine similarity is less than 0), we can obtain184
a clustering. This clustering, however, is only used185
at training time to compute a clustering-sensitive loss,186
whose back-propagation contributes to the creation of187
more clustering-friendly sentence embeddings.188

We begin by briefly explaining how we can lever-189
age a supervised clustering loss to fine-tune sentence190
encoders, followed by a detailed description of the math-191
ematical computation behind the loss.192

3.1 Intuitive explanation of the Supervised193
Clustering Loss194

Our loss function is inspired by the Neural Supervised195
Clustering (NSC) (Haponchyk and Moschitti, 2021).196
Specifically, the computation of the loss accounts for197
the differences between the golden clustering and the198
embedding-based clustering. The loss is made up of two199
components: a difference between two scores based on200

edge weights (Eqs. 9, 10), and a structural-loss based 201
edge comparison (Eq. 8). Following the example in 202
Figure 1: 203

1. at each learning step, we use the actual embeddings 204
to compute a similarity matrix for the current clus- 205
tering scenario, represented as a fully-connected 206
graph (i); 207

2. using the golden clustering, we construct a first 208
graph, called gold graph (ii), keeping only edges 209
that connect nodes in the same clusters and pruning 210
the others; its connected components now repre- 211
sent the golden clusters; 212

3. we construct a second graph, called violating graph 213
(iii), perturbing the similarity matrix (i) by penal- 214
izing the edges connecting nodes in the same clus- 215
ters; in this context, v is a real number between 0 216
and 1, representing the penalization factor on gold 217
edges, while r represent what percentage of this 218
penalization is transferred onto wrong edges; 219

4. we prune all the edges with weight below 0, result- 220
ing in a disconnected graph (iii), whose connected 221
components are the predicted clusters; 222

5. to perform the comparison between the two result- 223
ing clusterings, we keep the minimum possible 224
connectivity which preserves the connected com- 225
ponents and select the strongest edges by applying 226
Kruskal’s Maximum Spanning Tree to each con- 227
nected components, resulting in graphs (iv) and 228
(v); 229

6. we compute a score for each graph - as the weight 230
sum of the remaining edges, and the structural loss 231
- as the difference between the number of edges of 232
the golden graph and the numbers of correct and 233
incorrect edges of the max-violating graph. 234

7. finally, we perform back propagation only in case 235
the structural loss is greater than zero (which hap- 236
pens in the case of imperfect matching between the 237
two graphs). 238

3.2 Algorithm details 239

Let {(xi, yi)}ni=1 be a set of samples to be clustered, 240
where xi represents the i-th object and yi its cluster as- 241
signment. Let’s further assume that Netθ(.) is a generic 242
neural network that encodes the objects {xi}ni=1 into 243
k−dimensional real-valued vectors, such that: 244

A = [x̂1, ..., x̂n] = Netθ([x1, ..., xn]), (1) 245

where A ∈ Rn×k contains all the n objects encoded 246
with Netθ(.). 247

The first step to compute the supervised clustering 248
loss is to represent the clustering scenario {(xi, yi)}ni=1 249
through an undirected weighted graph, where the 250
i-th node corresponds to xi and the edge eij = 251
cosine_similarity(x̂i, x̂j). In practice, the weighted 252
adjacency matrix S with the pairwise cosine similarities 253
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fully defines the aforementioned graph. S can be effi-254
ciently computed through matrix multiplication in the255
following way:256

S = 1− ĀĀT

2
, (2)257

where Ā is just the l2-normalized version of A. Now,258
let D and D̄ be two (n, n)-dimensional matrices such259
that:260

Dij =

{
1 if yi = yj

0 otherwise
D̄ij =

{
1 if yi ̸= yj

0 otherwise
(3)261

In other words, D is a mask for all the edges connect-262
ing any two samples sharing the same cluster (positive263
edges from now on), while D̄ does the same for all the264
edges connecting any two samples in different clusters265
(negative edges from now on).266

We will now define two graphs through their respec-267
tive weighted adjacency matrices: i. a gold one where268
only positive edges are kept, and ii. a violating one,269
where weights on positive edges are decreased while270
weights on negative edges are increased.271

Sgold = S ◦D (4)272
273

Sviol = max(0, S + v · (r · D̄ −D)) (5)274

In both equations, all operations are element-wise - for275
instance Sviol

ij = max(0, Sij + v · (r · D̄ij − Dij)).276

The parameters v, r ∈ R+ are fine-tunable. They are277
meant to perturb the similarity matrix to make the edge278
selection for the correct clusters more challenging and279
more robust to fluctuation; v controls the impact of this280
pertubation, while r is used to unbalance the importance281
between positive and negative edges. On the possibly282
fully connected graph Sviol, we define clusters as the283
connected components obtained after neglecting all the284
edges, whose weights are less than a threshold τ . The285
next step is to exploit Kruskal’s algorithm to compute286
the maximum spanning forest for both graphs.287

Hgold = MaxSpanningForest(Sgold) (6)288
289

Hviol = MaxSpanningForest(Sviol) (7)290

In other words, Hgold and Hviol are two (n, n)-291
dimensional matrices whose elements are equal to 1292
if the edge eij is included in the maximum spanning293
forest for Sgold and Sviol respectively. Intuitively, the294
nodes appearing in the same connected component in295
H are considered part of the same cluster.296
Hgold results having the same clusters as D (i.e., the297

golden clusters), but D’s connected components are298
fully-connected, whereas Hgold’s are minimally con-299
nected by virtue of Kruskal’s algorithm (for a subgraph300
of n nodes, it has just n− 1 edges, instead of the fully-301
connected n2).302

We are now ready to compute the loss. Let’s first303
define some additional quantities: a = sum(Hgold),304
b = sum(D ◦Hviol) and c = sum(D̄ ◦Hviol) - where305

a is equal to the number of edges included in the maxi- 306
mum spanning forest on Sgold, while b is equal to the 307
number of positive edges included in Hviol, and c to 308
the number of negative edges included in Hviol. These 309
three values are combined into a delta whose value de- 310
creases as more positive edges are included into the 311
violating forest and increases when more negative ones 312
are added: 313

∆ = a− b+ r · c (8) 314

Finally, let’s compute two intermediate scores: 315

sgold = sum(S ◦Hgold) (9) 316
317

sviol = sum(S ◦Hviol), (10) 318

where sgold and sviol represent the sum of all edge 319
weights/cosine similarities of the maximum spanning 320
forest on the gold and violating graphs respectively. The 321
supervised clustering loss will then be equal to: 322

L =

{
sviol − sgold if ∆ > 0

0 otherwise
(11) 323

A graphical sample calculation of the supervised clus- 324
tering loss can be found in figure 1. 325

Remark that the gradient cannot flow though the ∆ 326
component, nonetheless it is influenced by it by virtue 327
of the condition for which L = 0 if ∆ > 0. 328

3.3 Time complexity of the Algorithm 329

The time complexity for the computation of the super- 330
vised clustering loss is O(n2 log n), where n is the num- 331
ber of utterances (see Sec. C.1 in the Appendix). This 332
is still more efficient than other losses commonly used 333
for fine-tuning sentence embeddings. For example, the 334
naive implementation of the triplet loss has O(n3) com- 335
plexity (Murphy, 2022). However, our experiments have 336
shown that training time is not a significant issue for ei- 337
ther loss, as the stopping criterion is typically triggered 338
after just a few epochs. 339

4 Baseline Metric Losses 340

Using the same notation as in section 3, we will now 341
define four other very well-known losses that proved 342
effective in fine-tuning sentence encoders (Liao, 2021; 343
Reimers and Gurevych, 2019; Nicosia and Moschitti, 344
2017). We used these losses as strong baselines for 345
comparing the performance of our supervised clustering 346
loss. Unlike the supervised clustering loss, these losses 347
work on pairs or triplets of items and try to reorganise 348
the embedding space simply by pushing away samples 349
not sharing the same label while pulling closer those 350
that do. 351

Let then (x̂i, x̂j) be any two samples encoded with 352
Netθ(.) into k−dimensional real-valued vectors, and 353
(yi, yj) their respective cluster assignments. We will 354
define the Binary Classification Loss as: 355{

ln(σ(W (xi, xy, |xi − xy|))) if yi = yj

1− ln(σ(W (xi, xy, |xi − xy|))) otherwise
(12) 356
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where W (xi, xy, |xi − xy|)) is just a linear projection357
applied to the concatenation of the two embeddings358
and their distance. Using instead the cosine similarity359
between xi and xj we can define the Cosine Similarity360
Loss as:361 {

[1− cos_sim(xi, xj)]
2 if yi = yj

cos_sim(xi, xj)
2 otherwise

(13)362

where the embeddings of samples sharing the same363
cluster are forced to have cosine similarity close to 1,364
while keeping the embeddings of non-related samples365
further apart. On the same line, the Contrastive Loss366
(Hadsell et al., 2006) can be defined as:367 {

cos_dist(xi, yj)
2 if yi = yj

max[0,m− cos_dist(xi, yj)]
2 otherwise

(14)368

in this case, we force the embeddings of samples in-369
side the same cluster to have cosine distance equal to370
zero, while keeping the cosine distance of non-related371
utterances above the margin m.372

To conclude, we will present the Triplet Margin Loss373
which takes as input triples of samples (x̂i, x̂j , x̂x) such374
that yi = yj ̸= yx - where the first element is called the375
anchor, while the second and the third are commonly376
referred to as the positive and negative examples. The377
core idea behind this loss is to adjust the relative dis-378
tances among the samples in each training triplet by379
minimizing the following quantity:380

max[0, cos_dist(xi, yj)−cos_dist(xi, xz)−m] (15)381

in short, for all triplets, we want to cosine distance382
between the anchor and the negative to be higher than383
the distance between the anchor and the positive by at384
least the margin m.385

5 Batch Sampling and Training386

Procedure387

To fine-tune sentence embeddings, the training set plays388
a crucial role. The losses used for fine-tuning require389
specific samples to be manually engineered. The su-390
pervised clustering loss needs a ’clustering scenario’ as391
input, while the other losses require pairs or triplets of392
samples with labels equal to 1 if they share the same393
cluster and 0 otherwise. To train, a common procedure394
involves randomly selecting k clusters from the training395
set and then randomly sampling m representatives from396
each cluster to form a training batch. A training epoch397
consists of n training batches.398

For check-pointing and the stopping criterion, the399
Precision Recall Area Under the Curve (PRAUC) is400
monitored on pairs of utterances from the development401
set. At each training step, m∗k utterances are randomly402
sampled from the development set to calculate the co-403
sine similarity among the sentence embeddings. At the404
end of each epoch, the PRAUC is computed using the405
true labels of pairs sharing the same cluster as 1 and406
pairs with different clusters as 0. This criterion ensures407

that the average cosine similarity between utterances 408
with the same intent is higher than the average cosine 409
similarity between utterances with different intents dur- 410
ing training. 411

6 Experiments 412

In this section, we present experimental results on in- 413
tent clustering using five losses applied to four sen- 414
tence encoders, with resulting utterance embeddings 415
clustered using Agglomerative Hierarchical Clustering. 416
Appendix includes results from DBSCAN and a con- 417
nected components-based procedure. 418

6.1 Benchmark Datasets 419

We experimented on five datasets commonly used 420
for benchmarking intent classification and cluster- 421
ing: CLINC150 (Larson et al., 2019), BANKING77 422
(Casanueva et al., 2020), DSTC11 (Galley et al., 2022), 423
HUW64 (Liu et al., 2021), and Massive (FitzGerald 424
et al., 2022). The first four are in English, while Mas- 425
sive is multilingual and larger in size with almost 1 426
million manually translated utterances in 61 languages. 427
To reduce its size, we randomly included 20% of the ut- 428
terances. DSTC11 and BANKING77 are single-domain, 429
while the rest are multi-domain. In essence, our study 430
focuses on in-domain intent clustering. See Table 1 431
and Section A of the Appendix for dataset statistics and 432
information on data acquisition and usage terms. 433

6.2 Base Models for Utterance Encoding 434

In our experiments, we rely on four different 435
transformer-based sentence encoders and see whether 436
our fine-tuning strategies improve their representation 437
power when it comes to intent clustering: 438

1. Average pooling of the word-level BERT embed- 439
dings (Devlin et al., 2019). BERT was trained on 440
the top 104 languages with the largest Wikipedia, 441
using both a Masked Language Modeling (MLM) 442
and a Next Sentence Prediction objectives, 443

2. Average pooling of the word-level XLM roBERTa 444
embeddings (Conneau et al., 2020). XLM 445
roBERTa is build on top of BERT but modifies key 446
hyper-parameters, removing the next-sentence pre- 447
training objective and training with much larger 448
mini-batches and learning rates, 449

3. All Mpnet Base (Reimers and Gurevych, 2019) 450
maps English-only sentences and paragraphs to 451
a 768 dimensional dense vector space and was 452
shown to be the best performing sentence encoder 453
in English (HuggingFaceTeam, 2022). The model 454
was trained on multiple corpora of sentence pairs 455
using a Binary Classification Loss on top of a linear 456
classifier that takes as input a concatenation of the 457
two sentence embeddings, 458

4. Paraphrase Multilingual Mpnet (Reimers and 459
Gurevych, 2020) maps sentences and paragraphs 460
to a 768 dimensional dense vector space and was 461
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DATASET # domains # intents # languages # total
utterances

Avg utt.
per intent

# train
intent

# dev
intent

# test
intent

CLINC150 10 150 1 (en) 22500 150 90 30 30
DSTC11 1 22 1 (en) 2093 95 13 4 5
HWU64 21 64 1 (en) 11106 174 38 12 14

BANKING77 1 77 1 (en) 13242 172 46 15 16
Massive 18 60 51 759966 12666 30 22 16

Table 1: Intent Clustering Benchmark Dataset Statistics

Figure 2: Fine-tuning always leads from moderate to large improvements in PRAUC on test utterances. The
supervised clustering loss and the triplet margin loss clearly outperform all other losses. Increases on All Mpnet
Base and Paraphrase Multilingual Mpnet are less pronounced because they were already on semantic similarity.

shown to be the best performing multilingual sen-462
tence encoder (HuggingFaceTeam, 2022). The463
model was trained on 1B sentence pairs using a464
Binary Classification Loss on top of the cosine465
similarity scores.466

All Mpnet Base and Paraphrase Multilingual Mpnet467
Nonetheless were trained quite similarly to Sentence-468
BERT, but with more data.469

6.3 Experimental setting470

We randomly assign 60% of intents to the training set,471
20% to the development set, and 20% to the test set for472
each of the 5 benchmark datasets. As detailed in section473
5, the 4 base sentence encoders are separately fine-tuned474
using all training intent utterances and each of the five475
losses. Hyper-parameters are dataset-specific - see table476
5 in the Appendix, and a max training epoch of 20477
with 5 epochs of patience before early-stopping is set.478
The best parameters for the supervised clustering loss,479
triplet margin loss, and contrastive loss are selected via a480
grid search over specified intervals to obtain the highest481
PRAUC on the validation set. This procedure is repeated482
5 times with different splits. The best parameters for483
the losses are stable across datasets and experiments:484
table 6 also shows the best values we used to obtain485

the final models. The final models consist of 20 fine- 486
tuned models for each dataset (one per encoder-loss 487
pair) except Massive, for which there are 15 fine-tuned 488
models due to its multilingual nature. Information on 489
hardware and computational cost can be found in section 490
B of the Appendix. 491

Base and fine-tuned models are then used to extract 492
embeddings for all the utterances in the development 493
and test sets. After computing the matrix of pairwise 494
cosine distances, we cluster utterances into tentative 495
intents using agglomerative hierarchical clustering - an 496
algorithm that recursively merges pairs of clusters based 497
on a linkage criterion and a distance threshold. In the 498
Appendix, we also report results using DBSCAN, and a 499
procedure based on connected components. DBSCAN 500
finds core samples of high density and expands clusters 501
from them; in this case, the user needs to choose the min- 502
imum distance for two samples to be considered neigh- 503
bors (ϵ) and the minimum number of samples around 504
a candidate core sample. The third algorithm simply 505
takes as clusters the connected components, after cut- 506
ting all the edges below a certain threshold. The hyper- 507
parameters of these three algorithms are optimized on 508
the development set with respect to either the cluster- 509
ing accuracy or the adjusted mutual information score 510
(AMIS). Table 7 in the Appendix contains the hyper- 511
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DATASET LOSS
BASE SENTENCE ENCODERS

BERT Multilingual Cased XLM roBERTa Paraphrase Multilingual Mpnet All Mpnet Base
Average inter-intent

pairwise
cosine similarity

Average within-intent
pairwise

cosine similarity

Average inter-intent
pairwise

cosine similarity

Average within-intent
pairwise

cosine similarity

Average inter-intent
pairwise

cosine similarity

Average within-intent
pairwise

cosine similarity

Average inter-intent
pairwise

cosine similarity

Average within-intent
pairwise

cosine similarity

BANKING77

No fine-tuning 58,90% 67,10% 99,60% 99,70% 30,90% 58,30% 23,60% 56,00%
Binary classification loss 21,20% 66,50% 99,60% 99,70% 31,50% 59,90% 27,80% 61,80%

Cosine similarity loss 39,80% 69,90% 41,00% 68,40% 29,70% 72,10% 31,60% 72,80%
Contrastive loss 32,70% 65,80% 32,80% 65,30% 22,50% 68,80% 23,20% 69,90%

Triplet margin loss 25,80% 61,20% 48,70% 74,60% 16,40% 61,60% 13,80% 61,10%
Supervised clustering loss 11,70% 39,70% 20,60% 54,10% 3,50% 45,10% 2,60% 44,90%

CLINC150

No fine-tuning 54,10% 67,50% 99,60% 99,70% 16,90% 61,70% 9,90% 53,10%
Binary classification loss 50,00% 70,20% 99,50% 99,70% 17,40% 61,40% 10,90% 53,70%

Cosine similarity loss 28,10% 78,20% 41,60% 71,10% 14,90% 79,60% 20,20% 77,40%
Contrastive loss 20,80% 74,70% 22,80% 74,70% 8,70% 77,30% 15,80% 73,00%

Triplet margin loss 21,00% 65,90% 37,30% 80,10% 5,40% 65,50% 6,30% 63,70%
Supervised clustering loss 6,70% 44,10% 24,50% 63,40% 3,20% 50,50% 1,60% 49,50%

DSTC11

No fine-tuning 64,90% 69,90% 99,70% 99,70% 35,60% 62,20% 30,10% 57,80%
Binary classification loss 34,90% 68,90% - - - - 24,50% 70,10%

Cosine similarity loss 61,25% 79,35% 48,05% 78,10% 38,80% 77,95% 35,90% 75,50%
Contrastive loss 27,60% 63,90% 45,20% 68,90% 24,50% 67,30% 28,10% 72,60%

Triplet margin loss 34,90% 61,30% 47,05% 78,35% 12,80% 66,50% 12,80% 68,95%
Supervised clustering loss 19,45% 49,30% 19,45% 63,15% 5,70% 55,80% 7,05% 58,30%

HWU64

No fine-tuning 47,90% 62,60% 99,40% 99,60% 16,00% 53,80% 11,10% 42,80%
Binary classification loss 44,70% 65,90% 95,40% 97,90% 15,80% 54,10% 11,80% 42,90%

Cosine similarity loss 38,30% 68,30% 98,30% 99,20% 22,40% 78,10% 16,40% 48,40%
Contrastive loss 32,80% 65,80% 98,40% 99,20% 16,30% 75,60% 15,40% 76,70%

Triplet margin loss 18,70% 69,90% 39,90% 79,80% 9,50% 59,20% 6,00% 57,10%
Supervised clustering loss 6,20% 43,00% 97,40% 98,40% 1,70% 46,00% 1,50% 41,20%

Massive

No fine-tuning 41,60% 46,60% 99,30% 99,40% 22,80% 55,90% - -
Binary classification loss 34,90% 63,50% 99,20% 99,30% 19,10% 53,40% - -

Cosine similarity loss 40,60% 64,40% 98,70% 98,80% 31,00% 66,70% - -
Contrastive loss 30,60% 62,90% 98,70% 98,20% 22,30% 62,90% - -

Triplet margin loss 34,50% 61,50% 56,00% 77,30% 14,40% 54,70% - -
Supervised clustering loss 8,70% 30,00% 20,30% 49,30% 2,50% 46,40% - -

Table 2: Pre-fine-tuning and post-fine-tuning average inter-intent and within-intent pairwise similarity on test
utterances. The gap between the average inter-intent and within-intent pairwise similarities increases for all datasets,
losses and base sentence encoders. In other words, whatever loss we use, utterances that share the same intent get
closer while drifting apart from utterances with different intents. Interestingly enough, the supervised clustering
loss behaves in a markedly different manner, yes reducing the within-intent pair-wise similarity, but also leading the
inter-intent pair-wise similarity very close to zero. This is equal to say that the supervised clustering loss induces a
topological space which is different from the one created by the other losses.

parameter search spaces. Test utterances are eventually512
clustered using the best hyper-parameters and the same513
metrics are computed. For each dataset, the whole ex-514
perimental procedure - from fine-tuning to clustering -515
is repeated 5 times with different seeds and splits and516
average results are reported with their variance.517

6.4 Performance of Fine-Tuning Strategies518

Figure 2 shows that fine-tuning always leads to moder-519
ate or large improvements in PRAUC on test utterances,520
regardless of the loss or base sentence encoder chosen.521
The supervised clustering loss and the triplet margin loss522
are especially effective fine-tuning strategies. All Mpnet523
Base and Paraphrase Multilingual Mpnet show less pro-524
nounced increases since they were already fine-tuned525
on sentence similarity tasks. Table 8 in the Appendix526
confirms these results when broken down by dataset.527
Table 2 shows that improvements in PRAUC are re-528
flected in average inter-intent and within-intent pairwise529
similarities- which should be interpreted jointly. In an530
ideal scenario, a loss should push the within-intent av-531
erage cosine similarity close to 1 and the inter-intent532
average cosine similarity to 0. Nonetheless, in our anal-533
ysis, we show that things go differently.534

The gap between the average inter-intent and within-535
intent pairwise similarities increases for all datasets,536
losses and base sentence encoders. In other words,537
whatever loss we use, utterances that share the same538
intent get closer while drifting apart from utterances539
with different intents. Interestingly enough, however,540
while most losses increase the average within-intent541
pairwise similarity, the supervised clustering loss be-542
haves in a markedly different manner, yes reducing the543

within-intent pair-wise similarity, but also leading the 544
inter-intent pair-wise similarity very close to zero. This 545
is equal to say that the supervised clustering loss induces 546
a topological space which is different from the one cre- 547
ated by the other losses. This is further confirmed when 548
looking at figures 3, 4, 5, 6, 7, 8 in the Appendix - which 549
show the tSNE plots of the BANKING77 test utterances 550
when XLM-RoBERTa is used as base sentence encoder. 551

6.5 New Intent Clustering Results 552

The results of experiments with agglomerative hierar- 553
chical clustering using different datasets, sentence en- 554
coders, and losses are shown in tables 3 and 4. Although 555
we performed comparable experiments with DBSCAN 556
and a procedure based on connected components (see 557
the Appendix), for every dataset the highest clustering 558
accuracy and adjusted mutual information score were 559
achieved with agglomerative hierarchical clustering on 560
embeddings obtained from one of the four sentence en- 561
coders, fine-tuned with either the supervised clustering 562
loss or the triplet margin loss. Moreover, since the super- 563
vised clustering loss re-arranges the embedding space by 564
retaining edges only among utterances sharing the same 565
intent, embeddings obtained from any sentence encoder 566
fine-tuned with such loss are expected to be particularly 567
suitable for agglomerative hierarchical clustering. 568

As shown in table 3, when we optimize the clus- 569
tering algorithm hyper-parameters with respect to the 570
adjusted mutual information score, in 13 cases out of 571
19 the supervised clustering loss proved to induce more 572
clustering friendly embeddings, resulting in higher clus- 573
tering performance. As further shown in table 4, the 574
clustering behaviour slightly changes when we optimize 575
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Average adjusted mutual information score on test set for all combinations of datasets, base sentence encoders and clustering algorithms
when optimizing wrt the adjusted mutual information score

Clustering
algorithm

Base
sentence
encoder

Dataset No Fine-Tuning
Binary

classification
loss

Cosine
similarity

loss

Contrastive
loss

Triplet
margin

loss

Supervised
clustering

loss
BEST LOSS

Agglomerative
Hierarchical
Clustering

BERT
Multilingual

Cased

BANKING77 0.53±0.02 0.55±0.05 0.67±0.03 0.66±0.04 0.76±0.03 0.77±0.05 Supervised clustering loss
CLINC150 0.73±0.02 0.76±0.03 0.77±0.04 0.77±0.04 0.84±0.03 0.85±0.02 Supervised clustering loss
DSTC11 0.29±0.05 0.52±0.1 0.47±0.14 0.5±0.1 0.6±0.06 0.63±0.1 Supervised clustering loss
HWU64 0.61±0.02 0.63±0.02 0.67±0.04 0.67±0.04 0.72±0.05 0.72±0.04 Triplet & Supervised
Massive 0.27±0.01 0.36±0.05 0.45±0.04 0.46±0.04 0.51±0.04 0.51±0.06 Triplet & Supervised

Paraphrase
Multilingual

Mpnet

BANKING77 0.74±0.02 0.72±0.07 0.76±0.06 0.75±0.05 0.83±0.02 0.81±0.03 Triplet margin loss
CLINC150 0.86±0.03 0.87±0.02 0.88±0.03 0.87±0.03 0.92±0.02 0.93±0.01 Supervised clustering loss
DSTC11 0.52±0.15 0.36±0.34 0.65±0.08 0.72±0.06 0.73±0.11 0.75±0.11 Supervised clustering loss
HWU64 0.79±0.05 0.76±0.01 0.79±0.03 0.79±0.01 0.79±0.04 0.81±0.04 Supervised clustering loss
Massive 0.6±0.09 0.6±0.06 0.65±0.06 0.64±0.06 0.71±0.06 0.7±0.05 Triplet margin loss

All Mpnet Base

BANKING77 0.84±0.01 0.83±0.01 0.83±0.02 0.83±0.03 0.88±0.02 0.86±0.02 Triplet margin loss
CLINC150 0.91±0.02 0.9±0.02 0.92±0.02 0.92±0.02 0.94±0.01 0.94±0.01 Triplet & Supervised
DSTC11 0.49±0.17 0.63±0.16 0.75±0.14 0.71±0.12 0.78±0.11 0.7±0.1 Triplet margin loss
HWU64 0.81±0.05 0.81±0.05 0.79±0.03 0.8±0.01 0.79±0.05 0.85±0.03 Supervised clustering loss

XLM roBERTa

BANKING77 0.48±0.01 0.6±0.04 0.66±0.06 0.66±0.04 0.73±0.06 0.75±0.03 Supervised clustering loss
CLINC150 0.66±0.02 0.72±0.07 0.74±0.05 0.71±0.07 0.86±0.03 0.86±0.01 Supervised clustering loss
DSTC11 0.28±0.02 0.42±0.0 0.53±0.04 0.53±0.04 0.68±0.05 0.65±0.1 Triplet margin loss
HWU64 0.52±0.04 0.61±0.09 0.56±0.05 0.55±0.07 0.73±0.05 0.77±0.04 Supervised clustering loss
Massive 0.2±0.01 0.28±0.12 0.23±0.11 0.19±0.02 0.51±0.06 0.58±0.04 Supervised clustering loss

Table 3: Average adjusted mutual information score on test set using agglomerative hierarchical clustering, for all
combinations of datasets and base sentence encoders - when optimizing wrt the adjusted mutual information score

Average clustering accuracy on test set for all combinations of datasets, base sentence encoders and clustering algorithms
when optimizing wrt the clustering accuracy

Clustering
algorithm

Base
sentence encoder Dataset No Fine-Tuning

Binary
classification

loss

Cosine
similarity

loss

Contrastive
loss

Triplet
margin

loss

Supervised
clustering

loss
BEST LOSS

Agglomerative
Hierarchical
Clustering

BERT
Multilingual

Cased

BANKING77 0.32±0.05 0.37±0.06 0.52±0.04 0.5±0.08 0.62±0.05 0.62±0.08 Triplet & Supervised
CLINC150 0.56±0.06 0.53±0.05 0.56±0.04 0.57±0.06 0.68±0.03 0.71±0.06 Supervised clustering loss
DSTC11 0.33±0.05 0.65±0.1 0.56±0.08 0.6±0.11 0.65±0.14 0.73±0.1 Supervised clustering loss
HWU64 0.52±0.04 0.51±0.03 0.56±0.06 0.55±0.04 0.59±0.06 0.56±0.04 Triplet margin loss
Massive 0.22±0.03 0.41±0.07 0.46±0.04 0.51±0.04 0.55±0.07 0.53±0.08 Triplet margin loss

Paraphrase
Multilingual

Mpnet

BANKING77 0.62±0.06 0.56±0.08 0.64±0.06 0.62±0.03 0.72±0.03 0.69±0.06 Triplet margin loss
CLINC150 0.65±0.07 0.65±0.04 0.7±0.08 0.69±0.08 0.79±0.05 0.83±0.05 Supervised clustering loss
DSTC11 0.57±0.09 0.48±0.17 0.75±0.1 0.73±0.06 0.75±0.15 0.77±0.09 Supervised clustering loss
HWU64 0.73±0.09 0.74±0.1 0.69±0.05 0.67±0.03 0.75±0.07 0.68±0.05 Triplet margin loss
Massive 0.62±0.09 0.61±0.07 0.68±0.05 0.6±0.08 0.67±0.11 0.73±0.08 Supervised clustering loss

All Mpnet
Base

BANKING77 0.7±0.04 0.67±0.05 0.68±0.04 0.71±0.07 0.78±0.04 0.73±0.04 Triplet margin loss
CLINC150 0.75±0.06 0.75±0.06 0.77±0.05 0.78±0.08 0.81±0.03 0.82±0.04 Supervised clustering loss
DSTC11 0.56±0.12 0.67±0.09 0.78±0.16 0.83±0.12 0.78±0.14 0.77±0.14 Cosine similarity loss
HWU64 0.7±0.11 0.69±0.09 0.67±0.05 0.67±0.08 0.74±0.05 0.78±0.08 Supervised clustering loss

XLM
roBERTa

BANKING77 0.32±0.02 0.41±0.03 0.52±0.04 0.5±0.05 0.59±0.08 0.62±0.04 Supervised clustering loss
CLINC150 0.54±0.03 0.6±0.1 0.55±0.03 0.55±0.04 0.71±0.06 0.7±0.04 Triplet margin loss
DSTC11 0.36±0.08 0.68±0.0 0.57±0.19 0.61±0.18 0.74±0.08 0.71±0.09 Triplet margin loss
HWU64 0.42±0.02 0.52±0.12 0.37±0.02 0.44±0.11 0.65±0.08 0.73±0.07 Supervised clustering loss
Massive 0.23±0.02 0.3±0.09 0.26±0.09 0.22±0.02 0.52±0.04 0.61±0.04 Supervised clustering loss

Table 4: Average clustering accuracy on test set using agglomerative hierarchical clustering, for all combinations of
datasets and base sentence encoders - when optimizing wrt the clustering accuracy

with respect to the clustering accuracy, with the super-576
vised clustering loss outperforming other losses in 11577
out of 19 cases. Overall, the supervised clustering loss578
and the triplet margin loss tended to perform similarly579
and significantly better than other tested losses. How-580
ever, in some cases, one loss outperformed the other581
by up to 8 percentage points in clustering accuracy or582
adjusted mutual information score, indicating that the583
best loss depends on both the dataset and the base lan-584
guage model chosen. Further investigation is warranted.585
Notably, even pre-trained sentence encoders benefited586
significantly from fine-tuning with either the supervised587
clustering loss or the triplet margin loss, underscoring588
the difference between intent similarity and semantic589
similarity.590

7 Conclusions and Future Work591

We proposed a supervised clustering loss to fine-592
tune sentence encoders, enabling the production of593

clustering-friendly sentence embeddings. These em- 594
beddings can be used with any unsupervised cluster- 595
ing algorithm to discover new intents, overcoming the 596
quadratic bottleneck of current supervised clustering 597
architectures. Extensive experiments on 5 benchmark 598
datasets, including both monolingual and multilingual 599
data, and 4 different base sentence encoders showed 600
that our fine-tuning strategy induced embeddings that 601
perform equally or better than those obtained with all 602
other tested metric learning losses when comparing their 603
performance on intent clustering. In the future, we plan 604
to analyze the characteristics of the embedding spaces 605
induced by different losses to understand why the su- 606
pervised clustering loss works well with agglomerative 607
hierarchical clustering but not with DBSCAN. Notably, 608
regardless of the loss or sentence encoder chosen, fine- 609
tuned embeddings always improve the performance of 610
unsupervised intent clustering. 611
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8 Limitations and Ethical Considerations612

Our work suggests further research on unsupervised613
clustering algorithms, investigating the performance of614
sentence embeddings generated using different cluster-615
ing algorithms and losses. Additionally, more explo-616
ration is needed on the structural and topological dif-617
ferences in embedding space between supervised clus-618
tering loss and other losses. Although our experiments619
demonstrate the effectiveness of supervised clustering620
loss, we acknowledge the need for further investigation621
into the circumstances in which triplet margin loss may622
be preferable. Finally, while we strive to consider less623
conventional requests, biases in clustering systems may624
lead to oversimplification of people’s requests, and we625
welcome further research on addressing this issue.626
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A Dataset licenses and release987

DSTC11, Massive and HUW64 datasets are licensed988
under the Apache-2.0 License, while CLINC150 and989
BANKING77 are released under the cc-by-4.0 Creative990
Commons Public Licence. Massive can be down-991
loaded from https://github.com/jianguoz/992
Few-Shot-Intent-Detection, DSTC11 from993
https://github.com/amazon-science/994
dstc11-track2-intent-induction and all995
the other datasets from https://github.com/996
jianguoz/Few-Shot-Intent-Detection.997
None of the dataset contains any offensive content998
or information that names or uniquely identifies999
individual people. Finally, our code includes a1000
pre-processing script for every dataset that allows to1001
turn the downloaded files into the format required in1002
our pipeline.1003

B Hardware Infrastructure and1004

Computational Budget1005

We perform our experiments on one Amazon EC2 P3.161006
instance, a 64-bit architecture with 488 GB of RAM, In-1007
tel Xeon E5-2686 v4 (64-core CPU running at 2.30GHz)1008

and 8x Nvidia Tesla V100 Tensor Core GPUs with 128 1009
GB of VRAM. 1010

C Time Complexity 1011

C.1 Supervised Clustering Loss 1012

Assumomg V is the number of nodes (utterances), and 1013
E is the number of edges (all utterances pairs) in fig- 1014
ure 1, the time complexity is O(V 2 log V ). 1015

This result is the sum of the complexities for the 1016
following steps: 1017

1. Computation of the S similarity matrix (Eq. 2) has 1018
quadratic complexity O(V 2). 1019

2. Element-wise product (Eq. 4) and pairwise addi- 1020
tion/subtraction (Eq. 5) have quadratic complexity 1021
O(V 2). 1022

3. Computing the maximum spanning forests (MSF) 1023
by Kruskal’s algorithm (Eq. 6) and (Eq. 7) is 1024
(E log V ). In our case, the gold MSF will be com- 1025
puted only on correct positive edges E+, while 1026
the most-violating MSF will be computed on all 1027
the predicted positive edges E (both correct and 1028
incorrect). In the worst case, E is equal to all pairs 1029
of utterances V 2 (all nodes connected = all pairs 1030
of utterances classified as being similar). So, the 1031
resulting complexity is O(V 2 log V ). 1032

4. Computing the structural loss (Eq. 8) has O(V ) 1033
complexity. This is due to the fact that in the 1034
worst case scenario (i.e., a fully connected graph), 1035
Kruskal’s algorithm would return V − 1 edges, 1036
resulting in a O(V ) complexity for both element- 1037
wise products and summations. 1038

5. For the scores sgold (Eq. 9) and sviol (Eq. 10) the 1039
previous argument applies as well. 1040

6. Computing the loss (Eq. 11) has O(1) complexity. 1041

Therefore, the overall complexity of the supervised clus- 1042
tering loss is O(V 2 log V ). 1043

C.2 Supervised Clustering predictions 1044

After the system has been trained, the time complexity 1045
for prediction is O(V ′2), where V ′ is the number of 1046
utterances to be clustered. This is due to the following 1047
steps: 1048

1. Computation of the S similarity matrix (Eq. 2) has 1049
quadratic complexity O(V ′2). 1050

2. Computation of the connected components is lin- 1051
ear in terms of the edges, hence has complexity 1052
O(V ′2). 1053

D Experiment Hyper-parameters 1054

You can find here details of the experimented hyper- 1055
parameters of training datasets (Table 5), losses (Table 1056
6), and clustering algorithms (Table 7). 1057
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E Fine-tuning complete experimental1058

results1059

Please find below average PRAUC (Table 8) for pre-1060
training and post-training on train, dev, and test sets for1061
each dataset, loss, and base sentence encoder.1062

F Clustering complete experimental1063

results1064

You can find here average clustering accuracy (Table1065
9) and adjusted mutual information score (Table 10) on1066
test set for all combinations of datasets, base sentence1067
encoders, and clustering algorithms.1068

G tSNE plots of test utterance1069

embeddings1070

Figures 3, 4, 5, 6, 7, 8 show the tSNE plots of the1071
BANKING77 test utterances when XLM-RoBERTa is1072
used as base sentence encoder. All plots where obtained1073
with the following hyper-parameters:1074

• Perplexity = 201075

• Learning rate: 2001076

• Iterations: 20001077

As shown in figure 3, when no fine-tuning is per-1078
formed - the point cloud is scattered all around. Same1079
thing happens when the binary classification loss is used1080
to fine-tune the model. In contrast, after fine-tuning with1081
the cosine similarity loss or with contrastive learning -1082
figures 5 and 6, respectively - intents are much better1083
separated. Such visual clustering further improves when1084
the triplet margin loss or the supervised clustering loss1085
are used as fine-tuning strategies - see figures 7 and 8.1086

DATASET # intents
per batch

# utterances
per intent

# batches
train
epoch

# batches
val

epoch
CLINC150 30 5 5 5
DSTC11 4 30 4 2
HWU64 12 15 4 4

BANKING77 15 8 5 5
Massive 12 10 5 5

Table 5: Dataset-specific training hyper-parameters

LOSS Hyper-parameters Search space Optimal values
c ([0,1]; step: 0.05) 0.15Supervised

Clustering Loss r ([0,1]; step: 0.05) 0.5
Triplet

Margin Loss m ([0,1]; step: 0.05) 0.15

Contrastive
Loss m ([0,2]; step: 0.10) 1.75

Binary
Classification Loss - - -

Cosine
Similarity Loss - - -

Table 6: Losses: hyper-parameter search spaces and
optimal values

ALGORITHM Hyper-parameters Search space
Linkage ward, complete, average

Agglomerative
Hierarchical Clustering

Distance
Threshold ([0,1]; step: 0.05)

Eps ([0,1]; step: 0.05)
DBSCAN Min

Samples [2, 5, 10, 15, 20, 25, 30]

Connected
components

Cut
Threshold ([0,1]; step: 0.05)

Table 7: Clustering algorithms: hyper-parameters search
spaces
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Average clustering accuracy on test set for all combinations of datasets, base sentence encoders and clustering algorithms
when optimizing wrt the clustering accuracy

Clustering
algorithm

Base
sentence encoder Dataset No Fine-Tuning

Binary
classification

loss

Cosine
similarity

loss

Contrastive
loss

Triplet
margin

loss

Supervised
clustering

loss
BEST LOSS

Agglomerative
Hierarchical
Clustering

BERT
Multilingual

Cased

BANKING77 0.32±0.05 0.37±0.06 0.52±0.04 0.5±0.08 0.62±0.05 0.62±0.08 Supervised clustering loss
CLINC150 0.56±0.06 0.53±0.05 0.56±0.04 0.57±0.06 0.68±0.03 0.71±0.06 Supervised clustering loss
DSTC11 0.33±0.05 0.65±0.1 0.56±0.08 0.6±0.11 0.65±0.14 0.73±0.1 Supervised clustering loss
HWU64 0.52±0.04 0.51±0.03 0.56±0.06 0.55±0.04 0.59±0.06 0.56±0.04 Triplet margin loss
Massive 0.22±0.03 0.41±0.07 0.46±0.04 0.51±0.04 0.55±0.07 0.53±0.08 Triplet margin loss

Paraphrase
Multilingual

Mpnet

BANKING77 0.62±0.06 0.56±0.08 0.64±0.06 0.62±0.03 0.72±0.03 0.69±0.06 Triplet margin loss
CLINC150 0.65±0.07 0.65±0.04 0.7±0.08 0.69±0.08 0.79±0.05 0.83±0.05 Supervised clustering loss
DSTC11 0.57±0.09 0.48±0.17 0.75±0.1 0.73±0.06 0.75±0.15 0.77±0.09 Supervised clustering loss
HWU64 0.73±0.09 0.74±0.1 0.69±0.05 0.67±0.03 0.75±0.07 0.68±0.05 Triplet margin loss
Massive 0.62±0.09 0.61±0.07 0.68±0.05 0.6±0.08 0.67±0.11 0.73±0.08 Supervised clustering loss

All Mpnet
Base

BANKING77 0.7±0.04 0.67±0.05 0.68±0.04 0.71±0.07 0.78±0.04 0.73±0.04 Triplet margin loss
CLINC150 0.75±0.06 0.75±0.06 0.77±0.05 0.78±0.08 0.81±0.03 0.82±0.04 Supervised clustering loss
DSTC11 0.56±0.12 0.67±0.09 0.78±0.16 0.83±0.12 0.78±0.14 0.77±0.14 Cosine similarity loss
HWU64 0.7±0.11 0.69±0.09 0.67±0.05 0.67±0.08 0.74±0.05 0.78±0.08 Supervised clustering loss

XLM
roBERTa

BANKING77 0.32±0.02 0.41±0.03 0.52±0.04 0.5±0.05 0.59±0.08 0.62±0.04 Supervised clustering loss
CLINC150 0.54±0.03 0.6±0.1 0.55±0.03 0.55±0.04 0.71±0.06 0.7±0.04 Triplet margin loss
DSTC11 0.36±0.08 0.68±0.0 0.57±0.19 0.61±0.18 0.74±0.08 0.71±0.09 Triplet margin loss
HWU64 0.42±0.02 0.52±0.12 0.37±0.02 0.44±0.11 0.65±0.08 0.73±0.07 Supervised clustering loss
Massive 0.23±0.02 0.3±0.09 0.26±0.09 0.22±0.02 0.52±0.04 0.61±0.04 Supervised clustering loss

Connected
Components

BERT
Multilingual

Cased

BANKING77 0.13±0.02 0.17±0.04 0.39±0.09 0.36±0.08 0.43±0.09 0.46±0.1 Supervised clustering loss
CLINC150 0.23±0.05 0.25±0.04 0.37±0.04 0.34±0.06 0.49±0.07 0.51±0.02 Supervised clustering loss
DSTC11 0.4±0.11 0.38±0.11 0.52±0.08 0.49±0.1 0.54±0.12 0.46±0.11 Triplet margin loss
HWU64 0.23±0.02 0.23±0.03 0.38±0.08 0.34±0.05 0.45±0.07 0.44±0.11 Triplet margin loss
Massive 0.24±0.02 0.23±0.07 0.27±0.07 0.29±0.06 0.3±0.08 0.32±0.1 Supervised clustering loss

Paraphrase
Multilingual

Mpnet

BANKING77 0.36±0.03 0.43±0.06 0.51±0.07 0.51±0.05 0.46±0.09 0.45±0.11 Cosine similarity loss
CLINC150 0.51±0.06 0.49±0.08 0.58±0.12 0.57±0.1 0.66±0.08 0.63±0.02 Triplet margin loss
DSTC11 0.44±0.12 0.66±0.09 0.69±0.12 0.7±0.08 0.71±0.13 0.72±0.08 Supervised clustering loss
HWU64 0.48±0.09 0.5±0.09 0.48±0.18 0.52±0.16 0.57±0.11 0.53±0.08 Triplet margin loss
Massive 0.35±0.06 0.39±0.1 0.44±0.05 0.41±0.05 0.41±0.05 0.39±0.08 Contrastive loss

All Mpnet
Base

BANKING77 0.48±0.04 0.5±0.06 0.49±0.08 0.55±0.09 0.55±0.05 0.54±0.06 Cosine similarity loss
CLINC150 0.53±0.08 0.52±0.07 0.71±0.06 0.63±0.06 0.67±0.02 0.62±0.06 Contrastive loss
DSTC11 0.39±0.14 0.67±0.13 0.67±0.12 0.67±0.1 0.77±0.1 0.73±0.1 Triplet margin loss
HWU64 0.47±0.04 0.44±0.09 0.41±0.18 0.43±0.09 0.57±0.09 0.46±0.13 Triplet margin loss

XLM
roBERTa

BANKING77 0.08±0.0 0.11±0.04 0.35±0.07 0.33±0.05 0.39±0.08 0.51±0.07 Supervised clustering loss
CLINC150 0.04±0.0 0.04±0.0 0.26±0.18 0.22±0.22 0.49±0.23 0.48±0.22 Triplet margin loss
DSTC11 0.4±0.11 0.57±0.0 0.55±0.11 0.5±0.12 0.52±0.09 0.46±0.14 binary_classification
HWU64 0.08±0.0 0.13±0.1 0.11±0.06 0.09±0.03 0.36±0.15 0.12±0.09 Triplet margin loss
Massive 0.24±0.02 0.24±0.03 0.23±0.03 0.23±0.03 0.41±0.1 0.39±0.04 Triplet margin loss

DBSCAN

BERT
Multilingual

Cased

BANKING77 0.19±0.02 0.26±0.08 0.45±0.07 0.41±0.09 0.48±0.08 0.49±0.1 Supervised clustering loss
CLINC150 0.25±0.05 0.28±0.04 0.38±0.07 0.4±0.07 0.54±0.05 0.53±0.02 Triplet margin loss
DSTC11 0.39±0.1 0.52±0.06 0.59±0.12 0.5±0.11 0.54±0.17 0.57±0.1 Contrastive loss
HWU64 0.29±0.05 0.37±0.06 0.42±0.09 0.46±0.06 0.51±0.05 0.44±0.09 Triplet margin loss
Massive 0.25±0.03 0.39±0.08 0.43±0.07 0.47±0.08 0.5±0.07 0.45±0.05 Triplet margin loss

Paraphrase
Multilingual

Mpnet

BANKING77 0.42±0.06 0.42±0.07 0.55±0.06 0.48±0.06 0.53±0.03 0.49±0.13 Contrastive loss
CLINC150 0.5±0.09 0.5±0.07 0.57±0.13 0.61±0.1 0.65±0.1 0.64±0.03 Triplet margin loss
DSTC11 0.56±0.07 0.69±0.06 0.7±0.13 0.78±0.07 0.64±0.06 0.71±0.07 Cosine similarity loss
HWU64 0.52±0.12 0.5±0.15 0.61±0.12 0.59±0.14 0.66±0.1 0.53±0.04 Triplet margin loss
Massive 0.5±0.05 0.45±0.09 0.52±0.05 0.55±0.08 0.47±0.09 0.54±0.07 Cosine similarity loss

All Mpnet
Base

BANKING77 0.47±0.05 0.49±0.07 0.58±0.08 0.57±0.09 0.61±0.06 0.55±0.08 Triplet margin loss
CLINC150 0.5±0.05 0.54±0.08 0.71±0.07 0.67±0.04 0.67±0.02 0.64±0.05 Contrastive loss
DSTC11 0.61±0.04 0.62±0.09 0.71±0.1 0.69±0.1 0.75±0.07 0.68±0.12 Triplet margin loss
HWU64 0.41±0.07 0.47±0.11 0.53±0.14 0.58±0.11 0.62±0.09 0.52±0.11 Triplet margin loss

XLM
roBERTa

BANKING77 0.11±0.01 0.3±0.04 0.39±0.07 0.44±0.05 0.53±0.04 0.49±0.05 Triplet margin loss
CLINC150 0.14±0.03 0.28±0.05 0.32±0.14 0.26±0.18 0.5±0.15 0.5±0.21 Supervised clustering loss
DSTC11 0.39±0.1 0.41±0.0 0.58±0.1 0.56±0.13 0.52±0.07 0.59±0.09 Supervised clustering loss
HWU64 0.24±0.02 0.28±0.05 0.19±0.05 0.24±0.16 0.58±0.1 0.39±0.06 Triplet margin loss
Massive 0.23±0.02 0.27±0.05 0.27±0.04 0.24±0.03 0.52±0.05 0.47±0.06 Triplet margin loss

Table 9: Average clustering accuracy on test set for all combinations of datasets, base sentence encoders and
clustering algorithms when optimizing wrt the clustering accuracy. It is worth mentioning that gaps in performance
between the Supervised Clustering Loss and the Triplet Margin Loss are quite narrow, with confidence intervals
often overlapping. On the contrary, all other losses clearly lag behind in terms of performance. Nevertheless, in
all cases, fine-tuning any of the base sentence encoders with any of the losses proved beneficial - regardless of the
dataset or clustering algorithm adopted.
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Average adjusted mutual information score on test set for all combinations of datasets, base sentence encoders and clustering algorithms
when optimizing wrt the adjusted mutual information score

Clustering
algorithm

Base
sentence
encoder

Dataset No Fine-Tuning
Binary

classification
loss

Cosine
similarity

loss

Contrastive
loss

Triplet
margin

loss

Supervised
clustering

loss
BEST LOSS

Agglomerative
Hierarchical
Clustering

BERT
Multilingual

Cased

BANKING77 0.53±0.02 0.55±0.05 0.67±0.03 0.66±0.04 0.76±0.03 0.77±0.05 Supervised clustering loss
CLINC150 0.73±0.02 0.76±0.03 0.77±0.04 0.77±0.04 0.84±0.03 0.85±0.02 Supervised clustering loss
DSTC11 0.29±0.05 0.52±0.1 0.47±0.14 0.5±0.1 0.6±0.06 0.63±0.1 Supervised clustering loss
HWU64 0.61±0.02 0.63±0.02 0.67±0.04 0.67±0.04 0.72±0.05 0.72±0.04 Triplet margin loss
Massive 0.27±0.01 0.36±0.05 0.45±0.04 0.46±0.04 0.51±0.04 0.51±0.06 Supervised clustering loss

Paraphrase
Multilingual

Mpnet

BANKING77 0.74±0.02 0.72±0.07 0.76±0.06 0.75±0.05 0.83±0.02 0.81±0.03 Triplet margin loss
CLINC150 0.86±0.03 0.87±0.02 0.88±0.03 0.87±0.03 0.92±0.02 0.93±0.01 Supervised clustering loss
DSTC11 0.52±0.15 0.36±0.34 0.65±0.08 0.72±0.06 0.73±0.11 0.75±0.11 Supervised clustering loss
HWU64 0.79±0.05 0.76±0.01 0.79±0.03 0.79±0.01 0.79±0.04 0.81±0.04 Supervised clustering loss
Massive 0.6±0.09 0.6±0.06 0.65±0.06 0.64±0.06 0.71±0.06 0.7±0.05 Triplet margin loss

All Mpnet Base

BANKING77 0.84±0.01 0.83±0.01 0.83±0.02 0.83±0.03 0.88±0.02 0.86±0.02 Triplet margin loss
CLINC150 0.91±0.02 0.9±0.02 0.92±0.02 0.92±0.02 0.94±0.01 0.94±0.01 Supervised clustering loss
DSTC11 0.49±0.17 0.63±0.16 0.75±0.14 0.71±0.12 0.78±0.11 0.7±0.1 Triplet margin loss
HWU64 0.81±0.05 0.81±0.05 0.79±0.03 0.8±0.01 0.79±0.05 0.85±0.03 Supervised clustering loss

XLM roBERTa

BANKING77 0.48±0.01 0.6±0.04 0.66±0.06 0.66±0.04 0.73±0.06 0.75±0.03 Supervised clustering loss
CLINC150 0.66±0.02 0.72±0.07 0.74±0.05 0.71±0.07 0.86±0.03 0.86±0.01 Supervised clustering loss
DSTC11 0.28±0.02 0.42±0.0 0.53±0.04 0.53±0.04 0.68±0.05 0.65±0.1 Triplet margin loss
HWU64 0.52±0.04 0.61±0.09 0.56±0.05 0.55±0.07 0.73±0.05 0.77±0.04 Supervised clustering loss
Massive 0.2±0.01 0.28±0.12 0.23±0.11 0.19±0.02 0.51±0.06 0.58±0.04 Supervised clustering loss

Connected
Components

BERT
Multilingual

Cased

BANKING77 0.23±0.02 0.26±0.09 0.52±0.07 0.52±0.05 0.58±0.08 0.6±0.09 Supervised clustering loss
CLINC150 0.38±0.04 0.43±0.05 0.51±0.15 0.58±0.06 0.72±0.04 0.72±0.03 Triplet margin loss
DSTC11 0.13±0.03 0.37±0.13 0.43±0.12 0.44±0.15 0.5±0.11 0.33±0.15 Triplet margin loss
HWU64 0.31±0.04 0.32±0.07 0.45±0.1 0.41±0.11 0.57±0.07 0.54±0.13 Triplet margin loss
Massive 0.14±0.03 0.18±0.07 0.22±0.08 0.22±0.11 0.25±0.14 0.32±0.1 Supervised clustering loss

Paraphrase
Multilingual

Mpnet

BANKING77 0.54±0.05 0.45±0.16 0.66±0.06 0.65±0.04 0.59±0.12 0.49±0.2 contrastive_learning
CLINC150 0.69±0.05 0.7±0.06 0.72±0.18 0.76±0.08 0.83±0.04 0.78±0.08 Triplet margin loss
DSTC11 0.37±0.12 0.58±0.02 0.6±0.15 0.61±0.11 0.65±0.12 0.65±0.11 Supervised clustering loss
HWU64 0.55±0.1 0.52±0.1 0.58±0.18 0.57±0.13 0.64±0.12 0.62±0.08 Triplet margin loss
Massive 0.32±0.08 0.33±0.15 0.45±0.08 0.39±0.13 0.41±0.06 0.4±0.08 contrastive_learning

All Mpnet
Base

BANKING77 0.59±0.07 0.67±0.04 0.69±0.07 0.71±0.06 0.69±0.02 0.63±0.13 Cosine similarity loss
CLINC150 0.72±0.07 0.69±0.07 0.82±0.06 0.8±0.07 0.82±0.05 0.82±0.01 Supervised clustering loss
DSTC11 0.19±0.17 0.5±0.11 0.47±0.29 0.55±0.22 0.65±0.17 0.67±0.13 Supervised clustering loss
HWU64 0.49±0.14 0.46±0.15 0.5±0.15 0.62±0.11 0.68±0.08 0.62±0.07 Triplet margin loss

XLM
roBERTa

BANKING77 0.01±0.0 0.15±0.13 0.46±0.08 0.49±0.08 0.53±0.09 0.63±0.06 Supervised clustering loss
CLINC150 0.0±0.0 0.0±0.0 0.37±0.31 0.28±0.34 0.62±0.31 0.63±0.32 Supervised clustering loss
DSTC11 0.04±0.01 0.03±0.0 0.45±0.11 0.39±0.09 0.46±0.09 0.33±0.19 Triplet margin loss
HWU64 0.0±0.0 0.08±0.16 0.09±0.18 0.03±0.06 0.51±0.26 0.08±0.16 Triplet margin loss
Massive 0.0±0.0 0.08±0.1 0.04±0.08 0.0±0.0 0.34±0.09 0.36±0.08 Supervised clustering loss

DBSCAN

BERT
Multilingual

Cased

BANKING77 0.27±0.06 0.32±0.08 0.58±0.05 0.55±0.06 0.57±0.11 0.64±0.07 Supervised clustering loss
CLINC150 0.4±0.04 0.45±0.05 0.58±0.08 0.57±0.08 0.71±0.05 0.71±0.04 Supervised clustering loss
DSTC11 0.2±0.05 0.38±0.13 0.49±0.13 0.5±0.14 0.59±0.11 0.39±0.11 Triplet margin loss
HWU64 0.41±0.04 0.49±0.06 0.55±0.1 0.61±0.04 0.58±0.13 0.57±0.11 Cosine similarity loss
Massive 0.12±0.03 0.29±0.11 0.34±0.07 0.36±0.07 0.4±0.08 0.42±0.09 Supervised clustering loss

Paraphrase
Multilingual

Mpnet

BANKING77 0.56±0.06 0.55±0.09 0.66±0.04 0.61±0.07 0.53±0.23 0.58±0.15 contrastive_learning
CLINC150 0.64±0.1 0.71±0.05 0.77±0.08 0.69±0.24 0.82±0.04 0.8±0.03 Triplet margin loss
DSTC11 0.39±0.18 0.63±0.04 0.71±0.09 0.75±0.06 0.71±0.07 0.72±0.09 Cosine similarity loss
HWU64 0.52±0.14 0.59±0.09 0.66±0.2 0.71±0.09 0.75±0.07 0.66±0.05 Triplet margin loss
Massive 0.44±0.08 0.52±0.13 0.51±0.06 0.5±0.05 0.46±0.13 0.57±0.06 Supervised clustering loss

All Mpnet
Base

BANKING77 0.63±0.03 0.66±0.03 0.66±0.08 0.65±0.09 0.64±0.14 0.63±0.16 contrastive_learning
CLINC150 0.73±0.04 0.71±0.06 0.81±0.06 0.78±0.1 0.79±0.06 0.77±0.04 contrastive_learning
DSTC11 0.5±0.13 0.56±0.2 0.71±0.09 0.73±0.07 0.76±0.1 0.73±0.11 Triplet margin loss
HWU64 0.51±0.09 0.52±0.13 0.62±0.08 0.62±0.12 0.65±0.09 0.6±0.07 Triplet margin loss

XLM
roBERTa

BANKING77 0.03±0.02 0.42±0.08 0.5±0.13 0.52±0.1 0.66±0.03 0.65±0.06 Triplet margin loss
CLINC150 0.21±0.04 0.45±0.06 0.46±0.2 0.39±0.24 0.7±0.13 0.67±0.25 Triplet margin loss
DSTC11 0.06±0.04 0.24±0.0 0.49±0.14 0.47±0.11 0.56±0.13 0.46±0.16 Triplet margin loss
HWU64 0.31±0.05 0.38±0.07 0.28±0.14 0.19±0.07 0.62±0.13 0.51±0.07 Triplet margin loss
Massive 0.08±0.03 0.13±0.1 0.08±0.1 0.02±0.01 0.43±0.06 0.32±0.1 Triplet margin loss

Table 10: Average adjusted mutual information score on test set for all combinations of datasets, base sentence
encoders and clustering algorithms when optimizing wrt the adjusted mutual information score. It is worth
mentioning that gaps in performance between the Supervised Clustering Loss and the Triplet Margin Loss are quite
narrow, with confidence intervals often overlapping. On the contrary, all other losses clearly lag behind in terms of
performance. Nevertheless, in all cases, fine-tuning any of the base sentence encoders with any of the losses proved
beneficial - regardless of the dataset or clustering algorithm adopted.
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Figure 3: tSNE plots of BANKING77 test utterances when xml-RoBERTa is used to extract the embeddings.

Figure 4: tSNE plots of BANKING77 test utterances when xml-RoBERTa - fine-tuned with the binary classification
loss - is used to extract the embeddings.

17



Figure 5: tSNE plots of BANKING77 test utterances when xml-RoBERTa - fine-tuned with the cosine similarity
loss - is used to extract the embeddings.

Figure 6: tSNE plots of BANKING77 test utterances when xml-RoBERTa - fine-tuned with the contrastive learning
loss - is used to extract the embeddings.
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Figure 7: tSNE plots of BANKING77 test utterances when xml-RoBERTa - fine-tuned with the triplet margin loss -
is used to extract the embeddings.

Figure 8: tSNE plots of BANKING77 test utterances when xml-RoBERTa - fine-tuned with the supervised clustering
loss - is used to extract the embeddings.
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