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Figure 1: Generalization through DREAMGEN. We enable 2D visuomotor robot policies to gen-
eralize to new environments with new behaviors, while only collecting teleoperation data for a
single behavior type (pick&place) in a single environment by utilizing video world models as syn-
thetic data generators.

Abstract: We introduce DREAMGEN, a simple yet highly effective 4-stage
pipeline for training robot policies that generalize across behaviors and envi-
ronments through neural trajectories—synthetic robot data generated from video
world models. DREAMGEN leverages state-of-the-art image-to-video generative
models, adapting them to the target robot embodiment to produce photorealis-
tic synthetic videos of familiar or novel tasks in diverse environments. Since
these models generate only videos, we recover pseudo-action sequences using
either a latent action model or an inverse-dynamics model (IDM). Despite its sim-
plicity, DREAMGEN unlocks strong behavior and environment generalization: a
humanoid robot can perform 22 new behaviors in both seen and unseen envi-
ronments, while requiring teleoperation data from only a single pick-and-place
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Figure 2: DREAMGEN Overview. We begin by fine-tuning a video world model on teleoperated
robot trajectories. Given an initial frame and a language instruction, the model generates video
rollouts depicting the intended behavior. As these videos lack action annotations, we infer pseudo-
actions using either a latent action model or an inverse dynamics model, forming what we call neural
trajectories. Finally, we train visuomotor robot policies on these neural trajectories.

task in one environment. To evaluate the pipeline systematically, we introduce
DreamGenBench, a video generation benchmark that shows a strong correlation
between benchmark performance and downstream policy success. Our work es-
tablishes a promising new axis for scaling robot learning well beyond manual data
collection.

1 Introduction

Robot foundation models trained on large-scale human teleoperation data have shown strong po-
tential for general-purpose robotic systems to perform dexterous real-world tasks [1, 2, 3, 4, 5, 6].
However, this paradigm relies heavily on collecting teleoperation data manually for every new task
and environment, which remains costly and labor-intensive. Synthetic data generation in simulation
offers an appealing alternative, but it often requires significant manual engineering and suffers from
sim2real gap when deploying visuomotor policies on physical robots. To address these challenges,
we propose DREAMGEN, a new synthetic data pipeline that leverages video world models to create
realistic training data at scale with minimal manual labor or engineering.

DREAMGEN follows a simple 4-step recipe (Figure 2) for applying state-of-the-art video generative
models [7, 8, 9, 10, 11, 12], also known as video world models, to generate synthetic training data.
This pipeline is designed to be general-purpose across different robots, environments, and tasks.
(1) We fine-tune video world models on a target robot to capture the dynamics and kinematics
of the specific embodiment; (2) we prompt the model with pairs of initial frames and language
instructions to generate large volumes of robot videos, capturing both familiar behaviors from fine-
tuning and novel ones in unseen settings; (3) we then extract pseudo-actions using either a latent
action model [13] or an inverse dynamics model (IDM)[14]; (4) finally, we use the resulting video-
action sequence pairs, dubbed neural trajectories, for training downstream visuomotor policies.
While prior work has focused on using video world models as real-time planners [15, 16, 17, 18,

2



19], DREAMGEN instead treats them as synthetic data generators, unlocking their strong priors for
physical reasoning, naturalistic motion, and language grounding.

First, we investigate DREAMGEN for generating additional training data for tasks where teleop-
eration data is already available, both in simulation and the real world. In simulation, we apply
DREAMGEN to the RoboCasa benchmark [20], scaling synthetic data up to 333× relative to the
original human demonstrations. This yields log-linear improvements in policy performance as the
number of neural trajectories increases (Figure 4). In the real world, we validate our approach on 9
diverse tasks on Fourier GR1, Franka Emika, and SO-100 robots, demonstrating the flexibility of our
pipeline across embodiments and challenging dexterous tasks that are difficult to simulate, such as
folding towels, wiping liquids, using hammers, and scooping M&Ms. DREAMGEN show consistent
gains on success rate across all robots: from 37% to 46.4% on average of 4 GR1 humanoid tasks,
23% to 37% on average of 3 Franka tasks, and from 21% to 45.5% on average of 2 SO-100 tasks,
all using just 10 to 13 real-world trajectories per task.

Next, we highlight two key generalization capabilities unlocked by DREAMGEN: behavior gener-
alization and environment generalization. For behavior generalization, we enable the GR1 hu-
manoid to perform 22 novel behaviors, such as pouring, opening/closing articulated objects, and
manipulating a variety of tools. Note that the original teleoperation dataset only includes pick-and-
place and no other verbs. For environment generalization, we prompt video world models (fine-
tuned on just a single environment) with initial frames from 10 new environments. This allows us
to train visuomotor policies that generalize to novel behaviors and settings using only teleoperation
data from a single task in a single environment. These represent true zero-to-one improvements –
GR00T N1 trained on pick-and-place alone achieves 0% success rates on most novel behavior and
environment experiments, while DREAMGEN enables 43.2% success rates on new behaviors in seen
environments and 28.5% in completely unseen environments. These empirical results point towards
a new paradigm for scalable robot learning without extensive manual demonstrations.

Lastly, we introduce DreamGenBench (Appendix B), a new video generation benchmark designed
to evaluate how well different video world models adapt to novel robot embodiments. We assess
whether 8 models, 4 zero-shot and 4 fine-tuned, can generate robot videos that involve manipulating
unseen objects, performing unseen behaviors, and operating in unseen environments, all while abid-
ing by the laws of physics. Empirically, we find that models with higher scores also yield stronger
downstream robot policy performance. DreamGenBench provides a diagnostic and low-cost way to
connect video world models to robotics, without requiring a physical robot in the loop. We hope this
offers an accessible pathway for video model researchers to contribute to robot learning.

2 DREAMGEN

In the next subsections, we describe in detail the 4 different steps (shown in Figure 2) of
DREAMGEN, creating and utilizing neural trajectories to train visuomotor robot policies.

2.1 Video World Model Fine-tuning

In the initial phase, we fine-tune video world models on human-teleoperated robot trajectories. This
adaptation enables the model to learn the robot’s physical constraints and movement capabilities. To
mitigate forgetting prior internet video knowledge, we use Low-Rank Adaptation (LoRA) [21] by
default for the different video world model fine-tuning we conduct. When fine-tuning these models,
we look at two metrics, instruction following and physics following, to determine whether the video
world model has been optimally adapted to the target robot domain (details provided in Section B).
For the majority of our downstream robot experiments, we utilize WAN2.1 [9] as our base video
world model. In cases where there are multiple viewpoints in the training dataset (RoboCasa [20]
and DROID [22]), we concatenate the viewpoints into a 2×2 grid (with one grid with black pixels)
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Figure 3: Extracting Pseudo Actions. (a) shows the architecture of our IDM model and (b) shows
the architecture of our latent action model.

and fine-tune the video world models.1 We also observe that the optimal amount of fine-tuning
required for each video world model and fine-tuning data pair differs.2

2.2 Video World Model Rollout

After fine-tuning the video world models on the target robot embodiment, we generate synthetic
robot videos using various initial frames and language instructions. For simulation experiments,
we collect new initial frames from the simulator, randomizing the locations of the target objects or
environments for each task. For real-world experiments, we manually take new initial frames while
randomizing the location of the target object. For environment generalization experiments, we also
take initial frames of new environments, while we restrict ourselves to training the video world
model collected from a single environment (pictures shown in Appendix D). Lastly, we manually
come up with novel behavior prompts for the behavior generalization experiments, and also include
all of the candidates in our video benchmark in Section B.3

2.3 Pseudo Action Labeling

Figure 3 shows the (a) architecture we use to train the IDM model and the (b) architecture that
we use to train the latent action model (LAPA), both used to extract pseudo action labels for the
generated videos.

IDM Actions. For the inverse dynamics model (IDM) architecture, we use diffusion transformers
with SigLIP-2 vision encoder and train with a flow matching objective. IDM is conditioned on two
image frames and is trained to predict action chunks between the image frames (Figure 3). We do
not explicitly use any language or proprioception as input, since we want the IDM model to only
capture the dynamics of the robot. For the IDM training data, we use the same dataset used to train

1Examples are shown in Appendix E.
2We provide the hyperparameters (learning rate, number of epochs, etc.) used for all of the experimental

setups in Appendix F.
3Even though collecting new initial frames requires some manual work, it significantly alleviates the need

for collecting new teleoperation data. Furthermore, we hope to utilize image-to-image diffusion techniques to
alleviate this burden, where we can start off with a single initial frame, and randomize new initial frames by
impainting the object locations, type of objects, as well as the environment for future work.
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the video world models for each setup, unless explicitly stated otherwise. After training, we employ
a sliding window approach for pseudo-labeling: the IDM predicts H actions, ât to ât+H . Next, it
slides one window and predicts another H actions, ât+1 to ât+1+H , and so forth. More details are
provided in Appendix C.

Latent Actions. For latent actions, we use the LAPA latent action model [13], which has a trans-
former encoder-decoder architecture and is trained on diverse robot and human videos. The latent
action model is trained with a VQ-VAE objective so that the latent actions can capture the visual
delta information between two frames in a video. To obtain the latent actions from the generated
videos, we condition the latent action model on the current frame and the future frame (1 second
ahead) of the trajectory. We use the pre-quantized continuous embedding as the latent action follow-
ing GR00T N1 [5]. The exact training data mixture used to train the latent action model is provided
in Table 3. One benefit of latent actions is that it does not require actually having ground-truth
actions for the target robot embodiment when training latent action models.

2.4 Policy Training on Neural Trajectories

Lastly, we train visuomotor robot policies on neural trajectories generated by DREAMGEN by con-
ditioning on language instruction and image observations. We condition state information with zero
values, since neural trajectories do not contain state information.4 More specifically, given ot, the
image observation, and it, the task instruction, we train the policies to generate ât:t+H , which can
be either latent actions or IDM-labeled actions from the previous subsection. Since neural trajecto-
ries are independent of the underlying robot policy architecture, we showcase the effectiveness of
DREAMGEN for generating synthetic training data for 3 different visuomotor policy models, Diffu-
sion Policy [24], π0 [2], and GR00T N1 [5].

We propose two scenarios of training with neural trajectories: co-training with real-world trajec-
tories, and solely training on the neural trajectories labeled with IDM actions. When we co-train
neural trajectories with real trajectories, we co-train with a sampling ratio of 1:1. For GR00T N1,
we treat the two types of trajectories as separate embodiments by using separate action encoder and
decoder. For behavior and environment generalization experiments, we only use neural trajectories
for policy training.

3 Experiments

In this section, we demonstrate three key applications of DREAMGEN: (1) Augmenting training data
for existing tasks, (2) Enabling generalization to novel behaviors, and (3) Enabling generalization to
novel environments.

3.1 Training Data Augmentation

For simulation experiments, we evaluate our pipeline on the RoboCasa benchmark [20], using the
same training and evaluation protocol as outlined in the original work. For real-world experiments,
we evaluate on 9 real-world tasks across three embodiments: the GR1 humanoid robot, the Franka
arm robot, and the low-cost SO-100 robot arm.

Simulation experiments Figure 4 shows the downstream robot policy results as we scale the total
number of neural trajectories in three different scenarios of ground-truth data: low data (720), mid-
data (2.4k), and high-data (7.2k) on RoboCasa. Each scenario determines how strong our IDM
model can become, since the more ground-truth data we have about a given robot, the more useful
dynamics the model can learn. In this particular setup, we train our video world model on 1,200

4From preliminary experiments, we observed that having zero state does not harm the performance. We
leave training the IDM to predict state information for future work.
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Figure 4: Scaling # of Neural Trajectories in RoboCasa. We vary the sizes of neural trajectories
(x-axis) and ground-truth trajectories (low, mid, high) and report results with both latent and IDM
actions as pseudo action labels. We report the average success rate (%) across 24 tasks. The results
at x = 0 correspond to the baseline only trained on ground-truth videos.
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Figure 5: Real-world Robot Evaluation Results. The red rectangular box shows the range of
object randomization during training and evaluation. Low Data denotes training 10% of available
training data (only 10 trajectories per task except for GR1-folding, where we used 25 trajectories),
and Low Data + Neural Traj. denotes co-training with neural trajectories.
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original human demonstrations, whereas IDM and policy training are conducted in different data
scenarios from the benchmark.5

First, we observe that co-training with neural trajectories yields a performance boost for both IDM
and LAPA actions across all data regime scenarios. Since both approaches have similar effects,
we use IDM as the default for the rest of the experiments, as IDM actions enable solely training
on neural trajectories and evaluating the policy performance, and in all of our experimental set-up,
we do have access to teleoperation data to train strong enough IDMs for each robot embodiment. 6

Second, we observe that there is a consistent log-linear slope between the total number of neural
trajectories and the downstream robot policy performance. This hints towards a potential for a new
paradigm in robot learning, as synthetic data generation through neural trajectories is significantly
more scalable compared to the traditional method of manual teleoperation for imitation learning.
Lastly, we show that solely training on neural trajectories with IDM actions enables us to reach a
non-trivial performance (20.6% average success rate across 24 tasks), further highlighting the quality
of neural trajectories (a detailed breakdown of results is provided in Appendix G).

Real-world Experiments For real-world experiments, we collect 100 trajectories per task for the
four GR1 and three Franka tasks. For the two SO-100 tasks, we collect 40 and 50 trajectories for
the strawberry pick-and-place and tic-tac-toe tasks, respectively. Details of the data collection and
evaluation criteria for each of the 9 tasks are provided in the Appendix K, and details of the video
world model training procedure for each task are provided in Appendix H. As default, we use only
10% of the collected trajectories for our main experiment to test data efficiency for GR1 and Franka
tasks (only 10 real-world trajectories per task) and 25% of the collected trajectories for SO-100
tasks (10 and 13 trajectories per task).7 We generate 300 neural trajectories for each GR1 task, 100
neural trajectories for each Franka task, and 40 and 50 neural trajectories for the two SO-100 tasks,
respectively, to co-train with real-world trajectories with a 1:1 sampling ratio.

As shown in Figure 5, neural trajectories consistently improve performance for different visuomotor
policies (Diffusion Policy, π0, and GR00T N1) across all robot embodiments for dexterous tasks in-
volving tool manipulation, manipulation with deformable objects, and pick-and-place. Importantly,
these tasks present significant simulation challenges due to their complex physical interactions with
tools and deformable materials, making synthetic data generation infeasible with current approaches
in the literature. Empricially, we observe a higher performance gain for GR00T N1 compared to DP
and π0; we hypothesize that having separate action and decoder parameters for the IDM actions help
with the fact that neural trajectories have 0’s as state.

3.2 Unlocking Generalization

To demonstrate how DREAMGEN can unlock generalization in robot learning, we train our target
video world model on 2,884 trajectories of the GR1 Humanoid performing diverse pick-and-place
motions. Next, we prompt the model with (1) novel behaviors in seen environments and (2) seen
and novel behaviors in novel environments, generating neural trajectories. The visualization of
the evaluation configuration (how much randomization is done for the target object) is provided in
Figure 11. We use GR00T N1 as the base policy for this section.

Behavior Generalization We investigate whether our pipeline enables robots to learn entirely
new behaviors solely from neural trajectories without involving any human teleoperation. We define
“new behaviors” as novel action verbs beyond adapting existing motions. Surprisingly, just given
the initial frame and the language instruction, we observe that the video world model can generalize

5RoboCasa Benchmark consists of three different viewpoints for visuomotor policy training: left, right, and
wrist. We utilize GR00T N1 [5] as the base robot policy for this experiment.

6Enabling zero-shot generalization to novel behaviors and novel environments with robot embodiments
with zero ground-truth data still remains an open research question.

7We also provide the evaluation results of models trained on “High Data” (100% of training data) in Ap-
pendix I.
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Table 1: Success Rate (%) Across New Behaviors (14 tasks) and Environments (13 tasks).
Seen Environments, Novel Behaviors

Model Open
Microwave

Open
Macbook

Close
Lunchbox

Hit
Tambourine

Hit
Keyboard

Grab
button

Pour
Water

Water
flowers

Light
Candle

Use
Vacuum

Iron
shirt

Take Spoon
Out

Unroll
mat

Move
Mouse Average

GR00T N1 0 0 0 5 0 45 40 50 10 0 0 7 0 0 11.2
w/ DREAMGEN 23 45 10 15 90 75 55 95 15 55 20 17 55 35 43.2

Examples

Novel Environments, Seen Behaviors Novel Environments, Novel Behaviors

Model Pick up
Tangerine

Box
sandwich

Weigh the
Orange

Put cup
in trash

Put pear
in basket

Put sauce
on tray

Water
Flowers

Lift
Basket

Swirl Around
Spoon

Use
Whisk

Close soup
container

Uncover
Pot

Cover
Pot Average

GR00T N1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0
w/ DREAMGEN 30 10 20 45 35 45 15 55 15 25 55 30 35 28.5

Examples

in generating videos of totally unseen behaviors (examples shown in Figure 12). We recommend
referring to the website 8 for better visualizations. Leveraging this capability, we generate 50 neural
trajectories for each of the 14 novel behavior tasks and train our downstream visuomotor robot policy
only on the neural trajectories. As shown in Table 1, we first show the result of GR00T N1 fine-
tuned on the 2,885 pick-and-place trajectories, which also gets a somewhat non-trivial performance
(11.8%), due to some of the tasks giving partial points for picking up the object (e.g. for example,
we give 0.5 success for picking up the bottle for the “Pour Water” task). Nonetheless, we see a
non-trivial performance gain when trained with neural trajectories (11.2% → 43.2%), showing that
our pipeline enables learning totally new verbs.

Environment Generalization To our surprise, when prompted with initial frames of totally new
environments, we observe that video world models can still generalize and generate very realistic
robot videos, following the kinematics it learned during fine-tuning, while retaining the internet-
video knowledge learned during pretraining. We follow the same proposed pipeline and train visuo-
motor robot policies solely on neural trajectories, and observe that we can get non-trivial success
rates on both seen behaviors (variants of pick-and-place) and unseen behaviors (e.g., watering flow-
ers, closing containers, stirring whisk, etc.) as shown in Table 1. Importantly, unlike previous work
that showed environment generalization by scaling the total number of environments in the training
data [6], our approach did not require any physical data collection beyond a single environment (i.e.,
lab setup)—we only capture initial frames, effectively implementing a zero-shot transfer methodol-
ogy. Lastly, the baseline model trained only on pick-and-place in a single environment shows 0%
Success Rate, since it does not have the ability to generalize beyond the environment it was trained
in.

4 Conclusion

We introduce a novel pipeline for robot learning that taps into the power of SOTA video generative
models. By generating synthetic videos and extracting pseudo-actions, we enable training visuo-
motor policies without relying solely on manual demonstrations. This approach not only augments
existing tasks but also unlocks the ability to learn entirely new behaviors in unseen environments.
DREAMGEN serves as a solid stepping stone towards unleashing the full potential of world models
in robotics.

5 Limitation

Our approach is complementary to existing methods that learn from videos, although we do not di-
rectly benchmark against them. Many of these works focus on learning from human demonstration

8https://research.nvidia.com/labs/gear/dreamgen
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videos. Since DREAMGEN helps bridge the human-robot domain gap, we believe it can serve as a
useful foundation for improving such methods and enabling broader generalization. Our tasks are
relatively simple and cover a limited portion of the robot’s full kinematic capabilities. Supporting
more complex, dexterous behaviors that require richer control remains an important direction for
future work. Increasing the diversity of training behaviors, along with broader video-language pair-
ings, may allow the video world model to take on more of the representational burden and improve
generalization to challenging tasks.

DREAMGEN currently requires significant compute. For instance, generating the 240k-sample
RoboCasa dataset took 54 hours on 1500 NVIDIA L40 GPUs. While feasible in a large-scale re-
search setting, reducing computational cost without sacrificing the strength of video priors remains
an important challenge. The method also relies on manually providing initial frames, which intro-
duces operational overhead. Developing automated ways to generate or select initial frames is a
promising future direction.

Finally, the automatic evaluator used in DreamGenBench is based on lightweight open-source mod-
els to keep the benchmark accessible. These models can occasionally hallucinate, especially when
evaluating physical realism in videos, which remains a difficult and evolving problem. We acknowl-
edge this limitation and leave improvements in evaluation to future work.
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A Related Work

Synthetic Data Generation in Robotics. Real-world robot data collection through human tele-
operation requires large amounts of time and considerable human cost. As an alternative, collect-
ing synthetic data in simulation can be more efficient and automated with minimal human effort
[25, 26, 27, 28, 29, 20, 30, 31, 32, 33, 34]. However, using these trajectories can be challenging due
to the following factors: (1) the sim-to-real gap, (2) difficulty in simulating objects such as liquid
and articulated objects, and (3) being bounded by either Task and Motion Planning (TAMP) based
systems or the interpolation of human teleoperation data. Another direction is to use neural gener-
ative models to augment existing sets of robot demonstrations [35, 36, 37, 38], using in-painting,
image diffusion models, or even video2video models [39]. However, the diversity of the generated
data is limited, especially in terms of robot motions, and the augmented data is only used to increase
visual robustness to distribution shifts.

Video World Modeling for Robotics. Video generative models can be used to generate syn-
thetic robot trajectories and extract executable actions during test-time via inverse-dynamics mod-
els (IDM) [15, 16], optical flow as dense correspondence [17], or trajectories as high-level
plans [18, 19]. Another work generates human videos along with 3D tracking during test-time [40],
or human videos for novel scenes and motions [41], and trains a policy with a point tracking ob-
jective. A concurrent work explores adapting text-to-video models for task generalization [42] by
generating synthetic trajectories and extracting executable actions via an IDM or using it to extract
rewards to guide a reinforcement learning policy. However, the scope of the work is bounded by
simulation tasks. Some recent work aims to either train a robot policy initialized from a video gen-
erative model [43, 44] or perform policy training, inverse dynamics, and forward dynamics together,
enabling co-training with both robot and video data [45, 46, 47, 48]. Our approach deliberately
separates these components to fully make use of the state-of-the-art video generative models, which
is currently not feasible to run in adjacent with a robot policy real time to ensure the strongest
generalization capabilites.

Learning Robot Policies from Videos Videos provide abundant information for training robots,
yet most do not come with labeled actions [49]. To enhance visual representations, prior work has
used pretraining of vision encoders on egocentric videos of human activity [50], which has proven
beneficial in downstream tasks [51, 52]. Several approaches extract various forms of information
from human-centric videos, including human-object interactions [53], object affordances [54, 55,
56, 57], and visual trajectories [58, 59]. Other lines of research focus on translating human motions
into robotic behaviors, employing hand pose estimators [60, 61, 57, 62, 63, 64] or motion capture
systems [65]. Another line of work extracts latent actions to train downstream robot policies from
visual deltas between the current and future frames [13, 66, 67, 68, 69, 4, 70, 71]. In this work, we
use synthetic videos generated by a world model as the source instead of human videos, and explore
using latent actions by co-training latent actions with real-world actions.

B DreamGenBench: A Video Generation Benchmark for Robotics

Motivated by recent work benchmarking the capabilities of video generative models as world mod-
els [72, 73, 74, 75], we introduce DreamGenBench, a systematic world modeling benchmark that
aims to quantify the capacity of existing video generative models to adapt to a specific robot em-
bodiment, internalizing the rigid body physics of the given robot, while generalizing to new objects,
behaviors, and environments. We measure two key metrics: instruction following and physics fol-
lowing.

First, the instruction following metric is used to assess whether the generated video strictly adheres
to given instructions to generate a video of the robot completing the specific task. The generated
videos are fed into Qwen-VL-2.5 [76] with specific prompts to give a binary score (0 or 1) for
quantifying the consistency between the video content and the task instructions, thereby ensuring

15



Table 2: DreamGenBench Statistics and Results. IF represents Instruction Following, and PA
represents Physics Alignment. GPT represents the evaluation from GPT4o, Qwen represents the
evaluation from Qwen2.5VL, and Hu represents the human evaluation. -zero represents zero-shot
inference and -sft represents fine-tuned variants. Best is bolded and second best is underlined.

Dataset Statistics
Dataset RoboCasa GR1

Train (# trajs) 1200 100

Eval (# frames) 48 Object: 50 Behavior: 47 Env: 30
Results

IF PA IF PA IF PA IF PA
GPT Qwen Hu GPT Qwen Hu GPT Qwen Hu GPT Qwen Hu

Hunyuan-zero 1.0 0.0 - 0.0 0.0 0.0 - 0.0 0.0 2.1 - 2.1 0.0 0.0 - 0.0
CogVideoX-zero 0.0 0.0 - 0.0 0.0 0.0 - 0.0 0.0 0.0 - 0.0 0.0 0.0 - 0.0
WAN2.1-zero 0.0 0.0 - 0.0 0.0 2.0 - 2.0 0.0 2.1 - 2.1 0.0 6.7 - 6.7
Cosmos-zero 4.2 22.9 - 22.9 0.0 32.0 - 32.0 6.4 31.9 - 31.9 3.5 24.1 - 24.1
Hunyuan-sft 68.8 8.3 81.3 44.8 38.0 26.0 52.0 39.0 38.3 10.6 14.9 12.8 27.6 27.6 43.2 35.4
CogVideoX-sft 72.9 10.4 79.2 44.8 72.0 38.0 72.0 55.0 44.0 28.0 21.3 24.7 55.2 41.4 61.1 51.3
WAN2.1-sft 77.1 18.8 91.7 55.3 72.0 58.0 80.0 69.0 72.3 55.3 74.5 64.9 48.3 65.5 67.4 66.5
Cosmos-sft 79.2 29.2 93.8 61.5 90.0 62.0 84.0 73.0 59.6 61.7 68.1 64.9 69.0 65.5 53.3 59.4

that the actions and scenes in the video match the intended objectives. We provide the exact prompt
we use for the evaluation in Appendix J.1. We also provide human evaluations in addition to the
model-based evaluation, showing an average Pearson correlation of > 90%, ensuring that the model-
based evaluation metric is aligned to human judgment in Appendix J.3.

Next, we quantify the physics alignment to evaluate the physical plausibility of the generated videos,
so that the videos are actually useful for downstream robot learning. For this purpose, we first
employ the VideoCon-Physics [73], a VLM specifically trained to give scores for physics adherence
of generated videos. Specifically, we get a 0 to 1 score from VideoCon-Physics. In practice, we find
the model has not been trained on multiview videos (RoboCasa) and diverse robot environments, so
we use a general VLM: Qwen-VL-2.5 to also score each video based on our instruction and then
calculate the average score of these two scores for each video generation model on each dataset. We
provide more details of VideoCon-Physics in Appendix J.2.

Using these two metrics, we benchmark 4 different video world models, Hunyuan [10],
CogVideoX [8], WAN 2.1 [9], and Cosmos [7], on 2 different training and evaluation setups, one
in simulation on the Franka Emika robot and one in real on the Fourier GR1 Humanoid. We also
quantify the zero-shot capability of the models, evaluated without adapting to the specific embodi-
ment. Results and dataset statistics are shown in Table 2. In addition to these two metrics, we also
replay the IDM actions in simulation to empirically see the quality of the IDM actions, where we
have access to the digital twin of the Fourier GR1. See Section J.4 for more details.
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Figure 6: Performance correlation be-
tween DreamGenBench and RoboCasa.

DreamGenBench shows positive correlation to down-
stream robot policy performance. To measure
whether DreamGenBench could be a proxy evaluation
for the performance of the downstream robot policy, we
measure the performance of the RoboCasa benchmark
by only training on neural trajectories generated from
the different video world models. A positive correlation
between DreamGenBench and RoboCasa would indicate
that building a better world model that can follow lan-
guage instruction and model world physics leads to better
performance on the downstream robot manipulation
tasks. We compare all the models in Table 2 with 7K
neural trajectories per model. For DreamGenBench

score, we use the average of IF (GPT) and PA from Table
2. The results are illustrated in Figure 6. As shown, the correlation between DreamGenBench and
RoboCasa shows a positive correlation, indicating that building a stronger video world model could
lead to larger performance enhancement.
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Table 3: LAPA Training Dataset Statistics
Dataset Length (Frames) Duration (hr) FPS Category

GR-1 Teleop Pre-Training 6.4M 88.4 20 Real robot
DexMG 4.4M 61.64 20 Simulation
DROID (OXE) 23.1M 428.3 15 Real robot
RT-1 (OXE) 3.7M 338.4 3 Real robot
Language Table (OXE) 7.0M 195.7 10 Real robot
Bridge-v2 (OXE) 2.0M 111.1 5 Real robot
RoboCasa 19.3M 268.0 20 Simulation
Agibot-Alpha 213.8M 1,979.4 30 Real robot
Sth-v2 4.0M 105.7 30 Human
Ego4D 154.4M 2,144.7 20 Human

Total 438.1M 5,721.3 – –

WAN Neural 
Trajectory

WAN Replay

CogVX Neural 
Trajectory

CogVX Replay

Figure 7: Neural Trajectories and Replay Videos for WAN and CogVideoX model. The language
instruction is to “Use the right hand to pick up the plastic pitcher and pour water onto the green
plant.”

C Extracting Pseudo Actions from Synthetic Videos

For IDM, if we have a digital cousin of the real robot embodiment in simulation, we can also replay
the pseudo actions in simulation and do intermediate checking whether the neural trajectory quality
is not good enough or the bottleneck is on the IDM model (as shown in Figure 7). Empirically, we
observe that most of the bottleneck is from the quality of the neural trajectories, which indicates that
future video models that can generate videos with better language following and physics alignment
could lead to a significant boost on the downstream task. For LAPA training, we trained a collection
of datasets that include real robots, simulation, and human videos. The detailed statistics are shown
in Table 3. We use a codebook size of 8 and a sequence length of 16 for vector quantization. We
train 100K steps with a batch size of 1024.

D Environment for Teleoperation and Evaluation

We provide some sample images of the environment where we collected all of our GR1 humanoid
teleoperation data in Figure 8 and all of the 10 environments where we conducted environment
generalization results in Figure 9, respectively.
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Figure 8: Seen Environment. Sample images for the environment where we collected the pick-and-
place GR1 data.

Figure 9: Unseen Environment. All of the 10 environments for our environment generalization
experiments.

RoboCasa

DROID

Figure 10: Multiview Examples. The top row shows a trajectory from RoboCasa and the bottom
shows a trajectory from the DRIOD dataset.

E Examples of Multiview Robot Data Processing

We provide examples of how we process multiview training data, RoboCasa, and DROID, for video
world model fine-tuning in Figure 10. Specifically, we arrange the viewpoints into a 2×2 grid: the
left camera view is placed at the top-left, the right camera view at the top-right, and the wrist camera
view at the bottom-left. A black image is inserted in the bottom-right to complete the grid.

F Video World Model Training Hyperparameters

For all of the WAN 2.1 fine-tuning experiments, we used a learning rate of 1e-4, LoRA rank 4, and
LoRA alpha 4. For RoboCasa finetuning, we trained the model for 100 epochs with a batch size of
32. For GR1 finetuning, we trained the model for 75 epochs with a batch size of 64. For DROID
fine-tuning, we trained the model for 5 epochs with a batch size of 64. For both of the two tasks in
SO-100 finetuning, we trained the model for 200 epochs with batch size 8.

G Detailed Experimental Results on RoboCasa

Table 4 shows all of the experimental results on RoboCasa. As seen in the chart, ONLY neural
trajectories also achieves 20.55% average success rate across the 24 tasks, showcasing how close
neural trajectories are to ground truth trajectories.
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Table 4: Experimental Results on RoboCasa. NT stands for 240k neural trajectories.
Task GR00T N1

30 traj. 100 traj. 300 traj. 30 traj. + NT 100 traj. + NT 300 traj. + NT ONLY NT

Pick and Place

PnPCabToCounter 0.93 3.92 19.61 5.77 13.46 25.00 1.96
PnPCounterToCab 1.85 6.86 36.27 3.85 19.23 50.96 16.67
PnPCounterToMicrowave 0.00 0.00 12.75 0.00 9.62 19.23 0.00
PnPCounterToSink 0.00 0.98 9.80 0.00 12.50 33.65 1.96
PnPCounterToStove 0.00 0.00 23.53 0.00 12.50 42.31 8.82
PnPMicrowaveToCounter 0.00 0.00 15.69 0.00 14.42 28.85 0.00
PnPSinkToCounter 0.00 5.88 33.33 3.85 28.85 60.58 0.98
PnPStoveToCounter 0.00 0.00 29.41 0.96 9.62 58.65 5.88

Open/Close Doors

CloseDoubleDoor 0.00 43.14 74.51 9.62 52.88 82.69 2.94
OpenDoubleDoor 0.00 12.75 14.71 0.00 8.65 28.85 0.00
CloseSingleDoor 49.07 67.65 83.33 51.92 80.77 94.23 52.94
OpenSingleDoor 20.37 54.90 58.82 44.23 55.77 47.12 15.69

Open/Close Drawers CloseDrawer 76.85 96.08 99.02 88.46 98.08 98.08 82.35
OpenDrawer 9.26 42.16 79.41 33.65 68.27 74.04 33.33

Twisting Knobs TurnOnStove 14.81 25.49 55.88 21.15 27.88 51.92 17.65
TurnOffStove 4.63 15.69 26.47 7.69 13.46 25.96 6.86

Turning Levers
TurnOffSinkFaucet 49.07 67.65 72.55 51.92 69.23 95.19 59.80
TurnSinkSpout 24.07 42.16 52.94 37.50 45.19 59.62 28.43
TurnOnSinkFaucet 33.33 59.80 62.75 48.08 67.31 72.12 25.49

Pressing Buttons
TurnOffMicrowave 47.22 57.84 70.59 55.77 75.96 76.92 29.41
TurnOnMicrowave 55.56 73.53 78.43 49.04 52.88 72.12 48.04
CoffeePressButton 27.78 56.86 85.29 34.62 63.46 83.65 48.04

Insertion CoffeeServeMug 3.70 34.31 72.55 11.54 48.08 74.04 2.94
CoffeeSetupMug 0.00 1.96 22.55 0.00 10.58 26.92 2.94

Average 17.44 32.07 49.59 23.32 39.94 57.61 20.55

H Fine-tuning Data for Video World Models and IDMs

In this section, we provide some detailed information about the protocol we followed to train the
video world models and the IDM for each experimental setup.

Four dexterous tasks on Real-world GR1. To train our video world model, we follow the same
protocol outlined in Section 2, and train on 2,884 GR1 trajectories of pick-and-place collected in a
single lab environment. Since these four tasks differ significantly from the target task, we further
fine-tune the model on the low data trajectories for each task. For each task, we collect 100 tra-
jectories, but only utilize 10 trajectories for Hammering, Wiping, Stacking, and 25 trajectories for
Folding to test data efficiency. We utilize the IDM trained only on the 2,884 GR1 pick-and-place
data for all experimentsl.

3 tasks on Franka. Following protocol in Section 2, we train our video world model on 49,895
DROID data examples, and further fine-tune the model on the low data trajectories for each task.
We found that utilizing the model trained only from the DROID dataset results in dreams that show
generalization to the new environment, but produced trajectories that made mistakes on fine-graed
details (e.g. grasping). We use 11, 10, and 8 trajectories for putting milk in bowl, cube stacking, and
scooping M&Ms, respectively. Similarly to GR1, we use the IDM trained on 49,895 trajectories and
do not do any specific post-training.

2 tasks on SO-100. The original SO-100 videos concatenate multiple trajectories with identical
actions into a single video. For fine-tuning, we manually trim and split these into separate videos,
each corresponding to an individual trajectory. Specifically, we sample 10 and 13 videos for the two
tasks, which yield 68 and 44 trajectories, respectively, after trimming.

I Full Real-world Experimental Results

Table 5 shows the entire experimental results, including the model performance when trained on the
“High Data” variant of each experimental setup.
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Table 5: Success Rate (%) of Real-world Data Augmentation Experiments..
Model GR1 Franka SO-100

Hammering Wiping Folding Stacking Average Pick&Place Cube Stacking Tool Usage Pick&Place Tic-Tac-Toe

DP 35.0 23.3 6.6 25.0 22.0 20.0 0.0 10.0 - -
π0 - - - - - 30.0 10.0 20.0 - -
GR00T N1 60.0 36.6 27.0 25.0 37.0 40.0 10.0 20.0 17.0 25.0

DP + Neural Traj. 15.0 33.3 26.4 35.0 27.0 30.0 20.0 10.0 - -
π0 + Neural Traj. - - - - - 40.0 20.0 20.0 - -
GR00T N1 + Neural Traj. 65.0 49.0 37.0 35.0 46.0 60.0 20.0 30.0 26.0 65.0

DP (High Data) 60.0 36.0 43.3 75.0 54.0 30.0 20.0 20.0 - -
π0 (High Data) - - - - - 50.0 40.0 40.0 - -
GR00T N1 (High Data) 75.0 50.0 66.6 85.0 69.0 80.0 50.0 40.0 36.0 40.0

J Video World Model Evaluation

J.1 Success Rate

Specifically, we use the following prompts to Qwen2.5-VL-7B-Instruct [76] to judge whether a
video follows the instruction to complete a specific task or not.

Prompt Template for Success Rate

User: {Video: <vid path>}{Text: ”The video shows a robot arm completing a specific
task. Please evaluate: if the video follows the instruction to finish the task ’{prompt}’, give
a positive score. Reply only ’0’ for No or ’1’ for Yes.”}
Assistant: 0 or 1

Prompt Template for Success Rate (Zeroshot)

User: {Video: <vid path>}{Text: ”You are evaluating if a robot arm correctly follows this
instruction: ’{prompt}’
CRITICAL EVALUATION PROCESS: 1. FIRST CHECK: If you see HUMAN HANDS
instead of robot arms, IMMEDIATELY ANSWER 0. 2. SECOND CHECK: Only if robot
arms confirmed, verify if the instruction is followed exactly. 3. For videos with multiview
clip (4 grids), verify if the instruction is followed exactly in each view. Only if all the view
is following instruction, answer 1, otherwise, answer 0.
Remember: human hands = automatic failure (0). Be extremely strict in your judgment. For
videos with multiview clip (4 grids), check if the human arm is present in any view, if so,
make sure to answer 0.
Reply ONLY with a single digit: 0 for failure or 1 for success.”}
Assistant: 0 or 1

J.2 Physics Alignment

While human evaluation provides accurate benchmarking, it is time-consuming and costly at scale.
To enable model developers with limited resources to use our benchmark, we use VideoCon-
Physics, an open video-text language model with 7B parameters trained on real videos for physics
alignment evaluation [73]. Specifically, they finetune VideoCon [77] using human annotations col-
lected for physics alignment on generated videos. We prompt it to generate binary responses con-
ditioned on multimodal templates. They evaluate this auto-rater by computing ROC-AUC between
human judgments and model predictions on videos generated with testing prompts, and show that
they have a strong correlation with human evaluation results. In addition to it, we use Qwen2.5-VL-
7B-Instruct [76] to judge whether a video follow physics or not with the following prompt:
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Prompt Template for Physics Alignment

User: {Video: <vid path>}{”The video shows a robot arm completing a specific task.
Does the video show good physics dynamics that is aligned with the physical world? Answer
0 for No or 1 for Yes. Reply only 0 or 1.”}
Assistant: 0 or 1

We finally compute the average of two scores together for each video.

J.3 Human Evaluation

To verify the reliability of our automatic benchmark on success rate, we compare it with human
evaluation results and calculate the AUC-ROC between them. In detail, we perform human evalu-
ations of all of the instances from the 3 fine-tuned video world models from Table 2, to show that
the model-based metrics indeed do correlate with human-based judgement of success rate (SR) and
physics alignment (PA). For SR, similar to the model-based metric, humans give a binary signal, 0
or 1, whether the trajectory has successfully completed the task specified by the language. For PA,
instead of giving a fine-grained score, humans rank the model’s output, given the same initial frame,
and see the ranking corresponds to the ranking by the scores of the model.

Dataset Metric Hunyuan-sft CogVideoX-sft WAN2.1-sft Cosmos-sft Pearson r

RoboCasa IF 68.8 72.9 77.1 79.2 0.94IF-human 81.3 79.2 91.7 93.8

GR1-Object IF 38.0 72.0 72.0 90.0 0.93IF-human 52.0 72.0 80.0 84.0

GR1-Behavior IF 38.3 44.0 72.3 59.6 0.96IF-human 14.9 21.3 74.5 68.1

GR1-Env IF 27.6 55.2 48.3 69.0 1.00IF-human 20.0 30.0 43.3 53.3
Table 6: Pearson correlation coefficients between automatic IF (GPT-4o) and human IF-human
scores across different datasets and model variants.

Dataset Metric Hunyuan-sft CogVideoX-sft WAN2.1-sft Cosmos-sft Pearson r

RoboCasa IF 8.3 10.4 18.8 29.2 0.92IF-human 81.3 79.2 91.7 93.8

GR1-Object IF 26.0 38.0 58.0 62.0 0.95IF-human 52.0 72.0 80.0 84.0

GR1-Behavior IF 10.6 28.0 55.3 61.7 0.97IF-human 14.9 21.3 70.2 68.1

GR1-Env IF 27.6 41.4 65.5 65.5 0.96IF-human 20.0 30.0 43.3 53.3
Table 7: Pearson correlation coefficients between automatic IF (Qwen2.5-VL) and human IF-human
scores for each dataset.

Table 6 and Table 7 present the Pearson correlation coefficients between our automatic evaluation
metric (IF) and the corresponding human-annotated scores (IF-human) for three model variants on
each dataset. The correlations of IF evaled by GPT-4o are uniformly high—0.94 for RoboCasa,
0.93 for GR1-Object, 0.96 for GR1-Behavior, and essentially 1.00 for GR1-Env—indicating a near-
perfect linear relationship across all cases. These results confirm that the IF metric faithfully captures
human judgments and can serve as a reliable proxy for resource-intensive manual evaluation.
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J.4 Intermediary Step for Checking Downstream Performance

The most straightforward way to truly quantify the capabilities of the video world models is to use
them to generate neural trajectories and use the generated trajectories for downstream visuomo-
tor policy training. In fact, we generate 7k neural trajectories for each of the video world models
(zero-shot and fine-tuned) from Table 2 and show that benchmark numbers directly correlate to
downstream robot policy performances. However, this is very resource-intensive, since verifying a
new video world model beyond benchmark numbers requires generating 7k new videos. As an in-
termediary step, we utilize a cheaper way of quantifying the quality of the dreams. After extracting
the IDM actions from the generated videos (see Section 2.3), we replay the IDM actions in simula-
tion, where we have access to the digital twin of the Fourier GR1. Some examples of replayed IDM
actions in simulation are shown in Appendix C.

K Robot Experiment Evaluation

K.1 GR1 Humanoid Experiments

Seen Environment, New Behaviors (14 tasks)

New Environment, Seen Behavior (6 tasks)

New Environment, New Behaviors (7 tasks)

Figure 11: Evaluations for all Real-world GR1 Experiments. The rectangular box represents the
region where we randomize the target object during evaluation.

Data Augmentation We have 4 tasks for the data augmentation experiments using the GR1 Hu-
manoid: Hammering, Wiping, Folding, and Stacking. For each task, we collect 100 trajectories,
while randomizing the target object locations in the rectangular box as shown in Figure 5.

For Hammering, we give 0.5 for picking up the hammer, and 1.0 for actually hitting the nail. For
Wiping, 0.33 for grabbing the rag, 0.66 for taking the rag to the stain, and 1.0 for actually wiping
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the stain. For Folding, we give 0.33 for folding the first fold, but imperfectly, 0.66 for completing
the first fold, and 1.0 for completing the second fold. Lastly, for Stacking, we give 0.5 for stacking
the left bowl, and 1.0 for stacking the right bowl. We perform 10 eval rollouts per checkpoint.

Behavior and Environment Generalization Table 8 shows the criterion we use to measure the
performance on behavior and environment generalization. We performed 10 rollouts per check-
point while randomizing the initial location of the target object across all trials to ensure fair, direct
comparisons between models. The region of target object randomization is shown in Figure 11.

Table 8: Task Evaluation Criteria for GR1 Generalization Experiments

Seen Environments, Novel Behaviors

Task Criteria

Open Microwave
0.33 grasp handle
0.66 do closing motion
1.0 close microwave

Open Macbook 0.5 opening motion
1.0 open laptop

Close Lunchbox 0.5 contact lid
1.0 close lunchbox

Hit Tambourine 0.5 grab tambourine
1.0 hit with left hand

Hit Keyboard 0.5 going to keyboard
1.0 pressing

Grab Button 0.5 go to button
1.0 grab button

Pour Water 0.5 picking up
1.0 pouring

Water Flowers 0.5 grasp pink bottle
1.0 pour

Light Candle 0.5 grasp lighter
1.0 approach candle

Use Vacuum 0.5 pick up vacuum
1.0 do sweeping motion

Iron Shirt 0.5 grasp iron
1.0 press shirt

Take Spoon Out
0.33 grasp spoon
0.66 pick up spoon
1.0 place spoon

Unroll Mat 0.5 go to mat
1.0 unroll

Move Mouse 0.5 grab the mouse
1.0 move it around

Novel Environments

Seen Behaviors
Task Criteria

Pick up Tangerine 0.5 pick up
1.0 place in bowl

Box Sandwich 0.5 grab the sandwich
1.0 place in box

Weigh the Orange 0.5 pick up
1.0 place on scale

Put Cup in Trash 0.5 grab cup
1.0 throw it away

Put Pear in Basket 0.5 grab pear
1.0 put in bucket

Put Sauce on Tray 0.5 grab bottle
1.0 place bottle on tray

Novel Behaviors
Task Criteria

Water Flowers 0.5 pick up pitcher
1.0 water the plants

Lift Basket 0.5 grab handle
1.0 lift bucket

Swirl Around Spoon 0.5 grab spoon
1.0 scoop to plate

Use Whisk 0.5 grab whisk
1.0 mix

Close Soup Container 0.5 use handle
1.0 close

Uncover Pot 0.5 grab cover
1.0 uncover pot

Cover Pot 0.5 grab cover
1.0 cover pot

K.2 DROID (Franka) Experiments

We carry out our second real-world study on the Franka Emika Panda arm, collecting 100 teleop-
eration data for three manipulation tasks, pick-and-place, cube stacking, and tool use (Figure 5. ).
We also have a low-data regime, where we only train on 10 trajectories, except for the folding task,
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where we train on 25 trajectories. Following our proposed pipeline, we train our video world model
and the IDM model on the DROID dataset [22],

To ensure rigorous evaluation, we executed 10 rollouts per checkpoint for each model and enforced
identical initial state configurations across models, enabling fair, head-to-head comparisons. Within
each batch of rollouts, we further randomized object poses to probe policy robustness. Results show
that conditioning on neural trajectories consistently boosts the performance of Diffusion Policy, π0,
and GR00T N1 across all tasks.

K.3 SO-100 Experiments

We also present fine-tuning experiments with real and neural trajectories on a LeRobot SO-100
[78], serving as a new embodiment with a foundation robot policy (GR00T N1 VLA). The first
task, ”Picking 3 Strawberries,” consists of 10 real-world trajectories and 30 neural trajectories. The
second task is ”Tic-Tac-Toe”, which requires the correct language prompt to execute the task, and
includes 13 real-world trajectories and 40 neural trajectories.

For the ”Picking 3 Strawberries” task, the evaluation criteria involve 10 trials. The goal of each trial
is to pick up all three strawberries from various locations on the table and place them on the plate.
Each trial lasts 1 minute, with each successful pick and place contributing 33% to the score for that
trial. To ensure randomness, strawberries are placed on the left, center, and right sides of the table.
In the “Tic-Tac-Toe” task, we evaluated the policy by prompting it with 5 tasks, each corresponding
to placing an ”X” in different boxes on the grid. With a total of 10 trials, the grid is randomized with
varying ”X” and ”O” placements across the trials, each lasting 1 minute. Each successful pick and
place corresponds to 0.5 points.

We observed that with co-training using neural trajectories, the policy overfits less to the proprio-
ceptive states and conditions more effectively to the current visual state of the environment. Addi-
tionally, we noticed that the policy augmented with neural trajectories is less likely to get stuck at
the initial home position, which is a common failure case of our baseline policy. Detailed results are
shown in Figure 5.

L Examples of Generated Neural Trajectories
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Training Data Augmentation

New Behavior Generalization

New Environment Generalization

Figure 12: Examples of Neural Trajectories.
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