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ABSTRACT

The convergence of fully homomorphic encryption (FHE) and machine learning
offers unprecedented opportunities for private inference of sensitive data. FHE
enables computation directly on encrypted data, safeguarding the entire machine
learning pipeline, including data and model confidentiality. However, existing
FHE-based implementations for deep neural networks face significant challenges
in computational cost, latency, and scalability, limiting their practical deployment.
This paper introduces DCT-CryptoNets, a novel approach that operates directly
in the frequency-domain to reduce the burden of computationally expensive non-
linear activations and homomorphic bootstrap operations during private inference.
It does so by utilizing the discrete cosine transform (DCT), commonly employed in
JPEG encoding, which has inherent compatibility with remote computing services
where images are generally stored and transmitted in this encoded format. DCT-
CryptoNets demonstrates a substantial latency reductions of up to 5.3× compared
to prior work on benchmark image classification tasks. Notably, it demonstrates
inference on the ImageNet dataset within 2.5 hours (down from 12.5 hours on
equivalent 96-thread compute resources). Furthermore, by learning perceptually
salient low-frequency information DCT-CryptoNets improves the reliability of
encrypted predictions compared to RGB-based networks by reducing error accu-
mulating homomorphic bootstrap operations. DCT-CryptoNets also demonstrates
superior scalability to RGB-based networks by further reducing computational cost
as image size increases. This study demonstrates a promising avenue for achieving
efficient and practical private inference of deep learning models on high resolution
images seen in real-world applications.

1 INTRODUCTION

Escalating privacy and security concerns in machine learning have fueled exploration of private
inference techniques. These approaches aim to protect both sensitive data and model confidentiality
while maintaining a high quality user experience, especially when related to inference latency and
accuracy. To address these challenges, private inference solutions based on cryptographic principles,
such as fully homomorphic encryption (FHE) have been proposed. However, FHE’s strong security
guarantee often comes with significant computational overhead and latency, creating barriers to
widespread adoption.

Early work on fully homomorphic encrypted neural networks (FHENNs) faced limitations in both
latency and accuracy. Due to the limited native operations of homomorphic encryption, primarily
addition and multiplication, many prior methods resorted to approximating non-linear activation
functions using polynomials (Dowlin et al., 2016; Brutzkus et al., 2018; Chou et al., 2018). However,
this approach introduces accuracy degradation as networks deepen, due to the cumulative effect of
approximation errors. Newer homomorphic encryption schemes like TFHE (FHE over the Torus)
(Chillotti et al., 2019) can handle non-linear activation functions without the need for approximations.
Still, optimizing the efficiency of homomorphic operations (HOPs), which include convolutions and
non-linear activations in the context of neural networks, remains a key area of research.

To reduce the computational burden of HOPs in FHENNs, previous work has investigated strategies
for optimizing convolutions in the encrypted domain (Lou et al., 2020; Lee et al., 2022b; Kim & Guyot,
2023; Ran et al., 2023; Rovida & Leporati, 2024) and designing architectures that minimize the use of
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Figure 1: Scalability of state of the art image classification methods in FHENN. DCT-CryptoNets is
able to reduce latency by up to 5.3× compared to SHE (Lou & Jiang, 2019), the only other published
method able to infer on ImageNet. To ensure a fair comparison, SHE latency values were normalized
to the same computational resources as DCT-CryptoNets (96-threads). CKKS-based methods have
difficulty scaling to larger networks and datasets due to their highly approximate nature.1

non-linear activations (Ghodsi et al., 2020; Jha et al., 2021). In this work, we prioritize optimizing non-
linear activations by operating in the frequency domain. This approach is motivated by the significant
computational cost of non-linear activations in FHE (e.g., ReLU operations consuming ∼32.6%
of total inference time (Lee et al., 2022b)), and the fact that non-linear activations scale primarily
with the spatial extent of an input. As demonstrated in Jha et al. (2021), non-linear activations are
disproportionately concentrated in the early layers of networks where spatial dimensionality is the
largest (e.g., 48% within the first quarter of a ResNet-18 network).

While notable advancements have been made, many FHENN methods remain tailored to small
networks and images (e.g., 32×32). Scaling FHENN to ImageNet and larger networks presents a
formidable challenge. Increasing both network size and image resolution introduces latency from
not only convolutions but also non-linear activations, which are "free" in unencrypted networks,
and an expensive homomorphic bootstrapping operation (Gentry, 2010). Homomorphic bootstrap
is used to "reset" noise in the ciphertext that accumulate for every encrypted operation (addition
and multiplication), which can eventually corrupt the ciphertext making decryption impossible.
Approximately 31.6% of total inference time is spent on such bootstrapping operations (Lee et al.,
2022b). While attempts have been made to implement FHENN on large-scale datasets such as
ImageNet, these efforts highlight the substantial trade-offs involved: either prohibitive inference
latency (e.g., 2.5 days for ResNet-18 in Lou & Jiang (2019)) or severely limited encryption scope
(e.g., encrypting only 8 layers in ResNet-18 in Kim & Guyot (2023)) as shown in Figure 1.

This work introduces DCT-CryptoNets, a novel framework that addresses the computational chal-
lenges of fully homomorphic encrypted neural networks (FHENNs). Traditional convolutional neural
networks operate on raw pixel data, learning features from spatial intensity variations. Instead, we
utilize Discrete Cosine Transforms (DCT) to represent images in the frequency domain, enabling our
models to learn features from the rate of change in intensities (Gueguen et al., 2018; Ehrlich & Davis,
2019). This not only aligns with the human visual system’s differential sensitivity to perceptually
relevant low-frequency information (Luo et al., 2022), but the reduction in spatial dimensionality by
operating in the frequency domain also mitigates the computational burden of non-linear activations.
DCT-CryptoNets yields two additional advantages: (1) it reduces computationally expensive homo-
morphic bootstrapping, as fewer non-linear activations result in less ciphertext noise accumulation,

1Lee et al. (2022a) scale to ResNet-110 (1.7M parameters). Kim & Guyot (2023) scale to a Plain-18 network
(ResNet-18 without skip connections) but only encrypt the last 8 layers when running on ImageNet.
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and (2) it improves the reliability of encrypted accuracy through the reduction of bootstrap operations
which accumulate approximation errors. Additionally, the emphasis on low-frequency information
has the potential to boost accuracy compared to traditional RGB-based CNNs due to focusing on
visually salient information. Overall, our method demonstrates substantial latency improvements in
convolution-based FHENNs across a range of image classification datasets, culminating in a novel
demonstration of ImageNet inference within 2.5 hours – a significant advancement over SHE (Lou &
Jiang, 2019) that required 12.5 hours on equivalent compute resources (previously reported as 2.5
days). These results underscore the potential of DCT-CryptoNets for accelerating privacy-preserving
deep learning applications.

Our approach makes the following contributions:
• We propose DCT-CryptoNets to achieve significant latency improvements in image clas-

sification FHENNs by utilizing DCT. Our focus on low-frequency components reduces
the impact of computationally expensive non-linear activations and homomorphic boot-
strapping, resulting in a 5.3× latency reduction on ImageNet, while maintaining or even
boosting accuracy compared to RGB-based networks due to the focus on perceptually salient
information.

• We show that DCT-CryptoNets also bolsters the reliability of encrypted accuracy. By
curtailing the need for homomorphic bootstrap operations, these optimizations curb error
accumulation. This results in a notable reduction in encrypted accuracy variability (e.g.,
from ±2.5% to ±1.0% on ImageNet).

• We show that DCT-CryptoNets exhibits superior scalability with increasing image resolution.
This is evident in the amplified reduction of homomorphic operations (HOPs) observed
for larger images (e.g., a 33.1% vs. 44.1% reduction in HOPs when applying DCT-based
frequency optimizations to a 224×224 vs. 448×448 image respectively).

2 BACKGROUND AND RELATED WORK

2.1 CRYTOGRAPHIC PROTOCOLS FOR PRIVATE INFERENCE

Homomorphic encryption relies on lattice-based cryptography (Regev, 2005) and the Learning with
Errors (LWE) problem (Lyubashevsky et al., 2010), leveraging the computational hardness of solving
equations on high-dimensional lattices with added noise. Lattice-based cryptography has gained
significant traction, with 3 out of the 4 finalists in the National Institute of Standards and Technology
(NIST) post-quantum cryptography standardization being based on this approach.

Many state-of-the-art private inference techniques leverage hybrid, "interactive" approaches that
combine homomorphic encryption with other cryptographic protocols such as multi-party computation
(MPC) (Juvekar et al., 2018; Mishra et al., 2020; Knott et al., 2021). In MPC, multiple parties jointly
compute a function on their private inputs without disclosing those inputs. While ensuring no party
learns more than the final result, MPC still can leak information as communication between parties is
necessary. Although robust, these methods still pose a security risk in low-trust environments. In
contrast, "non-interactive" FHE-only methods offer superior data confidentiality. FHE ensures that
neither raw data nor intermediate values are exposed in plaintext. This makes FHE particularly well-
suited for scenarios with highly sensitive data and model parameters, especially in situations where
there is severely limited trust between parties (see Appendix A.1). However, this enhanced privacy
comes at the cost of increased computational overhead compared to MPC and hybrid approaches.

2.2 LIMITATIONS OF EXISTING FHENN SCHEMES

FHE schemes serve as the fundamental cryptographic building blocks for various application-specific
methodologies. The choice of an FHE scheme involves a careful evaluation of the trade-offs inherent
to each scheme to ensure optimal performance. FHENNs based on earlier schemes such as BFV (Fan
& Vercauteren, 2012) and BGV (Brakerski et al., 2012) were known for their efficiency for encrypted
addition and multiplication. However, these methods often faced scalability challenges due to their
reliance on polynomial approximations of activations (PAAs) and pooling operations. This reliance on
PAAs introduces accuracy degradation due to the cumulative effect of approximation errors in deeper
networks. To mitigate accuracy degradation, techniques to increase the polynomial degree of PAAs

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

have been introduced (Hesamifard et al., 2019). Despite this, the computational cost of PAA-based
non-linear activations increases exponentially with network depth, becoming a major bottleneck to
latency in deeper networks (Lou & Jiang, 2019). A more recent scheme, CKKS (Cheon et al., 2017),
offers a compelling advantage for neural network applications by operating directly on floating-point
numbers and supporting single instruction multiple data (SIMD) operations. Nevertheless, CKKS
inherits the same challenges associated with PAAs and also introduces additional accuracy concerns
due to its reliance on approximate arithmetic, which can lead to significant error accumulation in
deep networks.

Further efforts to optimize PAA-based methods have shown promise but remain limited. Lee et al.
(2022b) introduced a binary-tree implementation for ReLU in the CKKS scheme, yet scalability is
confined to smaller models like ResNet-20. Falcon (Lou et al., 2020) introduced fast homomorphic
discrete Fourier transform (HDFT) for convolutions and fully connected layers in BFV, significantly
reducing operations. However, this approach still suffers from limited accuracy (76.5% on CIFAR-10)
and requires specialized convolution blocks, hindering broader applicability with existing CNN
architectures. Kim & Guyot (2023) extended HDFT to CKKS, but only the final 8 layers of a Plain-18
network are encrypted when operating on ImageNet. Lee et al. (2022a) proposed removing the
imaginary components of PAAs, thus enabling scalability up to ResNet-110 (1.7M parameters).
While PAA-based methods have shown promise for smaller networks, their inherent constraints in
handling increased depth and computational complexity hinder their scalability to deeper networks.

2.3 ADVANTAGES OF TFHE

In contrast to other HE schemes, TFHE (FHE over the Torus) (Chillotti et al., 2019) operates
within the domain of the torus modulo 1, representing ciphertexts as elements of this structure.
TFHE excels in performing fast and exact binary operations on encrypted bits, utilizing integer
and logic gates. The foundation for these operations lies in the M-th cyclotomic polynomial,
denoted as Φ(X). Its degree, represented by N , is typically chosen as a power of 2 for efficiency
reasons, and simplifies Φ(X) to XN + 1. By defining polynomial rings over real coefficients
RN [X] := R[X]/(XN + 1) and integer coefficients ZN [X] := Z[X]/(XN + 1), we establish the
Torus polynomial ring TN [X] := RN [X]/ZN [X] = T[X]/(XN +1) which forms a ZN [X]-module.
This algebraic structure is fundamental to TFHE, facilitating both addition and external multiplication
by polynomials of ZN [X].

Unlike HE schemes that rely on PAAs, TFHE’s ability to directly implement non-linear activations
using Boolean/integer arithmetic is a key factor in scalability. Directly implementing non-linear
activations avoids the accuracy degradation often associated with PAAs in deeper networks. SHE (Lou
& Jiang, 2019), a TFHE-based FHENN, shows scalability to ImageNet. They do so by employing
a bit-series representation and techniques like logarithmic weight quantization and bit-shift-based
convolutions. However, SHE still suffers from prohibitive latency on ImageNet (e.g., ResNet-18 in
2.5 days, ShuffleNet in 5 hours per image). Furthermore, SHE utilizes a leveled TFHE scheme which
necessitates higher multiplicative depths to avoid decryption failures as a network deepens. This
higher multiplicative depth budget results in larger ciphertexts which consequently increases latency
in these deeper networks.

In our approach, we apply programmable bootstrapping (PBS) mechanisms (Chillotti et al., 2021) to
support arbitrarily deep neural networks and mitigate the limitations of leveled schemes. PBS serves
two crucial purposes: (1) better ciphertext noise reduction by reordering rotation and key-switch
ciphertext operations and (2) enabling homomorphic evaluation of any function expressible as a
lookup-table. PBS’s ability to homomorphically evaluate functions expressed as lookup-tables makes
it well-suited for implementing non-linear activations.

2.4 HYPER-QUANTIZATION BACKGROUND

Hyper-quantization is a technique that improves the efficiency of neural networks by reducing the
precision of numerical representations (weights and activations). This not only lowers memory
requirements and accelerates computation but also naturally aligns with the integer-based polynomial
representation in TFHE, facilitating efficient computation within this encrypted domain. However,
hyper-quantization often leads to a trade-off in accuracy as the limited representation can introduce
errors.
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Figure 2: DCT-CryptoNets’ frequency encoding (based on Xu et al. (2020)) and ResNet-18 network
architecture. Modifications from an RGB-based network to DCT-CryptoNets are emphasized in bold
and darker purple. These include kernel size and downsampling of the first convolution layer, as well
as exclusion of both the ReLU operator and pooling layer after the first convolutional layer. This
approach requires minimal modification of existing networks to utilize DCT, making conversion for
many potential applications simple.

Quantization-aware training (QAT) can help mitigate these accuracy trade-offs by simulating the
effects of quantization during the training process. By constraining weights and activations to fixed-
point representations, QAT intentionally introduces quantization noise during training, enabling the
network to learn and adapt to these errors through gradient-based optimization (Nagel et al., 2021). In
the context of uniform quantization, we convert a real value r ∈ [α, β] into a b-bit integer q = ⌊ r

S+Z⌋,
where S = β−α

2b−1
represents the quantization scale and Z is the zero-point. Previous efforts to quantize

FHENNs have produced promising results. Notably, Stoian et al. (2023) achieved inference on a
VGG-9 network using an 8-bit quantized TFHE scheme with programmable bootstrapping (PBS).
Their approach achieved 87.5% accuracy on a VGG-9 network but still had significant latency of
18,000 seconds for inference on the CIFAR-10 dataset. More aggressive quantization can also
yield latency reductions, such as a 40% decrease in runtime when moving from an 8-bit to a 2-bit
BFV-based FHENN for CIFAR-10 (Legiest et al., 2023). Quantization-aware training facilitates the
seamless conversion of our models into a TFHE-compatible framework, enabling us to maintain high
accuracy while significantly reducing computational overhead.

2.5 FREQUENCY DOMAIN BACKGROUND

In a departure from prior private inference work and frequency-domain techniques (Bian et al.,
2020; Lou et al., 2020; Kim & Guyot, 2023), our method learns features from the frequency-domain
representation of images, enabling the network to learn from the rate of change of intensities. This is
done through the utilization of the Discrete Cosine Transform (DCT) - a key component of JPEG
compression, widely used for image transmission and storage (Gueguen et al., 2018; Ehrlich &
Davis, 2019). This allows our method to be directly compatible with machine learning as a service
(MLaaS) systems and other applications where image data is transmitted in compressed formats for
remote analysis (see Appendix A.2). The 1-D DCT transform uses the following equation where xn

represents a signal and Xk represent the DCT coefficients transformed via sinusoidal bases. DCT in
2-D is the same 1-D equation applied to the width and height dimensions.

Xk =

N−1∑
n=0

xn cos

[
kπ

N

(
n+

1

2

)]
k = 0, . . . , N − 1. (1)
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Table 1: Comparison of multiply-accumulate (MAC), ReLU, programmable bootstrap (PBS) and
total homomorphic operations (HOPs) for RGB-based and DCT-based ResNet-18 networks. DCT
consistently reduces ReLUs, PBS and HOPs, even with varying numbers of retained low-frequency
channels, enabling accuracy-driven selection. Notably, DCT’s HOP reduction improves with higher
image resolutions (e.g., 11% greater HOP reduction for 448×448 vs. 224×224 images) due to
additional 13.9% reduction in PBS operations, showcasing its scalability.

ImageNet-sized Images Large(er) Images

Dimension #MACs #ReLUs #PBS #HOPs Dimension #MACs #ReLUs #PBS #HOPs

R
G

B

3×2242 1.82G 2.31M 22.4M 1.85G 3×4482 7.29G 9.23M 89.3M 7.67G

D
C

T

6×562 1.70G 1.51M 15.5M 1.24G 6×1122 6.82G 6.02M 50.7M 4.29G
24×562 1.71G 1.51M 15.5M 1.26G 24×1122 6.83G 6.02M 50.9M 4.33G
48×562 1.71G 1.51M 15.6M 1.26G 48×1122 6.85G 6.02M 51.2M 4.35G
64×562 1.72G 1.51M 15.6M 1.27G 64×1122 6.86G 6.02M 51.3M 4.38G

192×562 1.74G 1.51M 15.7M 1.28G 192×1122 6.97G 6.02M 51.7M 4.41G

Max ∆
RGB → DCT -6.54% -34.8% -30.0% -33.1% -6.54% -34.8% -43.9% -44.1%

While DCT itself is lossless and reversible, by selectively retaining only low-frequency components
we can reduce data requirements while preserving image classification accuracy (Xu et al., 2020).
This approach leverages the human visual system’s differential sensitivity to various frequency
components, allowing models to focus on the most perceptible elements. Adversarially robust object
recognition models designed to resist perceptible perturbations have been shown to primarily rely on
this low-frequency information (Subramanian et al., 2023; Luo et al., 2022). Additionally, utilizing
DCT components directly can improve the privacy preservation of recognition systems against various
white-box and black-box attacks (Wang et al., 2022). While previous work, such as Mertens et al.
(2024), has explored DCT for homomorphic image compression and decompression, our method
uniquely retains the encrypted data in the frequency domain throughout the CNN inference process.
The shift from high-spatial RGB to low-frequency DCT components in our training approach offers a
dual advantage. By prioritizing perceptually relevant information, it holds the potential for improved
image classification. Simultaneously, the spatial dimensionality reduction of DCT significantly lowers
the computational demands of homomorphic inference, particularly by reducing the burden of non-
linear activations and homomorphic bootstrap operations due to the fact that non-linear activations
are disproportionately concentrated in network layers with high spatial dimensionality.

3 METHODOLOGY

DCT-CryptoNets is composed of two key pieces: (1) We propose network architectures for low-
frequency DCT components coupled with strategic reductions in ReLU activations for more optimal
computation in the encrypted domain. These architectural designs deliver efficiency gains compared
to traditional RGB-based networks across various image resolutions, even in the challenging case
of low-resolution inputs where direct DCT application may be less effective. (2) We present a
framework for quantization-aware training on these low-frequency DCT components, enabling
seamless encryption into a TFHE-compatible scheme. We present multiple ablations into the effect
of quantization and cryptographic hyperparameters on accuracy and latency in the encrypted domain.

3.1 NETWORK ARCHITECTURE IN THE DCT DOMAIN WITH RELU REDUCTIONS

For encoding DCT frequency tensors from images, we first transform RGB images to the YCrCb color
space, then apply 2D-DCT operations to generate frequency domain representations (see Figure 2).
We adopt standard JPEG compression 8×8 filtering scheme, yielding 64 frequency components per
YCrCb color space. This process effectively downsamples spatial dimensions (H, W) by a factor of 8
while increasing channel dimensions (C) by a factor of 82. Subsequently, we sub-select a fixed portion
of the frequency components, emphasizing luma (Y) components due to their higher perceptual
relevance compared to chroma (Cr, Cb). This sub-selection of frequency components can be viewed
as varying the level of "lossy-ness" of an image from a highly lossy 6-component to a loss-less 192-
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Table 2: Evaluating performance on low resolution images with a traditional ResNet-20 and proposed
DCT-CryptoNets ResNet-20 on CIFAR-10. DCT-CryptoNets ResNet-20, with 24 retained low-
frequency channels and 16×16 spatial input, achieves a 4% accuracy improvement over the baseline
while maintaining latency.

Input
Dimension Model Accuracy Latency (s)

RGB 3×322 Traditional ResNet-20 86.5% 603
3×322 DCT-CryptoNets ResNet-20 91.6% 1,339

DCT

24×82 DCT-CryptoNets ResNet-20 85.2% 137
48×82 DCT-CryptoNets ResNet-20 86.5% 144

24×162 DCT-CryptoNets ResNet-20 90.5% 565
48×162 DCT-CryptoNets ResNet-20 90.4% 567

component representation. We demonstrate the impact of varying the level of sub-selected frequency
components (6, 24, 48, 64, and 192) on the number of homomorphic operations (HOPs) and model
accuracy. Notably, the total number of HOPs remains consistent regardless of the sub-selection of
frequency components, allowing for flexibility in choosing an input representation that provides
high accuracy (see Table 1). The DCT’s filtering of spatial information into frequency components
proves particularly advantageous as image size increases. We observe that DCT becomes increasingly
valuable for HOP optimization as we scale to ImageNet-sized images and beyond. For 448×448
images, we observe a 44.1% reduction in HOPs compared to a 33.1% reduction for 224×224 images
(see Table 1). While the percentage of ReLU operations removed remains constant due to the inherent
structure of DCT components, this amplified HOP reduction at larger image sizes can be attributed to
the decreased need for bootstrapping operations, a direct consequence of fewer ReLU activations.
This highlights the scalability of DCT-CryptoNets in handling larger inputs.

Given the distinct dimensionality of frequency-domain features (reduced H and W, increased C),
we modify the initial stride-2 convolution layer, commonly found in CNNs, with a stride-1 layer.
The subsequent layer’s channel size is then adjusted to accommodate the transformed input (see
Figure 2). Further optimization involves pruning the ReLU activations following the channel-
widening convolution layer. This reduction in ReLU operations does not significantly impact
accuracy, as earlier-layer ReLUs typically exhibit lower importance than those in later layers (Jha
et al., 2021). While the skip connection pruning introduced in Ghodsi et al. (2020) also reduces
ReLU count, it incurs a much greater accuracy cost and also increase HOPs in TFHE-based networks
(see Appendix A.3). Therefore, we opted for a network architecture that specifically incorporates
first-layer ReLU pruning. Figure 2 shows both the process for encoding DCT frequency tensors as
well as the network architecture needed for handling DCT tensors.

While DCT offers significant benefits for larger images, its direct application to lower resolutions
can lead to excessive spatial dimension reduction. To address this challenge, we introduce a second
specialized architecture, tailored for smaller inputs (e.g., 32×32 pixels). This adaptation utilizes a
4×4 DCT filter, resulting in 48 total frequency channels, and incorporates architectural adjustments
to maintain spatial resolution and prevent information loss (see Appendix A.4 for an architecture
deep-dive). Despite an increased parameter count due to expansion of the channel dimensions,
DCT-CryptoNets achieves similar latency coupled with a 4% accuracy improvement over a traditional
ResNet-20 on CIFAR-10 (DCT-CryptoNets 24×162 vs. Traditional 3×322 in Table 2). Furthermore,
even with further spatial reduction from 16×16 to 8×8, we observe similar accuracy to a traditional
ResNet-20 coupled with a 4.2× latency improvement. This demonstrates the effectiveness of DCT-
CryptoNets, not only for high resolution images but for low resolution images as well.

3.2 TRAINING AND ENCRYPTING INTO A TFHE-COMPATIBLE SCHEME

DCT-CryptoNets employs a quantization-aware training (QAT) framework to learn low-frequency
components. To achieve an optimal balance between accuracy and latency for our FHENNs, we
systematically explored various quantization levels (see Appendix A.5). Our approach employs a
4-bit symmetric quantization scheme with a fixed zero-point for all tasks except ImageNet, where

7
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5-bit quantization is used. These choices strike a balance between efficiency and accuracy, allowing
us to perform the entire neural network computation directly on encrypted data within the TFHE
framework.

To fully encrypt the trained neural network within the TFHE scheme, we employ an optimization
process (Bergerat et al., 2023). This process balances three key cryptographic hyperparameters:
(1) the circuit bit-width, defined as the minimum number of bits required to represent the largest
integer arising during computation. This generally mimics the 4-bit or 5-bit integer used during
QAT; (2) precision rounding for model accumulators, which implements a scaling factor used to
remove least significant bits; and (3) the desired error probability for programmable bootstrapping
(PBS) operations. Unlike polynomial approximation (PAAs) that introduce inherent approximation
errors, PBS error probability is a tunable hyperparameter. It controls the likelihood of a small error
value added to the look-up table (LUT) operation. By carefully tuning these hyperparameters, the
optimization process determines the cryptosystem parameters that ensure efficient execution.

LUT [x] =

{
T [x], with probability (1− perr)

T [x+ k], with probability perr, k = (±1,±2, ...)
(2)

Determining optimal cryptographic hyperparameters involves empirical exploration due to the indirect
control over the underlying cryptosystem parameters. Decreasing the PBS error probability or
increasing the precision rounding threshold to require more bits necessitates additional homomorphic
operations (HOPs). This presents a trade-off: while enhancing accuracy, it also increases latency. We
notice that for simpler tasks, a precision rounding of 6 and a PBS error probability of 0.01 achieve a
good balance. However, more complex tasks like ImageNet require further hyperparameter tuning to
maintain accuracy. For instance, increasing precision rounding to 7 reduces bit truncation but leads to
a higher number of HOPs, thus increasing latency (see Appendix A.6 for a detailed analysis).

4 RESULTS

4.1 EXPERIMENTAL SETUP

DCT-CryptoNets utilizes several tools and frameworks. Image conversion to the frequency domain is
performed using libjpeg-turbo, Brevitas (Pappalardo, 2023) facilitates quantization-aware training,
and Concrete-ML (Zama, 2022) enables encryption within the TFHE scheme. Neural network
training is conducted on an RTX A40 GPU and FHENN latency measurements are obtained from
dual AMD Ryzen Threadripper PRO 5965WX processors (96-threads total). Each network is trained
on CIFAR-10, mini-ImageNet, Imagenette, and ImageNet, with varying configurations of DCT
components. To assess FHENN accuracy, we leverage Concrete-ML’s simulation accuracy feature,
allowing us to efficiently estimate expected accuracy and gather valuable metrics on the compiled
FHENN. Latency measurements are conducted by processing a single image at a time on a dedicated
machine with no background tasks running, ensuring maximum utilization of all available threads.
All training, quantization and cryptographic hyperparameters are also disclosed in Appendix A.7.

4.2 ACCURACY AND RELIABILITY ENHANCEMENTS WITH LOW-FREQUENCY INFORMATION

To demonstrate the impact of focusing on visually salient low-frequency information we evaluated
model accuracy across CIFAR-10, mini-ImageNet, Imagenette, and ImageNet on upsampled 3×2242

RGB inputs and their DCT-based representations with varying frequency components (see Table 3).
Due to the computational cost of obtaining simulation accuracy results in Concrete-ML (approxi-
mately 8 seconds per ImageNet image), comprehensive validation on the full ImageNet validation
set was impractical. To estimate the impact of encryption on accuracy, we employed statistical
bootstrapping to generate 95% confidence intervals (CIs) for each model. This involved repeatedly
(10K times) analyzing random combinations of subsets (20 subsets each with 200 random images) to
determine accuracy variability. The resulting distribution of accuracies allowed us to estimate the
95% CI for each model, reflecting the expected variability due to encryption.

DCT-based networks consistently matched or outperformed the accuracy of their RGB counterparts,
particularly on larger datasets (mini-ImageNet, ImageNet), due to their focus on perceptually relevant
low-frequency information. Generally, retaining the top 64 low-frequency channels yielded the
best accuracy. This suggests that loss-less representations (192 channels) contain unnecessary
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Table 3: Top-1 accuracy of datasets with varying levels of retained low-frequency components, ranging
from a highly lossy 6-channel representation to a lossless 192-channel representation. Accuracies
are reported as unencrypted plus or minus a 95% confidence interval generated by the encryption
process as explained in Section 4.2. As DCT models per dataset share similar number of HOPs and
cryptographic hyperparameters, their confidence intervals are consistent.

Model Input
Dimension

CIFAR-10
(10 classes)

mini-ImageNet
(100 classes)

Imagenette
(10 classes)

ImageNet
(1K classes)

RGB ResNet-18 3×2242 92.4±2.4% 88.9±2.4% 88.5±2.0% 66.1±2.5%

DCT

ResNet-18 6×562 89.7±0.6% 81.6±1.8% 84.3±0.4% 55.5±1.0%
ResNet-18 24×562 91.2±0.6% 90.0±1.8% 87.5±0.4% 65.8±1.0%
ResNet-18 48×562 91.7±0.6% 90.1±1.8% 86.4±0.4% 66.1±1.0%
ResNet-18 64×562 92.4±0.6% 89.5±1.8% 86.5±0.4% 66.3±1.0%
ResNet-18 192×562 92.3±0.6% 89.7±1.8% 83.8±0.4% 64.1±1.0%

high-frequency components that hinder learning. Thus, some degree of "lossy-ness" allows the
network to prioritize visually salient information, further improving accuracy. Furthermore, DCT-
based methods exhibited narrower confidence intervals, indicating improved inference precision in
the encrypted domain. This improved reliability stems from the -30% reduction in programmable
bootstrap (PBS) operations (see Table 1), which individually contribute to error accumulation. Overall,
DCT-CryptoNets meets or exceeds the accuracy of RGB-based methods while also enhancing the
reliability of private inference.

4.3 COMPARATIVE BENCHMARKING OF ACCURACY AND LATENCY

DCT-CryptoNets demonstrates competitive accuracy when compared to existing methods on both
CIFAR-10 and ImageNet (see Table 4). While CKKS-based methods demonstrate slightly lower
latency on smaller models due to their utilization of single instruction multiple data (SIMD) packing,
the error accumulation issue of polynomial approximated activation functions (PAAs) hinders CKKS-
based methods from scaling to larger networks and high-resolution images like those in ImageNet. It’s
crucial to note that CKKS’s focus on amortized runtime through SIMD packing, a feature unavailable
in TFHE, makes direct latency comparisons via normalization less meaningful (see Appendix A.8 for
more information on the exact compute resources used for each TFHE-based methods).

Comparing DCT-CryptoNets to SHE (Lou & Jiang, 2019), the only other published method demon-
strating scalability to ImageNet, we observe comparable accuracy and latency for smaller models
and images. It’s worth noting that SHE’s fastest model on CIFAR-10 is a custom CNN without
skip connections, contributing to its slight latency advantage over DCT-CryptoNets’ ResNet-20
model. As network or image size increases, DCT-CryptoNets showcases superior scalability, with
progressively greater latency improvements compared to SHE culminating in a 5.3× speedup on
ImageNet. Furthermore, even without DCT optimizations, larger DCT-CryptoNets ResNet-18 models
outperform SHE on both CIFAR-10 and ImageNet. This improvement can be attributed to SHE’s
reliance on a leveled TFHE scheme, which necessitates higher multiplicative depths and larger cipher-
texts leading to latency amplifications in deeper networks. In contrast, by leveraging programmable
bootstrapping, DCT-CryptoNets mitigates these limitations and enables efficient handling of larger
models. Isolating the impact of DCT, we compare the latency of DCT-CryptoNets trained on RGB
components to DCT-CryptoNets trained on DCT components (see Table 4). Across various model
and image sizes, we observe a consistent latency improvement ranging from 1.7× to 2.4× when
utilizing DCT, independent of training, quantization and cryptographic hyperparameters. Overall,
DCT-CryptoNets achieves performance on par with previous work on smaller images and networks,
while showcasing superior scalability and efficiency gains when applied to larger, more complex
tasks.

4.4 LIMITATIONS AND FUTURE DIRECTIONS

The performance of this approach is highly dependent on the cryptographic hyperparameters and
the degree of bit precision during quantization-aware training (QAT). Careful tuning of precision
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Table 4: Performance benchmarking of DCT-CryptoNets. We evaluate performance using the 64×562

DCT representation for ImageNet and 24×162 for CIFAR-10, chosen for their superior accuracy.
RGB variants of DCT-CryptoNets, trained on 3×322 or 3×2242 inputs, serve as baselines to isolate
the impact of DCT optimizations. DCT-CryptoNets offers comparable performance on smaller
models and datasets but excel in scaling to larger ones.

Method Dataset Input
Dimension Model Scheme Accuracy Latency (s)

Normalized
Latency (s)
(96-threads)

Hesamifard et al. (2017) CIFAR-10 3×322 Custom CNN BGV 91.4% 11,686 ∼
Chou et al. (2018) CIFAR-10 3×322 Custom CNN FV-RNS 75.9% 3,240 ∼

SHE (Lou & Jiang, 2019) CIFAR-10 3×322 Custom CNN TFHE 92.5% 2,258 470
Lee et al. (2022b) CIFAR-10 3×322 ResNet-20 CKKS 92.4% 10,602 ∼
Lee et al. (2022a) CIFAR-10 3×322 ResNet-20 CKKS 91.3% 2,271 ∼

Kim & Guyot (2023) CIFAR-10 3×322 Plain-20 CKKS 92.1% 368 ∼
Ran et al. (2023) CIFAR-10 3×322 ResNet-20 CKKS 90.2% 392 ∼

Rovida & Leporati (2024) CIFAR-10 3×322 ResNet-20 CKKS 91.7% 336 ∼
Benamira et al. (2023) CIFAR-10 3×322 VGG-9 TFHE 74.0% 570 48

Stoian et al. (2023) CIFAR-10 3×322 VGG-9 TFHE 87.5% 18,000 3,000
DCT-CryptoNets CIFAR-10 3×322 ResNet-20 TFHE 91.6% 1,339 1,339
DCT-CryptoNets CIFAR-10 24×162 ResNet-20 TFHE 90.5% 565 565

SHE (Lou & Jiang, 2019) CIFAR-10 3×322 ResNet-18 TFHE 94.6% 12,041 2,509
DCT-CryptoNets CIFAR-10 3×322 ResNet-18 TFHE 92.3% 1,746 1,746
DCT-CryptoNets CIFAR-10 24×162 ResNet-18 TFHE 91.2% 1,004 1,004

SHE (Lou & Jiang, 2019) ImageNet 3×2242 ResNet-18 TFHE 66.8% 216,000 45,000
DCT-CryptoNets ImageNet 3×2242 ResNet-18 TFHE 66.1% 16,115 16,115
DCT-CryptoNets ImageNet 64×562 ResNet-18 TFHE 66.3% 8,562 8,562

rounding, programmable boostrapping (PBS) error probability and QAT bit-level is essential to
navigate the trade-off between accuracy and latency. Future steps should be made to improve the
cryptographic and quantization parameter selection process.

Furthermore, the accuracy benefits from DCT optimizations are less pronounced on smaller images
(e.g., 32×32) compared to larger ones. This observation aligns with the inherent nature of small
images, which often contain less high-frequency information that DCT filtering typically removes.
Consequently, the impact of focusing on low-frequency components is less significant for these smaller
inputs. Future work could explore techniques to enhance the accuracy benefits of DCT for smaller
images, potentially through adaptive filtering or alternative frequency-domain representations.

5 CONCLUSION

In this paper, we presented DCT-CryptoNets, a novel framework that addresses the critical challenges
of computational cost and scalability in fully homomorphic encrypted neural networks (FHENNs). By
utilizing frequency-domain learning through the Discrete Cosine Transform (DCT), DCT-CryptoNets
significantly reduces the computational burden of non-linear activations and homomorphic bootstraps
by focusing on low-frequency information, enabling more efficient inference on large-scale datasets
like ImageNet.

DCT-CryptoNets exhibits several key advantages: (1) it achieves significant latency improvements,
demonstrating up to a 5.3× speedup compared to prior work, with DCT-based optimizations con-
tributing a 1.7× to 2.4× speedup in isolation; (2) focusing on perceptually relevant low-frequency
information through DCT maintains or even boosts accuracy compared to RGB-based networks; (3)
it enhances the reliability of predictions by reducing error-accumulating homomorphic bootstrap
operations, resulting in more precise predictions (e.g., from ±2.5% to ±1.0% on ImageNet); and (4) it
demonstrates superior scalability, achieving greater reductions in homomorphic operations compared
to RGB-based implementations as network and image size increases.

These advancements showcase the promise of frequency-domain techniques for privacy-preserving
deep learning. This not only represents a significant step towards practical deployment of FHE in
real-world applications, but also opens new avenues for future research in optimizing private inference
for deep learning.
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REPRODUCIBILITY STATEMENT

We strongly believe in the importance of reproducibility in scientific research. Therefore, we strive for
full transparency in our work. To this end regarding explanations in the paper, the Methodology sec-
tion (Section 3) provides a comprehensive overview of our model topology, training methodology, and
encryption process. The Experimental Setup subsection (Section 4.1) offers further details regarding
libraries, tools and hardware environments needed to facilitate reproducibility. All training, quanti-
zation, and cryptographic hyperparameters are also documented in the Appendix (Appendix A.7).
To further promote reproducibility, we plan to publicly release our code and pretrained models on
GitHub prior to the conference date, enabling readers to verify our results and utilize these methods
in their own research. During the review process, an anonymous GitHub repository will be made
available to reviewers and area chairs at the time of discussion, as per the ICLR Author Guidelines.
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A.1 THREAT MODELS AND MITIGATION STRATEGIES

While fully homomorphic encryption (FHE) provides robust security against many traditional attacks,
a comprehensive understanding of potential vulnerabilities within the DCT-CryptoNets framework
is crucial for ensuring strong privacy guarantees. This analysis must consider the unique security
considerations inherent to FHE-based private inference.

• Server-side security: The server only receives encrypted DCT coefficients, protecting against
a wide range of server-side attacks, including those from an honest-but-curious adversary.
However, in the case of a malicious server, additional measures like verifiable computation
(VC) may be necessary to ensure correct function evaluation (Viand et al., 2023; Atapoor
et al., 2024).

• Communication-channel security: Encrypted communication between the client and server
safeguards against eavesdropping. However, secure key transfer mechanisms are crucial to
prevent unauthorized access to the decryption key.

• Client-side security: Data privacy relies heavily on the security of the client device, as this
is where the data exists in plaintext. Robust client-side security measures, such as secure
key storage and protection against malware, are essential. While the FHE scheme itself is
secure against various attacks such as chosen/known plaintext attacks and chosen ciphertext
attacks (Peikert, 2016), these protections are contingent on the client’s ability to safeguard
their own secret key.
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A.2 IN THE CONTEXT OF MLAAS

DCT 
Transform

Quantization 
Aware 

Training

DCT 
Transform

Encr ypt DCT 
Components 

Decr ypt 
& Predict "Cat"

Encoder

Encr ypted Frequency 
Componants

C
la

ss
if

ie
r

"Cat"

Ser ver -side Client-side

Ser ver -sideClient-side Client-side

Trained 
Model

Encypt 
Model

Trained & 
Encr ypted 

Model

In
fe

re
n

ce
T

ra
in

in
g

Figure 3: MLaaS system with DCT-CryptoNets.

DCT-CryptoNets leverages the Discrete Cosine Transform (DCT) to operate directly in the frequency
domain, aligning with the prevalent use of DCT in image compression standards like JPEG. This
enables seamless integration with existing image processing pipelines and facilitates efficient trans-
mission and processing in machine learning as a service (MLaaS) systems and other applications
where image data is sent for remote analysis. In this paradigm (see Figure 3), a model is trained
locally, encrypted, and then deployed in the cloud. During inference, users transform their images into
DCT representations (a process often already performed due to JPEG compression) and encrypt them
using their private key. The encrypted image is then sent to the cloud-based model for processing,
and the resulting encrypted output is returned to the user. To obtain the final prediction, the user
decrypts the output of the penultimate layer (prior to the fully-connected layer) and processes the
resulting plaintext tensor through a local classifier.

In many FHE-based private inference applications, both a secret key and evaluation key are generated.
The evaluation key, analogous to a public key specifying the operations of the FHE circuit, allows
for the execution of computations on the encrypted model. This approach ensures that only the user
possessing the corresponding secret key can decrypt the resulting inference output:

• Deployment: A trained fully homomorphic encrypted neural network (FHENN) is deployed
to the cloud server.

• User request: User requests the FHENN cryptographic parameters. Once received they
generated both secret and evaluation keys locally. Each client would therefore have their
own secret key.

• Key Exchange: User sends the evaluation key along with their encrypted inputs to the server.
• Inference: Server runs private inference with the users’ evaluation key and encrypted inputs.

Then sends encrypted results back to the user.
• User decryption: User then decrypts the results with their secret key.
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A.3 RELU PRUNING TECHNIQUES

Table 5: Impact of different ReLU pruning techniques (3×2242 RGB → 64×562 DCT).

∆: RGB → DCT DCT-Net
(Xu et al., 2020)

+ First Layer
Pruned

(Ghodsi et al., 2020)

+ Skip Connections
Pruned

(Ghodsi et al., 2020)
+ Both Pruned

O
ps

. #ReLUs -26.1% -34.8% -58.7% -67.4%
#HOPs -21.7% -33.1% -24.3% -25.7%

A
cc

. CIFAR-10 +0.0% -0.4% -2.67% -2.54%
ImageNet +2.2% +2.3% ∼ ∼

DCT-Net (Xu et al., 2020) inherently reduces ReLU operations due to spatial dimension reduction.
DCT-CryptoNets further optimizes latency by pruning the first layer’s ReLU’s, with minimal impact
on accuracy. However, skip connection ReLU pruning is not recommended as it incurs significant
accuracy degradation and increases homomorphic operations even though the number of ReLU
operations decreases. This is because removing ReLU after the addition of two quantized tensors
necessitates the insertion of a quantization identity function in TFHE-based networks.

A.4 DCT-CRYPTONETS FOR SMALL(ER) IMAGES AND NETWORKS

DCT: 48x16x16
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Blocks

Pool
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Pr edict i on
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Figure 4: Traditional vs. DCT-CryptoNets ResNet-20 Architecture. Changes between the two
architectures are bolded.

When applying DCT optimizations to smaller images and networks (e.g., ResNet-20 on 32×32
images), adaptations are necessary to address the excessive spatial dimension reduction caused by
the standard 8×8 DCT filter. We mitigate this by reducing the DCT filter size to 4×4, resulting in
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48 frequency channels (16 per YCrCb component) instead of the typical 192. To accommodate this
change, we introduce a modified ResNet-20 architecture with two key adjustments (see Figure 4):

• Downsampling Reduction: One downsampling step is removed to preserve spatial resolution
throughout the network.

• Channel Expansion: The initial channel dimensions are increased to match the 48-channel
DCT output, preventing information loss during the first convolutional layer transition. The
modified channel dimensions are now [48, 56, 64].

Although this channel expansion doubles the number of parameters, it enables effective DCT uti-
lization on smaller images. As demonstrated in Table 2, DCT-CryptoNets ResNet-20 achieves a 4%
accuracy improvement over the traditional ResNet-20 while maintaining latency.

A.5 QUANTIZATION ABLATION ON IMAGENET

Table 6: Quantization impact for ResNet-18 on ImageNet

Quantization Accuracy Latency (s)

RGB
(3×2242)

4-bit 60.6% 12,874
5-bit 66.1% 16,115
8-bit 68.4% 75,674

DCT
(64×562)

4-bit 62.9% 6,961
5-bit 66.3% 8,562
8-bit 68.5% 41,998

To examine the impact of quantization on performance, we varied the quantization levels on ImageNet,
as detailed in Table 6. Adopting 5-bit quantization, consistent with the approach in SHE (Lou &
Jiang, 2019), resulted in a notable accuracy improvement compared to 4-bit quantization, with a
manageable increase in latency of approximately 25%. Further increasing the quantization level
to 8-bit yielded marginal accuracy gains, while incurring a substantial increase in latency. These
results suggest that 5-bit quantization strikes an effective balance between accuracy and efficiency for
large-scale datasets like ImageNet.

A.6 SENSITIVITY OF CRYPTOGRAPHIC HYPERPARAMETERS IN FHENN

Table 7: Comparing the change of latency, top-1 accuracy and ciphertext memory requirements of a
3×2242 model on 1000 samples from ImageNet when modulating cryptographic hyperparameters
(precision rounding and PBS error probability).

Precision Rounding = 6 Precision Rounding = 7 Precision Rounding = 8

PBS Err. ∆ Latency ∆ Acc. ∆ Memory ∆ Latency ∆ Acc. ∆ Memory ∆ Latency ∆ Acc. ∆ Memory

0.05 -25.6% -36.8% -24.4% -10.7% -32.2% -17.9% +34.0% -35.7% +19.1%
0.01 -12.1% -21.3% -6.2% ⋆ ⋆ ⋆ +81.7% +0.4% +56.8%
0.005 -34.2% -9.4% -8.0% +62.3% +0.0% +5.5% +203.4% +1.2% +93.3%

Encryption of the neural network requires careful selection of cryptographic hyperparameters to
balance accuracy and latency. Starting with our pre-selected values for ImageNet (precision rounding
of 7 and PBS error probability of 0.01), as detailed in Table 7, we systematically explore the effects
of varying these parameters. Reducing either parameter leads to a significant drop in top-1 accuracy.
Increasing these parameters generally yields a noticeable increase in latency, with only marginal
accuracy gains. Notably, raising the bit-precision rounding to 8 and halving the PBS probability
increases top-1 accuracy on ImageNet subsamples by up to 1.2% but incurs a threefold increase in
latency.
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A.7 TRAINING, QUANTIZATION AND CRYPTOGRAPHIC HYPERPARAMETERS

Table 8: Training, quantization and cryptographic hyperparameters.

Section Hyperparameter
CIFAR-10

mini-ImageNet
Imagenette

ImageNet

Training

Epochs 60 90
Batch Size 32 256
Optimizer Adam Adam

Learning Rate 1e-3 1e-3
Weight Decay 1e-5 1e-5

Gradient Clipping 0.1 0.1
Dropout 0.2 0.2

Scheduler [20, 45] [30, 60]
Decay Factor 0.1 0.1

Quantization

Weight Bit-Width 4 4
Weight Quantization

Protocol Int8WeightPerTensorFloat3 Int8WeightPerTensorFloat3

Activation Bit-Width 4 4
Activation Quantization

Protocol Int8ActPerTensorFloat3 Int8ActPerTensorFloat3

Cryptographic

Number of Bits 5 5
PBS Error Probability 0.01 0.01

Bit-removal
Rounding Threshold 6 7

A.8 TFHE-BASED FHENN COMPUTE RESOURCES

Table 9: Comparison of TFHE-based methods based on available compute resources.

Method Dataset Input
Dimension Model Accuracy Reported

Latency (s)
CPU

Threads

Normalized
Latency (s)
(96-threads)

SHE (Lou & Jiang, 2019) CIFAR-10 3×322 Custom CNN 92.5% 2,258 20 470
Benamira et al. (2023) CIFAR-10 3×322 VGG-9 74.01% 570 8 48

Stoian et al. (2023) CIFAR-10 3×322 VGG-9 87.5% 18,000 16 3,000
DCT-CryptoNets CIFAR-10 3×322 ResNet-20 91.6% 1,339 96 1,339
DCT-CryptoNets CIFAR-10 24×162 ResNet-20 90.5% 565 96 565

SHE (Lou & Jiang, 2019) CIFAR-10 3×322 ResNet-18 94.62% 12,041 20 2,509
DCT-CryptoNets CIFAR-10 3×322 ResNet-18 92.3% 1,746 96 1,746
DCT-CryptoNets CIFAR-10 24×162 ResNet-18 90.9% 1,004 96 1,004

DCT-CryptoNets CIFAR-10 3×2242 ResNet-18 92.4% 11,097 96 11,097
DCT-CryptoNets CIFAR-10 64×562 ResNet-18 92.4% 6,313 96 6,313

SHE (Lou & Jiang, 2019) ImageNet 3×2242 ResNet-18 69.4% 216,000 20 45,000
DCT-CryptoNets (4-bit) ImageNet 3×2242 ResNet-18 60.6% 12,874 96 12,874
DCT-CryptoNets (5-bit) ImageNet 3×2242 ResNet-18 66.1% 16,115 96 16,115
DCT-CryptoNets (4-bit) ImageNet 64×562 ResNet-18 62.9% 6,961 96 6,961
DCT-CryptoNets (5-bit) ImageNet 64×562 ResNet-18 66.3% 8,562 96 8,562

Table 9 presents latency values normalized to the 96-thread computational capacity of our DCT-
CryptoNets implementation. This normalization is justified for TFHE-based schemes, which prioritize
individual inference latency, as the Concrete-ML library fully utilizes available CPU resources. Our
experiments on a 24-thread Intel Core i9-12900KF confirmed a linear relationship between core count
and latency, with a 4x increase observed compared to the 96-thread dual AMD Ryzen Threadripper
PRO 5965WX. In contrast, CKKS-based methods often leverage single instruction multiple data
(SIMD) packing for amortized runtime optimization, a feature not available in TFHE. Consequently,
direct latency normalization may not accurately reflect the performance characteristics of CKKS-
based approaches due to their inherent reliance on batch processing.
3Recommended quantization protocols by Concrete-ML for bit-width > 3.
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