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Abstract001

In recent years, large language models (LLMs)002
have achieved remarkable success across di-003
verse natural language processing tasks. Nev-004
ertheless, their understanding of core human005
experiences remains underexplored. Current006
benchmarks for LLM evaluation typically fo-007
cus on a single aspect of linguistic understand-008
ing, thus failing to capture the full breadth of009
its abstract reasoning about the world. To ad-010
dress this gap, we propose a multidimensional011
paradigm to investigate the capacity of LLMs012
to perceive the world through temporal, spatial,013
sentimental, and causal aspects. We conduct014
extensive experiments by partitioning datasets015
according to different distributions and employ-016
ing various prompting strategies. Our find-017
ings reveal significant differences and short-018
comings in how LLMs handle temporal granu-019
larity, multi-hop spatial reasoning, subtle senti-020
ments, and implicit causal relationships. While021
sophisticated prompting approaches can miti-022
gate some of these limitations, substantial chal-023
lenges persist in effectively capturing abstract024
human perception. We aspire that this work,025
which assesses LLMs from multiple perspec-026
tives of human understanding of the world, will027
guide more instructive research on the LLMs’028
perception or cognition. The data and code will029
be released soon.030

1 Introduction031

Large Language Models (LLMs) have made sig-032

nificant strides in advancing natural language pro-033

cessing (NLP) (Brown et al., 2020; Kojima et al.,034

2022; Zhao et al., 2024a; Chu et al., 2024a), show-035

casing impressive abilities in understanding and036

generating human-like text (Sicilia and Alikhani,037

2022; Gao et al., 2023b; Minaee et al., 2024). How-038

ever, their comprehension of fundamental human039

experiences—such as time, space, sentiment, and040

causality—remains largely underexplored. Mau-041

rice Merleau-Ponty, a renowned phenomenologist,042

highlighted the embodied nature of perception, as- 043

serting that our bodily and affective experiences are 044

central to how we engage with the world (Merleau- 045

Ponty et al., 2013). He argued that consciousness 046

is deeply intertwined with physical existence, chal- 047

lenging the Cartesian dualism of mind and body. 048

This perspective suggests that a deeper understand- 049

ing of human perception requires considering the 050

pivotal role of the body in shaping experience. 051

In recent years, research has started to investi- 052

gate specific facets of LLMs’ world perception. For 053

example, studies have examined their understand- 054

ing of sentimental scenarios through the frame- 055

work of appraisal and coping theory, revealing that 056

while LLMs’ responses generally align with hu- 057

man patterns in sentimental appraisal and coping 058

dynamics, they differ in their sensitivity to key ap- 059

praisal dimensions (Yongsatianchot et al., 2023). 060

Additionally, evaluations of their causal reasoning 061

capabilities have uncovered challenges in handling 062

complex causal structures and distinguishing be- 063

tween correlation and causation (Liu et al., 2025; 064

Zhou et al., 2024). To further explore the under- 065

standing and cognition of the world in terms of 066

LLMs, we need to comprehensively evaluate their 067

perception in multiple dimensions, including the 068

dimensions emphasized by Merleau-Ponty’s phe- 069

nomenological sense. 070

This study aims to evaluate the world percep- 071

tion of LLMs through a multi-dimensional frame- 072

work that encompasses time, space, sentiment, and 073

causality. We have elected two datasets for each 074

dimension and annotated them with relevant fea- 075

tures based on different data distributions for eval- 076

uation. To guide this assessment, we employ a 077

variety of prompting techniques, including basic, 078

Chain-of-Thought (CoT), few-shot, and few-shot 079

CoT prompting. Few-shot prompting (Dai et al., 080

2022) involves providing the model with a few 081

examples to help guide its responses, while CoT 082

(Wei et al., 2022) prompting encourages the model 083
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to generate intermediate reasoning steps, thereby084

improving its problem-solving abilities.085

The main contributions of this study are as fol-086

lows. (1) We introduce a novel framework for eval-087

uating LLMs’ world perception across four critical088

dimensions: time, space, sentiment, and causality089

from the perspective of data distribution. (2) By090

employing a variety of prompting strategies, this091

study explores how different prompting methods092

influence the performance of LLMs across the four093

dimensions. (3) We reveal the strengths and lim-094

itations of current LLMs in handling various rea-095

soning tasks, providing valuable insights for future096

LLM development and applications.097

2 WorldInsight BENCH098

2.1 Benchmark Design099

WorldInsight BENCH is designed to assess the ca-100

pacity of large language models to understand the101

world at the abstract level of human cognition and102

perception. Given the multifaceted nature of per-103

ceptual domains, we structure our evaluation into104

four critical dimensions: time, space, sentiment,105

and causality. Each of these dimensions is exam-106

ined through two specialized datasets. Based on107

different data distributions, we analyze how LLM108

interprets and processes the world.109

Temporal dimension focuses on the models’ abil-110

ity to understand and reason about the passage of111

time and the relationships between temporal events.112

Spatial dimension centers on the model’s capacity113

to grasp and interpret spatial relationships. Senti-114

ment recognition evaluates the model’s understand-115

ing of human sentiments exposed to various scenes,116

and its ability to discern sentimental states, inten-117

sity, and the underlying psychological dynamics.118

Causal perception examines the models’ ability119

to infer causal relationships, distinguish between120

correlation and causation, and reason in counterin-121

tuitive causal scenarios.122

2.2 Challenges123

Complex reasoning tasks in natural language pro-124

cessing mirror real-world cognitive challenges.125

They require not only language comprehension but126

also intricate logical inference, recognition of im-127

plicit relationships, and the integration of multidi-128

mensional information (Niu et al., 2024; Xiang and129

Wang, 2022; Wang et al., 2024).130

Temporal Logic and Event Sequencing Analyz-131

ing temporal information involves understanding132

event ordering, duration, frequency, and typical 133

time. This analysis requires managing several tem- 134

poral relationships concurrently, inferring implicit 135

logic, and constructing accurate event sequences 136

(Dong et al., 2024). The challenge increases when 137

multiple time frames or ambiguous temporal cues 138

are involved. 139

Complex Spatial Relationship Inference Infer- 140

ring spatial relationships entails identifying both 141

direct and indirect cues that determine the relative 142

positions of entities (Hu et al., 2024). This process 143

becomes more difficult as the number of objects 144

and the complexity of their arrangements grow. 145

Sentiment Analysis with Implicit Context De- 146

tecting sentiment in text demands sensitivity to 147

subtle sentimental nuances, including sarcasm and 148

implicit emotions (Wang and Luo, 2023). The 149

task will be further complicated when texts con- 150

vey mixed emotions or when broader situational 151

factors exist in text (Zhang et al., 2024). 152

Complex Causal Relationship Analysis Under- 153

standing causal relations in text involves tracking 154

multiple events and their interactions (Lyu et al., 155

2022), particularly when causal links are implied 156

rather than explicitly stated. Moreover, Large mod- 157

els can be confused when reasoning about counter- 158

factual scenarios. 159

2.3 Datasets 160

In face of the above challenges, we selected two 161

datasets for each dimension. And every dataset is 162

segmented into different data distributions. The 163

appendix A provides specific examples. 164

2.3.1 Temporal Cognition 165

TempNLI (Thukral et al., 2021) contains time- 166

related premise-hypothesis pairs annotated with 167

logical labels: Entailment, Contradiction, and Neu- 168

tral. It focuses on evaluating temporal reasoning 169

across two primary dimensions, including time 170

granularity and Language complexity. 171

MCTACO (Zhou et al., 2019) evaluates the mod- 172

els’ reasoning ability from multiple temporal rela- 173

tionship types, comprising time frequency, order, 174

duration, stationarity, and typical event time. It 175

presents short contexts followed by temporal rea- 176

soning questions with multiple valid answers. 177

2.3.2 Spatial Intelligence 178

Multi-hop Space (Li et al., 2024) evaluates the 179

models’ capability in reasoning about complex 180

spatial relationships through multiple steps. The 181
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dataset presents scenarios of increasing complexity,182

ranging from 1-hop to 10-hop, in which the model183

must determine the relative position between two184

objects based on a series of intermediate spatial185

relationships.186

SpaceTrans (Comsa and Narayanan, 2023) aims187

to assess the capability of LLMs to process spa-188

tial transfer relations conveyed through spatial189

prepositions in diverse contexts, including physical,190

metaphorical, and mixed scenarios. The dataset191

specifically examines whether models can distin-192

guish between cases where spatial transitivity holds193

(in physical scenarios) versus cases where it breaks194

down (in metaphorical or hybrid contexts). This195

helps evaluate LLMs’ understanding of how spatial196

reasoning rules apply differently across contexts.197

2.3.3 Sentimental Insight198

Yelp-5 (Zhang et al., 2015) contains restaurant re-199

views labeled with sentimental intensity ratings200

from 0 to 4, where 0 indicates strong negative sen-201

timent and 4 indicates strong positive sentiment.202

The reviews discuss various aspects of dining expe-203

riences, including food quality, service, ambiance,204

and value. This dataset enables assessment of mod-205

els’ ability to detect fine-grained sentimental ex-206

pressions in long-form consumer feedback.207

IronyEval (Van Hee et al., 2018) comprises so-208

cial media posts labeled as either sarcastic or non-209

sarcastic. Each post is classified as "explicit" and210

"implicit" based on whether it contains overt sar-211

casm markers or contextual cues that suggest sar-212

casm. This dataset tests models’ capability to iden-213

tify both overt and subtle forms of sarcastic expres-214

sion common in social media communication.215

2.3.4 Causal Comprehension216

ECI (Gao et al., 2023a) consists of sentences con-217

taining event pairs, where the model must identify218

whether one event causes another. The dataset is219

categorized into man-made causality and natural220

causality based on different types of causal fea-221

tures. Additionally, the textual distance between222

event entities within the context is classified into223

close-range and far-range.224

FantasyR (Srivastava et al., 2023) presents sce-225

narios involving fictional elements like magic, su-226

pernatural beings, and fantastical situations, and227

is categorized based on the explicitness of causal228

relationships depicted in the text. It tests whether229

LLMs can maintain causal coherence and apply230

consistent logic within hypothetical worlds.231

2.4 Evaluation Metrics 232

In this work, we utilize a range of evaluation met- 233

rics to assess the performance of LLMs on chosen 234

tasks. The evaluation metrics include accuracy, F1- 235

score, exact match, tolerant accuracy, etc. However, 236

due to space limitations, we only report the accu- 237

racy in the main body, while the detailed scores for 238

other metrics are provided in the Appendix B. 239

3 Approaches 240

3.1 Model Setup and Implementation 241

We evaluate a range of widely used LLMs, encom- 242

passing both open-source and proprietary models. 243

The open-source models included in this evalua- 244

tion range from the Llama 2 series to Llama 3.3 245

(Touvron et al., 2023; Grattafiori et al., 2024), with 246

parameter sizes varying from 8B to 70B. Addition- 247

ally, the proprietary GPT-4o model is also assessed. 248

The open-source models (Llama 2, Llama 3, 249

Llama 3.1 and Llama3.3) are deployed locally 250

across 8 x NVIDIA A800 80GB PCIe, while the 251

GPT-4o model is accessed via API. For all experi- 252

ments, we configure the temperature to 0.0 to en- 253

force greedy decoding (Prabhu, 2024). 254

3.2 Evaluation Methods 255

In this study, we evaluate the LLMs using four dis- 256

tinct prompting strategies: Basic prompting, Chain 257

of Thought (CoT) prompting, and their combina- 258

tion with Few-Shot setting. The aim is to inves- 259

tigate the competence of LLMs to understand the 260

world in an abstract dimension, and whether differ- 261

ent prompting methods can enhance their relevant 262

reasoning. 263

Basic Prompting, also denoted as zero-shot (ZS), 264

provide the model with specific instructions for 265

each task. And in the few-shot (FS) setting, the 266

model receives several QA pairs as demonstra- 267

tions to guide the responses to new questions. The 268

prompts P can be formulated as follows 269

PZS = {INST} ⊕ {Q} (1) 270

271

PFS = {INST}
n⊕

i=1

({Qi} ⊕ {Ai})⊕ {Q} (2) 272

where INST, Q, A represent the instruction, ques- 273

tion, and answer, respectively. And i is the index 274

of instance. 275

CoT Prompting builds on standard prompting by 276

adding guidance for reasoning steps. In specific, 277

we append a reasoning trigger "Let’s think step by 278
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Method Temporal Spatial Sentimental Causal Overall Score

TempNLI MCTACO M-h Space SpaceT Yelp-5 IronyEval ECI FantasyR Temp. Spat. emot. Causal Avg.

GPT-4o 63.50 53.75 48.75 88.25 61.50 79.00 35.25 80.00 58.63 68.50 70.25 57.63 63.75
+COT 70.25 60.00 42.50 89.50 59.25 77.50 59.00 81.00 65.13 66.00 68.38 70.00 67.38
+FS 70.25 57.25 46.75 89.25 63.50 90.25 64.75 81.00 63.75 68.00 76.88 72.88 70.38
+FS CoT 70.75 74.50 52.75 92.00 60.25 81.75 66.50 91.50 72.63 72.38 71.00 79.00 73.75

Llama-3.3-70b 53.50 54.75 36.00 82.50 57.75 74.00 58.50 75.50 54.13 59.25 65.88 67.00 61.56
+COT 70.00 63.25 48.25 87.25 58.00 76.25 54.25 80.00 66.63 67.75 67.13 67.13 67.16
+FS 71.25 58.50 54.75 85.75 57.50 82.25 31.75 79.50 64.88 70.25 69.88 55.63 65.16
+FS CoT 74.50 72.75 45.00 88.75 55.75 78.50 59.50 83.00 73.63 66.88 67.13 71.25 69.72

Llama-3.1-70b 50.50 49.25 38.00 86.25 58.25 73.75 43.75 78.50 49.88 62.13 66.00 61.13 59.78
+COT 64.50 57.50 44.00 87.50 52.75 72.50 55.50 76.00 61.00 65.75 62.63 65.75 63.78
+FS 63.00 44.75 50.00 87.50 56.50 83.00 55.75 84.00 53.88 68.75 69.75 69.88 65.56
+FS CoT 72.00 66.50 44.00 91.75 53.50 78.50 68.00 82.00 69.25 67.88 66.00 75.00 69.53

Llama-3-70b 50.25 33.25 25.25 79.75 55.00 72.50 70.25 63.00 41.75 52.50 63.75 66.63 56.16
+COT 48.25 31.25 31.75 85.25 57.75 73.75 49.75 76.50 39.75 58.50 65.75 63.13 56.78
+FS 51.75 48.75 40.25 83.00 59.50 81.00 28.75 76.00 50.25 61.63 70.25 52.38 58.63
+FS CoT 70.75 47.00 28.25 89.00 56.25 79.50 56.50 77.00 58.88 58.63 67.88 66.75 63.03

Llama-3-8b 46.25 37.75 23.25 71.50 46.25 59.75 71.00 70.50 42.00 47.38 53.00 70.75 53.28
+COT 41.00 18.25 15.50 75.00 50.75 56.75 47.25 70.50 29.63 45.25 53.75 58.88 46.88
+FS 50.00 41.50 20.25 70.50 51.75 73.75 38.75 61.50 45.75 45.38 62.75 50.13 51.00
+FS CoT 50.75 28.50 22.75 84.00 57.50 77.50 46.75 74.00 39.63 53.38 67.50 60.38 55.22

Llama-2-70b 45.50 24.50 22.75 65.25 29.50 61.50 19.00 61.50 35.00 44.00 45.50 40.25 41.19
+COT 47.25 19.25 25.25 76.00 59.50 52.00 45.75 75.00 33.25 50.63 55.75 60.38 50.00
+FS 48.50 14.25 21.00 63.25 50.25 70.00 21.50 64.00 31.38 42.13 60.13 42.75 44.09
+FS CoT 45.75 23.00 24.25 85.50 58.50 69.50 38.75 73.00 34.38 54.88 64.00 55.88 52.28

Llama-2-13b 49.50 7.75 9.00 51.50 47.25 42.00 31.75 66.50 28.63 30.25 44.63 49.13 38.16
+COT 47.00 13.25 17.75 75.00 39.50 49.50 38.75 64.50 30.13 46.38 44.50 51.63 43.16
+FS 44.25 15.50 12.50 57.25 33.00 57.75 21.25 66.50 29.88 34.88 45.38 43.88 38.50
+FS CoT 49.00 15.00 23.50 71.25 60.50 71.50 37.75 60.50 32.00 47.38 66.00 49.13 48.63

Table 1: Main experimental results over 8 datasets. All models are alignment mdoels (-chat or -instruct). Accuracy
is reported here, and additional evaluation metrics can be found in Appendix B.

step" to encourage the model to break down the279

problem into logical steps before providing an an-280

swer. In the few-shot CoT setting, we also provide281

demonstrations with CoT to guide the reasoning282

process. The prompt formulations are as follows283

PCoT = {INST} ⊕ {Q} ⊕ {TRIG} (3)284
285

PCoT·FS = {INST}
⊕n

i=1({Qi} ⊕ {Ri} ⊕ {Ai})⊕ {Q}
(4)286

where TRIG denotes the reasoning trigger and R287

represents the reasoning examples.288

4 Experimental Results289

4.1 Zero-shot Results290

Our evaluation of LLMs on the four dimensions of291

abstract reasoning, covering time, space, sentiment,292

and causality, revealed significant performance dif-293

ferences (Table 1). In the zero-shot setting, GPT-4o294

achieved the highest overall average score (63.8%),295

outperforming all open-source models across ev-296

ery dimension. This superior performance is likely297

due to its training on large-scale data, which en-298

ables it to capture complex patterns and implicit299

structures across diverse domains. However, in300

causal reasoning, GPT-4o underperformed relative301

to most models in the Llama series. This is possibly302

because of its focus on lexical co-occurrence and303

syntactic structures, rather than understanding the 304

causal nature of events. 305

Open-source models generally excelled in sen- 306

timental and causal reasoning tasks but struggled 307

with temporal and spatial inference. Spatial rea- 308

soning showed the greatest variability among mod- 309

els, with GPT-4o averaging 68.5% versus Llama-2- 310

13b’s 30.3%. This disparity likely reflects the ad- 311

vantage of more advanced models that benefit from 312

larger, more diverse training sets, which facilitate 313

the learning of finer, more abstract spatiotemporal 314

relationships. 315

4.2 The Impact of CoT Prompting 316

CoT prompting yields performance improvements. 317

However, it is highly dependent on both the specific 318

model and the type of reasoning task. In tempo- 319

ral reasoning, CoT prompting significantly boosts 320

the performance of larger, more advanced mod- 321

els like GPT-4o (6.5%↑) and particularly Llama- 322

3.3-70b (12.5%↑). Conversely, older or smaller 323

models such as Llama-2 and Llama-3 showed mini- 324

mal (1.5%↑) or even detrimental effects, suggesting 325

they may not possess adequate autonomous reason- 326

ing capabilities. For spatial reasoning, Llama mod- 327

els generally benefited from CoT, with Llama-3.3 328

showing a notable 12.3% improvement, especially 329

in multi-hop tasks where step-by-step reasoning 330
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proved advantageous. Sentimental reasoning and331

spatial reasoning exhibited mixed trends, with GPT-332

4o and Llama-3.1 showing performance declines in333

sentimental reasoning but improvements in spatial334

reasoning, underscoring the task-specific property335

of CoT’s benefits.336

4.3 Few-shot Setting and CoT Prompting337

The utilization of few-shot has consistently en-338

hanced performance. The average score of GPT-339

4o increases from 63.8% to 70.4%, while Llama-340

3.1-70b rises by 5.8%, and only the Llama-3-8b341

model shows a slight performance decline. For342

these abstract dimensions, the temporal, spatial,343

and sentimental reasoning capabilities of the LLMs344

are improved to varying degrees. Causal reason-345

ing improvements are more pronounced in GPT-4o,346

but remains limitation across most Llama models.347

It suggests that GPT-4o shows exceptional poten-348

tial in learning causal inference from instances in349

the few-shot scenario, whereas most Llama models350

still struggle to extract patterns of causal reasoning351

from examples.352

Examples can strengthen and stabilize CoT353

reasoning. Combining few-shot with CoT yields354

the highest benefits, with the causal reasoning of355

GPT-4o jumping by 21.3%, and the sentimental356

reasoning of Llama-2-13B improving by 21.4%.357

Notably, few-shot CoT prompting mitigated the358

decline in reasoning capabilities caused by CoT in359

some models. This suggests that relying solely on360

CoT may lead to misleading results when the model361

lacks sufficient context. The addition of few-shot362

prompting provides more task-relevant information363

and guidance, helping the model understand di-364

verse reasoning steps, avoiding over-reliance on365

single reasoning path, and thus enhancing the accu-366

racy of causal reasoning.367

5 Analysis and Discussion368

We conduct a further analysis of the capacities of369

various LLMs to comprehend the world primarily370

through the lens of data distribution.371

5.1 Evaluation on Temporal Inference372

LLMs underperform in large temporal granu-373

larities, with the performance worsening even374

more at mixed granularities. As illustrated in Fig-375

ure 1, LLMs generally show higher performance376

on small time scales (e.g., 9 a.m.) than on large377

time scales (e.g., after May 1939). This trend is378

attributed to the fact that the greater symbolic com- 379

plexity involved in large time scales expressing 380

introduces ambiguity and require more context to 381

understand. 382

The capacity varies in different LLMs when 383

dealing with different language complexities. 384

Notably, GPT-4o, Llama-3.3, and Llama-3.1 ex- 385

hibit superior performance on simple time expres- 386

sion tasks, whereas Llama-3 and Llama-2 demon- 387

strate greater proficiency on compound or multiple 388

time expression tasks. The observed performance 389

disparity can arise from differences in the mod- 390

els’ pre-training corpora, particularly in terms of 391

their exposure to temporal expressions (Zhao et al., 392

2024b). Additionally, variations in model architec- 393

ture, including the design of attention mechanisms 394

that capture relationships across different positions 395

within the input sequence, may also contribute to 396

this discrepancy. Appendix D provides further ex- 397

perimental exploration based on this speculation. 398

Iterations have made the models show a 399

steady improvement in handling event ordering 400

issues. From llama2 to llama3.3, the model per- 401

formance has continued to rise, which is exhibited 402

in Figure 2. This is due to the inclusion of more 403

diverse and complex data, along with optimized 404

attention mechanisms and the resulting better con- 405

textual understanding (Harsha et al., 2024). 406

The model is limited in its ability to make au- 407

tonomous choices, but few-shot and CoT can 408

bring significant improvements. Due to the char- 409

acteristics of typical time tasks, the model needs 410

to autonomously select possible time nodes as the 411

correct answer. In the zero-shot scenario, the per- 412

formance of the LLMs is limited. Few-shot and 413

CoT bring more examples or structured contexts 414

to the models, which opens the models’ ability to 415

make autonomous choices. 416

5.2 Evaluation on Spatial Reasoning 417

Most models are not yet adequate for multi-hop 418

spatial reasoning tasks involving complex rela- 419

tionships between multiple objects. In n-hop 420

tasks (Figure 3), when n > 4, the average accuracy 421

of LLMs is always below 30% under all methods. 422

Although methods such as few-shot or CoT will 423

bring some performance improvements when n is 424

small, this improvement disappears when n >= 6. 425

In addition, in 10-hop tasks, few-shot and CoT 426

even become introduced noise and can no longer 427

help LLMs summarize and process more complex 428

spatial relationships. 429
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Figure 1: Performance of the LLMs on TempNLI. The dataset is divided into Large, Small and Cross-granularity
according to the time granularity, and clasified into Simple and Compound based on the language complexity.
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Figure 2: Performance of the LLMs on MCTACO. This dataset is grouped into Event Duration, Event Duration,
Frequency, Stationarity and Typical Time.
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Metaphorical relations make it difficult for430

models to maintain consistent performance.431

Within the SpaceTrans task (Figure 4), LLMs gen-432

erally perform well on physical spatial relations,433

achieving high accuracy in all prompting strategies.434

However, when it comes to metaphorical spatial435

prepositions, LLMs perform poorly. And the im-436

provement brought by few-shot or CoT does not437

catch up with the former. On physical-metaphorical438

composite spatial relations, models like Llama-2-439

13b and Llama-2-70b show lower accuracy, indicat-440

ing that the mixture of different types of semantic441

relations may confuse the model and negatively442

affect its performance.443

Few-shot CoT prompting can significantly im-444

prove the performance of LLMs in processing445

composite spatial semantic relations. Although446

LLMs are not satisfactory in processing metaphors447

or physical-metaphor compound relations, the per- 448

formance of LLMs can be greatly improved when 449

using Few-shot CoT prompting. In particular, the 450

improvement in physical-metaphor compound re- 451

lations exceeds that of pure metaphorical relations. 452

The phenomenon shows that although the complex- 453

ity of the task increases with mixed relations, the 454

models benefit from the additional context provided 455

by the few-shot examples and their thought chains. 456

This helps them improve the ability to distinguish 457

between both physical and metaphorical relations, 458

thereby better handling the related tasks. 459

5.3 Evaluation on Sentimental Reasoning 460

LLMs have the ability to judge the polarity of 461

sentiment, but they are often erratic at a fine 462

granularity. For most models, the dark colors 463

of the confusion matrix are mainly on the diago- 464

nal, and confusion mainly occurs on adjacent grids. 465

This demonstrates that LLMs can effectively judge 466

the sentiment tendency of the text but will bring 467

deviation to refined scoring. And CoT Few-shot 468

(Figure 5) will even deepen the confusion in most 469

models, indicating that LLMs still have difficulty 470

learning fine-grained scoring criteria from exam- 471

ples. 472

LLMs encounter notable difficulties in detect- 473

ing subtle implicit irony. As shown in Figure 6, 474

the performance of LLMs on the explicit and im- 475

plicit irony datasets reveals significant variations, 476
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with most models performing better on explicit477

irony, where clear markers are present. For in-478

stance, GPT-4o achieved 97.5% accuracy in detect-479

ing explicit irony, but the performance dropped to480

66.9% for implicit irony. This performance gap481

suggest that while large language models are ef-482

fective at identifying clear markers of irony, they483

struggle to discern more subtle, context-dependent484

instances of implicit irony.485

5.4 Evaluation on Causal Reasoning486

The LLMs have roughly equivalent causal iden-487

tification ability for two categories of events. Ta-488

ble 2 suggests that GPT-4o and Llama demonstrate489

a similar level of accuracy in identifying causal rela-490

Model Event Type Text Distance

Natural Man-made close Far
GPT-4o 65.45 66.67 62.11 72.25

Llama-3.3-70b 61.82 59.13 56.83 63.01
Llama-3.1-70b 70.91 67.54 66.52 69.94
Llama-3-70b 49.09 57.68 52.86 61.27
Llama-3-8b 50.91 46.09 44.49 49.71
Llama-2-70b 38.18 38.84 36.56 41.62
Llama-2-13b 40.00 37.39 39.21 35.84

Table 2: Performance comparison of different models
on ECI with few-shot and CoT setting.

tionships across different event categories, whether 491

"natural" or "man-made." This indicates that the 492

models can recognize and process causal events in 493

both contexts without significant bias. 494

Current LLMs exhibit notable limitations in 495

identifying causal relations within close textual 496

distance. It is attributable to rapid context shifts 497

and token proximity. This emphasizes the need for 498

enhanced contextual awareness and improved dis- 499

ambiguation of closely related events (Joshi et al., 500

2024). 501

Most models can make accurate inferences 502

in counterintuitive scenes. However, this doesn’t 503

conclude that the model is capable of human-like 504

thinking, because the model may just replace the 505

subjects or concepts based on the shortcut reason- 506

ing paradigms learnt (Du et al., 2023). Just as 507

although few-shot CoT can bring an 11.5% im- 508

provement to GPT-4o, CoT and few-shot can only 509

bring a 1% improvement when acting alone. 510

CoT and Few-shot have shown significant 511

promise in eliminating the deviation of the 512

model’s causal reasoning ability between explicit 513

and implicit data. From Llama-2 to Llama-3, CoT 514

and few-shot settings each demonstrates different 515

debiasing effects (Table 3). These approaches to- 516

gether contribute to a more balanced reasoning way, 517

enabling the models to perform consistently across 518

distinct causal reasoning tasks, thus reducing the 519

performance discrepancies. 520
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Method GPT-4o Llama-3.3-70b Llama-3.1-70b Llama-3-70b Llama-3-8b Llama-2-70b Llama-2-13b
basic 8.79 -6.92 -4.51 -10.77 -8.02 -8.68 -3.19
CoT 3.74 -6.59 4.84 -3.19 -3.63 3.30 2.53
FS -0.66 -2.97 -4.84 4.84 -2.09 1.76 -3.19

FS CoT 0.11 0.22 -5.71 -4.62 -11.43 -1.98 7.36

Table 3: The difference in model accuracy between the explicit and implicit data. Applying different prompting
methods has a significant effect in helping the model eliminate explicit and implicit biases in FantasyR. The smallest
absolute value of the bias for each model is marked in bold.

5.5 Summary of Findings521

LLMs exhibit glaring deficiencies in processing522

large and mixed temporal granularities, complex523

linguistic phenomena, and metaphorical relations,524

exposing critical limitations in current generative525

models. While iterative improvements enhance526

event ordering and causal reasoning, many mod-527

els still falter in multi-hop spatial reasoning, de-528

tecting subtle irony, and fine-grained sentiment529

analysis. Few-shot and chain-of-thought prompt-530

ing significantly boost performance in autonomous531

decision-making, mixed spatial semantic process-532

ing, and aligning explicit and implicit causal rea-533

soning, highlighting promising directions for future534

development.535

6 Related Work536

Recent research has increasingly focused on ex-537

ploring the intersections between LLMs and hu-538

man cognitive processes. Cognitive psychology539

techniques reveal that, although task-specific esti-540

mates from LLMs can sometimes align with hu-541

man behavior, these models exhibit substantial542

variability across tasks (Niu et al., 2024; Chu543

et al., 2024b; Suresh et al., 2023), and their induc-544

tive reasoning—exemplified by GPT-3 and Chat-545

GPT—differs markedly from human patterns (Lam-546

prinidis, 2024). These findings highlight both the547

promise and limitations of LLMs as cognitive mod-548

els, indicating a need for further research.549

Temporal reasoning has been explored via graph-550

based paradigms that use synthetic datasets and551

CoT symbolic reasoning (Xiong et al., 2024; Yuan552

et al., 2024), as well as through synthetic and hier-553

archical benchmarks that reveal performance gaps554

between LLMs and human (Fatemi et al., 2024;555

Chu et al., 2024b). Moreover, knowledge induction556

frameworks have been applied to improve tempo-557

ral QA, with dedicated QA datasets and prompt558

engineering strategies addressing specific vulnera-559

bilities (Wei et al., 2023; Chen et al., 2024).560

Spatial reasoning investigations have shown that561

prefix-based prompts can enhance zero-shot per-562

formance on 3D trajectory tasks (Sharma, 2023), 563

while studies in visual question answering and nav- 564

igation highlight performance variability and eth- 565

ical concerns (Dugar and Asesh, 2023; Yamada 566

et al., 2024). Qualitative assessments in common- 567

sense spatial tasks and tic-tac-toe reveal further 568

limitations, with chain-of-symbol prompting no- 569

tably improving spatial planning (Cohn, 2023; Liga 570

and Pasetto, 2023; Cohn and Hernandez-Orallo, 571

2023). Evaluations of sentimental understanding 572

(Lei et al., 2024; Sun et al., 2023; Fei et al., 2023) 573

indicate that LLMs generate appropriate yet not 574

fully human-aligned responses (Huang et al., 2024; 575

Wang et al., 2023; Li et al., 2023a; Balamurali et al., 576

2023), while studies in causal reasoning demon- 577

strate accurate causal argument generation along- 578

side persistent failure modes (Kıcıman et al., 2024; 579

Jin et al., 2024; Vashishtha et al., 2023; Cai et al., 580

2024; Li et al., 2023b). 581

Distinguished from other works, our study exam- 582

ines the capacity of LLMs to comprehend the world 583

from the perspective of data distribution, leveraging 584

secondary annotations of comprehensive data. 585

7 Conclusion 586

Although large language models demonstrate ex- 587

ceptional language processing capabilities, they 588

continue to face significant challenges in captur- 589

ing complex human experiences. Variability in 590

performance across time, space, sentiment, and 591

causality indicates that even advanced models have 592

limitations. Enhanced prompting methods, such as 593

chain-of-thought and few-shot approaches, provide 594

improvements but do not fully resolve these issues. 595

These insights offer a clear direction for future re- 596

search focused on strengthening abstract reasoning 597

in language models. 598

Limitations 599

This work evaluates LLMs from multiple abstract 600

perspectives of human perception of the world, re- 601

lying on the selected datasets, which may not fully 602

reflect the diversity of human perceptions of the 603
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world. Although prompting strategies can enhance604

performance, they do not address the inherent gaps605

in the model architecture and training data. Future606

research should investigate more diverse datasets607

and more comprehensive evaluation methods to608

gain deeper insights into how to strengthen the ab-609

stract reasoning capabilities of the models.610

Ethics Statement611

We do not foresee any immediate negative ethical612

consequences of our research.613
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A Dataset Instances967

Examples from the datasets employed in this study968

are presented in Figure 7.969

B Full Results970

This study evaluates model performance across971

eight datasets, each using specific scoring metrics972

to assess different aspects of effectiveness. For the973

TempNLI, SpaceTrans, and IronyEval datasets, ac-974

curacy (Acc) is used. The MCTACO, Yelp-5, and975

ECI datasets are evaluated with exact match (EM),976

F1 score, and tolerant accuracy (ToAcc). The Fanta-977

syR dataset includes Acc along with implicit (Acc-978

i) and explicit (Acc-e) accuracy variants to capture979

nuanced performance. The full experimental re-980

sults can be found in Table 4.981

Here we explain the evaluation index ToAcc. For982

the MCTACO dataset, the default evaluation met-983

rics employ a strict matching criterion, awarding984

a score of 1 for an exact correspondence between 985

the prediction and the ground truth label, and 0 986

otherwise. To accommodate instances of partial 987

correctness, we introduce a tolerant scoring mech- 988

anism. For example, a prediction of "right" or 989

"below" would receive a predefined partial score 990

when the ground truth label is "lower-right". This 991

is achieved through a scoring matrix M , where 992

scoring coefficients are explicitly defined for each 993

prediction-label pair. 994

The tolerant score ToAcc, denoted as 995

S(ltrue, lpred), for a true label ltrue and pre- 996

dicted label lpred is given by 997

S(ltrue, lpred) = Mij (5) 998

where i and j are the indices of ltrue and lpred in M , 999

respectively. The scoring matrix M (A: above, B: 1000

below, L: left, LL: lower-left, LR: lower-right, O: 1001

overlap, R: right, UL: upper-left, UR: upper-right) 1002

for metric ToAcc-l is 1003

M =



A B L LL LR O R UL UR
A 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3
B 0.0 1.0 0.0 0.3 0.3 0.0 0.0 0.0 0.0
L 0.0 0.0 1.0 0.6 0.0 0.0 0.0 0.6 0.0

LL 0.0 0.3 0.6 1.0 0.0 0.0 0.0 0.0 0.0
LR 0.0 0.3 0.0 0.0 1.0 0.0 0.6 0.0 0.0
O 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
R 0.0 0.0 0.0 0.0 0.6 0.0 1.0 0.0 0.6

UL 0.3 0.0 0.6 0.0 0.0 0.0 0.0 1.0 0.0
UR 0.3 0.0 0.0 0.0 0.0 0.0 0.6 0.0 1.0


(6) 1004

And the scoring matrix M for metric ToAcc-a is 1005

M =



A B L LL LR O R UL UR
A 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6
B 0.0 1.0 0.0 0.6 0.6 0.0 0.0 0.0 0.0
L 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.3 0.0

LL 0.0 0.6 0.3 1.0 0.0 0.0 0.0 0.0 0.0
LR 0.0 0.6 0.0 0.0 1.0 0.0 0.3 0.0 0.0
O 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
R 0.0 0.0 0.0 0.0 0.3 0.0 1.0 0.0 0.3

UL 0.6 0.0 0.3 0.0 0.0 0.0 0.0 1.0 0.0
UR 0.6 0.0 0.0 0.0 0.0 0.0 0.3 0.0 1.0


(7) 1006

For the Yelp-5 dataset, the tolerant score ToAcc 1007

is also follows equation 5, where the scoring matrix 1008

M is 1009

M =



0 1 2 3 4
0 0.0 0.5 0.0 0.0 0.0
1 0.5 1.0 0.0 0.0 0.0
2 0.0 0.5 1.0 0.5 0.0
3 0.0 0.0 0.0 1.0 0.5
4 0.0 0.0 0.0 0.5 1.0

 (8) 1010

C Confusion Matrices on Yelp-5 1011

The confusion matrices for all the LLMs on Yelp-5 1012

are illustrated in Figure 8. For most models, the 1013
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dark part of the confusion matrix appears mainly1014

on the diagonal, but there is still confusion on1015

nearby prediction-label pairs (such as 1-2, 2-3).1016

The Llama-2 models show a non-diagonal distri-1017

bution and confusion on prediction-label pairs at1018

longer distances.1019

D Further exploration on the attention1020

mechanism1021

To understand how different components of the1022

model handle positional information in text, we1023

perform a quantitative analysis of the functional1024

characteristics of the attention heads in the open-1025

source Llama models.1026

After extracting the attention weights from all1027

layers of models, we calculate the positional sen-1028

sitivity of each attention head in every layer for1029

each model. Specifically, for the attention matrix1030

of a given head in a particular layer, we identify1031

all token pairs that are separated by a distance d1032

and compute the average attention for these pairs.1033

Then, we fit a linear regression between attention1034

and distance to obtain the slope of the regression1035

line. If the slope is negative, i.e. attention decreases1036

as the distance increases, the attention head is con-1037

sidered to exhibit positional sensitivity. The larger1038

the absolute value of the slope, the faster the decay1039

in attention and the stronger the positional sensitiv-1040

ity. If the slope is positive or zero, the positional1041

sensitivity is set to 0, indicating that the head does1042

not focus on positional information.1043

The heatmaps of the positional sensitivity ma-1044

trices for different models are demonstrated in fig-1045

ure 9, with the horizontal and vertical axes rep-1046

resenting the attention heads and layers, respec-1047

tively. Notably, the positional sensitivity matrices1048

of Llama-3.3-70b and Llama-3.1-70b are highly1049

similar, while Llama-3-70b shows a related distri-1050

bution but with some numerical differences. The1051

matrices for Llama-3-8b, Llama-2-70b, and Llama-1052

2-13b are all distinct.1053

Additionally, we present visualizations of atten-1054

tion matrices for some input instances at specific1055

layers and attention heads in figure 10, illustrat-1056

ing the distribution of attention weights between1057

words. The lower and upper layers tend to attend1058

more broadly to contextual information, while the1059

middle layers focus more on transforming local1060

patterns.1061

TempNLI
Premise: Before 3 days, the grocery store will close.

Hypothesis: The grocery store will close after 54 hours.
Label: Neutral

MCTACO
C: It seemed strange to him, but not as strange as it was to see Linda the brown 

chicken in the living room last spring. 
Q: How often does he find a wild animal in his house?

Options: he sees a wild animal in his house once every five years; he finds a wild 
animal in his house once a day; he finds a wild animal in his house once every five 

years; he finds a wild animal in his house once every five seconds. 
Label: yes; no; yes; no

(a) Data instances in temporal datasets.

Multi-hop Space
C1: D presents left to N.
C2: D is at P's 3 o'clock.

C3: S and P are parallel, and S is on top of P.
C4: S is positioned in the front right corner of M.

Q: What is the relation of the agent S to the agent N?
Label: upper-left

SpaceTrans
Premise: The painting is above the garden. 

     The garden is behind my need for a hobby.
Statement: The painting is behind my need for a hobby.

Label: no

(b) Data instances in spatial datasets.

ECI
C: The Third Cod War concluded in 1976 , with a highly favourable agreement for 
Iceland ; the United Kingdom conceded to a Icelandic exclusive fishery zone after 

threats that Iceland would withdraw from NATO , which would have forfeited 
NATO 's access to most of the GIUK gap , a critical anti-submarine warfare during 

the Cold War .
Events: threats, conceded

Label: 1

FantasyR
C: In a world filled with magic, your family is scorned for generations for wasting 

time with science. Your mother was a botanist. Your father, a biologist. Mages can 
heal by touching. You developed steam locomotion when mages teleport. Your 

family has never trusted magic. One day, also known as the Fateful Day, the magic 
stops working. A mage is suspended in the air by magic when the Fateful Day 

arrives. 
Q: Can the mage touch the ground anymore?

Label: yes

(c) Data instances in sentimental datasets.

Yelp-5
C: Arriba's was not as good as they used to be, apparently the original owner 
passed away and its under new ownership. Won't be coming back here again.

Label: 1 (0~4)

IronyEval
C: Waking up with a pounding headache is just what I need for this final. 

    Label: 1

(d) Data instances in causal datasets.

Figure 7: Data instances of the WorldInsight BENCH.
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Figure 8: All the LLMs are assessed with confusion matrices on Yelp-5. The horizontal axis represents the predicted
value, and the vertical axis represents the true value. The color depth on the diagonal determines the ability of
models to explicit classify.
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(a) Llama-3.3-70b (b) Llama-3.1-70b

(c) Llama-3-70b (d) Llama-3-8b

(e) Llama-2-70b (f) Llama-2-13b

Figure 9: Positional sensitivity matrices for LLMs.
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(a) Layer 1, Head 1 (b) Layer 1, Head 27

(c) Layer 41, Head 1 (d) Layer 41, Head 27

(e) Layer 80, Head 1 (f) Layer 80, Head 27

Figure 10: Attention matrices for Llama-3.3-70b.
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