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ABSTRACT
Recent years have seen the explosion of edge intelligence with
powerful deep learning models. As 5G technology becomes more
widespread, it has opened up new possibilities for edge intelligence,
where the cloud-edge scheme has emerged to overcome the limited
computational capabilities of edge devices. Deep-learning models
can be trained on powerful cloud servers and then ported to smart
edge devices after model lightweight. However, porting models to
match a variety of edge platforms with real-world data, especially
in sparse-label data contexts, is a labour-intensive and resource-
costing task. In this paper, we present MatchNAS, a neural network
porting scheme, to automate network porting for mobile platforms
in label-scarce contexts. Specifically, we employ neural architecture
search schemes to reduce human effort in network fine-tuning and
semi-supervised learning techniques to overcome the challenge of
lacking labelled data. MatchNAS can serve as an intermediary that
helps bridge the gap between cloud AI and edge AI, facilitating
both porting efficiency and network performance.
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Edge AI, mobile intelligence, deep neural network, AutoML
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1 INTRODUCTION
Recent years have seen the popularity of artificial intelligence (AI)
and deep learning (DL) not only in server-based platforms but also
in edge devices. AI and DL have been applied in a wide spectrum of
edge applications such as Internet-of-Things (IoT), Web-of-Things
(WoT) and mobile intelligence, powering edge devices to become
"smart", such as real-time image analytics [15], natural language
recognition [10], health monitoring [42], personal recommendation
systems [27], etc.
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Cloud AI Edge AI

Large Standard DNN Supernet for Real-world Data Training-free Subnets

MatchNAS

...

...

Figure 1: MatchNAS bridges the Cloud AI and Edge AI.

Current DL-based functionalities and applications can be attrib-
uted to the rapid development of Deep Neural Networks (DNNs).
DNNs are typically a data-hungry paradigm that necessitates large
quantities of labelled data for model training [26] to achieve better
performance. To digest and absorb the "knowledge" hidden in huge
volumes of data, DNNs have become "deeper" with more network
parameters and computing complexity. However, edge intelligence
cannot benefit from large DNNs directly because they have limited
computing resources and low computational capability.

In this regard, cloud-edge DNN porting gained popularity [6, 8,
11, 12] for edge AI with the proliferation of 5G mobile networks [14,
23]. This porting scheme leverages powerful cloud-based servers
to train large DNNs with amounts of data and deploy them to edge
devices after architectural compressing and fine-tuning with real-
world data [39]. Although promising, this DNN porting scheme has
two major bottlenecks. Firstly, tailoring networks for varying edge
platforms is a labour-costing task requiring great human efforts
and computing resources as the number of platforms increases
[5, 34]. Secondly, real-world data tends to be label-scarce [4, 33]
since labelling data is labour-intensive and expertise-requiring.
Lightweight networks with fewer parameters struggle to handle
large quantities of unlabelled data, increasing network fine-tuning
difficulty. As mobile computing becomes increasingly important,
a large bunch of model light-weighting techniques and training
strategies have been proposed to support mobile intelligence.

Recent researchers studied Neural Architecture Search (NAS) to
automate mobile porting. Zero-shot NAS [7, 21, 25] designs specific
metrics for model performance evaluation, which can effectively ob-
tain optimum network architectures for different platforms, avoid-
ing manual network designing. One-shot NAS [5, 13, 30] jointly
trains a huge network family with similar architecture to avoid
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Figure 2: A workflow for MatchNAS. Given a pre-trained cloud-based DNN and a set of resource constraints, MatchNAS first
transforms the DNN to a supernet and inherits its network weights. Then, MatchNAS conducts a semi-supervised-NAS training,
which is a combination of semi-supervised learning and one-shot NAS, to transfer the supernet to a label-scarce dataset. After
training, MatchNAS leverages the zero-shot NAS techniques to efficiently sample high-quality subnets from the supernet
according to the resource constraints without further training and build a network family for efficient network mobile porting.

repeated training for each platform. These NAS techniques acceler-
ate the porting progress for diverse edge platforms. However, NAS
training is a data-hungry task, acquiring large amounts of labelled
data, which will result in poor performance in label-scarce contexts.

As for the second bottleneck, SSL algorithms [3, 4, 33, 35, 38]
make effective use of both labelled and unlabelled data. For exam-
ple, pseudo-labelling [20] produces artificial labels based on the
model’s prediction and trains the model to predict the artificial
labels when feeding unlabelled data. However, the performance of
an SSL-based model is highly correlated to the quality of artificial
labels. Constrained by limited network parameters, lightweight
models may have difficulty producing high-quality artificial labels.
In addition, current mainstream research on SSL does not take into
account mobile porting or NAS.

In this work, we focus on improving the DNN porting for mobile
deployment. To overcome the above-mentioned two bottlenecks in
mobile porting, we propose an automatic DNNs porting algorithm
to bridge the cloud AI and the edge AI, namely MatchNAS, by fully
utilising the techniques in NAS and SSL. As shown in Figure 2,
given a pre-trained cloud-based network, we first transform it to a
"supernet" (i.e., a set of sub-networks with a similar architecture).
Then, we train this supernet with semi-supervised techniques to
support label-scarce datasets. Specifically, during supernet training,
MatchNAS leverages the largest subnet in the family to produce
high-quality artificial labels for other smaller candidates. Through
this scheme, the "knowledge" from the largest network can be
distilled to lighter networks for performance improvement. After
training, we leverage the zero-shot NAS technique to directly ob-
tain optimal sub-networks for network porting without repeated
training. To the best of our knowledge, this paper is the first to ac-
celerate and improve mobile porting within label-limited contexts.
Our main contributions are as follows:

(1) We propose MatchNAS, a semi-supervised-NAS algorithm
to optimize edge AI by automating mobile DNN porting.

Through MatchNAS, we greatly reduce the training cost
and improve network performance for mobile deployment.

(2) In this paper, we evaluate MatchNAS on four image classifi-
cation datasets with limited labelled data, including Cifar-10
[19], Cifar-100 [19], Cub-200 [36] and Stanford-Car [18].
Compared to the state-of-the-art NAS [5, 13] and SSL [33]
methods,MatchNAS achieve a higher network performance,
for example, a maximum 20% Top-1 accuracy improvement
on Cifar100 (4000 labelled examples) with 15M Floating
Point Operations (FLOPs).

(3) We deploy MatchNAS’s networks to a couple of popu-
lar smartphones, and MatchNAS show a better latency-
accuracy trade-off compared to the SOTA methods.

2 RELATEDWORK
Considering the resource constraints, many in-the-wild DL appli-
cations for edge AI are very lightweight [39]. There are two issues
for porting lightweight DNNs. Firstly, the human effort in manual
network compressing and training cost in network optimization
increases significantly as the number of target platforms and de-
ployment scenarios increases. Secondly, lightweight networks have
trouble encountering sparse-label data contexts of limited network
parameters. In this section, we will introduce neural architecture
search and semi-supervised learning for their advantages and dis-
advantages in mitigating these two issues.

2.1 Neural Architecture Search
Neural Architecture Search (NAS) [2, 43] has gained widespread
attention for automating network design with less manual inter-
vention. The general idea behind NAS is to explore network archi-
tecture from a space of different architectural choices, such as the
number of layers and operation types. This enables the creation of
resource-insensitive models for mobile deployment [5, 30, 34]. Early
NAS [29, 32, 43, 44] suffers from prohibitive resource consumption

2
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of training and evaluating every candidate networks, while recent
one-shot NAS and zero-shot NAS alleviate this burden by supernet
training scheme and architectural scoring scheme, respectively.

Let A be a search space containing a set of candidate networks
{𝛼𝑖 } with the same functionality but different architectural con-
figurations, such as the number of layers, the size of convolution
kernels, the number of channels, etc. Let 𝑁 be the total number
of candidate architecture in A. Let 𝐷trn = {(𝑥,𝑦)} be the labelled
training datasets where 𝑥 is a batch of training inputs and 𝑦 is
corresponding labels, and 𝐷val is the validation datasets. Let 𝐹 (·)
be the output of a network. Let L(·) be the loss function. Let 𝑅
represent the resource constraints (e.g., model size limitation or
latency requirements)

One-shot NAS. One-shot NAS techniques [5, 13, 30] proposed to
reduce NAS cost by using weight-sharing for all networks in the
search space A. One-shot NAS has two important concepts: the
"supernet" and the "subnet". The "supernet" refers to a dynamic neu-
ral network with dynamic architecture. It encompasses all possible
networks in A. The "subnet" refers to a specialized sub-network
from the supernet with inherited parameter weights. Each subnet
is a part of the supernet and shares network weights with other
subnets. Updating the parameters of one subnet affects all other
subnets synchronously. Let𝑊 and𝑊𝛼𝑖 be the network weights of
the supernet and its subnets, respectively. Updating𝑊𝛼𝑖 is equal to
updating part of𝑊 .

One-shot NAS has two optimisation stages: 1) the supernet train-
ing stage; 2) the subnet searching stage. The supernet training stage
aims to minimize the loss of every subnet via a one-time training:

min
𝑊

𝑁∑︁
𝑖=0

L(𝐹 (𝑊𝛼𝑖 ;𝐷
𝑡𝑟𝑛)) (1)

where 𝐹 (𝑊𝛼𝑖 ;𝐷𝑡𝑟𝑛) is the output of the subnets 𝛼𝑖 . Equation (1) can
be regarded as a multi-model optimization process, and the bigger
the𝑁 is, the harder𝑊 is to optimise. Given a batch of data, it is really
difficult to calculate the losses of all 𝑁 candidates simultaneously.
Thus, SPOS [13] proposed a training strategy that approximates
Equation (1) by randomly optimizing 𝑛 (𝑛 ≪ 𝑁 ) subnets for each
mini-batch example (𝑥,𝑦) as Equation (2). As the total number of
training iterations spans thousands or even millions, a large scale
of subnets will be sampled, trained and aggregated gradients for
updating the supernet.

min
𝑊
E𝛼𝑖 ∈A

[
𝑛∑︁
𝑖=0

L(𝐹 (𝑊𝛼𝑖 ; (𝑥,𝑦)))
]

(2)

The second stage aims to extract the optimal candidate 𝛼∗ under
given constraints from the well-trained supernet. This process can
be formulated as below:

𝛼∗ = arg max
𝛼∈A

ACC(𝑊𝛼 , 𝑅;D𝑣𝑎𝑙 ) (3)

where ACC(·) refers to the validation accuracy on D𝑣𝑎𝑙 . To reduce
the evaluation cost, recent methods [5, 30, 37, 40] tend to train an
accuracy predictor by evaluating a small set of subnets.

One-shot NAS provides a low-cost scheme for training and
searching lightweight networks for mobile deployment. However,

compared to training a single DNN, jointly optimising a family
of networks is a more data-hungry task, acquiring large amounts
of labelled data for supernet training. As for the subnet searching
stage, there is also a lack of labelled data for network evaluation or
predictor training in sparse-label data contexts.

Zero-shot NAS. Zero-shot NAS techniques [7, 21, 25] are an ex-
tension of the NAS paradigm that goes a step further by not requir-
ing any parameter training during the architecture search process.
These methods rank different networks by designing a specific met-
ric to evaluate or score network architectures. A typical Zero-shot
NAS process is as follows:

𝛼∗ = arg max
𝛼∈A

Score(𝛼, 𝑅) (4)

where Score(·) represents the scoring function. Different algorithms
have different scoring schemes. For example, Zen-NAS [21] scoring
network architecture by computing their Gaussian complexity.

Zero-shot NAS provides a non-training strategy for designing
a family of lightweight network architectures, which can benefit
multi-platform deployment in mobile intelligence. However, train-
ing all networks in the family separately before porting is still a
resource-expensive task. We note that replacing the data-driven
searching steps (i.e., Equation (3)) with zero-shot NAS (i.e., Equa-
tion (4)) is an alternative choice in mobile porting.

2.2 Semi-supervised Learning
Labelling data is a significant challenge in many real-world scenar-
ios, which often require lots of human labour and expertise knowl-
edge, leading to a situation where the amount of unlabelled exam-
ples far exceeds the number of labelled examples. Semi-supervised
learning (SSL) offers an effective approach to fully utilize both
labelled and unlabelled examples. FixMatch [33] is one of the high-
performing and cost-efficient SSL methods in classification tasks,
combining consistency regularization [1] and pseudo-labeling [24].

Let U = {𝑢} be the unlabelled training datasets where 𝑢 is a
batch of unlabelled training examples. The loss function of Fix-
Match consists of two cross-entropy loss terms: a supervised loss
L𝑙 (𝑥,𝑦) applied to labelled data and an unsupervised loss L𝑢 (𝑢)
for unlabelled data. The supervised loss L𝑙 (𝑥,𝑦) is a standard loss
of labelled examples with weak data augmentation 𝐺𝑤 (·):

L𝑙 (𝑥,𝑦) = L(𝐹 (𝐺𝑤 (𝑥)), 𝑦) (5)

As for the unsupervised loss L𝑢 (𝑢), FixMatch hypothesizes that
the output of weakly-augmented and strongly-augmented unla-
belled data should be close. Therefore, FixMatch first calculates
the network outputs of unlabelled data with weak augmention
𝐹 (𝐺𝑤 (𝑢))). Then, it converts those outputs to the probability of
predicted classes by the softmax function as pseudo-labels. The
L𝑢 (𝑢) are calculated by pseudo-labels and unlabelled data after
strong augmentation 𝐺𝑠 (·)). Meanwhile, Fixmatch restricts L𝑢 (𝑢)
by setting a minimal confidence threshold 𝜏 . The unsupervised loss
is valid only if the maximum class probability of a single output in
a batch is greater than 𝜏 . Therefore, the unsupervised loss L𝑢 (𝑢)
can be formulated as follows:

L𝑢 (𝑢) = I𝜏
[
L(𝐹 (𝐺𝑠 (𝑢)), 𝜌 (𝐹 (𝐺𝑤 (𝑢))))

]
(6)
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Figure 3: The semi-supervised-NAS training in MatchNAS

where I𝜏 = I(max(𝑝 (𝐹 (𝐺𝑤 (𝑢))) ≥ 𝜏) is the indicator function. The
results of I𝜏 is one if the maximum probability of predicted classes
is greater than 𝜏 ; otherwise, it is zero. Note that this judgement acts
on each example in a batch of input 𝑢, and 𝜏 = {𝜏} |𝑢 | is the vector
of 𝜏 with the same size of 𝑢. 𝜌 (·) represents the pseudo-labeling.

Although promising results of SSL in label-scarce contexts, we
note that the bottleneck of applying SSL to lightweight models is
the quality of pseudo-label. The limited network parameters and
restricted computing capability make mobile-based lightweight
DNNs too small to produce high-quality pseudo-labeling for semi-
supervised training. Besides, there is also a lack of systematic study
for applying SSL to one-shot NAS training.

3 METHODOLOGY
3.1 Motivation
To jointly address the challenges associated with model fine-tuning
and label scarcity in cloud-edge mobile porting, one intuitive idea
is to combine NAS and SSL directly. Given a pre-trained network
weights𝑊 from cloud served, we directly replace the loss function
in Equation (2) with Equations (5) and (6):

min
𝑊
E𝛼𝑖 ∈A

[
𝑛∑︁
𝑖=0

(L𝑙
𝛼𝑖

+ L𝑢
𝛼𝑖
)
]

(7)

where L𝑙
𝛼𝑖

and L𝑢
𝛼𝑖

is the labelled loss and unlabelled loss with
specific subnet weights𝑊𝛼𝑖 .

However, the majority of networks in mobile porting are light-
weight, with fewer layers and limited computational capability. A
lightweight network may suffer from low network performance by
self-producing low-quality pseudo-labels. Due to weight-sharing,
the network weights generated by those low-quality pseudo-labels
have a negative impact on the optimization of all other subnets and
further adversely affect the optimization of the supernet𝑊 .

3.2 MatchNAS Training
To overcome the bottleneck of low-quality pseudo-labels, we pro-
pose our semi-supervised-NAS method, namely MatchNAS. Mo-
tivated by knowledge distillation strategy [16], which leverages a
large teacher network to "teach" small student networks, our core
idea is to select the largest subnet to produce better pseudo-labels
for other subnets in each training iteration. For simplification, we
also use the symbol 𝐴 to represent the largest subnet and𝑊𝐴 to
represent its network weights.

Figure 3 depicts the semi-supervised-NAS training in Match-
NAS. There are three types of training examples: labelled example
(𝑥,𝑦), unlabelled example 𝑢 with weak data augmentation 𝐺𝑤 (𝑢)
and with strong data augmentation 𝐺𝑆 (𝑢). Following Equation (2),
MatchNAS samples 𝑛 subnets for each mini-batch example, includ-
ing the largest subnet 𝐴 and 𝑛 − 1 random subnets {𝛼1, . . . , 𝛼𝑛−1}.

The largest subnet 𝐴 uses all three examples and obtains three
outputs. The output of𝐺𝑤 (𝑢) will be converted to a pseudo-label
𝜌𝐴 = 𝜌 (𝐹 (𝑊𝐴;𝐺𝑤 (𝑢))). Then, we compute the loss of the largest
subnet, including labelled loss L𝑙

𝐴
and the unlabelled loss L𝑢

𝐴
. This

process is similar to Equations (5) and (6):

L𝑙
𝐴 (𝑊𝐴; (𝑥,𝑦)) = L(𝐹 (𝑊𝐴; (𝐺𝑤 (𝑥)), 𝑦)) (8)

L𝑢
𝐴 (𝑊𝐴;𝑢) = I𝜏

[
L(𝐹 (𝑊𝐴;𝐺𝑠 (𝑢)), 𝜌𝐴)

]
(9)

As for other sampled subnets {𝛼𝑖 } = {𝛼1, . . . , 𝛼𝑛−1}, the labelled
loss L𝑙

𝛼𝑖
are similar to Equation (8) with specific weights𝑊𝛼𝑖 :

L𝑙
𝛼𝑖
(𝑊𝛼𝑖 ; (𝑥,𝑦)) = L(𝐹 (𝑊𝛼𝑖 ; (𝐺𝑤 (𝑥)), 𝑦)) (10)

The difference is that the unlabelled loss of a subnet is computed
based on 𝐺𝑤 (𝑢) and pseudo-labels 𝜌𝐴 from the largest subnet 𝐴
with the indicator function I𝜏 and the minimal confidence threshold
𝜏 . This computation is formulated as follows:

L𝑢
𝛼 (𝑊𝛼 ;𝑢) = I𝜏

[
L(𝐹 (𝑊𝛼 ;𝐺𝑤 (𝑢)), 𝜌𝐴)

]
(11)

We combine Equations (8) to (11) to rewrite the supernet opti-
mization Equation (7) into a new form as below:

min
𝑊
E𝛼𝑖 ∈𝐴

[
L𝑙
𝐴 + L𝑢

𝐴 +
𝑛−1∑︁
𝑖=0

(L𝑙
𝛼𝑖

+ L𝑢
𝛼𝑖
)
]

(12)

Algorithm 1 demonstrates the training process in MatchNAS.

3.3 MatchNAS Searching
After supernet training, we obtain a well-trained supernet con-
taining a huge network family. The next step is to search subnets
for porting under given resource constraints. In Section 2.1, we
mentioned that popular one-shot NAS methods evaluate a set of
subnets with labelled data and then train an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 for
network accuracy prediction as Equation (3).

We note that training a predictor is not suitable for subnet search
in mobile porting for two reasons. On the one hand, the training of
predictor is costly since it acquires evaluation of a set of subnets
(e.g., 1000 subnets in [37]) for a single task. The resource over-
head increases linearly as the number of tasks grows. On the other
hand, network specialization for mobile porting is a label-limited
case, while predictor training necessitates a bunch of labelled data.
The performance of the accuracy predictor will dramatically drop
without sufficient labelled examples for training.
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Algorithm 1: The training process in MatchNAS
Input: Supernet A; Pre-trained cloud-based weight𝑊 ;

Labelled data D = (𝑥,𝑦) and unlabelled data U = 𝑢;
Strong augmentation 𝐺𝑠 and weak augmentation
𝐺𝑤 ; Pseudo-labeling 𝜌 (·); The number 𝑛 of sampled
subnets in each data batch

Initialize A with𝑊
while not convergence do

Draw a mini-batch of labelled data (𝑥,𝑦) from D
Process weak augmentation 𝐺𝑤 (𝑥)
Draw a mini-batch of unlabelled data 𝑢 from U
Process weak and strong augmentation 𝐺𝑤 (𝑢), 𝐺𝑠 (𝑢)
Sample the largest subnet 𝐴
Calculate L𝑙

𝐴
with 𝐺𝑤 (𝑥) and 𝑦

Produce pseudo-label 𝜌 (𝐺𝑤 (𝑢))
Calculate L𝑢

𝐴
with 𝐺𝑠 (𝑢) and 𝜌 (𝐺𝑤 (𝑢))

for 𝑖 in 1, 2, ..., 𝑛 − 1 do
Randomly sample subnets 𝛼∗

𝑖
from A

Calculate L𝑙
𝛼∗
𝑖

with 𝐺𝑤 (𝑥) and 𝑦
Calculate L𝑢

𝛼∗
𝑖

with 𝐺𝑤 (𝑢) and 𝜌 (𝐺𝑤 (𝑢))
end
Aggregate gradients of 𝐴 and {𝛼∗1 , 𝛼

∗
2 , · · · , 𝛼

∗
𝑛−1}

Update𝑊 .
end

Algorithm 2: Zero-shot Search
Input: Search space A; Zero-shot NAS scorer S(·);

Maximum sampled size𝑀 ; scoring batch size𝑚;
Resource constraints 𝑅 = {𝑟1, . . . , 𝑟𝑀 }

Create an empty network collection 𝐶
for 𝑟𝑖 in 𝑅 = {𝑟1, . . . , 𝑟𝑀 } do

Random sample a set of networks {𝛼1, · · · , 𝛼𝑚}
Score sampled networks {S(𝛼1; 𝑟𝑖 ), · · · ,S(𝛼𝑚 ; 𝑟𝑖 )}
Append the best network 𝛼∗ into 𝐶 .

end

To address these problems, we leverage techniques in zero-shot
NAS to search subnets for mobile porting. As mentioned in Sec-
tion 2.1, zero-shot NAS designs an architectural-based metric for
network performance evaluation without any parameter training.
In this case, we use an architectural scorer S(·) to efficiently eval-
uate subnets and pick out the best one under given resource con-
straints. We name this search process "zero-shot search" and for-
mulate this process in Equation (13). Algorithm 2 provides a meta-
algorithm of the searching process.

{𝛼∗} =
{
𝛼∗

�� arg max
𝛼∈A

S(𝛼, 𝑅)
}

(13)

3.4 MatchNAS with Narrower Search Space
Equation (1) indicates that supernet training is a multi-model op-
timization task, and a larger 𝑁 will directly increase its difficulty.
Recent work [30] noted that, compared to training a huge net-
work family, training a smaller network family can alleviate the

inference among different size subnets. We hypothesise that our
semi-supervised-supernet training will also benefit from a smaller
search space. We attempt to leverage the zero-shot NAS techniques
to automatically narrow A before supernet training.

Assuming that we obtain a set of resource constraints 𝑅 =

{𝑟1, . . . , 𝑟𝑀 } for𝑀 different platforms by accessing their hardware
information and𝑀 ≪ 𝑁 . We leverage the zero-shot scorerS(𝛼𝑖 ; 𝑟𝑖 )
to estimate a set of network architectures and extract the one with
the highest score. By repeating this step, we obtain a set of high-
score networks from the family A before training. And then we
can rebuild a smaller family A∗:

A∗ =
{
(𝛼∗𝑖 , 𝑟𝑖 )

�� arg max
𝛼∈A

S(𝛼𝑖 , 𝑟𝑖 )
}
𝑀

(14)

Within such a smaller family A∗, the supernet training can be
formulated as a variant of Equation (12):

min
𝑊
E𝛼𝑖 ∈A∗

[
L𝑙
𝐴 + L𝑢

𝐴 +
𝑛−1∑︁
𝑖=0

(L𝑙
𝛼𝑖

+ L𝑢
𝛼𝑖
)
]

(15)

4 EXPERIMENTS
4.1 Settings
Benchmark DatasetsWe evaluate the efficacy of MatchNAS on
several image classification benchmarks with limited labelled exam-
ples to approximate the sparse-label contexts in real-world, includ-
ing Cifar-10 [19], Cifar-100 [19], Cub-200 [36] and Stanford-Car
[18]. Table 1 reports details for these datasets, where "Train" in-
dicates the number of training examples; "Labelled" indicates the
number of labelled training examples; "Class" is the number of
classes; "Resolution" is the image resolution of training examples.
The cloud-based network is trained on ImageNet [9] with all la-
belled data and then transferred to other datasets. We consider
400 labelled examples per class in Cifar-10 and Cifar-100, while 10
labelled examples per class in fine-grained dataset Cub-200 and
Stanford-Cars. Those labelled examples will be used to compute
labelled loss in Equations (8) and (10), and all training examples
will be used to compute unlabelled loss in Equations (9) and (11).

Table 1: Experimental Datasets

Dataset Train Labelled Class Resolution

ImageNet 1200000 1200000 1000 224

Cifar-10 50000 4000 10 32
Cifar-100 50000 4000 100 32
Cub-200 5994 2000 200 224

Stanford-Cars 8144 1960 196 224

Search Space We closely follow the MobileNetV3-Large search
space [5, 17] with dynamic macro-structures. We provide dynamic
choice for depth 𝐷 = {2, 3, 4}, width𝑊 = {0.5×, 1.0×}, width ex-
pand ratio 𝐸 = {3, 4, 6} and kernel size 𝐾 = {3, 5, 7}. The total
number of candidate networks is 4 × 1019. For more details of this
space, please refer to Appendix A.1. Meanwhile, we also gener-
alise MatchNAS to a lighter and more challenging search space
Appendix A.2 and experimental results in Table 6.
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Table 2: Comparison of Network Performance in Four Label-limited Data Domains

Datasets Method SSL Supernet Training Cost
𝜇

Top-1 Accuracy (%)
(GPU Hours) Smallest Medium Largest

OFA % % 500+0.28×𝑁 - 74.8 84.1 92.1
FixMatch ! % 1.2×𝑁 10 74.1 85.7 95.7

Cifar-10 SPOS % ! 0.7 - 64.3 72.1 88.0
SPOS+FixMatch ! ! 3 10 78.9 86.8 90.4
MatchNAS ! ! 3 10 85.8 90.2 96.5

OFA % % 500+0.28×𝑁 - 36.4 50.2 69.6
FixMatch ! % 1.2×𝑁 10 32.5 60.3 74.5

Cifar-100 SPOS % ! 0.7 - 34.1 50.0 61.0
SPOS+FixMatch ! ! 3 10 46.6 62.1 64.9
MatchNAS ! ! 3 10 57.9 69.8 74.9

OFA % % 500+0.18×𝑁 - 36.7 55.2 66.7
FixMatch ! % 0.8×𝑁 2 39.9 48.9 71.2

Cub-200 SPOS % ! 0.5 - 34.2 47.8 58.6
SPOS+FixMatch ! ! 1.2 2 44 54.9 62.3
MatchNAS ! ! 1.2 2 51 61.3 70.2

OFA % % 500+0.18×𝑁 - 42.9 74.1 84.7
FixMatch ! % 0.9×𝑁 4 52.5 75.9 82.2

Stanford-Cars SPOS % ! 0.5 - 50.4 68.7 78.4
SPOS+FixMatch ! ! 1.4 4 53.6 71.1 77.9
MatchNAS ! ! 1.4 4 60.4 78.9 86.8

Mobile Platforms For on-device evaluation, we prepare four high-
performing smartphones via Samsung Remote Test Lab [31], includ-
ing Samsung Galaxy S23, Galaxy S22, Galaxy Note 20 and Galaxy
A12, as shown in Table 3. Their computing ability decreases in
the order in which they are listed. We measure the actual latency
for each model with a batch size of 1 using the Pytorch-mobile
framework [28] on the Android 13 operating system. An example
of the on-device test can be found in Appendix B. The results of
the on-device evaluation are shown in Section 4.5.

Table 3: Hardware Platforms

Platforms SoC RAM Year

Samsung Galaxy S23 Snapdragon 8 Gen 2 8GB 2023
Samsung Galaxy S22 Exynos 2200 8GB 2022

Samsung Galaxy Note 20 Exynos 990 8GB 2020
Samsung Galaxy A12 Mediatek Helio P35 3GB 2020

4.2 Training Details
The core idea of MatchNAS is the combination of semi-supervised
training and one-shot NAS training. In practice, we combine the
pseudo-labelling technique in FixMatch [33] and the supernet train-
ing skill in SPOS [13] to produce our semi-supervised-NAS training
scheme. In the next section, we provide detailed comparisons of
MatchNAS and these two methods.

We note that the loss term of semi-supervised training is ap-
plicable for one-shot NAS since it has a low computing cost and
fully utilizes unlabelled examples. The training process of Match-
NAS can be simplified as a transfer task, including three steps: 1)

train a cloud-based network, 2) semi-supervised-NAS training for
label-scarce datasets and 3) search subnets under different resource
constraints.

We first train a cloud-based network on ImageNet for 180 epochs
with a learning rate of 8e-2. This network is a full network in search
space with the maximum architecture {𝐷 = 4,𝑊 = 1.0×, 𝐸 = 6, 𝐾 =

7} in each stage. The training duration is about 150 GPU hours
measured on an NVIDIA RTX 3090. Then, we transform the cloud-
based model to a supernet with varying architectural configurations
as Table 5 and fine-tune this supernet to different datasets with
different data domains and limited data labels.

As for the semi-supervised-NAS training, we train a supernet
for 50 epochs, using Adam optimizer with weight decay 3 × 10−5.
The initial learning rate is 3 × 10−4 with a cosine schedule for
learning rate decay [22]. The training batch size is 16 + 16 × 𝜇,
where 16 is the batch size of labelled data and 𝜇 is the ratio of
labelled data and unlabelled data. For each iteration, the training
process is as Algorithm 1, and we set 𝑛 = 4. The pseudo-label’s
confidence threshold (𝜏 ) is 0.95, and we provide an ablation study of
this setting in Section 5.2. The weak and strong data augmentation
process follows the settings in FixMatch [33].

4.3 Network Performance
In this section, we compare MatchNAS with art DNNs baselines on
four different datasets. We consider the following popular networks
or network combinations as baselines: (a) Cloud-trained one-shot
NAS method OFA [5], which firstly trains a supernet on ImageNet
and sample subnets for further fine-tuning with labelled data; (b)
Semi-supervised method FixMatch [33] using both labelled and un-
labelled data; (c) Transfer-trained one-shot NAS method SPOS [13]
train a supernet using labelled data; (d) SPOS+FixMatch a directed
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combination of NAS and SSL as Equation (7) using both labelled and
unlabelled data. For a fair comparison, all methods inherit weights
from the same cloud-based network, and each method uses the
same MobileNetV3-Large search space as mentioned in Section 4.1.

We summarize experimental results in Table 2. "SSL" indicates
whether a method uses both labelled and un-labelled data or only
labelled data. "Supernet" indicates whether a method trains a su-
pernet or a single DNN. "Training Cost" represents the training
duration measured by an NVIDIA RTX 3090 GPU. "𝑁 " is the num-
ber of possible deployment platforms. Compared to other methods,
OFA first trains a supernet on ImageNet, resulting in an extra 500
GPU hours time cost. For non-supernet methods, the total train-
ing cost is calculated by the average cost of training a single DNN
times 𝑁 . "𝜇" represents the ratio of labelled data and unlabelled data
in one training iteration. We set different 𝜇 for different datasets
towards their different ratios of labelled data (see Table 1).

We observe the Top-1 accuracy for three different sizes of net-
works trained by different methods. The "largest" is the largest
subnet in the search space with architecture configuration {𝐷 =

4,𝑊 = 1.0×, 𝐸 = 6, 𝐾 = 7}, while the "smallest" is the smallest
subnet {𝐷 = 2,𝑊 = 0.5×, 𝐸 = 3, 𝐾 = 3}. The configurations of
the "medium" are {𝐷 = 4,𝑊 = 0.5×, 𝐸 = 6, 𝐾 = 5}. For methods
using supernet training, these networks inherited weights from the
supernet directly. For non-supernet methods, these networks will
be trained from scratch separately.

We can see that MatchNAS significantly outperforms all base-
lines in the smallest and medium subnet on all four datasets, with
about a minimum of 4% and a maximum of 20% accuracy improve-
ment. These experimental results prove the effectiveness of Match-
NAS in porting lightweightmodels with label-scarce datasets. As for
the largest network, MatchNAS report a competitive network per-
formance compared to FixMatch. Note that MatchNAS provides a
supernet with numerous subnets, while FixMatch need repeated net-
work training for different platforms, which is resource-consuming.

As for the training cost, MatchNAS training a supernet contain-
ing 4×1019 candidate subnet via a one-time training. As the number
𝑁 of possible deployment platforms increases, MatchNAS can save
significant time overhead than non-supernet methods. Compared
to the supernet in SPOS, MatchNAS utilize the SSL techniques to
improve network performance dramatically.

In summary, MatchNAS provide a better trade-off between the
training cost and the network performance in sparse-label contexts.

4.4 Experiments with Varying Labelled Data
In this section, we perform experiments on Cifar10 with extremely
limited labelled data in MobileNetV3-Large search space. Except
for 4000 labelled data in Table 2, we further consider 250 and 50
labelled data, i.e., 25 and 5 labelled data per class. Obviously, the less
labelled data the dataset contains, the more difficult the training is.

Table 4 reports the Top-1 accuracy results of networks trained
in five different methods. "smallest" and "largest" represent the
smallest subnet and the biggest subnet in the search space. Match-
NAS reports the highest accuracy 95.8%, 95.1%, 83.6% of the largest
subnet and 85.8%, 86.9%, 70.6% of the smallest subnet in three label-
scarce settings. These experimental results further justified the
effectiveness of MatchNAS.

Table 4: Performance Comparison in Cifar10 with Different
Numbers of Labelled Examples

Model Smallest Top-1(%) Largest Top-1 (%)

4000 250 50 4000 250 50

OFA 74.8 44.4 11.0 92.1 76.7 50.8
FixMatch 74.1 60.0 31.9 95.7 95.1 81.7
SPOS 64.3 35.7 16.6 88.0 66.9 37.9

SPOS+FixMatch 78.9 72.7 44.1 90.4 90.3 65.1
MatchNAS 85.8 86.9 70.6 96.5 95.1 83.6

4.5 On Device Performance
After supernet training, we carry out a zero-shot search to sample
high-performing subnets for mobile deployment as Algorithm 2.We
closely follow Zen-NAS [21] to compute the Gaussian complexity
for scoring subnets. For each resource constraint setting (e.g., FLOPs
limits), we randomly sample 20 subnets for evaluation and select
the best one with the highest Gaussian complexity score. The search
cost for each subnet is less than one GPU minute.

We compare MatchNAS’s subnets with other subnets using dif-
ferent training strategies, including FixMatch and SPOS+FixMatch.
Subnets from MatchNAS and SPOS+FixMatch are sampled from
their own supernet, and networks from FixMatch are trained sep-
arately. For a fair comparison, networks from different methods
have similar FLOPs constraints.

Figure 4 reports the performance of latency-accuracy trade-off
on four datasets and devices. MatchNAS consistently achieve com-
parable and higher network performance and produces a better
accuracy-latency trade-off by training a single supernet with lim-
ited labelled data. Compared to SPOS+FixMatch, which also trains
a supernet, MatchNAS reports a superior subnet performance. No-
tice that the network training cost of MatchNAS is much lower
than FixMatch as the number of platforms increases. Compared
to FixMatch, MatchNAS shows a better accuracy-latency trade-
off among low-latency networks while competitive performance
among high-latency networks.

4.6 Experiments with a Narrower Search Space
In Section 3.4, we propose a search space narrowing method as
Equation (15). The core idea is to select a set of high-quality subnets
as a narrower space before supernet training to reduce the difficulty
of optimization. In this section, we report a subnet performance
comparison between using a narrower search space and not.

In practice, we sample 200 lightweight subnets ranging from
50M to 90M FLOPs based on Gaussian complexity [21] and build a
narrower and smaller search space. Each selected subnet is selected
with the highest Gaussian complexity score from twenty random
subnets. Figure 5 (a) reports a performance comparison of those 200
subnets from three different supernets, and MatchNAS† represents
the supernet training within the narrower search space. Clearly,
MatchNAS† reports about 2% higher accuracy compared to Match-
NAS. These phenomena verify our hypothesis in Section 3.4 that a
narrower search space can be optimized more easily than a large
one while the number of available subnets decreases.
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Figure 4: Latency-accuracy trade-off on four mobile devices.
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Figure 5: (a): Network performance of a set of subnets on
Cifar-100; (b): Performance comparisons of different unla-
belled loss types.

5 ABLATION STUDY
5.1 Unlabelled Loss
In Section 3.2 and Figure 3, we mentioned that the unlabelled loss
of subnets is computed by the pseudo-label and unlabelled example
with weak augmentation as Equation (15). In this section, we re-
place the weak augmentation with the strong one and Figure 5 (b)
shows the results. We compare three subnets with different model
sizes from MatchNAS. "Pseudo2Weak" represents the supernet’s
unlabelled loss computed by the pseudo-label and unlabelled exam-
ple with weak augmentation, while "Pseudo2Strong" is with strong
augmentation. The "Pseudo2Weak" reports a higher subnet perfor-
mance, especially in small subnets. It also indicates that lightweight
networks have difficulty in handling complex inputs.

5.2 Confidence Threshold
The confidence threshold 𝜏 controls the trade-off between the qual-
ity and quantity of pseudo-label in the loss term Equations (9)
and (11). The output prediction can be converted to a pseudo-label
when the model assigns a probability to any class that is above the
threshold. The value of 𝜏 ranges from 0 to 1, where 𝜏 = 0 means all
predictions are pseudo-label, and a larger 𝜏 means predictions with
higher class confidence can be converted to pseudo-label.

Previouswork [20, 33] has proved that the quality of pseudo-label
contributes more to the network performance than the quantity.
We validate the effectiveness of the confidence threshold in our SSL-
based supernet training, and Figure 6 (a) show report a comparison
of subnet performance with different values of 𝜏 . 𝜏 = 0.95 report a
accuracy improvement of about 1.5% compared to 𝜏 = 0.0.

5.3 One-shot NAS Techniques
MatchNAS is a combination of SSL and one-shot NAS techniques.
In this section, we alternate SPOS with another supernet training
technique in BigNAS [41]. Given a minibatch of data, BigNAS opti-
mise both the largest and the smallest subnet in the search space
and 𝑛 − 2 random-sampled subnets. Figure 6 (b) depicts subnet
performance from three different methods. "MatchNAS-BigNAS"
is the combination of MatchNAS and BigNAS, which show higher
performance in low FLOPs compared to the vanilla MatchNAS.
This phenomenon is mainly caused by the optimization strategy
in BigNAS. The experiment results indicate that MatchNAS can
alternatively combine with other NAS methods except methods
demanding lots of labelled data [5, 37].
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Figure 6: (a): Network performance comparisons of using
different thresholds; (b): Subnets performance comparisons
of three differentmethods under different FLOPs constraints.

6 CONCLUSIONS
In this paper, we provide MatchNAS to optimize edge AI by au-
tomating porting lightweight mobile networks in sparse-label data
contexts. Our algorithm leverages NAS and SSL techniques to opti-
mise mobile porting in spare-label data contexts. We demonstrate
the effectiveness of MatchNAS for mobile deployment in different
image classification tasks with promising experimental results. We
hope our approach will inspire more researchers toward a deeper
understanding of DNNs for edge AI.
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A SEARCH SPACE
A.1 The Vanilla Search Space
We closely follow the MobileNetV3-Large Search Space [5, 17].
Our search space is shown in Table 5. Except for the fixed ar-
chitecture head and tail, there are five repeated macro-structures
with dynamic configurations named DMBConv, which refer to
the inverted dynamic residual block. Depth represents the number
of dynamic convolution blocks (or layers) in the dynamic stage.
Width and Expand denote the output channel width of each block
and the width expanding ratio. The maximum channel width is
calculated by Width × Expand. Kernel is the kernel size of each
block. To further reduce the computation complexity to meet the
demands of lightweight mobile deployment, we further provide
two sets of width choices, including {12, 20, 40, 56, 80} (0.5×) and
{24, 40, 80, 112, 160} (1.0×). The total number of candidate subnets
is ((3× 3)2 + (3× 3)3 + (3× 3)4)5 × 2 ≈ 4× 1019. As different input
resolutions, the computing complexity of the largest and the small-
est subnet in Cifar-10 and Cifar-100 (32×32) are about 180M FLOPs
and 15M FLOPs, while in Cub-200 and Stanford-Cars (224 × 224),
they are 560M and 58M FLOPs.

Table 5: MobileNetV3-Large Search Space with dynamic net-
work configurations.

Stage Depth Width Expand Kernel

Conv 1 16 - 3
MBConv 1 16 1 3

DMBConv1 {2, 3, 4} {12, 24} {3, 4, 6} {3, 5, 7}
DMBConv2 {2, 3, 4} {20, 40} {3, 4, 6} {3, 5, 7}
DMBConv3 {2, 3, 4} {40, 80} {3, 4, 6} {3, 5, 7}
DMBConv4 {2, 3, 4} {56, 112} {3, 4, 6} {3, 5, 7}
DMBConv5 {2, 3, 4} {80, 160} {3, 4, 6} {3, 5, 7}

Conv 1 960 - 1
Conv 1 1280 - 1

A.2 Generalising MatchNAS to Other Space
MatchNAS, which focus on edge AI with limited computing re-
source, is expected to apply to more lightweight architectures. Ex-
cept for the vanilla search space in Appendix A.1 ranging from
15M to 180M FLOPs, we further design a smaller search space
ranging from 4M to 75M FLOPs. As shown in Table 6, this search
space is based on MobileNetV3-Small, containing only four dy-
namic stages with a narrower network width and more dynamic
width choices, including {12, 20, 40, 56, 80} (0.5×), {12, 20, 40, 56, 80}
(1.0×) and {36, 60, 72, 144} (1.5×).

We generalise MatchNAS to this more compact search space, and
other training settings are similar. Table 7 report a performance com-
parison in Cifar-10 with 4000 labelled example. The "largest" is the
largest subnet in the search space with architecture configuration
{𝐷 = 4,𝑊 = 1.5×, 𝐸 = 6, 𝐾 = 5}, while the "smallest" is the smallest
subnet {𝐷 = 2,𝑊 = 0.5×, 𝐸 = 3, 𝐾 = 3}. The configurations of
the medium one, "medium", are {𝐷 = 4,𝑊 = 1.0×, 𝐸 = 6, 𝐾 = 5}.

As a supernet, MatchNAS provides about 1 × 1013 different candi-
date subnets after one-time training and reports a competitive net-
work performance. In the most extremely lightweight case, Match-
NAS report a 8% higher accuracy compared to baseline supernet
SPOS+FixMatch and 10% higher accuracy compared to standard
DNN FixMatch.

Table 6: MobileNetV3-Small Search Space with dynamic net-
work configurations.

Stage Depth Width Expand Kernel

Conv 1 16 - 3
MBConv 1 16 1 3

DMBConv1 {2, 3, 4} {12, 24, 36} {3, 4, 6} {3, 5}
DMBConv2 {2, 3, 4} {20, 40, 60} {3, 4, 6} {3, 5}
DMBConv3 {2, 3, 4} {24, 48, 72} {3, 4, 6} {3, 5}
DMBConv4 {2, 3, 4} {48, 96, 144} {3, 4, 6} {3, 5}

Conv 1 576 - 1
Conv 1 1024 - 1

Table 7: Performance Comparison of Top-1 Acc

Model SSL Supernet Cifar-10 Top-1 Accuracy(%)

Smallest Medium Largest

FixMatch ! % 62.6 85.8 94.3
SPOS % ! 53.6 76.5 83.4

SPOS+FixMatch ! ! 66.2 82.9 86.3
MatchNAS ! ! 72.3 89.1 93.9

B EXAMPLE ON-DEVICE EVALUATION
Figure 7 shows an example evaluation on smartphones. All on-
device tests are performed on the Samsung Remote Test Lab [31].

Figure 7: Example evaluation on Samsung Galaxy Note 20.
This result is produced by Samsung Remote Test Lab.
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