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Abstract

Compared to hand-crafted ones, learning a 3D point sig-
nature has attracted increasing attention in the research
community to better address challenging issues such as de-
formation and structural variation in 3D objects. PointNet
is a pioneering work in introducing learning 3D point sig-
nature directly by consuming raw point cloud as input and
applying convolution on each one of these points. Ground-
breaking as it is, PointNet has limited capability in cap-
turing local structure when learning visual features from
each individual point. Recent variants of PointNet im-
proved the quality of 3D point signature learning by tak-
ing neighbourhood information into account, but typically
do so through hard-coded mechanisms (e.g. manually set-
ting ‘k’ for k-Nearest Neighbour search, radius ‘r’ for Ball
Query, etc). In this paper, we developed a novel point sig-
nature learning approach by considering pairwise interac-
tion between every two individual points that moves beyond
hard-coded neighbourhood exploitation, which further im-
proves the quality of 3D point signature learning by encour-
aging the model to be aware of both neighbourhood infor-
mation and global context. Specifically, we first introduce a
novel pairwise reference tensor (PRT) in the original input
point space to represent the influence of every two individ-
ual points that have on each other. Then, by passing the
pairwise reference tensor through a multi-layer perceptron
(MLP), we obtain a high-dimensional attention tensor that
encodes pairwise relationships in high dimensional space
that acts as an attention mechanism. Next we further fuse
learned point features with the attention weights to obtain
global visual features. Our proposed method has demon-
strated superior performance on various 3D visual recog-
nition tasks (e.g. object classification, part segmentation
and scene semantic segmentation).

∗indicates corresponding author.

1. Introduction

Figure 1: Pairwise attention encoding architecture learns

features on raw point cloud data. We introduce a novel point

reference tensor (PRT) which encodes the pairwise points

influence in the Euclidean space and then learn a point at-

tention tensor (PAT) by passing the point reference tensor

through an MLP. Lastly we fuse the learned point features

and the attention weights through a channel-wise fusion op-

erator to obtain final global features.

Recent developments in 3D range sensors (e.g. LiDAR,

RGB-D cameras like Microsoft Kinect, Xception PRO, etc)

have made them more and more ubiquitous in diverse fields

like engineering, medical imaging and AR/VR industry.

Along with it the amount of available 3D visual data has

experienced an explosive growth leading to a variety of im-

portant applications. Therefore it is imperative to develop

automated methods that are able to analyze large amount

of point cloud data both effectively and efficiently, which is

the basis for various 3D visual recognition tasks (e.g. ob-

ject classification, part segmentation, scene semantic seg-

mentation, etc) that takes root in widespread applications

like autonomous vehicles [15], SLAM technologies [4] and

robotics [18].

To be able to process 3D point clouds on a large scale,

given the established success of deep learning methods in a

variety of vision tasks (especially in 2D vision) [9, 22, 14],
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much efforts have been devoted to learn robust 3D point sig-

natures and 3D shape descriptors [33, 3, 11, 16, 29, 34]. The

standard Convolutional Neural Networks (CNN), which

features discrete convolution on a regular spatially ordered

grid structure, has limited capability when being directly

applied to spatially irregular data (e.g. 3D point clouds or

3D meshes). Previous researches often first transform irreg-

ular 3D geometric data to equally spaced 3D voxels in order

to take advantage of the representational power of deep neu-

ral networks. The resulting performance is encouraging in

various 3D vision tasks which indicates the effectiveness of

convolutional neural networks in learning informative 3D

point signature and shape descriptors. However, there are

also researches [20] that point out the inevitable information

loss due to the conversion of data from 3D point cloud to

3D voxels, therefore methods of directly dealing with point

clouds that avoids this kind of information loss is urgently

needed.

As a first step in this direction, researchers proposed

PointNet [19] which is a deep neural network that directly

consumes raw point cloud as input, a pioneering work in

applying standard convolution to data of spatially irregular

structure. By only using a simple feature mapping network,

point features can be directly extracted using point-wise

multi-layer-peceptron (MLP), followed by a max-pooling

operation to obtain the global feature representation. Al-

though PointNet proved to be the first great success of using

deep learning methods directly in learning 3D point signa-

tures, the local context of a point were not fully utilized be-

cause the neighbourhood information of a particular point

are not considered during the whole feature learning pro-

cess. PointNet++ [21] introduced a multi-scale feature ag-

gregation in sub-groups of the entire point clouds but did

not take the spatial distribution of the input point clouds

into account. SO-Net [12], PointGrid [10] and Kd-Net [8]

mitigated this issue by considering the spatial distribution of

the input point cloud into account and demonstrated further

improved performance in various 3D visual tasks, validat-

ing that neighbourhood information of a particular point is

useful when extracting visual features from point clouds.

Exploitation of neighbourhood information is useful in

point signature learning, but the above methods typically

do so using a hard-coded mechanism (e.g. k-Nearest Neigh-

bour search). In this paper, we develop a novel point signa-

ture learning paradigm, named pairwise attention encoding,

which equips the model with the capability of being aware

of both local information and global context. First, we in-

troduce a novel data-driven pairwise reference tensor that

moves beyond using neighbourhood information in a hard-

coded fashion. Figure 1 gives us a more detailed descrip-

tion of our pairwise attention encoding mechanism which

consists of four components. The first component is a “fea-

ture learning module”. In this component, we learn point-

wise features by passing input point cloud through a trans-

formation network first (same as T-Net in PointNet [19])

and then an MLP. This gives us informative visual features

but does not take local information into account. The sec-

ond component is an “attention module”, in the sense we

consider those pairwise interaction encoding weights as a

kind of attention, where we generate the pairwise refer-

ence tensor by computing the Euclidean distance between

every two individual points and then mapping them into

high-dimensional space by passing them through an MLP

to obtain the pairwise attention tensor. The third compo-

nent is “channel-wise feature fusion”. In this component,

we fuse the learned point features in the first component and

the high-dimensional attention weights obtained in the sec-

ond component by performing an inner product of the two,

taking both local neighbourhood and global context into ac-

count. For the last step we map the visual features obtained

in the third component into high-dimensional space by pass-

ing them through another MLP followed by a max-pooling

operation to obtain the global visual features. Therefore the

main contributions of our work can be summarized as fol-

lows:

• We introduced a novel data-driven pairwise reference

tensor that moves beyond hard-coded neighbourhood

exploitation when considering local information in 3D

point signature learning.

• We developed a new mechanism of learning a pairwise

attention tensor that encodes the influence every other

point has on a particular point.

• We proposed a feature fusion process that fuses learned

point features and attention weights into local and

global context aware visual features.

• Under the same experimental settings, our method is

able to achieve superior performance over various 3D

point cloud visual recognition tasks compared to other

approaches.

2. Related work
Deep representation learning powered methods has

transformed modern (2D) computer vision by setting

records on various task benchmarks [9, 22, 23]. Follow-

ing this tide researchers have been trying to replicate this

success in the field of 3D computer vision especially with

point cloud data. Works like [19, 21] are the pioneer-

ing explorations towards this goal which achieved remark-

able performance. In recent years, researches in 3D point

cloud learning mainly follow these four trajectories: reg-

ularize point cloud into a volumetric representation, con-

verting point cloud data into multi-view images, view point

cloud as a graph structure and directly consume point cloud
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Figure 2: Pipeline of our proposed network. The input data is a normalized point cloud. MLPp, MLPa, MLPf denotes

pointwise multilayer perceptrons (MLP) for learning point features, attention weights and final global features respectively.

Li and Ci (i = 1, 2) stand for layer input and output sizes. Batchnorm is used for all layers with ReLU activation except for

the last output layer where we do not impose any non-linearity. Here PRT denotes the point reference tensor, PAT denotes

the point attention tensor and CFF denotes a channel-wise feature fusing module. We use the transform network bearing the

same structure as in [19] to preprocess raw point cloud data and a Normalized Exponential Function to regularize the relative

positions between a point pair.

as input. Volumetric-based approaches partition 3D point

sets into grid voxels and then use 3D CNN to extract visual

features from regular voxels [36, 2]. However, the volumet-

ric representation can incur heavy memory and computation

bottleneck. Approaches like oct-tree [5] or kd-tree [8] tries

to address this issue by partitioning the input space using a

tree structure, but is still time-consuming to convert point

cloud data into voxel representation. Another major prob-

lem with volumetric-based methods is that they suffer from

the inevitable loss of information [19] using such conver-

sion.

Another line of work is based on multi-view images

which renders 3D point cloud into multiple 2D images of

different views and then apply traditional 2D CNN to ex-

tract visual features. [26] utilized a 2D CNN to learn sev-

eral independent shape representations and designed a novel

view-pooling layer to fuse information from multiple views.

[31] took a further step to propose a view clustering and

pooling module recurrently to aggregate information from

similar views. With carefully-designed multi-view shape

rendering, these methods have demonstrated state-of-the-

art performance on 3D vision tasks like shape classification

and retrieval tasks. However, they still tend to suffer from

information loss and can not directly applied to other 3D

vision tasks like part segmentation and semantic segmen-

tation. Graph-based methods typically treat a point cloud

as a graph and try to design convolution-like operators on

graphs to learn useful representations. For example recent

works [13, 28] designed a particular convolution-like oper-

ator based on spectral graph theory to carry out convolution

in the spectral domain by computing the eigenvector of the

graph Laplacian matrix and utilizing Chebyshev polynomi-

als and its approximation scheme.

Since the inception of PointNet [19] directly consuming

raw point cloud as input has become an important stream

of research in 3D point cloud feature learning. Typically

they use a point-wise MLP followed by a symmetric max-

pooling operation to obtain the global features. PointNet

provided a simple and efficient structure to learn point sig-

nature but despite the success it achieved, it lacks the ca-

pability to capture local structures. PointNet++ [21] used

hierarchical point sampling and grouping techniques try-

ing to overcome this issue. PointSIFT [7] encodes multi-

scale neighbourhood information of different orientations

using a SIFT-like operator. SO-Net [12] made use of self-

organizing map (SOM) to model the spatial distribution of

point sets and conducts hierarchical feature extraction on

SOM nodes. Other than the above MLP based models,

KC-Net [24] proposed kernel correlation layers to capture

the local geometric structures of a point cloud. Kd-Net [8]

builds a Kd-tree for the input point cloud and performs hi-

erarchical feature learning in a bottom-up fashion.

3. Approach
In this section, we give a detailed description of the pro-

posed deep network with pairwise attention encoding. The

proposed network (shown in Fig. 2) consists of three parts

including a feature learning module, an attention module

(learning point reference tensor (PRT) and point attention

tensor (PAT)) and a channel-wise feature fusion process.

Section 3.1 introduces the feature learning module that we

used to learn point features. Section 3.2 describes our at-

tention module that consists of how we generate our point

reference tensor in a data-driven manner and how we de-

fine the point attention tensor that is end-to-end learnable.

Section 3.3 states the feature fusion process that is used to

obtain the final global visual features.

3.1. Feature Learning Module

Previous researches have shown that point features can

be learned through an MLP-like structure [19, 21]. Here we

also regard the point feature learning process as a non-linear
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transformation function Fp(·) : RN×3 → R
N×C (shown in

Figure 2), which is

Fp(pi) =
N∑

i,j=1

vpi

N∑
i,j=1

(wpipi + αp) + βp, (1)

where H = {hi = Fp(pi) ∈ R
1×C , i = 1, 2, ..., N} is

learned point features. In essence we also design F (·) as an

MLP. Since all operators in non-linear transformation func-

tions Fp(·) are symmetric binary functions (because Fp(·)
consists of only ”+” and ”×”), therefore the proposed fea-

ture learning module is invariant to input permutation.

3.2. Attention Module

Point Reference Tensor We propose a novel point refer-
ence tensor (PRT) which captures the interaction between

each individual two points in a distance-driven way. As

shown in Figure 2, we generate the point reference ten-

sor by computing the Euclidean distance between every

two points. Therefore it is completely data-driven instead

of hard-coded mechanisms such as k-Nearest Neighbour

search. Formally, we define the raw point reference tensor

as Δ = {δij , i, j = 1, 2, ..., N}, where

δij = pj − pi = [Δxij ,Δyij ,Δzij ]
T . (2)

Each element δij ∈ Δ is a 1 × 3 vector which is the Eu-

clidean distance between point pj and pi. We further nor-

malize the point reference tensor Δ by Eq. 3, denoted as

PRT = {rij ∈ R
1×1×3, i, j = 1, 2, ..., N}, where

rij =
exp(δij)∑N
j=1 exp(δij)

(3)

is a normalized relation between different pj and pi. The

point reference tensor PRT encodes the influence that ev-

ery two individual points have on each other under the Eu-

clidean distance metric.

Point Attention Tensor Point reference tensor encodes the

influences that every other individual point has on a partic-

ular point in the Euclidean space. But as the features go up

into high-dimensional spaces, point reference tensor is no

longer equipped to encode the pairwise relations of corre-

sponding features, meanwhile having the means to describe

the influences of the high dimensional representations of

corresponding points that have on each other is important

for learning visual features of good quality. Therefore we

propose a novel point attention tensor (PAT) to achieve such

a goal through a learning mechanism. As shown in the at-

tention module in Figure 2, we define the point attention

tensor PAT = {aij ∈ R
1×1×C , i, j = 1, 2, ..., N} ∈

RN×N×C to extract point interaction knowledge from the

distance-based information in PRT. Concretely, we learn

the point attention tensor as

aij = Fr(rij) =
N∑

i,j=1

[
vrij

N∑
i,j=1

(wrijrij+αr)+βr

]
, (4)

where Fr(·) : RN×N×3 → R
N×N×C is a non-linear trans-

formation function processing with the point reference ten-

sor as input, wrij and vrij are learnable weights, αr and βr

are biases in the transformation function. We note that this

non-linear transformation function can be implemented as a

MLP.

3.3. Channel-Wise Feature Fusion

Figure 3: The channel-wise feature fusion. The inputs of the

channel-wise fusing operator are a latent feature map H ∈
R

N×C and the point attention tensor PAT ∈ R
N×N×C ,

the output of the process is a weighted feature map F ∈
R

N×C , Hk, Ak, Fk denotes features in the kth channel. C
denotes the number of channels in input tensors.

Exploiting local structure has proven to be important for

learning high-quality point features using convolutional ar-

chitectures. Fusing information of point neighbors into in-

dividual point features according to the learned pairwise in-

teraction will enable the network to be aware of both lo-

cal neighbourhood and global context. We design a novel

encoding mechanism with a channel-wise fusing operator,

which fuses influence of surrounding points interaction into

points features in a channel-wise fashion. As shown in Fig-

ure 3, the channel-wise feature fusion process is done by

conducting an inner product of the learned point features

and the attention weights that are from the point attention

tensor. Formally the process can be defined as:

F = A⊗H

=
[
F1, .., Fk, .., FC

]
(5)

=
[
A1H1, .., AkHk, .., ACHC

]
,

where Ak ∈ R
N×N denotes the kth channel in A, Hk ∈

R
N×1 denotes kth channel in H and⊗ denotes the channel-

wise feature fusion operator. Fk = AkHk ∈ R
N×1 repre-

sents the weighted feature of the kth channel. F ∈ RN×C

represents the weighted feature map for all channels. The
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output feature map after the channel-wise feature fusion

process encodes knowledge of both local information and

global context of a each particular point, which gives us the

final high-quality point features to carry out various 3D vi-

sion tasks.

Method Input

Accuracy

Avg. Class

Accuracy

Overall

3DShapeNets [32] volume 77.3 84.7

VoxNet [36] volume 83.0 85.9

PointNet [19] point 86.2 89.2

PointNet++ [21] point - 90.7

SO-Net [12] point 87.3 90.9

Ours point 88.2 91.1

Table 1: Object classification results on ModelNet40.

Our network achieves state-of-the-art performance.

4. Experiments
In this section, we evaluation our network on three dif-

ferent tasks, namely 3D object classification, 3D object part

segmentation and 3D scene semantic segmentation. We

demonstrate that our model performs better than current

state-of-the-art approaches under the same settings.

4.1. 3D Object Classification

Our network learns both locally and globally informative

visual features to do object classification. We evaluate our

model on the ModelNet40 [32] object shape classification

benchmark. There are 12,311 CAD Models from 40 man-

made object categories. Here we use the official split of

9,843 for training and 2,468 for testing.

We first uniformly sample 1,024 points from the mesh

surfaces and then normalize them into a unit sphere (i.e. all

the input coordinates are in the range of [−1, 1]). Following

the same setting in [19], during the training phase we ran-

domly rotate the object along the z-axis and apply a small

perturbation of adding a Gaussian noise of mean μ = 0 and

standard deviation σ = 0.02 to all the points as data aug-

mentation. The whole process is done in an online fashion.

The final evaluation metric is mean accuracy across all forty

object categories. For a given object category, the classifi-

cation accuracy is computed as

acci =
TPi

TPi + FPi
, (6)

where TP stands for true positives and FP for false positives.

In Table 1, we compare our model with several strong

models that also use raw point cloud as input. Our model

out-performs PointNet [19] by a considerable margin and

achieves state-of-the-art performance among methods deal-

ing with raw point cloud data. Also while PointGrid [10]

has an overall accuracy of 92% outperforming all of the

above methods including ours, it essentially modified the

structure of raw point cloud to incorporate a constant num-

ber of points in each cell that is no longer of the same ex-

periment setting as ours (and others as well), which is the

reason why we did not list its entry here since it is not a

completely fair comparison.

4.2. 3D Object Part Segmentation

Part segmentation is considered a challenging 3D visual

recognition task. Given a 3D point cloud or a mesh surface

model, the task is to assign part category label (e.g. mug

handle, skateboard wheel, etc) to each point or a mesh face.

We evaluate our model on the ShapeNet [35] dataset

which contains 16,881 shapes from 16 object categories

with 50 annotated object part classes in total. Most of the

categories has two to four object parts. Ground truth anno-

tations are labeled on sampled points of the shapes. Given

the highly imbalanced number of samples between differ-

ent categories, the task of part segmentation on this dataset

pose a great challenge to all methods including our own.

We also formulate the problem of part segmentation as

per-point classification. During training we uniformly sam-

ple 2,048 points per each object instance on the fly and per-

form a unit-sphere normalization. Because of the highly im-

balanced number of parts that each different category has, if

only training on each category separately the network might

have difficulty attending to the categories that have fewer

parts leading to poor performance. Therefore during train-

ing we follow the setting of [19], which is to add a one-hot

vector indicating the class of the input and concatenate it

with the max-pooling layer’s output to help our model to

better attend to the categories that has small number of ob-

ject parts. The final evaluation metric is mean Intersection

over Union (mIoU) on points. Given shape Si of category

Cj , the shape’s IoU is calculated as the intersection over

union between ground truth and prediction. Specifically we

have

IoU i =
TP i

TP i + FP i + FN i
, (7)

where TP stands for the true positives, FP for the false pos-

itives and FN for the false negatives. If the union of ground

truth and prediction is empty, the part IoU is computed as 1.

Then we average all part IoUs in that category to get mIoU

for that shape. To calculate mIoU for a certain category, we

take average of all mIoUs for all shapes in that category. We

compare our model with several latest works that are based

on point cloud input. In Table 2, we report per-category and

mean IoU (in percentile) scores, and we show visualization

of example segmentation results of the 4 categories of ear-

phone, guitar, lamp and rocket in Figure 4. (the results for

the rest 12 ShapeNet categories can be found in Figure 5).

From Table 2 we can see our model achieves remarkable
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Method # Shapes Yi [35] PointNet [19] Kd-Net [8] PointNet++ [21] SPLATNet [25] SO-Net [12] Ours

mIoU - 81.4 83.7 77.2 85.1 84.6 84.6 85.0

aiplane 2690 81.0 83.4 79.9 82.4 81.9 81.9 82.7

bag 76 78.4 78.7 71.2 79.0 83.9 83.5 82.3

cap 55 77.7 82.5 80.9 87.7 88.6 84.8 86.9

car 898 75.7 74.9 68.8 77.3 79.5 78.1 77.2

chair 3758 87.6 89.6 88.0 90.8 90.1 90.8 89.1

earphone 69 61.9 73.0 72.4 71.8 73.5 72.2 74.3
guitar 787 92.0 91.5 88.9 91.0 91.3 90.1 90.9

knife 392 85.4 85.9 86.4 85.9 84.7 83.6 83.9

lamp 1547 82.5 80.8 79.8 83.7 84.5 82.3 81.2

laptop 451 95.7 95.3 94.9 95.3 96.3 95.2 95.2

motorbike 202 70.6 65.2 55.8 71.6 69.7 69.3 69.1

mug 184 91.9 93.0 86.5 94.1 95.0 94.2 94.1

pistol 283 85.9 81.2 79.3 81.3 81.7 80.0 80.4

rocket 66 53.1 57.9 50.4 58.7 59.2 51.6 59.3
skateboard 152 69.8 72.8 71.1 76.4 70.4 72.1 76.2

table 5271 75.3 80.6 80.2 82.6 81.3 82.6 81.9

Table 2: Segmentation results on ShapeNet dataset. We compare our model with several latest approaches. Our model

achieves state-of-the-art performance.

performance. While PointNet++ [21] gains a slight advan-

tage (0.1% in overall mIoU) over us, it utilized extra point

normal information whereas our method relies solely on the

raw point cloud data, making our model the state-of-the-art

approach among methods that only use point coordinates so

far.

Figure 4: Example results of part segmentation on the

ShapeNet dataset. The first row is our model’s predicted re-

sults of the categories of earphone, guitar, lamp and rocket

(from left to right). The second row is ground truth.

4.3. 3D Scene Semantic Segmentation

In the last experiment we present the performance of

our model on the Stanford Large-Scale 3D Indoor Indoor

Spaces Dataset (S3DIS) [1]. The S3DIS dataset provides

point clouds for six fully reconstructed large-scale areas,

originating from three different buildings. We follow the

same train/test split as proposed in the original paper [1]

(Area 1, Area 2, Area 3, Area 4, Area 6 for training, and

Area 5 for testing). We compare our model against the

Qi [19] (PointNet) which performs a six-cross validation

across areas rather than buildings. As SegCloud points out

[27], this experimental setting will cause areas from the

same building end up both in training and test set lead-

ing to an increased performance. Therefore we adopt the

more principled strategy of testing on the fifth fold (Area

5) which is the most comprehensive fold of all the six folds

and train on the rest. During training we uniformly sam-

ple 4,096 points on the fly and rotate along the upright axis

as data augmentation. The point inputs are normalized into

the range [0, 1]3 as relative to the scene. The evaluation cri-

teria is mIoU across all 14 categories, the computation of

IoU for each category is the same as defined in Eq. 6. We

compare quantitatively with the results obtained from recent

state-of-the-art approaches in Table 3. We also show quali-

tative results consisting of a variety of different scene areas

(offices, lounges and conference rooms) in Figure 6. Note

that we removed some clutters and walls that belong to the

‘clutter’ and ‘wall’ classes respectively for the purpose of

clearer visualization.

From Table 3 we can see that our model outperforms

PointNet [19] by a large margin and achieves state-of-the-

art performance. Meanwhile we would like to note although

PCNN [6] outperforms all the other methods including ours

by quite a margin, it firstly uses point coordinates + RGB

values as input and projects point features onto an ordered

sequence of feature vectors, which introduces extra con-

straints in the point feature learning process.
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aero bag cap car chair knife

laptop motorbike mug pistol skateboard table

Figure 5: Visualization of results of part segmentation for the rest 12 categories on the ShapeNet part dataset. The first row in

every two rows are the outputs of our segmentation model. The second row in every two rows are the corresponding ground

truths. Best viewed in color.

Method 3D-CNN [27] PointNet [19] 3D-FCN-TI [27] SegCloud [27] PCNN [30] RCNN [6] Ours

mIoU 43.67 41.09 47.46 48.92 58.27 51.93 53.16

ceiling - 88.80 90.17 90.06 92.26 93.34 93.50
floor - 97.33 96.48 96.05 96.20 98.36 96.24

wall - 68.90 70.16 69.86 75.89 79.18 74.68

beam - 0.05 0.00 0.00 0.27 0.00 0.10

column - 3.92 11.40 18.37 5.98 15.75 16.78

window - 46.26 33.36 38.35 69.49 45.37 50.14

door - 10.76 21.12 23.12 63.45 50.10 45.57

chair - 52.61 76.12 75.89 66.87 65.52 70.26

table - 58.93 70.07 70.40 65.63 67.87 71.12
bookcase - 40.28 57.89 58.42 47.28 22.45 45.27

sofa - 5.85 37.46 40.88 68.91 52.45 50.94

board - 26.38 11.16 12.96 59.10 41.02 38.76

clutter - 33.22 41.61 41.60 46.22 43.64 47.12

Table 3: Scene semantic segmentation results on the S3DIS dataset [1]. We compare our model with several latest

approaches. Our model achieves state-of-the-art performance.

4.4. Implementation Details

We implemented our pairwise-attention model using the

PyTorch [17] framework, which is an open-sourced deep

learning platform that provides strong GPU support for

computation efficiency. We implement the transformation

network in our model as the same one in PointNet [19]

which takes raw point clouds as input and regresses them

into a 3 × 3 matrix. For classification network we apply

a dropout ratio of 0.6 on the last fully connected layer be-

fore class prediction. The decay rate for batch normaliza-

tion starts with 0.5 and is gradually increased to 0.99. We

use SGD optimizer with a momentum of 0.9 and an initial
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Figure 6: Visualization of scene semantic segmentation results on the S3DIS dataset. We choose different view angles for

each scene for better visualization quality. Best viewed in color.

learning rate of 0.001. We use an early stopping mecha-

nism to monitor training, if the performance on test set has

not improve for 10 consecutive epochs then we decay the

learning rate by half. Our model takes around eight hours

to converge on ModelNet40 with PyTorch using a NVIDIA

GTX 1080Ti GPU. The segmentation network shares the

same base architecture as our classification network, except

we concatenate the features after the first phase of 1-D con-

volution whose dimension of 64 with the final output global

features to help our network to attend to local information

in various object parts. We do not use dropout layer in any

part of segmentation network. Except an initial learning

of 0.0005 the other training parameters and training moni-

tor mechanism are the same as our classification network.

The segmentation takes around twelve hours to converge on

ShapeNet and twenty hours to converge on Stanford S3DIS.

5. Discussion and conclusion
In this work, we proposed a novel paradigm named pair-

wise attention encoding for 3D point feature learning. We

first introduce a novel pairwise reference tensor (PRT) in

the original input point space to represent the influence of

every two individual points that have on each other. By

passing the pairwise reference tensor through an MLP, we

obtain a high-dimensional point attention tensor (PAT) that

encodes pair-wise relationships in high dimensional space

that acts as an attention mechanism. Finally, we further

fuse learned point features with the attention weights to ob-

tain global visual features through a channel-wise feature

fusion (CFF) module. The fused point features encourage

the model to be aware of both neighbourhood information

and global context. With the pairwise attention encoding ar-

chitecture, the proposed network provides a integrated ap-

proach to a list of challenging 3D point cloud learning tasks

and achieves state-of-the-art or even better performance on

standard benchmarks. For the future work, we will con-

tinue to design proper loss function for the attention-based

network to converge faster and make the pairwise attention

encoding architecture a more powerful tool for point cloud

feature learning.
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