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Abstract

Understanding the interactions and interplay of microorganisms is a great chal-
lenge with many applications in medical and environmental settings. In this work,
we model bacterial communities directly from their genomes using graph neural
networks (GNNs). GNNs leverage the inductive bias induced by the set nature of
bacteria, enforcing permutation invariance and granting combinatorial generaliza-
tion. We propose to learn the dynamics implicitly by directly predicting community
relative abundance profiles at steady state, thus escaping the need for growth curves.
On two real-world datasets, we show for the first time generalization to unseen
bacteria and different community structures. To investigate the prediction results
more deeply, we create a simulation for flexible data generation and analyze effects
of bacteria interaction strength, community size, and training data amount.

1 Introduction

Microorganisms are ubiquitous and essential: in our gut, they digest our food and influence our
behavior [7]; in industrial plants, they treat our wastewater [25]; their biomining ability outside of
Earth was even tested on the International Space Station [11]. Accordingly, understanding their
functioning and optimizing their use are crucial challenges.

Microbial communities are driven by interactions that dictate the assembly of communities and
consequently microbial output. To comprehend the functioning of a community, it is necessary to
characterize these interactions. Ideally, one would acquire time-series data for every combination of
bacteria to obtain a complete understanding of their dynamics. However, in reality, this is not possible
because the number of experiments grows exponentially with the number of bacteria. Accordingly,
several challenges are faced when modeling bacterial interactions: (i) available data generally depict
a single time-point of a community; (ii) models of interactions should generalize to new bacteria and
communities to limit the need for additional experiments; (iii) models should be interpretable and
provide insights on the system.

The most common approach to model interactions in bacterial communities is to use generalized
Lotka-Volterra models [17, 32, 28] (gLV, see Sec. 2.1). However, these deterministic models fit
parameters on time-series data for each bacterium in the system: therefore, they cannot generalize
to new bacteria and are limited by experimental data. Furthermore, as they only model pairwise
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Figure 1: We propose to leverage Graph Neural Networks to implicitly learn bacterial communities’
dynamics from bacterial genomes. This method allows accurate predictions of steady-state community
profiles and generalization to larger communities and unseen bacteria.

interactions, they may fail to recover higher-order/complex interactions [8, 17, 28]. However, it
should be noted that there is a debate in the field about whether bacterial communities are shaped by
simple [14, 16] or complex [1, 8] assembly rules. To address the potential complexity of microbial
systems, neural networks are emerging as alternatives to gLV models, as they can capture complex
interactions [3, 26]. For instance, Baranwal et al. [3] fit recurrent neural networks to microbial
communities of up to 26 bacteria to predict their assembly and ultimately a function of interest,
namely butyrate production. Although their results are encouraging, their models are fitted on growth
trajectories and rely on time-series, impeding their generalization to new bacteria and communities.

In this work, we model bacterial communities directly from bacterial genomes using graph neural
networks (GNNs). Our contribution can be described as follows.

1. We propose using GNNs as a powerful class of function approximators to model microbial
communities, thus granting permutation invariance and combinatorial generalization.

2. We explore learning community dynamics directly from genomes: since nucleic acids are
the universal information carrier of living organisms, this can in principle allow generalizing
to any unseen microorganisms.

3. We propose learning dynamics implicitly by directly predicting community relative abun-
dance profiles at steady state, thus escaping the need for growth curves.

4. We propose a simulation framework to facilitate explorative benchmarks for models of
microbial communities using genome features.

In practice, we evaluate the ability of conventional architectures (i.e. MLPs) and GNNs to model
bacterial communities on two publicly available datasets [14, 3], and further explore hypotheses in
simulations. Our results show that GNNs can accurately predict the relative abundances of bacteria in
communities from their genomes for communities of various compositions and sizes. Furthermore,
GNNs can generalize to marginally bigger communities and new bacteria not seen during training.

2 Methods

2.1 Terminology and problem definition

Bacterial communities A bacterium, plural bacteria, is a unicellular microorganism. Bacteria are
classified via a taxonomy based on the DNA, the finer-grained groupings being the genus, species,
and strain. The bacteria in one strain are clones with almost identical DNA. In this work, we will
use the species designation to refer to different bacteria. A bacterial community is formed by two or
more species of bacteria that grow in the same environment. A community can be described by a set
S of bacterial species. At any time t, each bacterial species si ∈ S is present in the environment in
abundance ni(t). We define yi(t) := ni(t)/

∑
j∈[1,|S|] nj(t) as the relative abundance of bacterium

si at time t. Over time, these metrics vary according to the properties of each species (e.g. growth
rate), as well as complex inter-species interactions. Extrinsic factors may affect the amount of bacteria
in the environment, for instance, the amount of resources, but we will ignore them for simplicity as
in previous work [4]. This is especially justified in the case of experimental data from controlled
environments [32].

Generalized Lotka-Volterra model Our method learns to model community dynamics implicitly
through a neural network and thus makes minimal modeling assumptions. Nevertheless, to give an
intuition of how bacterial communities change over time, we now describe a simplified predictive
model.
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The generalized Lotka-Volterra model [23, 34] describes the change in abundances in the environment
[32, 17] according to

dni

dt
= ni(t) · µi ·

(
1− 1

Ki

|S|∑
j=1

ai,jnj(t)
)
, (1)

with S the set of bacterial species in the environment. For a given species si ∈ S, µi is the growth
rate and Ki represents the carrying capacity, which limits the amount of bacteria that can exist in the
environment. Finally, ai,j is an interaction factor describing the effect of species si on species sj ,
and ai,i = 1 ∀i ∈ [1, |S|].

Genomes Bacterial genomes consist of DNA sequences organized into genes, coding for all infor-
mation related to bacterial functioning, e.g. metabolism, growth. Thus, genomes can be represented
by the presence/absence of genes or groups of genes. An example of gene grouping is their mapping
to the KEGG Orthology database to group them by molecular function [27]. For instance, the genome
of Anaerostipes caccae carries the gene coding for the enzyme EC 1.3.8.1, which is a butyryl-CoA
dehydrogenase belonging to the KEGG group KO K00248. Through the KEGG Orthology database
mapping, genes coding for proteins with similar functions across species have the same annotation,
and bacteria with similar molecular abilities have more similar representations.

In the context of this work, we represent genomes using feature vectors. Such vectors should have the
same dimensionality and semantics across all bacteria. To represent all bacteria in a unified way, we
consider all genes that occur in any genome in the pool of bacteria and record their presence/absence
in the feature vector. Given an ordered set of M genes (gk)Mk=0, we represent the genome of species
si ∈ S as a binary indicator vector xi = (xk

i )
M
k=0 such that xk

i is one if gene gk is present in the
genome of si, and zero otherwise.

Task Our aim is to predict the composition of bacterial communities C ⊆ S at steady state from
the genomes of the mixed bacteria. More specifically, we cast this task as a supervised learning
problem. Assuming an equilibrium is reached at time-step T , our learning target is the observed
relative abundance of each bacterial species si ∈ C at equilibrium: y(T ) = (y1(T ), . . . , y|C|(T )).
Our inputs are the feature vector representation of genomes of bacteria present in the mixture
xi ∀i ∈ [1, |C|]. To compare architectures with fixed length input, namely MLPS, we add null feature
vectors xi = (0)Mk=0 for the bacteria absent from the mix.

2.2 Models

Our method learns an implicit model of the dynamics of a bacterial community. Instead of estimating
the parameters of a differential equation, which can then be solved to retrieve an equilibrium, we
apply a flexible class of function approximators and directly regress the solution at equilibrium. MLPs
constitute a simple baseline, as they can in principle approximate arbitrary functions [12]. As most
commonly used neural network architectures, MLPs assume that the position of each input carries
a semantic value. The prediction of bacterial community dynamics, however, has an interesting
property, namely permutation equivariance. This is due to the fact that a community is a set of
species, and the predictions of the model should not be affected by the order in which the species are
presented. For this reason, we propose to leverage Graph Neural Networks (GNNs) [30, 15, 21, 5] to
exploit this particular inductive bias.

GNNs can be formalized as Message Passing Neural Networks (MPNNs) [15]. A graph is described
by the tuple G = (V,E), where V denotes the set of vertices and E the edges. The neighborhood
of a vertex, i.e. node, v ∈ V is described by N (v) = {u|{u, v} ∈ E}. The attribute of each node
is given by xi for i ∈ [1, |V |]. In general, the attribute xi of each node in the graph is updated as
follows in each message passing step:

e(i,j) = ge
(
xi,xj

)
(2)

x′
i = gv

(
xi, aggrj∈N (i)

(
e(i,j)

))
. (3)

where ge and gv are arbitrary functions used for the edge and node computations respectively. The
permutation-invariant aggregation function is given by aggr. Depending on the choice of the node
and edge update rules, we can recover different GNN architectures. In this work, we investigate
two architectures: a spatial-convolutional GNN using the GraphSage implementation [18], and a
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slight variation of the message passing GNN architecture in Kipf et al. [20], which we will refer to as
MPGNN.

For GraphSage, the edge computation e(i,j) simply returns the attributes of neighbor-
ing nodes j ∈ N (i), i.e. ge

(
xi,xj

)
= xj . The node update function gv is given by:

x′
i = W1xi +W2 ·meanj∈N (i) xj , where W1 and W2 are learnable parameters. The mean is used

as the aggregation function. By using k graph convolutional layers after one another, we can achieve
k-hop information propagation. Finally, we have an additional linear layer at the end with sigmoid
activation for the node attribute readouts.

In the MPGNN, we update the node attributes as x′
i = gv

(
meanj∈N (i)(ge(xi,xj))

)
. Here, gv and

ge are MLPs with l linear layers, each followed by a non-linearity, e.g. ReLU activation. Layer
normalization is applied in the final layer. For the mapping from the node attributes to the outputs, we
also have a linear layer with sigmoid activation. For MPGNN, k message-passing steps are equivalent
to the k-hop information propagation we get by stacking k GraphSage layers. We treat k as a
hyperparameter for both MPGNN and GraphSage. For MPGNN, the number and size of the hidden
layers of ge and gv are both tuned as hyperparameters, more details are given in Table S2.

Models were trained with the Adam optimizer [19] to minimize the Mean Squared Error (MSE).
Implementation details, data splits, and reported metrics are detailed in Appendix A.

2.3 Publicly available real data

We use two publicly available datasets independently recorded by separate laboratories; we describe
them here and provide more details in Appendix A.2. Experimental data FRIEDMAN2017 consists
of the relative abundances of 2, 3, 7, and 8-bacteria communities (Fig. S3, Fig. S4, and Fig. S5).
The dataset contains 93 samples with 2 to 15 replicates each. Raw data was kindly provided by
Friedman et al. [14] and is now available on our project webpage https://sites.google.com/
view/microbegnn. BARANWALCLARK2022 is published by Baranwal et al. [3], with certain
samples originally produced by Clark et al. [10]. The dataset is composed of relative abundances of
459 samples of 2 to 26-bacteria communities, each replicated 1 to 9 times.

When testing generalization to excluded bacteria (see Sec. 3.3), we do not attempt to generalize
to (i) Holdemanella biformis (HB) as the samples containing this bacterium are only present in
two community sizes (2 and 26), resulting in a small test set, and (ii) Coprococcus comes (CC),
Eubacterium rectale (ER), Roseburia intestinalis (RI), and Faecalibacterium praustnitzii (FP) due to
their over-representation in samples, and so the resulting small training sets.

Genomes of bacterial species were downloaded from NCBI [29] or the ATCC Genome Portal [35],
annotated with the NCBI prokaryotic genome annotation pipeline [31], and genes were mapped to the
KEGG database to obtain functional groups [27]. When a specific strain’s genome was unavailable,
the genome of the closest type strain was used instead. Details on strain genomes are provided in
Supplementary Table S4. We used the presence/absence of each KO group as input for fitting models;
KO annotations present in all genomes in a dataset were excluded.

2.4 Modeling bacterial communities in simulation

Due to the scarcity of real data, we additionally design a simulator for the growth of bacterial
communities based on the generalized Lotka-Volterra model (see Sec. 2.1). This simulator, as
illustrated in Fig. ??, is not meant to produce a faithful representation of real communities, but rather
to provide a generative procedure that captures certain challenges in the data, e.g. large dimensionality,
while controlling other characteristics, e.g. sample size.

Bacterial growth The growth of each bacterium in the community was simulated using the general-
ized Lotka-Volterra equation (Eq. 1), with: ln(µi) ∼ N (1, 0.52) clipped to [0.5, 2], Ki ∼ U(5, 15),
and ai,j ∼ Laplace(0, 0.22) clipped to [−2, 2], ∀i, j ∈ [1, |S|]. The target relative abundance
was calculated by simulating community growth until equilibrium: ni(0) = 1 ∀i ∈ [1, |S|] and
equilibrium was reached when dni/dt ≤ 10−4 ∀i ∈ [1, |S|] (Fig. S1).

Bacterial genomes Bacterial genomes are generated to encode the simulated growth parameters
such that there exists an approximately bijective mapping from genomes to parameters. We achieve
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this by rescaling parameters to [0, 1], discretizing them, and performing a simple binary encoding to
ng bits as gbin = bin

(
round

(
(g − gmin)/(gmax − gmin) · (2ng − 1)

))
. Although the encoding is

not representative of any biological process, the mapping can be computed efficiently, provides a
compact representation, and can be inverted up to discretization. This method is applied directly to
the parameters µ and K, resulting in two binary vectors of size ng .

Encoding the interaction factors ai,j into the genomes of each bacteria requires an additional step.
Given a bacterial community S, two intermediate ndim-dimensional vectors for each bacterium si ∈ S
are needed: one determining its effect on interaction partners, νsi ∈ Rn, and the other determining
how it is affected by others, νri ∈ Rn. These vectors should contain sufficient information, such
that the influence of bacterium si on sj (encoded in ai,j) can be retrieved from νsi and νrj . For
each pair of bacteria (si, sj) ∈ S2, we simply reconstruct interactions through inner products:
âi,j = νsi · νrj . We treat intermediate vectors as learnable parameters, and optimize them through
gradient descent by minimizing the distance of the reconstructed interaction matrix from its ground
truth: J =

∑
i∈[1,|S|]

∑
j∈[1,|S|](âi,j−ai,j)

2. The ndim vector coordinates for both vectors are finally
encoded in the genomes as described above for µ and K.

Here, we use ng = 7 for all parameters, ndim = 20 for the 25 simulated bacteria, and add 5 %
of random genes. Empirically, we verify that µ, K, and νs, νr can be accurately recovered from
simulated genomes.

3 Experiments and results

The general goal of this work is to train and evaluate neural models for the dynamics of bacterial com-
munities, directly from their genomes. On real data (FRIEDMAN2017 and BARANWALCLARK2022),
we first investigate whether in-distribution predictions of unseen bacterial communities with known
bacteria are possible. Then, we evaluate the generalization of learned models to (i) larger commu-
nities and (ii) unseen bacteria with respect to those used for training. Finally, due to the scarcity
of real data, we leverage our proposed simulator to produce a dense and controllable distribution
over communities: by retraining models on simulated data, we are able to validate whether trends
emerging in real data can be explained in a simplified setting.

3.1 Can we model real communities? — Yes

We first set out to evaluate the general feasibility of predicting bacterial community profiles from
bacterial genomes using GNNs (Fig. 2 A-B). Due to the set nature of communities, their dynamics
are inherently permutation invariant. This known property of the target function might however not
be captured by universal function approximators such as MLPs. To confirm this, we train both GNNs
and MLPs on the FRIEDMAN2017 dataset. When shuffling the order of bacteria within the train
and test communities, the accuracy of MLPs drops significantly, clearly showing that the dynamics
learned by MLPs are not invariant to permutations (Fig. 2 A), and thus fundamentally incorrect.
Both MPGNN and GraphSAGE provide accurate predictions. After some parameter tuning (see
Supplementary Table S2), our best model predicts unseen bacterial mixes with a goodness of fit
R2 = 0.7778 and R2 = 0.8386, for FRIEDMAN2017 and BARANWALCLARK2022 respectively
(Fig. 2 A).
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3.2 Can we generalize to larger communities? — Marginally.

We assess the ability of the models to generalize to communities of larger or smaller sizes. The
motivation in the former case is to transfer knowledge from lab experiments on smaller communities
to larger ones observed in the wild. In the latter case, the motivation is to evaluate whether one can
learn a model from a large dataset of observed samples, and infer a model of bacterial interactions
from it to monitor bacteria in the lab.

We train GNNs on communities with 2- and 3-bacteria and predict those with 7- and 8-bacteria from
the FRIEDMAN2017 set. For the BARANWALCLARK2022 dataset, we train either on communities
with 2- to 15- or 2- to 22-bacteria and predict the 23- to 26-bacteria communities(Fig. 2 B-D).
The best ensemble models for each dataset have an accuracy of R2 = 0.3021, R2 = 0.3136,

0.0 0.2 0.4 0.6
Observed

0.0

0.2

0.4

0.6

Pr
ed

ict
ed

R2 = 0.3021
MSE = 0.0283

Bacteria
Ea
Pa
Pch
Pci
Pf
Pp
Pv
Sm

Figure 3: Prediction of larger commu-
nities in FRIEDMAN2017. Each point
represents a bacterium in a community
of size ≥ 7 bacteria; x-axis: average of
the observed rel. abundance; the y-axis:
model predictions. Models trained on
communities of size ≤ 3.

and R2 = 0.4730, respectively (Fig. 3 and Fig. 4). For
BARANWALCLARK2022, including communities of sizes
closer to test sizes greatly improves accuracy, suggest-
ing that interactions may be different in larger commu-
nities, hence limiting the models’ ability to generalize;
we explore this hypothesis on simulated data in Sec. 2.4.
This may explain why the models wrongly predict the
growth of Pseudomonas citronellolis (Pci) and Serratia
marcescens (Sm) in the FRIEDMAN2017 dataset (Fig. 3).
Although in the observed communities, these bacteria do
not survive, the models predict a significant abundance.
For the BARANWALCLARK2022 data, predictions on
Anaerostipes caccae (AC) are the less accurate: the rela-
tive abundance of the bacterium is largely overestimated
with an MSE = 0.0185 compared to MSE = 0.0006 for
the other bacteria (Fig. 4). This difficulty to generalize to
AC is consistent across our results (see Sec. 3.3).

Training on larger communities to predict smaller ones does not achieve good results (not shown).
For FRIEDMAN2017, the R2 is lower than zero, indicating worse accuracy than predicting the
average. For BARANWALCLARK2022, we train on communities with > 15 bacteria and predict
those with ≤ 15 bacteria. The results are also disappointing, with an R2 = 0.31 and R2 = 0.29 for
the GraphSAGE and MPGNN respectively. Empirically, our results suggest that generalization to
smaller communities poses different challenges with respect to generalization to larger communities.

3.3 Can we generalize to unknown bacteria? — Sort of.
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R2 = 0.473
MSE = 0.0013

Bacteria
other
AC

Figure 4: Prediction of rel. abun-
dance for larger communities in
BARANWALCLARK2022. Models
trained on communities of size ≤ 22,
predictions for ≥ 23.

Generalization to unseen bacteria is a challenging task that
to our knowledge has not yet been performed for community
growth dynamics. If successful, this suggests that models
are able to extract relevant information from genomes that
likely relate to biological processes causing the observed
relative abundance of a bacterium in a community. This
could open new possibilities, such as anticipating the effect
of new pathogens on microbiomes or creating communities
in an informed way by forecasting which bacteria is most
likely to serve a desired purpose.

In practice, for every bacterium si ∈ S we filter the training
set to remove all communities that contain si, and use all
communities that contain si for testing. As no parameter
tuning was performed, we do not use a validation set; results
are shown for the test set directly.

The results vary depending on which species was left out as an unseen bacterium (Fig. 5). For instance,
reasonable accuracies were obtained on the FRIEDMAN2017 dataset for predicting unseen bacteria
Enterobacter aerogenes (Ea) and Sm (Fig. 5 A and Fig. S7 C; R2 = 0.6792 and R2 = 0.7051,
respectively). Interestingly, these two bacteria were the most distant to the rest, being the only
non-Pseudomonas (Fig. 5 B). A hypothesis is that they do not interact much with the Pseudomonas,
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Figure 5: Accuracy of GNN models on predictions of bacterial communities containing unseen
bacteria. For each bacterium, communities containing the bacterium are used for testing, and
not for training. R2 values on the test set are shown with a circle for each model (3 per GNN
type), and crosses represent the ensemble of 3 models (i.e. for each prediction, the average of the
three models is taken). A-B: Results and phylogenetic tree for FRIEDMAN2017. C: Results for
BARANWALCLARK2022.

or that they both interact in a similar manner. In line with this hypothesis, for Pseudomonas, growing
with either Sm or Ea led to resembling communities, making it possible for the knowledge gained
from the genome of one non-Pseudomonas to be accurately transferred to the other. This hypothesis is
supported by the comparable relative abundances of Pseudomonas in 2- and 3-bacteria communities
with Sm or Ea (Fig. S7 A). Predictions of communities with Pseudomonas chlororaphis (Pch) achieve
the lowest accuracy, in fact lower than predicting the mean relative abundance for both types of
models (Fig. 5 A, R2 < 0). The genome of this species is not available on public databases, so the
genome of the closest species had to be used instead. Hence, an uncontrolled error was introduced in
the data. Furthermore, the substitute genome belongs to the same species as Pseudomonas aurantiaca
(Pa), which has a different phenotype than Pch in cultures, leading to different relative abundances
in communities (Fig. S7 B). Nonetheless, models generalize well to Pa (Fig. 5 A, R2 = 0.3539
for GraphSAGE). Hence, we can hypothesize that the models learn well from other Pseudomonas
genomes, but cannot generalize well to Pch due to its substitute genome.

The results obtained on BARANWALCLARK2022 are superior to those on FRIEDMAN2017 data
(Fig. 5 C). This could be attributed to the larger dataset size, which includes more bacteria and com-
munity sizes, thus providing a better resolution of the feature space (a wider range of genomes to learn
from) and output space (more examples of co-cultures due to the increased number of communities).
Nevertheless, we report significantly lower accuracy when generalizing to communities including AC.
This bacterium is not particularly phylogenetically distant from others (Fig. S6), but is the only one that
can produce butyrate from lactate and is a driver of butyrate production [10]. Empirically, it inhibits
the growth of CC, CH, BO, BT, BU, BC, and BY in communities of 11- to 13-bacteria while promot-
ing the growth of CA and DL (Fig. S8 A; see the abbreviations in Supplementary Table S4). However,
these effects are less clear in communities of 23- to 25-bacteria (Fig. S8 B). The other bacterium
to which models can transfer less accurately is Bacteroides thetaiotaomicron (BT; Fig. 5 C). This
bacterium is considered a keystone of the human gut microbiota, as it drives community assembly [2].
Consequently, communities including such a bacterium may be harder to predict due to the changes
in interactions compared to communities without the bacterium, which explains the lower accuracy
of the GNNs when generalizing to communities with BT. Actinobacteria, the phylum to which AC
belongs, are also considered a keystone of the human microbiota [2]. Although AC itself has not been
reported to be a keystone, our results, together with the observation of butyrate production from Clark
et al. [10], suggests that it may be one. We explored this hypothesis on simulated data in Sec. 2.4.

Our results suggest that GNNs can generalize predictions of bacterial relative abundances to commu-
nities including unseen bacteria. In practice, the performance of models may still be limited due to
noise in inputs (genomes) and output resolution (similar genomes but different phenotypes).

3.4 Validating sources of model inaccuracies through simulation
Due to the scarcity and lack of control of real data, we take advantage of the simulator introduced
in Sec. 2.4 to assess whether model inaccuracies originate from community-specific features. We
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remark that these experiments are carried out on simulated data, generated through a simplified
process, and therefore results in this section are meant to undergo further validation in the real world.

First, we investigate the effect of dense the community interactions on the performance of GNNs. We
simulate communities with more and less interactions between bacteria by controlling the probability
of an edge in the interaction matrix. We observe that, as we vary the edge density and simulate
denser interactions in the train and test sets, the accuracies do not decrease (Fig. 6 A).

Next, we test the ability of the models to generalize to unseen keystone bacteria, which could explain
the drop in accuracy for certain species in Fig. 5. For that, we increase the edge density for two
specific bacteria by increasing the probability of an edge to exist from 0.2 to 0.8 for these nodes
only. We simulate communities, exclude each keystone from training, and predict the growth for
communities including them as in Sec. 3.3. We perform the same procedure on five non-keystone
bacteria for comparison. However, the results do not validate our hypothesis (Fig. 6 B). This implies
that GNNs are, in principle, capable of generalizing well to keystone bacteria and that other factors
may explain the lack of generalization to AC and its communities in BARANWALCLARK2022.

Finally, we explore the impact of community sizes in training versus testing. We initially assess
whether we can reproduce the decrease in accuracy when generalizing to larger communities with our
simulations (see Fig. 2). Crucially, while in real data higher-order interactions can drive the drop in
accuracy on the test sets, this effect cannot be verified with our simulated data, as it includes only pair-
wise interactions. Indeed the accuracy decreses when the size of the training communities is reduced
compared to the test communities (Fig. 6 C). Specifically, models trained on samples with communi-
ties of up to 10 bacteria are unable to accurately predict communities of 16 to 25 bacteria (R2 < 0).

We perform a sanity check by increasing the number of training communities for models trained on
communities of smaller sizes. We observe that this only helps marginally, and training on a smaller
number of larger communities remains preferrable. Accordingly, while gathering data for a large
number of training community is helpful, accuracy may still be bounded by their size, even when
ignoring higher-order interactions. Furthermore, we find that, in simulation, relative abundances are
systematically over-estimated in predictions with larger communities. This is likely a consequence
of the higher relative abundances in the smaller communities of the training set, indicating a tendency
to overfit to training communities. It also suggests that in real data where over and underestimations
are observed, other factors must influence the lack of generalization.

4 Conclusion
Our work sets the stage for the application of GNNs to microbial communities. These models
can implicitly learn growth dynamics, and empirically outperform MLPs in terms of accuracy
and generalization. Empirically, they outperform MLPs in terms of accuracy and generalization
capabilities. Altogether, GNNs hold great potential for further applications. Furthermore, our results
show that genomes are sufficient to learn an accurate model that can generalize predictions beyond
observed communities. To our knowledge, this is the first attempt at predicting microbial community
profiles from genomes directly. Recently, Lam et al. [22] employed genome-scale metabolic models
(GEMs) [32] adapted for microbial communities [24] to predict pairwise bacterial interactions. Hence,
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a potential next step would be to apply GNNs to such GEMs. Finally, our simulations provide a
flexible data generation procedure, which can be used to benchmark models for bacterial growth
from genomes. In the future, the simulation can be further improved to account for higher-order
interactions and potentially environmental factors. Nonetheless, we hope that its accessibility will
encourage the explainable ML community to develop tools to interpret GNN models of bacterial
communities. As new properties emerge from microbial communities, scientific discoveries may
arise from interactions between our fields.
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[33] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

[34] Vito Volterra. Fluctuations in the abundance of a species considered mathematically. Nature,
118(2972):558–560, 1926.

[35] David A Yarmosh, Juan G Lopera, Nikhita P Puthuveetil, Patrick Ford Combs, Amy L Reese,
Corina Tabron, Amanda E Pierola, James Duncan, Samuel R Greenfield, Robert Marlow, et al.
Comparative analysis and data provenance for 1,113 bacterial genome assemblies. Msphere, 7
(3):e00077–22, 2022.

11

https://openreview.net/forum?id=rJXMpikCZ


Appendix

A Implementation details

The datasets contain replicates for some of the settings. To make evaluation simple, we average the
results of replicates when included in the validation or test sets. Cross-validation (CV) was performed
on 5 train/validation/test data splits with 5 model initialization seeds for hyperparameter tuning (see
Supplementary Table S2).

We chose the hyperparameter combination resulting in the lowest validation error. Consequently,
we used 2 convolutional layers/message-passing steps with 50 and 100 hidden features for FRIED-
MAN2017 and BARANWALCLARK2022 data, respectively. Note that for all architectures, we first
have an embedding layer that maps the input genomes to the hidden feature size. For predictions on
the test sets, we show each of the 3-models and the average of the 3-models ensemble on Fig. 2 and
Fig. 5. Otherwise, predictions on test sets correspond to the average of the 3-models ensemble. As we
assume no prior knowledge of bacterial interactions, our graphs are fully connected. For the MPGNN,
we used single layer MLPs for the node and edge update functions gv and ge (see Eq. 3). These layers
were followed by layer normalization and a ReLU activation. For all architectures, output predictions
were made with a linear layer followed by the sigmoid function to constrain values into [0, 1]. Note
that applying the SoftMax instead of sigmoid did not improve models (Supplementary Table S2). We
trained the spatial-convolution GNN with GraphSAGE layers implemented in the PyTorch Geometric
Python package [13] with mean aggregation. We also apply ReLU activation after each GraphSAGE
layer and layer normalization is applied before the activation in the final layer.

A.1 Model training

For all models, the batch size was 16, training samples were shuffled for making batches, and the
learning rate was set to 0.005 for the Adam optimizer [19].

Cross-validation on real data For cross-validation (Fig. 2 A), data were split into 80/10/10 %
train/validation/test sets; five splits were created. We trained models for 500 epochs, with the Adam
optimizer to minimize the Mean Squarred Error (MSE); five seeds per model were used. The MSE
on the validation set was used to select parameters; we assessed the number of layers, the number of
hidden features, whether to train on the average of replicates or each replicate, and whether to apply a
SoftMax instead of Sigmoid function after making predictions. Additionally, for the FRIEDMAN2017
dataset, the position of bacteria in the community was shuffled for predictions on the test set for Fig. 2.
For the BARANWALCLARK2022 dataset, CV was performed on non-shuffled samples. Models’
performances according to parameters are given in Supplementary Table S2.

Fitting of models on real data When no cross-validation was performed, data were split according
to community size (Fig. 2 B) or composition (Fig. 5) and no validation set was used. Models were
trained for 500 epochs, five seeds were used.

Fitting of models on simulated data We simulated a community of 25 bacteria as described in
Sec. 2.4. Samples were created by randomly drawing a subset of bacteria and calculating their relative
abundance at equilibrium, also as described in Sec. 2.4. Unless mentioned (Fig. 6 C), 100 samples
were generated for training, 10 for validation, and 10 for testing. Models were trained for 1000
epochs; results on test sets are given in Supplementary Table S5.

A.2 Real datasets

Friedman2017 The first set of data was published by Friedman et al. [14]. Experimental data
consisted of the relative abundances of bacteria in 2, 3, 7, and 8-bacteria communities at the beginning
of the experiment and after 5 days of daily passage, i.e. a fraction of the culture is re-inoculated into
fresh growth media. For each mix of bacteria, several initial inoculum ratios were used; 248 samples
were performed in duplicates, and 25 samples were not replicated.

Growth curves for mono-cultures are shown in Supplementary Fig. S3, and relative abundances
of bacteria in co-cultures are shown in Supplementary Fig. S4 and Supplementary Fig. S5. Given
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our task to predict stable states of bacterial communities from genomes, we exclude data from
mono-cultures and treat mixes started from different inoculum ratios as one sample. Hence, the
final dataset consisted of 93 samples with 2 to 15 replicates each. Samples were randomly split in
80/10/10 % train/validation/test sets for cross-validation (CV). We perform experiments in which we
exclude 1 bacterium at a time. For those, bacterial communities of 7- and 8-bacteria were excluded
from training and testing, so only samples of 2- and 3-bacteria communities were used. For the
experiments testing for generalization to bigger communities, training was performed on 2- and
3-bacteria communities and testing on 7- and 8-bacteria communities.

Raw experimental data was kindly provided by Friedman et al. [14] and is now available on our
project website: https://sites.google.com/view/microbegnn.

BaranwalClark2022 The second dataset was published by Baranwal et al. [3], with certain samples
originally produced by Clark et al. [10]. From the initial 1,850 replicates, we removed 258 with
records of contamination or “Low Abundance”, 39 with an OD600 ≤ 0.1, and 593 which had more
than 0.1 % of non-inoculated bacteria – despite not being recorded as contaminated by authors,
resulting in 960 replicates from 459 samples. Each sample was replicated 1 to 9 times.

CV was performed on random 80/10/10 % train/validation/test splits. We carefully looked at the
community size representation when excluding each bacterium, and removed samples from the test set
if their community size had not been seen during training or only for a few samples (Supplementary
Table S1). In particular, we did not attempt to generalize to (i) Holdemanella biformis (HB) as only
2- and 26-bacteria communities had been produced with this bacterium, making up a very small test
set, and (ii) Coprococcus comes (CC), Eubacterium rectale (ER), Roseburia intestinalis (RI), and
Faecalibacterium praustnitzii (FP) due to their over-representation in samples, and so the resulting
small training sets.

A.3 Additional architectures

In addition to the MPGNN and GraphSAGE architectures, we also tested improved versions of the Graph
Attention [33, 6] (GATII) and Graph Convolution [21, 9] (GCNv2) architectures. We fitted models on
the five CV folds of real data, BARANWALCLARK2022 and FRIEDMAN2017, as for the MPGNN and
GraphSAGE models. The average coefficient of determinations (R2) of the ensemble models fitted on
each dataset, with a 95% confidence interval, and calculated on 100 bootstraps of test samples, are
reported in the Supplementary Table S3.

B Additional results

B.1 Scalabity of the method

We evaluate the scalability of our approach on datasets made of communities of sizes 5-20, 12-25,
25-100, and 50-200 (Supplementary Fig. S9). Note that these communities contain 20, 50, 100 and
200 different bacteria species respectively.

We find that models trained on as few as 50 samples can already generalize in-distribution. Here, in-
distribution refers to communities of the same size as seen during training, but with new combinations
of the bacterial species in the data. Models trained on larger communities benefit from increasing
the number of samples for training. For instance, in the experiment with a set of 200 bacteria and
community sizes of 50 to 200 bacteria, we see a jump in generalization performance when we increase
the number of samples in the training set from 50 to 250. With only 50 samples, the network doesn’t
see enough combinations of bacteria in communities to generalize to unseen combinations at test
time. However, as we further increase the sample size from 250 to 500, we only see a marginal
improvement. This indicates that for a training set containing 200 species, the combinations seen in
250 samples are seemingly adequate for a GNN to generalize.

Given the jump in complexity of communities when increasing community sizes, overfitting with
smaller communities and lower generalization for larger ones is expected.
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B.2 Diversity

Finally, we assessed the effect of out-of-distribution bacteria on models’ predictions. For that, we
fixed (i) a set of 20 baseline bacteria and (ii) a set of 10 bacteria used only in test samples. Training
samples consisted of the 20 baseline bacteria, incrementally augmented with more bacteria to create
training sets of bacterial diversity, i.e. number of different bacteria, of 20, 50, and 100. The test
set comprised communities made of the baseline bacteria plus one test bacterium. We gathered
predictions on baseline bacteria, i.e. “seen” during training, and out-of-distribution, i.e. “unseen”,
and calculated the R2 (goodness of fit) for each type across all test samples. We show results with
one unseen bacterium in test communities in the Supplementary Fig. S10. In this case, we see that a
higher bacterial diversity seen during training time increases the generalization performance on the
unseen bacteria at test time for the MPGNN. Notably, we observe an overall high accuracy of MPGNN
on seen bacteria despite including an unseen one to the community, indicating strong robustness of
the learnt GNN models.
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this point would be used as the target for fitting models.
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Figure S5: Relative abundances of bacteria in 3-bacteria cultures from Friedman et al. [14].
Each line corresponds to a replicate; cultures were started with different relative abundance ratios.
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Figure S6: Phylogenetic tree of bacteria used in the BaranwalClark2022 data set (from Clark
et al. [10]). Tree branches are colored by phylum and underlined bacteria are butyrate producers.
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Figure S7: Comparison of the effect of two bacteria on the relative abundances of others in 2-
and 3-bacteria cultures, in the Friedman2017 data set. For each bacterium on the x and y-axis,
communities were matched by co-partners, and the average relative abundances of the bacteria are
shown, colored by bacteria. Suppose the x- and y-axis bacteria had similar interaction effects with
their partners in the matched communities. In that case, the relative abundances of the other bacteria
should be similar and so, close to the x = y grey dotted line. A/ The two non-Pseudomonas resulted
in resembling communities when grown with Pseudomonas, with a mean squared distance between
relative abundances in matching communities of 0.0078. B/ Despite being the phylogenetically
closest strains, Pch and Pa resulted in different communities C-D/ Predicted versus observed relative
abundances when generalizing to Sm, Pa, and Pch. The average relative abundances across replicates
are shown for the observed values.
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Figure S8: Comparison of relative abundances of bacteria when grown in communities contain-
ing or not Anaerostipes caccae (AC). Due to the scale of relative abundances according to the size
of the community, we show as examples results for communities of A/ 11 to 13-bacteria and B/ 22 to
25-bacteria.
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Figure S9: Scalability of GNNs to larger communities. We simulate sets of n = 20, 50, 100, and
200 bacteria, and draw communities of size n/4 to 0.9 ∗ n for training and testing. All bateria in
the test-sets have been observed. Models are trained on increasing number of samples, showing an
increase in accuracy throughout. The MLP gets the bacteria in a fixed order. For this reason, we
observe good performance with larger training set sizes.
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Figure S10: Generalization of GNNs to unseen bacteria improves with higher diversity seen
during training. We simulate sets of n = 20, 50 and 200 bacteria, and draw communities of size
n/4 to 0.9 ∗ n for training. At test time, we introduce a new bacteria that has not been seen before
and test the generalization capabilities of our models on communities including this new bacterium
that was not seen at training time. The test sets are shared across models, and so all bacteria, except
the new one, are from the smallest set of 20 bacteria. We use 10,000 samples for training all models.
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Table S1: Species and community sizes excluded from the test sets for results in 3.3.

Species Community sizes excluded from test set
CH 24-26
BT 24-26
DP 23-26
BL 22-26
BH 22-26
CG 22-26
EL 22-26
BF 22-26
PJ 22-26
BY 22-26
BA 18-26
DL 18-26
BP 18-26
CA 18-26
BV 18-26
BC 18-26
PC 2-4, 17-26
BU 2-4, 17-26
BO 2-10, 17-26
DF 16-26

1BC: BaranwalClark2022, F: Friedman2017
2BC: BaranwalClark2022, F: Friedman2017
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Table S2: Mean Squared Error of models on validation sets after 500 epochs of training. #conv
refers to the number of convolution layers stacked for GraphSAGE and the number of message-passing
steps for MPGNN, both corresponding to the depth of information propagation in the graph.

Dataset1 Architecture # n hidden MSE Comment
conv features validation set

F MPGNN 2 50 0.013607
F GraphSAGE 2 200 0.014383
F GraphSAGE 2 50 0.014627
F MPGNN 2 200 0.014736
F GraphSAGE 3 50 0.014987
F MLP 2 100 0.015226 no permutation
F MPGNN 2 100 0.015554
F GraphSAGE 1 100 0.01597
F MPGNN 3 50 0.016013
F GraphSAGE 2 100 0.016515
F MPGNN 1 100 0.035642
F MLP 2 100 0.051399

BC GraphSAGE 2 200 0.006484
BC MPGNN 2 100 0.006641 train average replicates
BC GraphSAGE 2 100 0.006683
BC MPGNN 2 100 0.006821
BC GraphSAGE 2 50 0.006881
BC MPGNN 2 200 0.006897
BC GraphSAGE 3 100 0.006986
BC MPGNN 2 50 0.007218
BC GraphSAGE 2 100 0.007532 train average replicates
BC GraphSAGE 2 100 0.007538 SoftMax instead of Sigmoid
BC GraphSAGE 1 100 0.007584
BC MPGNN 1 100 0.015077
BC MPGNN 3 100 0.023026
BC MPGNN 2 100 0.811864 SoftMax instead of Sigmoid

Table S3: Mean Squared Error of models on validation sets after 500 epochs of training and
coefficient of determination R2 on test sets, with a 95% confidence interval. #conv refers to the
number of convolution layers, corresponding to the depth of information propagation in the graph.

Dataset2 Architecture # n hidden MSE R2

conv features validation set test set
F GCNII 1 50 0.0778 (0.0676, 0.0879) 0.0618 (-0.1410, 0.2822)
F GATv2 1 50 0.0724 (0.0642, 0.0805) 0.0279 (-0.0808, 0.1266)

BC GATv2 1 50 0.0468 (0.0379, 0.0556) 0.3569 (0.2455, 0.4711)
BC GATv2 1 100 0.0478 (0.0399, 0.0556) 0.1034 (0.0075, 0.1914)
BC GATv2 2 50 0.0539 (0.0464, 0.0613) -0.1621 (-0.2635, -0.0975)
BC GATv2 2 100 0.0550 (0.0469, 0.0632) -0.1305 (-0.1993, -0.0840)
BC GCNII 1 50 0.0405 (0.0327, 0.0483) 0.5059 (0.2705, 0.6959)
BC GCNII 1 100 0.0435 (0.0311, 0.0558) 0.2080 (-0.1771, 0.4842)
BC GCNII 2 50 0.0219 (0.0173, 0.0264) 0.6793 (0.4865, 0.8143)
BC GCNII 2 100 0.0235 (0.0187, 0.0283) 0.7090 (0.5498, 0.8277)
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Table S4: Bacterial strains in experimental data, their designation in the article, and the genomes used
to fit models.

Data3 Bacterial strain Designation Substitute genome Database

BC Anaerostipes caccae L1-92 AC NCBI
BC Bacteroides cellulosilyticus CRE21 BY NCBI
BC Bacteroides uniformis VPI 0061 BU NCBI
BC Bifidobacterium adolescentis E194a

(Variant a)
BA ATCC

BC Bifidobacterium longum subs. infan-
tis S12

BL NCBI

BC Bifidobacterium pseudocatenulatum
B1279

BP NCBI

BC Blautia hydrogenotrophica S5a33 BH NCBI
BC Clostridium asparagiforme N6 CG NCBI
BC Clostridium hiranonis T0-931 CH NCBI
BC Collinsella aerofaciens VPI 1003 CA NCBI
BC Desulfovibrio piger VPI C3-23 DP NCBI
BC Dorea formicigenerans VPI C8-13 DF NCBI
BC Dorea longicatena 111–35 DL NCBI
BC Eggerthella lenta 1899 B EL NCBI
BC Bacteroides caccae VPI 3452 A BC Bacteroides caccae

CL03T12C61
NCBI

BC Bacteroides fragilis EN-2 BF NCBI
BC Bacteroides ovatus NCTC 11153 BO NCBI
BC Bacteroides thetaiotaomicron VPI

5482
BT NCBI

BC Bacteroides vulgatus NCTC 11154 BV ATCC
BC Coprococcus comes VPI CI-38 CC NCBI
BC Eubacterium rectale VPI 0990 ER ATCC
BC Faecalibacterium prausnitzii A2-165 FP NCBI
BC Parabacteroides johnsonii M-165 PJ NCBI
BC Prevotella copri CB7 PC NCBI
BC Roseburia intestinalis L1-82 RI NCBI
BC Holdemanella biformis DSM 3989 HB NCBI

F Enterobacter aerogenes ATCC 13048 Ea NCBI
F Pseudomonas aurantiaca ATCC

33663
Pa Pseudomonas chlororaphis

strain qlu-1
NCBI

F Pseudomonas chlororaphis ATCC
9446

Pch NCBI

F Pseudomonas citronellolis ATCC
13674

Pci Pseudomonas citronellolis
strain P3B5

NCBI

F Pseudomonas fluorescens ATCC
13525

Pf NCBI

F Pseudomonas putida ATCC 12633 PP NCBI
F Pseudomonas veronii ATCC 700474 PV Pseudomonas veronii strain

ASM202832
NCBI

F Serratia marcescens ATCC 13880 Sm NCBI

3BC: BaranwalClark2022, F: Friedman2017
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Table S5: Mean Squared Error on validation set and coefficient of determination R2 on test sets of
models fitted on simulated data after 250 epochs of training. MLP and MLP* are the same models,
hence they have the same MSE on validation set; MLP received shuffled input bacteria for the test set
(similar to GNNs) while MLP* did not (optimal conditions).

Model Edge density MSE R2

validation set test set
MLP* 0.1 0.000202 0.8364
MLP* 0.4 0.000563 0.7798
MLP* 0.6 0.000566 0.7173
MLP 0.1 0.001205 -0.1911
MLP 0.4 0.003315 -0.2980
MLP 0.6 0.003471 -0.4157

GraphSAGE 0.1 0.001592 0.4749
GraphSAGE 0.4 0.001924 0.4034
GraphSAGE 0.6 0.002191 0.4184

MPGNN 0.1 0.001612 0.4324
MPGNN 0.4 0.001799 0.6016
MPGNN 0.6 0.001882 0.4173

Excluded bacteria
MLP* key 0.000897 -7.3473
MLP* random 0.000926 -8.5531
MLP key 0.011816 -0.1689
MLP random 0.013400 -0.1162

GraphSAGE key 0.001101 0.4900
GraphSAGE random 0.0011308 0.4465

MPGNN key 0.000576 0.6438
MPGNN random 0.000756 0.5594

Max training community size / training sample size
MLP* 10 / 100 0.002040 -1.0551
MLP* 10 / 200 0.000906 -0.0141
MLP* 15 / 50 0.000700 0.4234
MLP* 15 / 100 0.000306 0.7998
MLP* 15 / 200 0.000123 0.8959
MLP* 25 / 100 0.00324 0.8147
MLP 10 / 100 0.002953 -1.3241
MLP 10 / 200 0.002516 -1.3176
MLP 15 / 50 0.001244 -0.0740
MLP 15 / 100 0.001263 0.0011
MLP 15 / 200 0.001278 0.0404
MLP 25 / 100 0.001668 -0.066

GraphSAGE 10 / 100 0.002823 -1.7475
GraphSAGE 10 / 200 0.001779 -0.8447
GraphSAGE 15 / 50 0.001227 -0.3847
GraphSAGE 15 / 100 0.00100 0.1108
GraphSAGE 15 / 200 0.000789 0.3243
GraphSAGE 25 / 100 0.000760 0.4360

MPGNN 10 / 100 0.002595 -1.5964
MPGNN 10 / 200 0.001689 -0.8451
MPGNN 15 / 50 0.001529 -0.5713
MPGNN 15 / 100 0.000996 0.1456
MPGNN 15 / 200 0.000503 0.6597
MPGNN 25 / 100 0.000764 0.4579
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