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Abstract
LLM-based multi-agent systems (MAS) have
shown significant potential in tackling diverse
tasks. However, to design effective MAS, ex-
isting approaches heavily rely on manual config-
urations or multiple calls of advanced LLMs, re-
sulting in inadaptability and high inference costs.
In this paper, we simplify the process of build-
ing an MAS by reframing it as a generative lan-
guage task, where the input is a user query and the
output is a corresponding MAS. To address this
novel task, we unify the representation of MAS
as executable code and propose a consistency-
oriented data construction pipeline to create a
high-quality dataset comprising coherent and con-
sistent query-MAS pairs. Using this dataset, we
train MAS-GPT, an open-source medium-sized
LLM that is capable of generating query-adaptive
MAS within a single LLM inference. The gener-
ated MAS can be seamlessly applied to process
user queries and deliver high-quality responses.
Extensive experiments on 9 benchmarks and 5
LLMs show that the proposed MAS-GPT consis-
tently outperforms 10+ baseline MAS methods
on diverse settings, indicating MAS-GPT’s high
effectiveness, efficiency and strong generaliza-
tion ability. The codes are released at https:
//github.com/rui-ye/MAS-GPT.

1. Introduction
Large language models (LLMs) such as ChatGPT (Ouyang
et al., 2022; OpenAI, 2023) have achieved significant suc-
cess on a wide range of tasks. However, a single LLM
often struggles to handle the diverse and complex range of
tasks (e.g., varying difficulties and domains) encountered in
practice (Hong et al., 2024; Chen et al., 2024).
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Figure 1: Introduction of our proposed new paradigm for
building MAS. During inference, MAS-GPT adaptively gen-
erates a query-specific MAS with one LLM inference.

Such limitation has driven recent research towards building
LLM-based multi-agent systems (MAS) (Ye et al., 2025a;
Qian et al., 2024a; Chen et al., 2024), where multiple
LLMs (agents) with specialized capabilities work collabo-
ratively to achieve more effective solutions. For example,
MetaGPT (Hong et al., 2024) and ChatDev (Qian et al.,
2024a) build multi-LLM teams with expertise roles (e.g.,
programmer, tester, and product manager) to solve com-
plex coding tasks in a predefined pipeline; while Agent-
Verse (Chen et al., 2024) involves recruiters, executors, and
evaluators for iterative task solving. These methods have
shown superior performance over single LLM inference.

Despite achieving promising task performance, there are
two fundamental issues that hinder the broad applications
of MAS: inadaptability and high costs. (i) Inadaptability &
high human effort: MAS in MetaGPT (Hong et al., 2024),
ChatDev (Qian et al., 2024a), and AgentVerse (Chen et al.,
2024) are all manually crafted (e.g., for coding tasks). That
is, the collaboration structure and agents’ prompts are pre-
determined and static, lacking in the generality to adapt
towards any given tasks. (ii) High inference costs: Al-
though there have been efforts to design adaptive MAS,
they essentially shift the human cost onto the computational
cost. For example, both GPTSwarm (Zhuge et al., 2024),
AFlow (Zhang et al., 2024), and DyLAN (Liu et al., 2024b)
rely on LLMs to replace human involvement, iteratively
adjusting the collaboration structure or agents’ prompts in
the MAS for each specific task. However, this process of-
ten requires multiple LLM inferences and a corresponding
validation set in advance (Zhuge et al., 2024).

Focusing on these key issues, this paper explores how to
adaptively build a query-specific MAS at a minimal cost.
Our core idea is to reframe the process of building an exe-
cutable MAS for each query as a generative language task,
making building MAS as simple and efficient as querying
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ChatGPT (Ouyang et al., 2022). Given the generated MAS,
the query can then be seamlessly processed to produce the
final response, significantly simplifying the whole pipeline.

Under this context, we introduce MAS-GPT, an LLM
specifically trained to adaptively generate executable MAS
based on any given user query in one single inference.
While the concept is straightforward, the challenge lies in
the limited knowledge of LLMs on the task of MAS gen-
eration and the lack of corresponding training data. These
limitations raise two key technical challenges: how to repre-
sent the MAS and how to construct the dataset. (1) To ensure
the generated MAS is readily executable, we unify the repre-
sentation of MAS by describing it as a Python code snippet
(i.e., a forward function), with each agent’s prompt as a
variable, LLM calls as functions, and agent relationships as
string concatenation. (2) Building on this foundation, we
propose a consistency-oriented data construction pipeline to
facilitate the model in learning generalizable patterns and
logical correlations, which includes the construction, evalua-
tion, selection, and refinement of query-MAS pairs. During
selection, we design an inter-consistency-oriented selection
approach to ensure that similar queries are paired with sim-
ilar high-performing MAS, facilitating the model to learn
generalizable patterns. During refinement, we propose a
intra-consistency-oriented refinement method to strengthen
the relatedness between query and MAS, enabling the model
to learn the reasonable correlation. Finally, the resulting
pairs are used to train open-source LLMs via supervised
fine-tuning, where the instruction is the user query and the
response is the MAS represented by code. This will equip
the model with the ability to generate query-specific MAS,
and also, generalize to unseen queries.

With the introduction of MAS-GPT, inference for a query
becomes significantly simplified. Instead of relying on man-
ual crafting (Hong et al., 2024; Qian et al., 2024a; Chen
et al., 2024) or multiple LLM inference costs (Liu et al.,
2024b; Zhuge et al., 2024) to obtain an MAS for each query,
the user simply inputs a query into MAS-GPT to get a cor-
responding executable MAS. Such MAS can be directly
applied to process the query, where multiple MAS-GPT-
generated agents collaborate with an MAS-GPT-generated
structure to deliver the final solution. With advantages of
adaptability, low cost, and generalization, this approach
could facilitate the application of MAS at scale.

We conduct extensive experiments to compare MAS-GPT
with 10+ baseline methods on 9 benchmarks (various do-
mains) using 5 state-of-the-art (open-source and proprietary)
LLMs. Our results show that MAS-GPT consistently out-
performs baseline methods on average, indicating its high
generality and effectiveness. Meanwhile, MAS-GPT has the
potential to further push the boundary of strong reasoning
capability of o1 (OpenAI, 2024b) and DeepSeek-R1 (Guo

et al., 2025), bringing 13.3% and 10.0% gain on AIME-
2024 (a challenging mathematical benchmark), respectively.
We also verify that our MAS-GPT can generalize to unfa-
miliar queries and generate novel MAS via case studies.

Our contributions are as follows:

1. We reframe building MAS for each query as a generative
language task. We unify the representation of MAS
as executable code and propose a consistency-oriented
query-MAS data construction pipeline for LLM training.

2. We train MAS-GPT, an LLM that generates query-
specific executable MAS within one single inference
and can generalize across domains.

3. Experiments on 9 benchmarks and 5 LLMs show that
MAS-GPT consistently outperforms 10+ baselines at a
moderate cost during inference, indicating its effective-
ness, efficiency and generalization ability.

2. Related Work
LLM-based Multi-Agent Systems. Since a single LLM
may struggle to handle the diverse and complex range of
tasks in practice (Li et al., 2023; Qian et al., 2024b), such
limitation has driven recent research towards building LLM-
based multi-agent systems (MAS) (Wang et al., 2024c;
Wu et al., 2023). MetaGPT (Hong et al., 2024) and Chat-
Dev (Qian et al., 2024a) introduce manually designed multi-
agent teams for solving coding tasks; while MedAgents
is designed for medical tasks (Tang et al., 2024). Agent-
Verse (Chen et al., 2024) proposes an iterative collaboration
structure where agents are recruited to discuss, execute, and
evaluate. Multi-Agent Debate (Du et al., 2024; Liang et al.,
2024) designs multiple expertise LLM-agents to debate and
reason over multiple rounds to get final answers. The MAS
in these methods are all fixed regardless of the given query,
lacking in the generality to adapt accordingly.

DyLAN (Liu et al., 2024b) leverages LLMs to evaluate
agents’ values and dynamically select the best agents,
GPTSwarm (Zhuge et al., 2024) manually initializes an
agent team, adjusts the collaboration structure and agents’
prompts by prompting LLMs. Given queries with ground-
truth answers from one task and several available MAS as
context, ADAS (Hu et al., 2024) and AFlow (Zhang et al.,
2024) leverages the strong capabilities of LLMs such as
Claude-3.5-sonnet (Anthropic, 2024) and GPT-4 (OpenAI,
2023) to iteratively generate task-oriented MAS for the spe-
cific task. Most of these methods require a corresponding
validation set in advance (Zhuge et al., 2024; Zhang et al.,
2024; 2025) and multiple times of LLM calls (e.g., over 10
calls of API with lengthy context) (Hu et al., 2024; Liu et al.,
2024b) to obtain an MAS, which is compute-expensive and
even unachievable in practice.

2



MAS-GPT: Training LLMs to Build LLM-based Multi-Agent Systems

Instead of manually designing a fixed MAS (Qian et al.,
2024a; Chen et al., 2024; Du et al., 2024; Ye et al., 2025b)
or requiring multiple LLM inference costs to obtain an
MAS (Liu et al., 2024b; Zhuge et al., 2024) for each query,
our MAS-GPT significantly simplifies the process of build-
ing an MAS, which can flexibly generate query-specific
MAS within one LLM inference. Meanwhile, unlike exist-
ing optimization-based methods (Hu et al., 2024; Zhang
et al., 2024; Zhuge et al., 2024) that optimize on the valida-
tion set drawn from the domain same as the testing domain,
our optimization (i.e., training) can be performed on diverse
domains, enabling our MAS-GPT to generalize across do-
mains. Specifically, we design a data-construction pipeline
to generate a series of query-MAS pairs, which are used for
training MAS-GPT based on open-source LLMs.

LLM Post-Training. Modern state-of-the-art LLMs are
usually post-trained via two main stages: supervised fine-
tuning (SFT) and preference learning (Ouyang et al., 2022;
Dubey et al., 2024; Yang et al., 2024; Liu et al., 2024a),
where SFT is the basic technique to teach LLM a defined
tasks (Zhou et al., 2023; Longpre et al., 2023). Focusing on
SFT, a series of researches are conducted on the construction
of datasets for training chatbot-type LLMs. For example,
LIMA (Zhou et al., 2023) manually annotates high-quality
language data for SFT, emphasizing the importance of qual-
ity of SFT datasets. WizardLM (Xu et al., 2024), TULU
3 (Lambert et al., 2024), and Persona Hub (Ge et al., 2024)
synthesize SFT data by prompting GPT models, indicating
the potential of synthetic data for LLM training.

For MAS-GPT, the training process leverages SFT, with
a primary focus on data construction. While previous ap-
proaches focus on training LLMs to directly answer user
queries, the challenge of training LLMs to generate MAS
from user queries introduces a novel difficulty. Unlike real-
world dialogue data, LLMs have limited (if any) knowledge
of MAS generation. Using our proposed data construction
pipeline, we create the first query-MAS-paired dataset, fa-
cilitating the training of LLMs for MAS generation.

3. Methodology
This section first outlines the overall system integrated with
MAS-GPT when processing user queries during inference.
Next, we delve into the specifics of training MAS-GPT, with
a particular focus on the dataset construction process.

3.1. Overall System Integrated with MAS-GPT

We follow a standard workflow: given a user query, a multi-
agent system (MAS) is constructed, with multiple agents
working collaboratively to generate the final answer. Unlike
previous approaches that either manually design the MAS,
rely on fixed and query-agnostic MAS, or incur significant

def forward(query):
math_agent = f'You are a math expert. Solve this\

question: {query}’
math_output = call_llm(math_agent)

feedback_agent = f'Given {query} and {math_output},\
provide feedback’

feedback_output = call_llm(feedback_agent)

refine_agent = f'Given {query}, {math_output} and \
{feedback_output}, provide the final answer’

return call_llm(refine_agent)

Math
Agent

Feedback Agent

Refine
Agent

Figure 2: Our unified code representation of an executable
MAS (i.e., a forward function). Each color denotes an agent.
Agents defined by variables, LLM calls denoted by function
calls, and interactions represented by string concatenations.

computational costs to determine the appropriate MAS, our
approach streamlines the entire process of building MAS by
reducing it to a single LLM inference.

The core of our system is MAS-GPT, an LLM that is trained
to generate MAS tailored specifically to the input query.
Instead of relying on pre-built agent configurations, MAS-
GPT dynamically creates an MAS for each query, ensur-
ing that the system adapts to a wide range of tasks. This
approach not only minimizes the time and computational
resources traditionally required to build the right MAS but
also enhances the system’s flexibility by generating task-
specific solutions in real-time. Finally, the MAS generated
by MAS-GPT can be seamlessly integrated to process the
query and deliver the final answer (bottom right in Figure 3).

3.2. MAS-GPT: Dataset Construction and Training

To achieve the above goal, we reframe building MAS as a
generative language task, where the input is a user query
and the output is an executable MAS capable of processing
that query. This shift to a generative paradigm introduces a
new challenge since there is few (if any) knowledge within
LLMs on MAS generation. To make this approach viable,
the key focus lies in constructing an appropriate dataset to
teach the LLMs such brand-new task. To achieve this, we
propose a consistency-oriented data construction process,
which involves four key steps: (1) construction of query
and MAS pools, (2) inference and evaluation of query-MAS
pairs, (3) inter-consistency-oriented pair selection, (4) intra-
consistency-oriented pair refinement.

Data - Construction of Query and MAS Pools (Rep-
resenting MAS as Executable Code). To construct the
dataset for supervised fine-tuning (SFT), we adopt the fol-
lowing data format: (system prompt, instruction, response).
Here, the system prompt briefly describes the MAS genera-
tion task, the instruction corresponds to the user query, and
the response includes the MAS, which can be extracted by
string matching. Therefore, training the LLM requires the
collection of a series of query-MAS pairs. Firstly, to enable
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Figure 3: Illustrations of dataset construction, training, and inference of our MAS-GPT. After training (which is one-time),
the inference is significantly simplified: MAS-GPT generates a query-specific MAS, which can directly process the query.

MAS-GPT to handle diverse queries, we build a query pool
from open-source queries across various domains, such as
general QA, mathematics, and coding. Each query is care-
fully selected to be verifiable, ensuring the presence of a
ground-truth answer or test cases (e.g., for coding tasks).

While the collection of queries is relatively straightforward,
constructing the MAS pool presents a fundamental chal-
lenge: how to represent an executable MAS. To address this,
we propose unifying the representation of MAS by formaliz-
ing it as executable Python code snippets. This unified rep-
resentation is motivated by the observation that all existing
LLM-based MAS methods are ultimately implemented as
code, encompassing the definition of agents’ prompts, LLM
calls, and inter-agent interactions (Qian et al., 2024a; Hu
et al., 2024; Zhang et al., 2024). Specifically, we define an
MAS as a forward function that takes a user query as input
and returns the final answer generated by the MAS. Within
the forward function, agent prompts are defined as variables,
agent inferences are implemented as function calls, and in-
teractions between agents are represented through string
concatenation; see an example in Figure 2.

Following this framework, we first re-implement several
existing MAS methods (e.g., Multi-Agent Debate (Du
et al., 2024), Self-Consistency (Wang et al., 2024b), Self-
Refine (Madaan et al., 2024)) to align with our unified code
representation. To further expand the diversity of MAS can-
didates, we also manually design some MAS systems, re-
sulting in a base MAS pool comprising over 40 unique MAS
designs (Figure 6). These 40 MAS cover basic elements
such as chain-of-thought prompts, role-playing prompts,
LLM-calling functions, and functions to get code execution
results. As the base LLM does not know our representation
of MAS (verified by poor performance in Figure 5(b)), in-
cluding these basic elements is critical to teach the LLM

our MAS representation. Importantly, these 40+ MAS do
not directly correspond to the exact number of MAS in the
training dataset; rather, they serve as foundations that evolve
during the query-MAS pair refinement process. See more
details about implementation and visualization in Section A.

Data - Evaluation of Query-MAS Pairs. After construct-
ing the query and MAS pools, it is crucial to evaluate the
query-MAS compatibility since not all MAS designs are
equally suitable for every query. To achieve this, we pair
each query and MAS in the pool by inferring the query to
the MAS and evaluating the generated final answer.

Specifically, given the query pool Q = {(Qi, Yi)}Ni=1 and
the base MAS pool M = {MASbase

j }Mj=1, where Qi is
the query, Yi is the information for verification, N and
M denotes the pool size, we obtain N × M pairs. Then,
a query-dependent evaluation function feval(·) will be ap-
plied to evaluate the effectiveness of the query-MAS pair:
scorei,j = feval(MASbase

j (Qi), Yi), where MASbase
j (Qi)

denotes the answer generated by MASbase
j given the query

Qi, 1 and 0 denotes correct and wrong respectively. Overall,
we get M MAS scores for each query Qi, which are denoted
by si = [scorei,1, ..., scorei,M ], laying the foundation for
subsequent steps for selecting appropriate query-MAS pairs
and further refinement.

Data - Inter-Consistency-Oriented Pair Selection. With
the query-MAS pair results obtained from the evaluation
step, the next critical task is to select and construct high-
quality query-MAS pairs for training. The first selection
criterion is intuitive: effectiveness. Specifically, we retain
only the query-MAS pairs where the MAS produces a cor-
rect answer (evaluation score is 1), as MAS designs that
generate correct answers are more likely to be suitable for
their respective queries compared to those that fail.
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While using all the remaining effective query-MAS pairs
for training is straightforward, this approach introduces a
significant problem of low inter-consistency: the same or
similar queries may correspond to multiple different MAS
designs. This lack of consistency makes it difficult for the
model to learn a clear optimization objective, hindering its
ability to understand and perform the task effectively.

To address this issue, we propose an inter-consistency-
oriented pair selection method that optimizes both effective-
ness and inter-consistency. The core idea is to group similar
queries and assign them a single, high-performing MAS to
maintain consistency across the dataset. Specifically, we
cluster queries based on their metadata or embeddings. For
a group of S queries S = {Qi}Si=1, we calculate a cumu-
lative score for each MAS by summing its effectiveness
scores across all queries in the group: s =

∑S
i=1 si. The

MAS with the highest cumulative score is then selected
as the representative MAS for all queries in the group:
MASbase

∗ = argmaxMAS∈M s. Through this, we pair each
specific query with a specific base MAS: (Qi,MASbase

i ).

By aligning similar queries with the same high-performing
MAS, this method improves the inter-consistency of the
query-MAS pairs, facilitating the model in learning to rec-
ognize generalizable patterns and generalize across similar
queries. For example, queries requiring divergent thinking
may be consistently paired with MAS structures where mul-
tiple agents independently generate ideas and then discuss.

Data - Intra-Consistency-Oriented Pair Refinement.
While the inter-consistency-oriented pair selection process
effectively ensures consistency across query-MAS pairs,
there remains a critical issue within individual pairs: intra-
consistency. Specifically, the alignment between a query
and its associated MAS may still be suboptimal, making it
challenging for the model to learn meaningful associations.
For instance, a query about physics may be paired with an
MAS involving experts from multiple domains (e.g., physics
and biology), where the presence of non-relevant agents like
biology experts can confuse the model.

To address this, we propose an intra-consistency-oriented
pair refinement method. This approach aims to improve
the query-MAS alignment through two key strategies: (1)
adjusting MAS to make it query-dependent, and (2) intro-
ducing a reasoning process to strengthen the connection
between the query and MAS. We employ an LLM-based
data synthesis method, where an advanced LLM adjusts
agents’ definitions within the MAS based on the query and
the previously selected MAS. The LLM is also instructed to
generate a reasoning statement that explains the relationship
between the query and the refined MAS, improving the in-
terpretability of the query-MAS pair; please refer to prompt
in Table 11. This process enables the model to better under-
stand the context and logic behind each decision, which in

turn facilitates model training and improves generalization.

Next, we infer and evaluate the refined MAS on the corre-
sponding query, as advanced LLMs could generate inappro-
priate or non-executable MAS. Specifically, for each base
pair (Qi,MASbase

i ), the refined MASrefine
i is tested and ac-

cepted only if it achieves a not-worse score. Formally:

MASi =

{
MASrefine

i , if srefine ≥ sbase

MASbase
i , otherwise

,

where srefine = feval(MASrefine
i (Qi), Yi) and sbase =

feval(MASbase
i (Qi), Yi) are evaluation scores by compar-

ing the MAS-generated and ground-truth answer Yi.

Through this process, each query Qi is ultimately associated
with a tuple (Qi, Ri,MASi), where Ri denotes the reason-
ing statement, and MASi is the final MAS. This refined
dataset ensures both inter- and intra-consistency, providing
high-quality training data for subsequent model fine-tuning.

Training - Supervised Fine-Tuning of MAS-GPT Our
dataset follows the format (system prompt, instruction, re-
sponse). The system prompt briefly describes the task of
generating a query-specific MAS and the instruction corre-
sponds to the user query Qi. The response is constructed
as the concatenation of the reasoning process and the final
MAS, which is represented as executable code in text form.

Building upon this dataset, we perform supervised fine-
tuning of MAS-GPT on the open-source medium-sized
LLM, Qwen2.5-Coder-32B-Instruct (Yang et al., 2024),
leveraging its capabilities of code generation and instruction-
following. During inference, when a user query is received,
MAS-GPT generates an executable MAS tailored to that
specific query Qi: MASgen

i = MAS-GPT(Qi). The gen-
erated MAS is directly usable for processing the query Qi

and delivering the final answer: Ai = MASgen
i (Qi), signif-

icantly simplifying the task handling process.

3.3. Discussions

Advantages. Overall, our system integrated with MAS-
GPT offers the following key advantages: simplicity, cost-
efficiency, and adaptability (generality). Instead of man-
ually designing an MAS for each specific query, relying
on a fixed MAS for all queries, or requiring multiple LLM
inference costs to obtain an MAS for a query, our MAS-
GPT significantly simplifies the process of building an MAS
by reducing into one single LLM inference. Given a user
query, MAS-GPT will efficiently return a query-specific
MAS, which is executable and can be seamlessly applied
to process the query to deliver the final answer. Although
training incurs some cost, it is a one-time expense, whereas
inference is potentially endless in practical applications. We
believe that MAS-GPT has the potential to further advance
the real-world application of MAS due to its simplicity,
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Table 1: Comparing MAS-GPT with 10 baselines across 8 benchmarks using Llama-3-70B-Instruct, MAS-GPT performs the
best on average, verifying its generality in handling diverse queries. Benchmarks with ∗ are out-of-domain for MAS-GPT.

METHOD MATH GSM8K GSM-H H-EVAL∗ H-EVAL+∗ MMLU GPQA∗ SCIBENCH∗ AVG.

SINGLE (DUBEY ET AL., 2024) 50.55 92.38 45.80 79.01 75.78 77.37 36.68 21.05 59.83
CHAIN-OF-THOUGHT (WEI ET AL., 2022) 53.20 92.79 46.20 77.16 77.02 75.56 35.28 17.68 59.36
SELF-CONSISTENCY (WANG ET AL., 2024B) 61.59 94.99 47.20 77.78 75.78 78.18 37.15 20.00 61.58
LLM-DEBATE (DU ET AL., 2024) 61.37 91.58 44.60 74.69 74.53 77.78 34.35 19.79 59.84
SELF-REFINE (MADAAN ET AL., 2024) 58.50 90.78 37.80 67.90 62.73 74.75 38.32 20.00 56.35
QUALITY-DIVERSITY (LU ET AL., 2024) 60.49 92.99 45.60 70.99 70.19 75.76 33.64 20.63 58.79
SPP (WANG ET AL., 2024C) 51.66 92.79 44.80 76.54 73.29 77.37 35.05 20.84 59.04
AGENTVERSE (CHEN ET AL., 2024) 55.63 93.39 41.40 77.78 73.91 76.57 40.19 16.00 59.36
GPTSWARM (ZHUGE ET AL., 2024) 55.41 93.19 43.20 69.14 73.91 75.15 36.45 14.11 57.57
DYLAN (LIU ET AL., 2024B) 59.60 91.18 44.80 79.01 75.78 78.18 35.98 19.79 60.54
MAS-GPT (OURS) 68.65 93.39 62.40 80.25 78.88 78.38 37.62 24.21 65.47

Table 2: Statistics of MAS-GPT’s training dataset. We show
the number of samples Ndata; the averaged instruction Lins;
the averaged response Lres, reasoning Lrsn, and MAS
length LMAS ; and the number of unique MAS NMAS .

Ndata Lins Lres Lrsn LMAS NMAS

11442 ∼ 75.0 ∼ 1062.3 ∼ 262.5 ∼ 784.8 7580

cost-efficiency, and adaptability.

Cost. While MAS-GPT simplifies the application of MAS
during inference time, it incurs cost for collecting data and
training LLMs. However, training is one-time while in-
ference could be endless (similarly OpenAI trains GPT-4
for one time and serves the world countless times). The
MAS-GPT is trained on diverse data only once, and then
can generalize to diverse domains for wide applications.
Training-time efficiency is not the focus of this paper, which
could be a potential future direction.

We believe that this paradigm is scalable due to an exciting
and promising property of MAS-GPT: it could stand on the
shoulders of giants. Ideally, if we could include all existing
high-performance MAS methods into the MAS pool, in real-
world applications, we only need to deploy MAS-GPT to
solve diverse user queries, rather than deploying multiple
MAS and designing complicated rules to select them.

4. Experiments
4.1. Experimental Setups

Training. Our training queries are sampled from the train-
ing splits available in MATH (Hendrycks et al., 2021b),
GSM8K (Cobbe et al., 2021), MBPP (Austin et al., 2021),
MMLU (Hendrycks et al., 2021a), and SciQ (Welbl et al.,
2017), covering domains of math, coding, and general QA.
Llama-3-70B-Instruct is used during dataset construction.
The number of training samples (i.e., query-MAS pairs) is
approximately 11k. We report the statistics of our dataset in
Table 2, where the number of unique MAS is measured
by string comparisons. Our MAS-GPT is trained over

Qwen2.5-Coder-32B-Instruct (Yang et al., 2024), leveraging
its instruction-following and coding capabilities. We train
the LLM using 16 A100s with an effective batch size of 32
for 3 epochs at a learning rate of 1e-5 (Zheng et al., 2024).

Testing. To verify that our MAS-GPT can handle di-
verse queries in practice, we consider multiple benchmarks
from diverse domains. These include MATH (Hendrycks
et al., 2021b), GSM8K (Cobbe et al., 2021), GSM-
Hard (Gao et al., 2023), AIME-2024 for math domains;
HumanEval (Chen et al., 2021) and HumanEval+ (Liu
et al., 2023) for coding tasks; MMLU (Hendrycks et al.,
2021a) for general QA tasks; GPQA (Rein et al., 2023) and
SciBench (Wang et al., 2024a) for science topics. Among
these, AIME-2024, HumanEval, HumanEval+, GPQA, and
SciBench are from a totally different distributions com-
pared to training data, serving to verify the generalization
capability of MAS-GPT. While there are samples related
to mathematics and science during training, during testing,
the problems in AIME, GPQA, and SciBench are much
more challenging. Please refer to Table 10 for details about
datasets and Section C.2 for details about evaluation. For
all baselines, the LLMs that drive the MAS to process user
queries are kept the same, where we consider five state-of-
the-art LLMs including Llama-3-70B-Instruct (Dubey et al.,
2024), Qwen2.5-72B-Instruct (Yang et al., 2024), GPT-4o-
mini-2024-07-18 (OpenAI, 2024a), o1-preview-2024-09-
12 (OpenAI, 2024b), and Deepseek-R1 (Guo et al., 2025).

Baselines. For fair comparisons, we consider 11 base-
lines that are suitable for handling diverse tasks. We in-
clude single agent and agent with chain-of-thought (Wei
et al., 2022) as two basic baselines, Self-Consistency (Wang
et al., 2024b) and Quality-Diversity (Lu et al., 2024) that
select the best from multiple answers, LLM-Debate (Du
et al., 2024) that involves multiple experts for debating,
Self-Refine (Madaan et al., 2024) that iteratively refines last
agent’s answer, SPP (Wang et al., 2024c) that stimulates con-
versations among multiple roles, AgentVerse (Chen et al.,
2024) and DyLAN (Liu et al., 2024b) that dynamically ad-
just multi-agent team during inference, GPTSwarm (Zhuge
et al., 2024) that relies on a graph collaboration structure.
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We also compare with an MAS optimized by AFlow (Zhang
et al., 2024) on math task.

4.2. Main Results

Since our proposed MAS-GPT aims to facilitate the multi-
agent systems in flexibly handling diverse queries, our re-
sults focus on the keyword of generality. Here, we show
the generality of MAS-GPT by comparing performance
averaged on various benchmarks and performance using
different LLMs to drive the MAS.

MAS-GPT’s generality in handling diverse queries. We
compare MAS-GPT with 10 baselines on 8 benchmarks
using Llama-3-70B-Instruct (Dubey et al., 2024) to drive
the MAS, with results reported in Table 1. GPQA and
SciBench are two benchmarks that are out-of-domain for
our MAS-GPT. From the table, we see that (1) our MAS-
GPT significantly outperforms the baseline methods on av-
erage, outperforming the second-best method by 3.89%. (2)
Our MAS-GPT simultaneously achieves promising perfor-
mance in both in-domain and out-of-domain (i.e., queries
that are significantly different from those in the training
data) benchmarks, indicating MAS-GPT’s generality. (3)
MAS-GPT is the only method that consistently achieves bet-
ter performance than single agent, indicating its robustness
in handling diverse queries.

Generality in using diverse LLM backbones for MAS.
Llama-3-70B-Instruct was utilized to drive MAS during the
dataset construction phase for training MAS-GPT, a 32B-
sized LLM. As shown in Table 1, this approach proves effec-
tive when employing the same LLM to drive MAS during
test time. To further validate the versatility of MAS-GPT, we
assess its performance under different MAS-driving LLMs,
including Qwen2.5-72B-Instruct and GPT-4o-mini-2024-
07-18, in Table 3. The results demonstrate that MAS-GPT
consistently achieves superior performance, regardless of
the LLM used to drive MAS, highlighting its strong compat-
ibility and adaptability across various MAS-driving LLMs.

MAS-GPT’s potential in further augmenting the rea-
soning performance of strong reasoning LLMs such as
o1. In recent developments, the AI community has intro-
duced several state-of-the-art reasoning LLMs (OpenAI,
2024b; Qwen, 2024), which have demonstrated remark-
able reasoning capabilities by scaling inference-time com-
putations (Snell et al., 2024). In this context, we aim to
explore whether our proposed MAS-GPT can take the rea-
soning power of these already advanced models even further.
To test this, we conduct experiments using OpenAI’s o1-
preview (OpenAI, 2024b) and Deepseek-R1 (Guo et al.,
2025), evaluating them on the highly challenging AIME-
2024 mathematical benchmark1. The results, as shown in

1https://huggingface.co/datasets/Maxwell-Jia/AIME 2024

Table 3: MAS-GPT consistently performs the best across
MAS-driving LLMs, indicating its strong compatibility.

METHOD MATH GSM-H H-EVAL+ MMLU GPQA AVG.

QWEN2.5-72B-INSTRUCT
SINGLE 85.86 64.91 85.37 82.60 44.39 72.63
COT 86.90 62.27 84.15 83.20 47.86 72.88
SELF-CON. 87.32 61.46 87.20 83.40 50.00 73.88
LLM-DEBATE 85.24 63.49 68.90 86.20 47.86 70.34
SELF-REFINE 83.58 59.03 78.66 85.40 43.32 70.00
Q-D 85.65 63.08 76.83 82.80 48.66 71.40
SPP 85.65 62.88 82.32 83.40 48.40 72.53
AGENTVERSE 84.82 59.43 81.10 83.20 44.65 70.64
GPTSWARM 83.16 63.89 83.54 84.60 44.92 72.02
DYLAN 87.73 63.08 85.37 84.40 51.07 74.33
MAS-GPT 87.53 66.33 85.98 83.80 48.66 74.46

GPT-4O-MINI-2024-07-18
SINGLE 78.18 58.03 86.25 78.56 38.03 67.81
COT 78.79 60.84 85.62 79.16 39.60 68.80
SELF-CON. 81.62 59.04 85.00 80.96 39.82 69.29
LLM-DEBATE 79.60 60.84 86.25 80.76 37.81 69.05
SELF-REFINE 74.55 54.62 76.88 79.16 33.33 63.71
Q-D 79.80 59.64 84.38 79.76 37.58 68.23
SPP 77.58 57.63 86.25 77.96 37.58 67.40
AGENTVERSE 75.15 55.62 79.38 78.36 36.24 64.95
GPTSWARM 75.15 55.62 79.38 78.36 36.32 64.97
DYLAN 81.21 59.24 80.62 79.96 40.94 68.39
MAS-GPT 81.21 61.45 86.88 80.36 42.60 70.50

Figure 4(a), show that our proposed MAS-GPT significantly
outperforms the baseline methods on this challenging task.
Specifically, it can improve over the single LLM by a large
margin: 13.34%. This result not only verifies the generality
of our proposed MAS-GPT, but also indicates its promising
potential in pushing the boundaries of LLM reasoning.

Comparisons with task-specific methods, AFlow. To
further demonstrate the generality and effectiveness of
our MAS-GPT during inference time, we compare with
AFlow (Zhang et al., 2024), a latest task-specific method
for MAS optimization that has been specifically optimized
on MATH (Hendrycks et al., 2021b) dataset. We evalu-
ate on two AFlow’s in-domain (MATH and GSM8K) and
two AFlow’s out-domain (MMLU and HumanEval+) bench-
marks. Results in Figure 4(b) show surprisingly good per-
formance of our proposed MAS-GPT. As a general method,
our MAS-GPT even outperforms math-specific AFlow on
the MATH dataset by 3.53%! Meanwhile, the MAS op-
timized on MATH by AFlow fails to generalize to other
domains, achieving worse performance than a single LLM.
In contrast, our MAS-GPT consistently performs the best
across these benchmarks. It is also worth mentioning that
our MAS-GPT only requires one-time inference of a 32B-
sized LLM to build the MAS; while AFlow needs to call the
APIs of powerful proprietary LLMs, such as Claude-3.5-
Sonnet (Anthropic, 2024), 10 times per query and depends
on a hold-out validation set.

Cost comparisons. Here, we compare the inference cost of
various methods from the moment a user query is received
to the generation of the final answer, as illustrated in Fig-
ure 4(c). We quantify the inference cost in terms of the
number of LLM inference calls (Liu et al., 2024b), interpret-
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Figure 4: (a) Different methods empowered with strong reasoning LLM: o1-preview. We see that our MAS-GPT significantly
enhance the reasoning performance over single LLM, indicating its potential in further augmenting LLM reasoning. (b)
Comparisons with AFlow (optimized on MATH). MAS-GPT even outperforms AFlow on its in-domain benchmarks; while
AFlow fails on out-of-domain benchmarks. (c) MAS-GPT achieves the best performance with low inference cost.

Table 4: Ablation studies on the designs of dataset construc-
tion: (1) our inter-consistency-oriented pair selection, (2)
the adjustment of MAS in our intra-consistency-oriented
pair refinement: Refine-A, (3) the introduction of reasoning
process in our intra-consistency-oriented pair refinement:
Refine-R. The table shows that these three designs all play
critical roles in achieving high task performance.

SELECT REFINE-A REFINE-R MATH MMLU GPQA

➀ ✗ ✓ ✓ 60.26 77.58 36.68
➁ ✓ ✗ ✓ 66.23 77.78 36.45
➂ ✓ ✓ ✗ 64.90 75.96 37.15
➃ ✓ ✓ ✓ 68.65 78.38 37.62

ing the inference of MAS-GPT as 0.5 times, given that its
model size is approximately half that of the MAS-driving
LLM (32B v.s. 70B). From the figure, we observe that,
among the four methods compared, MAS-GPT achieves the
best performance while requiring the fewest inference calls,
demonstrating its efficiency and effectiveness.

4.3. Analysis of MAS-GPT

Effectiveness of inter-consistency-oriented pair selection.
During data construction, to facilitate the model in recog-
nizing generalizable patterns between queries and MAS,
we propose an inter-consistency-oriented query-MAS pair
selection method, which maps similar queries with consis-
tent high-performing MAS. To examine its effectiveness,
we replace this mapping with a random mapping approach,
which randomly selects one out of those MAS with correct
answers. From Table 4, by comparing ➀ and ➃, we see that
our proposed method brings significant performance gain,
with an absolute improvement of 8.39% on MATH.

Effectiveness of intra-consistency-oriented pair refine-
ment. During data construction, to help the model learn the
associations between query and MAS, we propose an intra-

consistency-oriented query-MAS pair refinement method.
This method enhances the alignment between query and
MAS by adjusting MAS to make it query-dependent and
introducing a reasoning process to strengthen the logical
connection. To examine their effects, we conduct two ex-
periments with one without adjustment of MAS and one
without reasoning process. From Table 4, by comparing
➁ and ➃, ➂ and ➃, we see that our designs in adjusting
MAS and introducing reasoning process both contribute to
performance improvement, indicating the effectiveness of
our proposed intra-consistency-oriented pair refinement.

Scaling effects of data size. To explore the scaling effects
of data size for training MAS-GPT, we adjust the size from
0 to 11k using the same 32B-sized model and compare the
extractability (i.e., the Python code can be extracted), ex-
ecutability (i.e., the code is executable), task performance.
Results in Figure 5(a) show that except for the extractability
under 0 data sample (the base model knows that it needs
to generate Python code, but do not know what codes are
needed), the extractability and executability generally im-
proves with the data scale. Results in Figure 5(b) show
(1) the base model is unable to generate an effective MAS
in zero-shot setting, indicating the necessity for training
MAS-GPT. Overall, we observe a promising scaling trend of
training MAS-GPT: more data leads to better performance.

Scaling effects of model size. Here, we compare the per-
formance of MAS-GPT trained based on 7B, 14B, and 32B
models. Results in Figure 5(c) show that the performance of
MAS-GPT improves steadily with the growing model size.
Overall, these findings demonstrate the promising potential
of MAS-GPT, suggesting that it can be further improved
with more diverse, high-quality data and stronger models as
the community continues to advance.

Examining the generated MAS. To ensure that our MAS-
GPT is not simply memorizing those MAS seen during the
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Figure 5: Explorations of scaling in training MAS-GPT. (a) More data leads to fewer execution failures. (b) More data
contributes to better performance of MAS-GPT in facilitating MAS application. Without training (N=0), the model fails,
highlighting that MAS generation is a non-trivial task requiring specific training. (c) Larger model generally contributes
to better performance. These findings demonstrate the promising potential of MAS-GPT, suggesting that it can be further
improved with more diverse, high-quality data and stronger models as the community continues to advance.

Table 5: The proportions of generated MAS that are novel
compared to those in the training set. We see that MAS-GPT
is not simply memorizing MAS seen during training; rather
it learns to generate appropriate query-dependent MAS.

BENCHMARK GSM-H MATH SCIBENCH MMLU

NOVEL (%) 92.5 69.0 71.0 42.9

training process, we compare the generated MAS given
queries during testing with those in the training set. We
report the proportion of novel MAS in Table 5. From the ta-
ble, we see that our MAS-GPT indeed generates novel MAS
during test time. The proportions are not consistent across
benchmarks, which may stem from the varying diversity of
MAS associated with different domains during training.

To offer an intuitive understanding, we present several ex-
amples in Appendix showcasing the query, the MAS-GPT-
generated reasoning process, and the MAS-GPT-generated
MAS. These show that MAS-GPT can generate query-
specific MAS (Section B.1), generalize to unseen queries
(Section B.2), generate novel MAS (Section B.3).

5. Conclusions
Building MAS was time-consuming and resource-intensive.
This paper aims to streamline this process into a single LLM
inference, making MAS creation as effortless as querying
ChatGPT. To this end, we introduce MAS-GPT, an LLM
specifically trained to generate executable MAS from ar-
bitrary user queries. Our approach follows a data-driven
spirit, leveraging a consistency-oriented data construction
pipeline to enhance the coherence and consistency of data
pairs. We conduct extensive experiments, comparing MAS-
GPT against 10+ baseline methods across 9 benchmarks,
using 5 different LLMs as MAS drivers. The results consis-

tently demonstrate that MAS-GPT outperforms all baselines,
strongly validating its effectiveness and generalizability. Ad-
ditionally, we observe MAS-GPT’s potential to further en-
hance state-of-the-art reasoning capabilities, as well as its
scalability for continued improvements. We believe MAS-
GPT can accelerate the adoption of MAS, inspiring future
research and real-world applications.

Limitations and Future Works. While MAS-GPT shows
promising results, several limitations and avenues for future
work remain. First, constrained by limited human annota-
tion and computational resources, the diversity of our initial
MAS library and the final training set, potentially biased
by mapping multiple queries to strong-performing MAS
instances, could be further improved. Second, beyond code
execution, integrating additional tools like multi-modal data
processing and web search tools could significantly enhance
MAS-GPT’s capabilities. Third, as a foundational step, our
current work utilizes only supervised fine-tuning (SFT);
future research could explore reinforcement learning (RL)
methods to enable MAS-GPT to autonomously explore and
refine MAS generation. We believe that there is substantial
room to explore along this direction, continuously advanc-
ing the flexibility of MAS in real-world applications.

Impact Statement
This paper presents an advancement in simplifying the ap-
plication of LLM-based multi-agent systems (MAS). Our
MAS-GPT significantly reduces the complexity of design-
ing and deploying MAS for a wide range of tasks. Our
approach not only makes MAS development more acces-
sible and efficient but also improves scalability, enabling
its broader application in real-world scenarios. While the
potential negative impacts of our approach are similar to
those associated with large language models, such as eth-
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ical concerns and misuse, these are inherent to the use of
LLMs in general and do not require further elaboration in
this context.
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A. Details of The Initial MAS Pool
A.1. Implementations

We totally implement 40+ MAS in our initial MAS pool, which covers basic elements such as chain-of-thought prompts,
role-playing prompts, LLM-calling functions, and functions to get code execution results. As the base LLM does not know
our representation of MAS (verified by poor performance in Figure 5(b), N=0), including these basic elements is critical to
teach the LLM our MAS representation.

Basic functions:

1. call llm(prompt), which takes the prompt as input and outputs the response generated by the LLM.

2. execute code(code text), which takes a code snippet as input and outputs the execution results (including printed
information or errors).

3. test code get feedback(code, test cases), which tests the given code with the test cases and returns the feedback.

4. get function signature(llm, taskInfo), which calls the LLM to return the generated function signature for the given task.

5. get test cases(llm, taskInfo, function signature), which calls the LLM to return the generated test cases for the given
task and function signature.

6. extract code solution(solution), which returns the code by extracting (wrapped within ¡Code Solution¿ and ¡/Code
Solution¿) from the given solution.

7. generate and extract code(llm, prompt), which calls the LLM to return the generated response and the extracted code
from the response (based on extract code solution(solution)).

Representing MAS as python code is a promising direction, as most functionalities in our AI community can be represented
by python code. Along this new direction, we believe that with more data, tools, MAS, MAS-GPT could be continually
improved.

A.2. Visualization of Our MAS pool

We visualize several MAS in our MAS pool in Figure 6.

B. Case Study
B.1. MAS-GPT Can Generate Query-Specific MAS

From Table 6, we see that given a query, MAS-GPT first provides a reasoning process in analyzing the domain, difficulty,
and required knowledge of the query. Secondly, MAS-GPT analyzes what multi-agent system is appropriate for addressing
the question effectively and decides the required agents and structure.

Finally, MAS-GPT generates a query-specific MAS (Listing 1 and Figure 7(a)), which involves five agents with specific
tasks targeting the query and a final decision-making agent to provide the final answer.

This indicates that MAS-GPT can flexibly generate a query-specific MAS within one single LLM inference.

B.2. MAS-GPT Can Generalize to Unseen Queries

From Table 7, we see that given a query whose domain is unseen from our training dataset, MAS-GPT still works well.
Specifically, it first analyzes the involved domain, the required understandings, and the difficulty of the given query. Secondly,
it figures out a well-suited multi-agent system to answer the query, which directly mentions what agents and what structure
are appropriate.

Finally, MAS-GPT generates a query-specific MAS (Listing 2 and Figure 7(b)), which involves four parallel pipelines: two
pipelines that answer the query via coding and two pipelines that directly answer the query. The first two pipelines are
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Table 6: Case 1: user query and the reasoning process generated by our MAS-GPT. MAS-GPT firstly analyzes the domain,
difficulty, and required knowledge, then propose the idea of what multi-agent system is appropriate.

Query The following is a multiple-choice question: Which of the following statements about any two events
A and B is true?

The following choices are provided:
(A) P (A ∪B) implies events A and B are independent.
(B) P (A ∪B) = 0 implies events A and B are mutually exclusive.
(C) P (A ∩B) implies events A and B are independent.
(D) P (A ∪B) implies events A and B are mutually exclusive.
(E) P (A ∩B) = 0 implies events A and B are mutually exclusive.
(F) P (A ∩B) = 1 implies events A and B are independent.
(G) P (A ∪B) = 1 implies events A and B are independent.
(H) P (A ∩B) = 1 implies events A and B are mutually exclusive.
(I) P (A ∪B) = 1 implies events A and B are mutually exclusive.
(J) P (A ∩B) = 0 implies events A and B are independent.

Please finish your answer with ”the answer is (X)” where X is the correct letter choice.

Reasoning
generated by
MAS-GPT

The question is a multiple-choice problem in the domain of probability theory, specifically focusing
on the relationships between events, such as independence and mutual exclusivity. The difficulty lies
in the need for precise understanding of probability concepts and their implications, as well as the
ability to analyze and evaluate multiple statements to identify the correct one. This requires both
theoretical knowledge and logical reasoning.

To address this question effectively, a multi-agent system should include agents that special-
ize in analyzing the relationships between events in probability theory. Each agent should focus on
a specific aspect of the problem, such as independence, mutual exclusivity, or the implications of
specific probability values (e.g., P (A ∩B) = 0 or P (A ∪B) = 1). By dividing the task into these
focused analyses, the system ensures comprehensive coverage of the problem space. Additionally, a
final decision-making agent is necessary to synthesize the insights from all agents and provide a
well-reasoned final answer. This structure ensures that the system can handle the complexity of the
question while leveraging the strengths of specialized reasoning agents. The system is designed to
align with the specific requirements of the question, ensuring that each agent contributes relevant and
precise insights to the solution process.

both consisted of two agents: one for writing and executing the code, and one for organizing the final answer. Finally, an
aggregation agent reasons over the four solutions and provides the final answer.

This indicates that MAS-GPT can generalize to unseen queries and generate appropriate MAS.

B.3. MAS-GPT Can Generate Novel MAS

From Table 8 and Listing 3 (Figure 7(c)), we see that given a query, the MAS-GPT proposes a novel MAS that is unseen
from our base MAS pool. Specifically, it builds an MAS with five parallel pipelines, where each pipeline actually involves an
agent for answering the question and another agent for refining the solution. Finally, a decision-making agent is introduced
to provide the final answer.

This shows that MAS-GPT is not merely memorizing the data during training, but actually learns patterns of designing
MAS, indicating the generalization ability of our proposed MAS-GPT.

Listing 1: Case 1: Multi-agent system generated by MAS-GPT. MAS-GPT can generate query-specific MAS. MAS-GPT
designs five independent responding agents, each responsible for different aspects of the task.
1 from utils import *
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2

3 class MAS():
4 def __init__(self, model_list):
5 self.llm = LLM(model_list)
6

7 def forward(self, taskInfo):
8 """
9 A multi-agent system for solving probability-related multiple-choice questions.

10

11 Steps:
12 1. 5 agents analyze the task independently, each focusing on a specific

aspect of probability theory.
13 2. A final decision-making agent reasons over the solutions and provides

the final solution.
14 """
15

16 # Step-by-step instruction for each agent to reason and generate answer
17 instructions = [
18 f"Task: {taskInfo}\n\nFocus on analyzing the relationship between events A

and B in terms of independence. Solve the task.",
19 f"Task: {taskInfo}\n\nFocus on analyzing the relationship between events A

and B in terms of mutual exclusivity. Solve the task.",
20 f"Task: {taskInfo}\n\nFocus on the implications of P(A \cup B) and P(A \cap

B) on the relationship between events A and B. Solve the task.",
21 f"Task: {taskInfo}\n\nFocus on the definitions and properties of

probability union and intersection. Solve the task.",
22 f"Task: {taskInfo}\n\nFocus on identifying any logical inconsistencies or

impossibilities in the given choices. Solve the task."
23 ]
24

25 # Call the llm to generate each solution
26 cot_results = [self.llm.call_llm(instruction) for instruction in instructions]
27

28 # Get the instruction for the final decision-making agent based on all
generated solutions

29 final_decision_instruction = self.get_final_decision_instruction(taskInfo,
cot_results)

30

31 # Call the llm to process the final decision-making instruction and generate
the final answer

32 final_decision_result = self.llm.call_llm(final_decision_instruction)
33

34 # Return the final solution
35 return final_decision_result
36

37 def get_final_decision_instruction(self, taskInfo, cot_results):
38 """
39 Format an instruction for final decision-making based on a given task

description and a list of solutions.
40

41 Args:
42 taskInfo (str): A description of the task that needs to be completed.
43 cot_results (list): A list containing solutions or reasoning steps for the

task.
44

45 Returns:
46 str: A formatted instruction that includes the task description, each

solution, and a prompt for final decision-making.
47 """
48

49 # Initialize the instruction text with a general guideline
50 instruction = f"Task:\n{taskInfo}\n\n"
51

52 # Append each solution from cot_results to the instruction
53 for i, result in enumerate(cot_results):
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54 instruction += f"Solution {i+1}:\n{result}\n\n" # Number each solution for
clarity

55

56 # Add the final prompt to encourage reasoning over the solutions and provide a
final answer

57 instruction += "Given all the above solutions, reason over them carefully and
provide a final answer to the task."

58

59 # Return the complete instruction text
60 return instruction

Table 7: Case 2: user query and the reasoning process generated by our MAS-GPT. MAS-GPT firstly analyzes the
domain,required elements, and the difficulty, then propose the idea of what multi-agent system is appropriate.

Query An electric dipole consisting of charges of magnitude 1.50nC separated by 6.20µm is in an electric
field of strength 1100 N/C. What is the magnitude of the electric dipole moment?

Reasoning
generated by
MAS-GPT

The question involves calculating the magnitude of the electric dipole moment, a concept rooted
in physics, specifically in the domain of electromagnetism. The problem requires understanding
the relationship between the charges, their separation, and the resulting dipole moment. While
the mathematical computation is straightforward, the problem demands precise application of the
formula for the dipole moment and careful handling of units, which adds a layer of complexity.

To address this, one would analyze the question by identifying the key variables (charge
magnitude, separation distance) and the formula (dipole moment = charge × separation).

A multi-agent system is well-suited for this task because it can leverage multiple approaches to ensure
accuracy and robustness. First, agents can independently break down the problem into steps, generate
Python code to compute the solution, and execute the code to verify the calculations. This ensures
that the solution is not only theoretically correct but also computationally validated. Additionally,
other agents can directly generate solutions without code, providing a baseline for comparison.
Finally, an evaluation agent can synthesize the outputs from all agents, ensuring consistency and
selecting the most reliable solution. This multi-faceted approach is particularly effective for scientific
problems where both analytical and computational accuracy are critical.

Listing 2: Case 2: Multi-agent system generated by MAS-GPT. MAS-GPT can generalize to unseen queries from
SciBench (Wang et al., 2024a), generating an appropriate multi-agent system to handle the query.
1 from utils import *
2

3 class MAS():
4 def __init__(self, model_list):
5 self.llm = LLM(model_list)
6

7 def forward(self, taskInfo):
8 """
9 A multi-agent system for solving math problems by executing code and directly

answering.
10 Steps:
11 1. 2 agents independently solves the problem by breaking it down into steps and

generating code, where each agent organizes the solution based on the code
execution results, ensuring clarity and correctness.

12 2. 2 agents generate a solution directly, which provides baseline solutions
especially when code generation is challenging

13 3. A final agent evaluates all the solutions and determines the final solution.
14 """
15 # 4 parallel pipelines to solve the problem independently
16 solutions = []
17
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18 # The first two pipelines generate code to solve the problem
19 for _ in range(2):
20 answer, output = self.generate_code_get_output(taskInfo)
21 solution = self.organize(taskInfo, answer, output)
22 solutions.append(solution)
23

24 # The third pipeline generates a solution directly
25 for _ in range(2):
26 solution = self.llm.call_llm(taskInfo)
27 solutions.append(solution)
28

29 # Determine the final solution based on the generated solutions
30 final_solution = self.get_final_solution(taskInfo, solutions)
31 return final_solution
32

33 def generate_code_get_output(self, taskInfo):
34 """
35 Generate Python code to solve the mathematical problem and execute the code to get

the output.
36 Args:
37 taskInfo (str): The mathematical problem to be solved.
38 Returns:
39 a tuple containing:
40 - str: The answer generated by the LLM model.
41 - str: The output of the code execution.
42 """
43 code_generation_instruction = f"""You are an expert in solving mathematical

problems.
44 **Problem:**
45 {taskInfo}
46 **Instructions:**
47 1. Analyze the problem and list the steps required to solve it.
48 2. Generate Python code that can help solve the problem. The code should:
49 - Print important intermediate results in the calculation process, along with clear

explanations.
50 - Store the final calculation result in a variable named ‘output‘. This variable should

contain the final result of the computation and be defined at the global scope.
51 - Be directly executable. The code should run and produce a result when executed.
52 Wrap your final code solution in <Code Solution> and </Code Solution>. For example:
53 <Code Solution>
54 Your function code here
55 </Code Solution>
56 """
57 # Call ‘generate_and_extract_code‘ to generate answer and extract the code
58 answer, code = generate_and_extract_code(llm=self.llm, prompt=

code_generation_instruction)
59

60 # Call ‘execute_code‘ to execute the generated code and get output
61 output = execute_code(code)
62 return answer, output
63

64 def organize(self, taskInfo, answer, result):
65 """
66 Organize the solution based on the code execution results.
67 Args:
68 taskInfo (str): The mathematical problem to be solved.
69 answer (str): The initial solution generated by the LLM model.
70 result (str): The output of the code execution.
71 Returns:
72 str: The organized solution based on the code execution results.
73 """
74 organize_instruction = f"""**Problem:**
75 {taskInfo}
76 **Initial Solution:**
77 {answer}
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78 **Code Execution Result:**
79 {result}
80 To solve the **Problem**, the **Initial Solution** provides steps and python code for

calculations. The **Code Execution Result** is the output of the code.
81 Based on the **Initial Solution** and **Code Execution Result**, provide a final

solution to the problem. Include the results of the code calculation in your
response. Your final response should be complete as if you are directly answering
the problem."""

82 solution = self.llm.call_llm(organize_instruction)
83 return solution
84

85 def get_final_solution(self, taskInfo, solutions):
86 """
87 Evaluate the solutions provided by the agents and determine the final solution.
88 Args:
89 taskInfo (str): The mathematical problem to be solved.
90 solutions (list): A list of solutions provided by the agents.
91 Returns:
92 str: The final solution to the mathematical problem.
93 """
94 # Prepare the solutions in a numbered format for evaluation
95 solutions_str = ""
96 for i, solution in enumerate(solutions):
97 solutions_str += f"Solution {i+1}\n{solution}\n\n"
98

99 final_solution_instruction = f"""**Problem:**
100 {taskInfo}
101 **Solutions:**
102 {solutions_str}
103 Several solutions are given to solve the problem. Carefully evaluate these solutions.

This consistency in answers is crucial for determining the most reliable solution.
104 You should provide a final solution to the problem. Your final response should be

complete as if you are directly answering the problem."""
105 final_solution = self.llm.call_llm(final_solution_instruction)
106 return final_solution
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Table 8: Case 3: user query and the reasoning process generated by our MAS-GPT. MAS-GPT firstly analyzes the domain,
difficulty, and required knowledge, then propose the idea of what multi-agent system is appropriate.

Query The following is a multiple-choice question: Suppose that there are two firms in the market facing no
costs of production and a demand curve given by Q = 150 - P for their identical products. Suppose
the two firms choose prices simultaneously as in the Bertrand model. Compute the prices in the nash
equilibrium.

The following choices are provided:
(A) 30
(B) 50
(C) 0
(D) 25
(E) 150
(F) 75
(G) 90
(H) 120
(I) 100
(J) 60

Please finish your answer with ”the answer is (X)” where X is the correct letter choice.

Reasoning
generated by
MAS-GPT

The question pertains to a classic economic problem in the domain of game theory and microeco-
nomics, specifically focusing on the Bertrand model of price competition. The difficulty lies in
understanding the strategic interaction between two firms, the implications of no production costs,
and the Nash equilibrium concept. Solving this requires both theoretical knowledge of economic
models and the ability to apply mathematical reasoning to derive the equilibrium price.

To address such a question, one must first break it down into its core components: the de-
mand curve, the firms’ identical products, and the simultaneous price-setting behavior.

A multi-agent system is well-suited for this task because it can leverage multiple perspec-
tives to ensure accuracy and depth in reasoning. By employing agents that independently analyze the
problem, generate solutions, and refine their responses through iterative feedback, the system ensures
a robust exploration of the problem space. This approach is particularly valuable for a question like
this, where multiple solution paths (e.g., algebraic derivation, economic intuition) can lead to the
correct answer. The iterative refinement process allows for cross-verification of solutions, reducing
the likelihood of errors. Finally, a decision-making agent synthesizes the diverse solutions, ensuring
that the final answer is both logically sound and consistent with the principles of the Bertrand model.
This structured reasoning process aligns with the complexity of the question and ensures a reliable
outcome.

Listing 3: Case 3: Multi-agent system generated by MAS-GPT. MAS-GPT can generate novel MAS.
1 from utils import *
2

3 class MAS():
4 def __init__(self, model_list):
5 self.llm = LLM(model_list)
6

7 def forward(self, taskInfo):
8 """
9 A multi-agent system for solving general tasks.

10
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11 Steps:
12 1. 5 agents solve the task independently.
13 2. Each agent reflects on the solutions and provides an improved solution.
14 3. A final decision-making agent reasons over the improved solutions and

provides the final solution.
15 """
16 # Step-by-step instruction for each agent to reason and generate answer
17 instruction = f"Task: {taskInfo}\n\nPlease solve the task."
18

19 # Set the number of solutions to generate; using 5 for variety and diversity
20 N = 5
21 # Call the llm to generate each solution
22 cot_results = [self.llm.call_llm(instruction) for _ in range(N)]
23

24 # Get the instruction for the self-refine process based on all generated
solutions

25 self_refine_instruction = self.get_self_refine_instruction(taskInfo,
cot_results)

26

27 # Call the llm to refine each solution
28 refined_results = [self.llm.call_llm(self_refine_instruction) for _ in range(N)

]
29

30 # Get the final decision-making instruction based on all refined solutions
31 final_decision_instruction = self.get_final_decision_instruction(taskInfo,

refined_results)
32

33 # Call the llm to process the final decision-making instruction and generate
the final answer

34 final_decision_result = self.llm.call_llm(final_decision_instruction)
35

36 # Return the final solution
37 return final_decision_result
38

39 def get_self_refine_instruction(self, taskInfo, cot_results):
40 """
41 Format an instruction for self-refinement based on a given task description and

a list of solutions.
42

43 Args:
44 taskInfo (str): A description of the task that needs to be completed.
45 cot_results (list): A list containing solutions or reasoning steps for the

task.
46

47 Returns:
48 str: A formatted instruction that includes the task description, each

solution, and a prompt for self-refinement.
49 """
50

51 # Initialize the instruction text with a general guideline
52 instruction = f"Task:\n{taskInfo}\n\n"
53

54 # Append each solution from cot_results to the instruction
55 for i, result in enumerate(cot_results):
56 instruction += f"Solution {i+1}:\n{result}\n\n" # Number each solution for

clarity
57

58 # Add the final prompt to encourage self-refinement and improvement
59 instruction += "Given all the above solutions, reason over them carefully and

provide an improved solution to the task."
60

61 # Return the complete instruction text
62 return instruction
63

64 def get_final_decision_instruction(self, taskInfo, refined_results):
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METHOD HUMANEVAL HUMANEVAL-PLUS MATH

CHATDEV (QIAN ET AL., 2024A) 83.33 84.04 62.07
MAS-GPT (OURS) 91.18 87.23 77.59

Table 9: Comparisons with task-specific method, ChatDev (Qian et al., 2024a), which is specifically designed for software
development.

65 """
66 Format an instruction for final decision-making based on a given task

description and a list of refined solutions.
67

68 Args:
69 taskInfo (str): A description of the task that needs to be completed.
70 refined_results (list): A list containing refined solutions for the task.
71

72 Returns:
73 str: A formatted instruction that includes the task description, each

refined solution, and a prompt for final decision-making.
74 """
75

76 # Initialize the instruction text with a general guideline
77 instruction = f"Task:\n{taskInfo}\n\n"
78

79 # Append each refined solution from refined_results to the instruction
80 for i, result in enumerate(refined_results):
81 instruction += f"Solution {i+1}:\n{result}\n\n" # Number each solution for

clarity
82

83 # Add the final prompt to encourage reasoning over the solutions and provide a
final answer

84 instruction += "Given all the above solutions, reason over them carefully and
provide a final answer to the task."

85

86 # Return the complete instruction text
87 return instruction

C. Additional Experimental Setups.
C.1. Descriptions of Datasets

We provide an overall descriptions of the training and testing datasets in Table 10.

C.2. Evaluations

In this section, we detail our evaluation approach. For queries with ground truth answers, we employ LLMs to extract the
MAS output and compare it with the ground truth. For code benchmarks like HumanEval and MBPP, we assess correctness
using test cases.

LLM-based Evaluation with Ground-Truth Answer We utilize LLMs to perform evaluation with ground-truth answer.
However, direct evaluation against the ground truth is incompatible as the LLM annotates the response itself. To address this
issue, we adopt a two-step evaluation process based on the prompts used in AutoGen (Wu et al., 2023), first extract the
answer, then evaluation. Here the responses generated by multi-agent systems (MAS) are often unstructured and irregular,
making it difficult to extract the final answer to a query using rule-based methods. To avoid extraction errors that could
impact the evaluation of MAS performance, we use LLMs to automate the answer extraction process. Specifically, we
prompt the LLM to extract the answer from the MAS response based on predefined rules and then ask the LLM to compare
it with the ground truth. The prompts used for this process are detailed in Table 13.

Code Evaluation with Test Cases We evaluate the MAS performance on coding tasks based on pass rate on test cases, with
a two step approach: first, prompting the LLM to extract the code from the MAS response, and second, executing it in a
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Purpose Dataset Name Domain Sub-Domains Sample Number

Training

MATH (Hendrycks et al., 2021b) Math

Counting & Probability
Geometry
Algebra
Number Theory
Precalculus
Prealgebra
Intermediate Algebra

6000

GSM8K (Cobbe et al., 2021) Math - 1000
GSM-Hard (Gao et al., 2023) Math - 319

AQUA-RAT (Ling et al., 2017) Reasoning - 1000
MBPP (Austin et al., 2021) Code - 374
SciQ (Welbl et al., 2017) General QA - 2000

MMLU (Hendrycks et al., 2021a) General QA

Humanities
Social Science
STEM
Others

1529

Testing

MATH (Hendrycks et al., 2021b) Math

Counting & Probability
Geometry
Algebra
Number Theory
Precalculus
Prealgebra
Intermediate Algebra

500

GSM8K (Cobbe et al., 2021) Math - 500
GSM-Hard (Gao et al., 2023) Math - 500

HumanEval (Chen et al., 2021) Code - 164
HumanEval-Plus (Liu et al., 2023) Code - 164

GPQA (Rein et al., 2023) Science - 448
SciBench (Wang et al., 2024a) Science - 500

MMLU (Hendrycks et al., 2021a) General QA

Humanities
Social Science
STEM
Others

500

AIME-2024 Math - 30

Table 10: Descriptions of benchmarks

coding environment to calculate the pass rate; see the prompts used for extract code and functions in Table 14.
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(a) CoT (b) 5 CoT SC (c) Reflection (d) Scientific LLM Debate

(e) Math Ensemble (f) Test Refine (g) Test Fix Ensemble (h) Ensemble Format

(i) Quality Diversity (j) 3 LLM Debate (k) 3 Code Organize (l) Code Test

(m) Step Back Abstraction (n) Code LLM Debate (o) Dynamic Agent (p) Heuristic Simulation Refine

(q) Priority Refine (r) Socratic Questioning (s) Strategy Engineer—Scientist (t) 2 Code 2 Basic Ensemble

Figure 6: Visualization of our MAS pool
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(a) Visualization of Case 1 (b) Visualization of Case 2 (c) Visualization of Case 3

Figure 7: Visualization of three cases. (a) MAS-GPT can generate query-specific MAS. (b) MAS-GPT can generalize to
unseen queries. (c) MAS-GPT can generate novel MAS.
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Table 11: The prompt for intra-consistency-oriented pair refinement. This prompt is fed to GPT-4o-2024-11-20 to adjust the
MAS and generate a reasoning statement. The prompt is integrated with a user query and the selected MAS represented by
Python code.

I will give you a question and a multi-agent system. The multi-agent system is described in the format of Python
code, where each agent is represented by an agent-specific instruction and one call llm. Though the multi-agent
system can answer the question, it may not be the best one. You task is return me two things: an improved
multi-agent system and a paragraph.

The improved multi-agent system should be more related to the question, while basically, try not to change the
architecture compared to the original multi-agent system.
- For example, if the multi-agent system is in a parallel structure (e.g., 5 parallel agents generate answer and 1 agent
select the best answer), you may keep the structure unchanged while only changing each parallel agent’s instruction.
- If the multi-agent system is already suitable, you may only modify the instructions in the multi-agent system more
relevant to the question while leaving the structure unchanged.
- If you think additional agents are required (e.g., the question is difficult and complex), you may add some related
expert agents to enhance the multi-agent system.

The paragraph should first analyze the question itself, from the perspectives of domain and difficulty. Then, you
should provide a reasoning process to bridge the question and the improved multi-agent system. The reasoning
process should be in the views of that how one analyzes the question and objectively thinks about what multi-agent
system is needed. Then, the reasoning process can finally and logically lead to the improved multi-agent system. Do
not mention “this multi-agent system”, or “the improved multi-agent system”, rather, say “a multi-agent system”
instead. Do not mention the original multi-agent system or the original structure.

Please follow the following format requirements:
- The improved multi-agent system should be included between <CODE> and </CODE>
- The paragraph should be included between <PARAGRAPH> and </PARAGRAPH>

Please firstly generate the multi-agent system and then generate the paragraph. The paragraph should analyze about
the question and the generated multi-agent sytem, such that when one sees the (question, paragraph, the improved
multi-agent system) triplet (wihtout the original multi-agent system), one can understand the reasoning process
behind the improved multi-agent system. Notice! The paragraph should never mention the original multi-agent
system or the original structure.

The question is:
{query}

The multi-agent system is:
{MAS code}
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Table 12: The prompt for generating a reasoning process if the refined MAS fails. This prompt is fed to GPT-4o-2024-11-20
to generate a reasoning statement. The prompt is integrated with a user query and a selected MAS represented by Python
code.

I will give you a question and a multi-agent system. The multi-agent system is described in the format of Python
code, where each agent is represented by an agent-specific instruction and one call llm. You task is return me a
paragraph.

The paragraph should first analyze the question itself, from the perspectives of domain and difficulty. Then, you
should provide a reasoning process to bridge the question and the provided multi-agent system. The reasoning
process should be in the angle of views that how one analyzes the question and objectively thinks about what
multi-agent system is needed. Then, the reasoning process can finally and logically lead to the provided multi-agent
system. Do not mention “this multi-agent system”, or “the provided multi-agent system”, rather, say “a multi-agent
system” instead.

The paragraph should analyze about the question and the provided multi-agent sytem, such that when one sees the
(question, paragraph, the provided multi-agent system) triplet, one can understand the reasoning process behind the
provided multi-agent system.

Remember, the paragraph should be included between ¡PARAGRAPH¿ and ¡/PARAGRAPH¿.

The question is:
{query}

The provided multi-agent system is:
{MAS code}
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Table 13: Prompts for extract answer and answer evaluation.

You are a helpful AI assistant tasked with extracting the final answer from a provided solution.

**Input:**
1. A problem statement, prefixed with ”===Problem: <problem>”.
2. A solution to the problem, prefixed with ”===Solution:<solution>”.

**Problem and Solution:**
===Problem: {query}

===Solution: {response}

**Instructions:**
- Carefully analyze the solution and extract the final answer in reply: ”The answer is <answer extracted> in
reply”.
- If the solution does not contain a final answer (e.g., only reasoning, code without execution, or incomplete
information), respond with: ”The reply doesn’t contain an answer.”
- Ensure that the extracted answer is exactly as presented in the solution. Do not infer or use external knowledge. Do
not execute the code yourself.
- Remember, Never execute the code yourself! Never doing any computation yourself! Just extract and output the
existing answer!

You are a helpful AI assistant. You will use your coding and language skills to verify the answer.
You are given:
1. A problem, which is going to start like ”===Problem: <problem>”.
2. A ground truth answer, which is going to start like ”===Ground truth answer:”.
3. A reply with the answer to the problem, which are going to start like ”===Reply:”.
Please do the following:
1. Extract the answer in reply: ”The answer is <answer extracted> in reply”.
2. Check whether the answer in reply matches the ground truth answer. When comparison is not obvious (for
example, 3*sqrt(6) and 7.348), you may compare by calculation, allowing a small margin of error.
3. After everything is done, please give each reply a comment like the following options:
- ”The answer is correct.”
- ”The answer is approximated but should be correct. Correct Answer: <ground truth answer> | Answer
extracted: <answer extracted>.”
- ”The answer is incorrect. Correct Answer: <ground truth answer> | Answer extracted: <answer
extracted>.”
- ”The reply doesn’t contain an answer.”
Here are the problem, the ground truth answer and the reply:
===Problem: {query}

===Ground truth answer: {ground truth answer}

===Reply: {Reply}
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Table 14: Prompts for extract code and functions.

You are given a **Problem** and a **Solution**. The **Problem** asks for a code function. Extract the final code
function from the **Solution**.
**Problem:**
{query}

**Solution:**
{solution}

Please follow the following rules:
- Only output the code function that exists in the **Solution**, without any additional explanation or content.
- Do not modify any part of the code function.
- Remove parts like ’example use’ or ’test cases’.
- If the **Solution** does not contain a code function, respond with: ”The reply doesn’t contain a code function.”
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