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Abstract

Graph Neural Networks (GNNs) are vulnerable to backdoor attacks. Existing
defenses primarily rely on detecting structural anomalies, distributional outliers,
or perturbation-induced prediction instability, which struggle to handle the more
subtle, feature-based attacks that do not introduce obvious topological changes. Our
empirical analysis reveals that both structure-based and feature-based attacks not
only cause early loss convergence of target nodes but also induce a class-coherent
loss drift, where this early convergence gradually spreads to nearby clean nodes,
leading to significant distribution overlap. To address this issue, we propose LoSplit,
the first training-time defense framework in graph that leverages this early-stage
loss drift to accurately split target nodes. Our method dynamically selects epochs
with maximal loss divergence, clusters target nodes via Gaussian Mixture Models
(GMM), and applies a Decoupling-Forgetting strategy to break the association
between target nodes and malicious label. Extensive experiments on multiple real-
world datasets demonstrate the effectiveness of our approach, significantly reducing
attack success rates while maintaining high clean accuracy across diverse backdoor
attack strategies. Our code is available at: github.com/zyx924768045/LoSplit.

1 Introduction

Graphs serve as a ubiquitous form of data structure [1] in many real-world applications such as social
networks [2], recommendation systems [3], and financial applications [4], where nodes represent
entities and edges capture their relationships. Graph Neural Networks (GNNs) [5, 6, 7] effectively
capture graph information via iterative message passing, and have shown strong performance in tasks
like node classification [8].

However, GNNs have been shown to be susceptible to backdoor attacks [9, 10, 11, 12, 13, 14, 15, 16],
where adversaries embed triggers (either predefined or adaptively generated) in the form of nodes,
subgraphs or feature perturbations, into training data to create shortcuts between target nodes and
malicious labels. Due to the message-passing mechanism, these triggers will deceive GNNs to
misclassify trigger attached nodes into malicious label during inference, while preserving high
performance on clean nodes, thereby posing serious risks in safety-critical applications.

Existing defense against such attack adopt various strategies to detect and mitigate backdoor impact.
Prune [11] drops edges that link nodes that exhibit low cosine similarity. OD [12] identifies outlier
nodes based on distributional differences and removes them to neutralize trigger influence. RIGBD
[17] observes that simple pruning and outlier detection methods can be easily bypassed by carefully
crafted triggers, and thus introduces a combination of randomized edge dropping and robust training
to weaken trigger influence and restore model integrity. However, defending against more subtle,
feature-based backdoor attacks remains a significant challenge. Unlike structural perturbations
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that introduce easily detectable topological anomalies, feature-based triggers operate by subtly
manipulating node attributes, often without perturbing the overall graph structure. As highlighted
by SPEAR [13], these attacks can preserve the original topology while selectively modifying high
importance features, effectively bypassing common graph anomaly detectors. This makes existing
defenses that rely on detecting abrupt structural deviations or outliers ineffective, highlighting the
need for more comprehensive training-time defenses.

To address this, we hypothesize that these two types of attacks, despite their differences, share certain
early training traits. This is consistent with our observation that GNNs often exhibit shortcut learning
behaviors in which trigger-embedded nodes rapidly fitting into malicious labels. Similar phenomenon
has been reported in deep neural networks (DNNs) [18], where poisoned samples show a sharp and
early drop in loss values. This occurs because backdoor triggers introduce strong signals that models
latch onto early in training, causing target nodes to converge significantly faster than clean nodes.

However, directly applying this intuition to graphs presents unique challenges. In images, each
poisoned sample is an independent image (analogous to a graph) with a strong localized trigger
(e.g., a black pixel), which the model quickly fits, leading to a stable and fast loss convergence
(see Appendix L). In contrast, graph backdoor attacks on node classification task conducts over
a single interconnected graph, where poisoned samples are only a few nodes attached by triggers.
Different from images, triggers in graphs does not influence the graph directly. Instead, it propagates
step-by-step through message passing across limited number of hops to its neighbors, which makes
the loss behavior unstable as training epoch progresses. As shown in Fig. 1, we observe a previously
unexplored phenomenon we call class-wide loss drift: loss distributions of nodes fluctuate, generally
shifting leftward but occasionally reversing, with frequent overlaps across classes. This instability
renders fixed ratios and global thresholds typically used in images ineffective in graphs, thus posing a
distinct challenge:
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Figure 1: Class-wide loss drift phenomenon across
epochs.

How to precisely identify target nodes even in
the presence of unstable class-wide loss drift?

To address this, we propose Loss-guided dy-
namic target node Split framework (LoSplit),
the first training-time defense in graphs that in-
troduces several key innovations. First, it iden-
tifies malicious label by computing the intra-
class loss variance, then it performs step-by-
step optimal split epoch selection using inter-
cluster divergence, rather than relying on a fixed
heuristic early epoch like mainstream image ap-
proaches do. Second, it applies Gaussian Mix-
ture Models (GMM) clustering to adaptively ad-
just splitting thresholds to split target nodes and
clean nodes. Finally, with separated target and
clean nodes, it restores the backdoored model
using a Decoupling-Forgetting strategy. For tar-
get nodes, we apply random label reassignment
combined with gradient ascent to maximally de-
couple the shortcut association between them and the malicious label. For clean nodes, we train
normally to maintain model performance. Our main contributions are threefold:

(1) We propose LoSplit, the first training-time graph backdoor defense. (2) We design a novel
Early-Stage Dynamic Split for target nodes identification and Decoupling-Forgetting for Backdoor
Recovery. (3) Extensive experiments on real-world datasets demonstrate that LoSplit consistently
reduces attack success rates while preserving clean accuracy across diverse backdoor attacks.
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2 Related Works

2.1 Graph Backdoor Attacks

Early methods (e.g., SBA [9], GTA [10]) use fixed subgraph patterns, while UGBA [11] and
DPGBA [12] improve stealthiness by exploiting homophily and distributional priors. SPEAR [13]
further advances this by perturbing node features only. More details are provided in Appendix A.1.

2.2 Graph Backdoor Defense

Graph Backdoor defense methods fall into two categories. On is Detection-Deletion type of method
(e.g., Prune [11], OD [12]) and the other is Detection-Robust Training method such as RIGBD [17].
While effective in structural perturbation attacks, they fail to counter more stealthy feature perturbation
attacks like SPEAR [13] due to the absence of topological anomalies. More details are provided in
Appendix A.2.

2.3 Training-time Backdoor Defense

Training-time backdoor defenses, initially developed in the image domain such as ABL [18],
DBD [19], ASD [20], PIPD [21], and HARVEY [22], identify and mitigate poisoned samples
by progressively isolating them based on early training behaviors. Although effective in vision, these
methods overlook graph-specific properties such as message passing, neighborhood aggregation, and
structural homophily, making them less effective or inapplicable to graphs. More details are provided
in Appendix A.3.

3 Preliminaries

Graph Representation Learning. We define an undirected graph as G = (V,A, E ,X ,Y), where
V = {v1, . . . , vN} is the set of N nodes and A ∈ RN×N is the adjacency matrix denoting the
relationship between nodes: Aij = 1 if node vi is connected to node vj , Aij = 0 otherwise.
E ⊆ V × V is the set of edges, and X ∈ RN×d represents the node features. Each node vi ∈ V is
associated with a feature vector xi and a ground-truth label yi ∈ Y . Graph Convolutional Networks
(GCNs) [5] compute node embeddings through spectral graph convolution using the layer-wise
propagation rule:

H(l+1) = σ
(
ÂH(l)W(l)

)
, (1)

where H(l) ∈ RN×hl contains node embeddings at layer l (initialized with H(0) = X), Â =
D̃−1/2ÃD̃−1/2 represents the normalized adjacency matrix with added self-loops (Ã = A+ IN ),
D̃ is the corresponding degree matrix, W(l) ∈ Rhl×hl+1 denotes trainable parameters, and σ(·) is an
activation function such as ReLU.

Graph Backdoor Attack. Adversaries strategically implant stealthy trigger patterns typically in
the form of subgraphs into a small number of training nodes to mislead GNNs to produce attacker-
specified outputs when trigger appears but behave normally on clean nodes during inference. In
other words, the model is “backdoored”. A sound backdoor attack should maintain high clean
accuracy (CA) and high attack success rate (ASR) simultaneously. We study node classification
task under this type of attack, where the training graph GT = (VT ,AT , ET ,XT ,YT ) and test graph
GU = (VU ,AU , EU ,XU ,YU ) are disjoint, i.e., VT ∩ VU = ∅. The attacker selects a set of target
(poisoned) nodes VB ⊂ VT and attaches backdoor triggers Gj to nodes vj ∈ VB , resulting in perturbed
nodes vj ⊕ Gj and trigger-embedded graph G′

T = (V ′

T ,A
′

T , E
′

T ,X
′

T ,Y
′

T ) , where ⊕ denotes feature
or structural perturbation. These triggers may involve synthetic subgraphs (structure-based) or crafted
feature shifts (feature-based). Clean nodes are denoted as VC = VT \ VB .

A backdoored model f
′

is trained to associate triggers with a predefined malicious label yt, causing
target nodes misclassified into yt while maintaining correct prediction on clean nodes:{

f(vj ⊕ gj) = yt, ∀vj ∈ VB ;
f(vi) = yi, ∀vi ∈ VC .

(2)
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Due to message passing in GNNs, even localized triggers can propagate across neighborhoods, leading
the model to learn spurious correlations between the trigger and the malicious label. This causes the
model to misclassify any node containing the trigger as yt during inference, while maintaining high
accuracy on clean nodes, making the attack both effective and stealthy.

Defender’s Knowledge and Goal. Defenders can only get access to the perturbed training graph G′

T ,
without the knowledge of the malicious label yt, the number and position of target nodes |VB |, and
trigger patterns gj . Depending on the attack, defenders can either refine a model using G′

T or receive
an infected model via an adversary-provided API [23]. In both cases, defenders have no access to
clean validation data or ground-truth labels. Unlike previous works that assumed post-hoc access
to infected models, we consider a more practical training-time defense setting, where target nodes
are identified during model training phase. Given a trigger-embedded graph, defender’s goal is to
maintain high accuracy on clean nodes while decoupling the target nodes from the malicious label yt.
For clean nodes vj ∈ VC , we aim to correctly predict their labels yj ; for target nodes vi ∈ VB , we
reduce their association with yt. Specifically, the defense objective is:

min
θ

Lθ =
∑

vi∈VB

L(f(vi), ỹi
)
+

∑
vj∈VC

L(f(vj), yj), (3)

where ỹi is a label filter out malicious label: ỹi ̸= yt and L is the classic classification loss such as
Cross-Entropy loss.

Early-Stage Loss Dynamics. We empirically investigate the early-stage loss behaviors of
clean nodes (VC) and target nodes (VB) by tracking their training losses across initial epochs.
To be more specific, we compare two loss functions. One is Cross-Entropy (CE), defined
as LCE = −

∑K
k=1 q(k|x) log p(k|x). Another is Reverse Cross-Entropy (RCE): LRCE =

−
∑K

k=1 p(k|x) log q(k|x), which has been used in noisy label learning [24] to reduce overfit-
ting by encouraging uncertain predictions and HARVEY [22] to isolate poisoned samples. Inspired
by previous work, we also adopt RCE loss to amplify the loss divergence between target nodes and
clean nodes early in training, enabling more effective split.

As shown in Fig. 2a and Fig. 2b, under both CE and RCE loss, target nodes converge noticeably faster
than clean nodes during the early training epochs. This phenomenon becomes significantly more
pronounced under RCE loss, where target nodes rapidly approach low loss values, thus amplifying
their separability from clean nodes. A detailed theoretical justification for why target nodes converge
faster than clean nodes during early training and why RCE amplifies the early-stage loss divergence
between target and clean nodes more effectively than CE loss is provided in Appendix C.1.
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Figure 2: (a) and (b) compare the loss distributions under CE and RCE. It is evident that RCE achieves a clearer
separation of target nodes compared to CE. (c) and (d) illustrate the early-stage RCE loss clustering before and
after a few training epochs, where the blue cluster (corresponding to the target class) gradually splits into several
sub-clusters, with the smaller sub-clusters primarily consisting of target nodes.

Another intriguing loss dynamic that we observe is that clean nodes of the same class naturally form
compact loss clusters (see Fig. 2c). However, as training progresses, the cluster corresponding to the
target class (blue clusters in Fig. 2d ) gradually splits into two or more sub-clusters. The smaller
sub-clusters predominantly consist of target nodes.

4 Methodology

In this section, we present the proposed defense framework LoSplit, whose overall framework is
illustrated in Fig. 3. LoSplit operates in two stages: (1) Early-Stage Dynamic Split, where we
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exploit the distinct early loss dynamics under RCE loss to separate target nodes from clean nodes;
(2) Decoupling–Forgetting, where the identified target nodes are decoupled and forgotten from the
malicious labels through a combination of random label reassignment and gradient ascent. This
two-stage pipeline enables LoSplit to effectively split target nodes and mitigate backdoor effect
without requiring access to ground-truth information. In the following, we will give the details of
each stage.
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Figure 3: Overall Framework of LoSplit.

4.1 Target Nodes Identification via Early-Stage Dynamic Split

LoSPlit first leverages the loss dynamics discussed in Sec. 3 that nodes in the same malicious class
tend to split into several sub-clusters to identify malicious label. We achieve this by computing the
variance of the loss value of each label and select the label with the highest intra-class loss variance
as malicious label:

yt = arg max
yj∈Y′

T

Var
(
{ℓ(t)i | yi = yj}

)
, (4)

where ℓ
(t)
i denotes the RCE loss of node vi at epoch t in ascending order.

Once the malicious label yt is identified, we extract all nodes labeled yt, denoted as V(t)
yt . We compute

their mean µ and standard deviation σ of the RCE loss value at a given early epoch t. We then
normalize their loss values into a standardized z-score form:

ζ
(t)
i =

ℓ
(t)
i − µ

σ + ϵ
, ∀vi ∈ V(t)

yt
, (5)

where ϵ is a small constant to avoid division by zero.

We empirically observe that target nodes tend to form a tight cluster at the lower end of the loss
spectrum. In practice, we sort the loss values within class yt in ascending order and then fit a Gaussian
Mixture Model (GMM) [25] to identify the low-loss cluster (target nodes). Let C(t)

low and C(t)
high be the

node cluster with smaller and larger average loss values at epoch t, respectively. Then we define an
adaptive threshold τ (t) by computing the middle point between higher and lower loss clusters:

τ (t) = max
{
ζi | vi ∈ C(t)

low

}
+

min
{
ζj | vj ∈ C(t)

high

}
−max

{
ζi | vi ∈ C(t)

low

}
2

. (6)

To find the optimal epoch t∗ that best splits the target nodes, we first make an assumption:
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Assumption 1. There exists an optimal epoch during training at which the loss divergence between
target nodes and clean nodes is maximized and is less pronounced or absent under standard Cross-
Entropy loss. A theoretical justification of Assumption 1 is provided in Appendix C.2.

Theorem 1. Under the conditions of Assumption 1, there exists an optimal epoch t∗ ∈ [0, TS ], where
TS is the number of early training epochs, such that the separation between target nodes and clean
nodes is maximized.

Given the existence of an optimal epoch, we compute the difference between the expectation of RCE
loss value of the two clusters at each early epoch t. The epoch that maximizes this difference is
selected as the optimal epoch t∗:

t∗ = argmax
t

(
E
vi∈C(t)

high
[ℓ
(t)
i ]− E

vj∈C(t)
low
[ℓ
(t)
j ]

)
. (7)

We then treat nodes with ζ
(t∗)
i ≤ τ (t

∗) as candidate target nodes, while choosing the remaining nodes
in training set as clean nodes:

VS(t∗)
B =

{
vi ∈ V(t∗)

yt
| ζ(t

∗)
i ≤ τ (t

∗)
}
, VS(t∗)

C = VT \ VS(t∗)
B . (8)

After just a few epochs, the epoch-wise RCE loss distribution in Fig. 4 demonstrates a clear splitting,
indicating that our proposed method can be effectively leveraged to identify target nodes. More
results on other datasets are in Appendix G.
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Figure 4: Epoch-wise loss distribution of nodes in target class 0 on Cora. Nodes in the left of the red dash line
correspond to the candidate target nodes, while the right side are clean nodes with the same label as target nodes.
The black color for clean node are actually blue because of severe overlapping.

4.2 Backdoor Recovery via Decoupling-Forgetting

Once the target node set VS(t∗)
B is identified, the final step is to remove the backdoor effect by

decoupling them from the malicious label yt. We propose a unified Decoupling–Forgetting strategy
that combines random label reassignment with gradient ascent.

Random Label Reassignment. Backdoor triggers establish a strong shortcut association between
target nodes and malicious labels. To break this, we reassign a new random label except malicious
label ỹi ∈ Y ′

T \ {yt} to each target node at each training epoch. Unlike static reassignment,
this dynamic relabeling acts as a diverse perturbation across epochs, preventing target nodes from
overfitting to any single incorrect label.

Gradient Ascent. Although random relabeling prevents shortcut effect, it may cause the repre-
sentation of the target nodes to converge towards the centroid of embedding space, which could
occasionally align with certain malicious classes. To counteract this, we incorporate gradient ascent
with respect to the malicious label yt. This explicitly pushes the representation of target nodes away
from the malicious decision boundary, resulting in a stronger and more directional forgetting signal.

Unified Objective. For identified target nodes vi ∈ VS(t∗)
B , we employ a unified objective that

combines random relabeling and gradient ascent, balanced by a trade-off parameter γ. In contrast,
clean nodes vj ∈ VS(t∗)

C are trained normally to preserve model performance:
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min
θ

Lθ = γ
∑

vi∈VS(t∗)
B

L
(
fθ(vi), ỹi

)
︸ ︷︷ ︸

Random Relabeling

+(1− γ)
∑

vi∈VS(t∗)
B

−L
(
fθ(vi), yt

)
︸ ︷︷ ︸

Gradient Ascent

+
∑

vj∈VS(t∗)
C

L
(
fθ(vj), yj

)
︸ ︷︷ ︸

Normal Training

,

(9)
where ỹi ̸= yt is a random label exclude malicious label.

To further verify the superiority of our Decoupling-Forgetting strategy, we compare it with three
intuitive method (Node Removal, Feature Reinitialization, and Restoring Original Labels) and one
common competitve machine unlearning framework SCRUB [26]. For more details, please refer to
Appendix E. The training algorithm and Time Complexity Analysis is in Appendix K and B.

5 Experiment

We conduct extensive experiments on multiple real-world graph datasets to evaluate the effectiveness
of our method in defending against diverse graph backdoor attacks. Our evaluation is designed to
systematically answer the following research questions: Q1: How effective is LoSplit in mitigating
different types of graph backdoor attacks, especially SPEAR? Q2: How precise can LoSplit identify
and split target nodes and clean nodes? Q3: How does each component of the LoSplit contribute
to its overall defense performance? Q4: How do different number of early epochs, different early
learning rate and different trade-off coefficient γ impact the performance of LoSplit. Q5: How does
LoSplit perform on clean graphs, i.e., when it is unknown whether the graph is perturbed? Q6: How
does LoSplit perform under different attack configurations, such as varying the malicious labels and
the number of injected triggers (attack budget)?

5.1 Experimental Settings

Datasets. We evaluate the effectiveness of LoSplit on six widely used node classification benchmark
datasets. These datasets are Cora, Citeseer, Pubmed, the three classic citation network [27], the
Physics collaboration network [28], the Flickr social network [29], and a large-scale academic graph
OGB-arXiv [30]. These datasets cover citation networks and large-scale academic graphs with
diverse structural and feature characteristics, allowing us to assess the robustness of our defense
across different data scale. Details about these datasets are provided in Appendix D.1.

Attack Methods. To comprehensively evaluate the robustness of our approach, we consider four
representative and diverse backdoor attack methods. For attacks based on structural perturbation, we
include GTA [10], UGBA [11], and DPGBA [12], which manipulate the graph topology by inserting
trigger subgraphs or adding edges connected to the target nodes. For feature perturbation attack, we
include SPEAR [13], which introduces imperceptible changes to node features as triggers without
altering the graph structure. For each attack, we follow the parameter setting specified in their original
paper. Additional descriptions are provided in Appendix D.2.

Defense Baselines. We compare LoSplit against a comprehensive set of competitive baselines,
including Detection-Deletion defenses (Prune [11] and OD [12]), robust training based defenses such
as RIGBD [17] and one training-time defense in image ABL [18], the latter was originally proposed
in the image domain and also using loss dynamics to identify target nodes. We also include two
robust GNNs, i.e. RobustGCN [31] and GNNGuard [32]. Full details of these defense baselines are
provided in Appendix D.3.

Implementation Details. Following previous work [17], we use a 2-layer GCN as our backbone
model. We then split the perturbed graph into a training subgraph GT and an unseen subgraph GU

using an 80:20 ratio. The attacker embeds triggers into selected target nodes in GT , and thus forms a
trigger-embedded training graph G′

T . Half of the nodes in GU are selected as target nodes to compute
the Attack Success Rate (ASR), while the remaining clean nodes are used to measure Clean Accuracy
(CA). We also evaluate the Recall, Precision, and False Positive Rate (FPR) to demonstrate how
precise we split target nodes, where Recall measures the proportion of correctly identified target
nodes among all true target nodes, Precision measures the proportion of correctly identified target
nodes among all identified candidates, and FPR indicates the proportion of clean nodes incorrectly
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Table 1: Results of backdoor defense. Best results are in bold. Underlined results indicate that the highest
Clean Accuracy (CA) does not coincide with the lowest ASR, and vice versa. This underscores that an effective
defense must achieve both low ASR and high CA simultaneously.

Attack Defense Cora CiteSeer PubMed Physics Flickr OGB-arXiv

ASR(%) ↓ CA(%) ↑ ASR(%) ↓ CA(%) ↑ ASR(%) ↓ CA(%) ↑ ASR(%) ↓ CA(%) ↑ ASR(%) ↓ CA(%) ↑ ASR(%) ↓ CA(%) ↑

GTA

GCN 98.52 82.96 99.40 73.80 97.62 84.53 100.00 96.23 100.00 42.39 94.70 63.12
RobustGCN 100.00 81.85 99.70 73.49 97.87 85.19 100.00 94.98 99.89 40.44 99.83 60.16
GNNGuard 38.38 75.19 12.31 62.95 21.35 81.33 80.94 96.35 0.24 43.75 0.88 63.42

Prune 12.88 82.22 13.21 71.39 21.10 85.08 1.16 95.42 0.00 40.41 0.01 62.45
OD 0.37 81.85 0.00 74.10 0.90 84.63 0.00 96.36 0.00 41.47 0.00 63.31

ABL 4.80 78.52 1.50 73.19 1.77 83.71 100.00 96.25 0.00 40.80 0.00 63.92
RIGBD 3.56 83.70 0.00 74.10 3.25 83.21 100.00 96.43 0.00 43.98 0.00 63.07
LoSplit 0.00 84.81 0.00 75.60 0.06 85.29 0.56 96.43 0.00 44.19 0.00 65.74

UGBA

GCN 98.52 83.70 100.00 74.10 98.97 84.88 100.00 96.26 100.00 40.68 99.08 65.65
RobustGCN 94.10 80.37 100.00 6.63 95.84 85.59 99.98 95.23 90.25 40.34 87.13 60.87
GNNGuard 99.63 77.78 100.00 6.63 69.83 82.19 97.86 96.06 99.07 40.80 96.21 65.51

Prune 98.52 78.52 96.70 72.89 88.29 85.08 95.73 95.16 90.23 40.45 93.99 64.46
OD 12.92 83.70 0.00 75.30 83.98 84.88 0.00 96.20 0.00 40.25 10.13 65.32

ABL 6.64 78.15 0.00 71.69 3.35 83.41 1.93 95.19 0.00 36.85 6.45 63.26
RIGBD 7.11 83.70 0.00 73.49 2.54 82.65 0.56 96.38 0.00 40.58 0.00 66.06
LoSplit 0.00 85.07 0.00 75.60 0.00 85.23 0.14 96.57 0.00 40.94 0.00 66.52

DPGBA

GCN 98.67 84.44 98.66 73.49 97.88 85.19 100.00 96.58 99.98 40.29 93.12 65.47
RobustGCN 97.79 84.65 100.00 74.40 99.52 84.86 94.44 96.35 95.61 40.95 87.29 60.07
GNNGuard 99.63 78.15 99.70 62.95 72.97 81.28 95.59 95.74 4.50 40.46 90.39 63.17

Prune 22.88 79.63 11.41 72.89 40.92 84.53 1.61 96.23 0.00 40.62 0.12 62.76
OD 96.31 81.85 97.90 74.10 84.89 81.13 94.52 96.25 98.56 40.59 94.21 65.06

ABL 4.80 81.85 0.00 71.99 5.22 76.86 81.85 93.30 50.16 40.26 3.91 55.10
RIGBD 2.22 84.07 0.30 74.40 4.92 84.37 0.98 96.27 0.00 40.78 11.83 63.43
LoSplit 0.00 85.56 0.00 74.40 1.93 84.93 0.00 96.52 0.00 41.24 0.00 65.24

SPEAR

GCN 100.00 81.85 99.10 73.49 97.87 84.98 95.36 96.27 100.00 45.56 98.98 66.38
RobustGCN 100.00 16.30 91.59 74.40 93.61 85.44 90.91 96.30 98.91 40.43 53.44 62.08
GNNGuard 53.51 80.37 29.72 62.95 62.73 81.84 63.48 96.14 71.84 44.64 94.60 66.79

Prune 100.00 84.07 100.00 72.29 98.83 85.19 96.78 96.15 100.00 40.52 99.83 65.77
OD 100.00 80.00 100.00 76.50 94.48 85.29 53.92 96.22 41.59 41.48 66.31 66.31

ABL 30.26 82.59 0.00 73.19 5.32 84.27 11.56 94.69 100.00 40.59 11.75 62.31
RIGBD 97.78 83.70 90.27 72.29 88.98 84.68 88.03 96.35 100.00 44.24 97.09 66.72
LoSplit 0.00 84.44 0.00 75.00 0.25 85.24 0.00 96.42 0.00 45.80 0.20 66.68

classified as target nodes. The trigger number |VB | is set as 40, 40, 160, 160, 160 and 565 for Cora,
Citeseer, PubMed, Physics, Flickr and OGB-arXiv, respectively.

5.2 Performance of Defense against Attacks (Q1)

To address Q1, we evaluate the effectiveness of defenses against multiple graph backdoor attacks. As
summarized in Table 1, LoSplit consistently achieves state-of-the-art performance across all settings.
Edge-dropping defenses such as Prune, OD and RIGBD are less effective against feature perturbation
attacks (SPEAR). Though RIGBD performs well in its original paper, its performance degrades due
to the sensitivity of its two hyperparameters, both of which requiring careful tuning for each dataset
and attack. Random edge dropping may occasionally leave critical trigger edges, reducing ability in
target nodes identification. Moreover, its heuristic threshold selection will also break down when
two consecutive clean nodes are mixed with target nodes or when target candidates followed by
clean nodes within the same class, leading to unreliable separation. ABL shows inferior performance
compared to our approach due to the use of CE loss and fixed isolation ratio. These results highlight
the superiority of LoSplit in defending against versatile graph backdoor attacks. Additional results
using different GNN backbones (i.e. GAT [7] and GraphSage [33]) can be found in Appendix J.

5.3 Ability to Identify Target Nodes (Q2)

To address Q2, we assess the effectiveness of LoSplit in identifying target nodes by reporting Precision
(Prec.), Recall (Rec.), and False Positive Rate (FPR) on Cora, Citeseer, and PubMed, as summarized
in Table 2. Across all datasets, LoSplit consistently achieves near-perfect Precision and Recall while
maintaining an extremely low FPR, indicating that it can precisely distinguish target nodes from clean
ones with minimal misclassification. In contrast to existing defenses such as ABL and RIGBD, which
often suffer from under-detection (i.e., low recall, failing to identify a portion of target nodes) or
over-detection (i.e., high FPR, mistakenly treating clean nodes as targets), our design enables robust
and adaptive detection under both structural and feature perturbation attacks. Additional experimental
results on other datasets are provided in Appendix F.
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Table 2: The Performance of Target Nodes Split on Cora, Citeseer, and PubMed (%). Best results are in bold.
Underlined results indicate cases where these metrics do not align, i.e., achieving highest Precision or Recall does
not correspond to the lowest FPR, highlighting that a perfect split must balance all three metrics simultaneously.

Attack Defense
Cora Citeseer PubMed

Prec. ↑ Rec. ↑ FPR ↓ Prec. ↑ Rec. ↑ FPR ↓ Prec. ↑ Rec. ↑ FPR ↓

GTA
ABL 100.00 85.00 0.00 88.10 92.50 0.75 24.39 100.00 3.05

RIGBD 85.00 85.00 1.11 95.00 95.00 0.30 93.75 93.75 0.25
LoSplit 100.00 100.00 0.00 100.00 97.50 0.00 98.77 100.00 0.05

UGBA
ABL 100.00 27.50 0.00 100.00 35.00 0.00 100.00 51.25 0.00

RIGBD 72.50 72.50 2.03 77.50 77.50 1.35 92.41 92.41 0.30
LoSplit 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00

DPGBA
ABL 100.00 42.50 0.00 100.00 52.50 0.00 19.51 60.00 2.44

RIGBD 81.08 75.00 1.29 97.06 82.50 0.15 92.06 72.50 0.25
LoSplit 100.00 100.00 0.18 100.00 97.50 0.00 100.00 83.12 0.00

SPEAR
ABL 100.00 12.50 0.00 97.14 85.00 0.15 40.00 40.00 0.60

RIGBD 83.33 12.50 0.18 93.75 37.50 0.10 80.77 51.22 0.13
LoSplit 100.00 100.00 0.00 93.02 100.00 0.45 88.90 100.00 0.05

5.4 Ablation Study (Q3)

ASR(%) Clean ACC(%)0

20

40

60

80

100 No Defense
LoSplit\C
LoSplit\S

LoSplit\D
LoSplit\R
LoSplit

Figure 5: Ablation study.

To assess Q3, we conduct an ablation study under the SPEAR attack
on OGB-arxiv, evaluating four variants. LoSplit\C replaces RCE
loss with standard CE loss. LoSplit\S uses a fixed isolation ratio and
global threshold (always splitting nodes in half) just as those in image
instead of dynamic split. LoSplit\D skip the Decoupling-Forgetting
stage and only uses identified clean nodes to retrain the model.
LoSplit\R applies the robust training strategy from RIGBD [17] to
mitigate backdoor effect. As shown in Fig. 5, the removal of RCE
significantly increases ASR, confirming its role in amplifying early
loss dynamics. Static ratio and global threshold degrade adaptability,
while only using clean nodes to retrain fails to break the shortcut.
Compared with RIGBD, our fine-tuning method achieves better
ASR reduction and preserves higher clean accuracy, demonstrating
that our Decoupling-Forgetting strategy is more effective than robust training strategy proposed in
SOTA method RIGBD. These results underscore that all components synergistically improve the
performance of LoSplit.

5.5 Hyperparameter Analysis (Q4)
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Figure 6: Hyperparameter analysis of LoSplit on the Cora dataset under the SPEAR attack.

To address Q4, we analyze the impact of three key hyperparameters (the number of early-stage
splitting epochs TS , the early-stage learning rate ηS , and the trade-off coefficients γ in the Decoupling–
Forgetting stage.) in LoSplit on the Cora dataset under the SPEAR attack:

We observe that TS and ηS mainly affect ASR, Precision, and Recall. We choose TS =
{3, 7, 11, 15, 19} and ηS = {0.001, 0.005, 0.01, 0.05, 0.1}. Extremely low or high values of TS

or ηS either underfit or overfit the early loss dynamics, leading to degraded performance. As shown
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in Fig. 6a-6c, optimal settings such as TS = {7, 11, 15} and ηS = {0.005, 0.01} achieve impeccable
split performance, yielding the lowest ASR (0.0%) and perfect precision and recall (100.0%).

Fixing TS = 11 and ηS = 0.005, we then analyze the effect of γ, which control the balance between
random relabeling and gradient ascent in the Decoupling-Forgetting, which primarily influence the
clean accuracy (CA). We search γ ∈ {0, 0.05, 0.1, . . . , 1.0}. As shown in Fig. 6d, the best result
is achieved at γ = {0, 0.05, 0.2, 0.25, 0.4}, giving the best clean accuracy of 84.44%, achieving an
improvement of more than 2.5% compared to when there is no dense (GCN).

Overall, LoSplit demonstrates strong robustness across a wide hyperparameter range, highlighting that
our approach can achieve both high robustness (lowest ASR) and high utility (best Clean Accuracy).
More results on other datasets are provided in Appendix M.

5.6 Performance on Clean Graphs (Q5)

To address Q5, we evaluate the behavior of our LoSplit defense when applied to clean graphs.
Following the setup in Sec. 5.1, we remove all backdoor triggers from the training data and compare
a standard 2-layer GCN (Without Defense) with our LoSplit defense.

The results are reported in Table 3. LoSplit achieves nearly the same accuracy as the GCN model
across all datasets. This negligible gap indicates that our defense does not compromise model
performance when no backdoor exists. At the same time, the False Positive Rate (FPR) is close to
zero, meaning that nearly no clean nodes are mistakenly classified as target nodes.

The key reason for this behavior lies in our Early-Stage Dynamic Split strategy described in Sec. 4.1.
In backdoored graphs, there will form a bimodal loss distribution within the target class. However,
in clean graphs, such bimodal behavior vanishes so that no two cluster emerges. In this case, we
manually set the threshold to an extremely small value (i.e., 1−10), effectively preventing any clean
nodes from being misclassified.

Taken together, these results demonstrate that LoSplit is well-suited for practical scenarios where the
contamination status of the graph is unknown.

Table 3: Performance of GCN and LoSplit on clean datasets in terms of clean accuracy (CA%) and False Positive
Rate (FPR%).

Cora Citeseer PubMed Physics Flickr OGB-arXiv

GCN (CA) 83.70 74.70 85.18 96.02 45.33 66.12
LoSplit (CA) 83.33 74.39 85.03 95.87 45.11 65.98
LoSplit (FPR) 0.18 1.05 0.48 0.07 0.92 0.36

5.7 Performance under Different Malicious Labels and Attack Budget

For Q6, because of space limitation, the performance and analysis of LoSplit under different malicious
labels and various attack budgets are presented in Appendix H and Appendix I. In these two scenarios,
we encounter more complex situations where the separation between target nodes and clean nodes
becomes less clear (i.e., severe overlapping, low precision). Even under such challenging conditions,
LoSplit can still achieve strong defense performance owing to our Decoupling–Forgetting strategy
and carefully-tuned hyperparameters.

6 Conclusion

In this paper, we propose LoSplit, the first training-time defense against graph backdoor attacks.
By analyzing early-stage loss dynamics, we observe that target nodes and clean nodes within the
same class form separable sub-clusters. Upon this insight, LoSplit splits target nodes and applies a
Decoupling-Forgetting strategy to remove the backdoor influence. Experiments on various attacks and
datasets show that LoSplit consistently improves both backdoor mitigation and model performance.
While effective, its performance can be compromised when the separation between target nodes and
clean nodes is less distinct and we have to tune the hyperparameters through trial-and-error which is
often time-consuming and labor-intensive, limiting its robustness in highly diverse scenarios.
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A Details of Related Works

A.1 Graph Backdoor Attacks

Graph backdoor attacks have emerged as a critical security threat in graph representation learning,
particularly for GNNs. These attacks operate by injecting malicious triggers in the form of decently
designed subgraphs or feature perturbations, into carefully selected training nodes. This creates
a hidden shortcut between the perturbed target nodes and predetermined malicious labels during
training. During inference, the infected model exhibits two distinct behaviors: it will consistently
misclassify any input containing the trigger pattern to the attacker-specified label, while maintaining
normal classification performance on unperturbed nodes. To improve the secrecy and effectiveness
of such attacks, GTA [10] introduced a trainable trigger generator that produces sample-specific
perturbations, substantially improving attack success rates. To improve this, UGBA [11] developed
a more sophisticated target selection strategy that reduces the required number of target nodes
while incorporating homophily constraints through enhacing the cosine similarity between triggers
and target nodes, thereby improving both stealthiness and attack performance. To further boost
stealthiness, DPGBA [12] addressed key limitations of existing methods by proposing an adversarial
learning approach that generates in-distribution triggers and employs a novel loss function to boost
attack success rates. While the attack above all pertub the topological structure of target nodes,
SPEAR [13] represents a paradigm shift by exclusively perturbing node attributes while preserving
the original graph topology. This approach significantly enhances stealthiness and presents unique
detection challenges, causing traditional edge edge dropping based defense strategies ineffective.
Therefore, our work focuses on defending against such highly stealthy attacks, particularly SPEAR
where topological modifications are absent. Given the increasing sophistication of modern graph
backdoor attacks and their potential security implications, developing robust defense mechanisms
capable of detecting and mitigating such threat has become imperative.

A.2 Graph Backdoor Defense

To mitigate the threat posed by graph backdoor attacks, a variety of defense strategies have been
proposed, albeit still limited compared to the image domain. Existing methods primarily leverage
structural inconsistencies introduced by triggers. For example, Prune [10] removes suspicious edges
between nodes with low consine similarity, based on the observation that the trigger of attacks like
GTA and UGBA often behave like out-of-distribution outliers, OD [12] adopts an unsupervised
reconstruction-based approach using graph auto-encoders to identify and isolate outlier nodes with
high reconstruction loss, which are likely to be injected triggers. To further generalize defense
strategies across diverse attack settings, RIGBD [17] incorporates random edge dropping with robust
training, aiming to train a benign model using poisoned training graph. Despite their effectiveness
in structural perturbation scenario, these methods suffer from several limitations. In other words,
these method are all edge dropping based, which will not be effective for SPEAR, and the heuristic
method for splitting target nodes and clean nodes in RIGBD lacks robustness in particular situation.
In contrast, our method exploits dynamic training signals, particularly the early-stage loss behavior,
which is overlooked in existing graph domain defenses. Our training-time defense strategy provides a
more fine-grained and adaptive mechanism for backdoor mitigation.

A.3 Training-time Defense

Training-time defenses against backdoor attacks aim to detect and neutralize poisoned samples during
the learning phase, thereby preventing the model from internalizing malicious correlations. Several
recent approaches in vision domain have leveraged early training dynamics to isolate poisoned
samples. For instance, ABL [18] observed that poisoned samples tend to exhibit lower training losses
than benign ones. Based on this, they proposed a two-stage framework: initially identifying and
isolating the samples with the lowest losses with fixed isolation ratio, followed by an gradient ascent
unlearning phase aimed at mitigating the backdoor effect on these selected samples. DBD[19] and
ASD [20], both using Symmetric Cross Entropy (SCE) Loss to separate poisoned samples, with
ASD using a more precise meta-splitting method and then adopt hybrid training strategies, combining
self-supervised or semi-supervised learning to mitigate the influence of poisoned data. PIPD [21]
adopts a n-step progressive isolation strategy to iteratively isolate suspected poisoned data throughout
training, improving model robustness without sacrificing clean accuracy. HARVEY [22] constructs a
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strongly backdoored reference model by leveraging Reverse Cross-Entropy (RCE) loss to iteratively
isolate poisoned samples. It begins with a naive training, progressively finetune the model to focus
on backdoor patterns through learning and unlearning steps, and applies a meta-splitting stragtegy
to refine the separation. The method introduces a paradigm shift by focusing on poisonous samples
rather than benign ones and performs adaptive dataset splitting without a fixed splitting ratio. Finally,
it retrains on the identified clean subset to obtain a backdoor-free model. While these methods have
shown success in image classification tasks, they often overlook the unique challenges posed by
graph-structured data such as homophily, message passing, and node interdependence where target
nodes may propagate misleading signals to their neighbors. In the context of GNNs, training-time
defense becomes more challenging due to the intertwined nature of the graph topology.

B Time Complexity Analysis

We analyze the time complexity of LoSplit by decomposing it into three key components, following
the GCN complexity computation from [34] and [17]:

(1) Early-stage Training. The GNN is trained for TS < 20 epochs on the trigger-embedded graph
GT . For each layer, the time complexity is:

• Feature Transformation: O(NM2) for N nodes and M -dim features.

• Neighborhood Aggregation: O(|E|M) via sparse operations, where |E| is the number of
edges.

Over L-layer GCN and TS epochs, the total complexity for Early-Stage Training is:

O
(
TS · L · (NM2 + |E|M)

)
.

(2) Loss Clustering. For target-class nodes (nt nodes):

• Z-score standardization: O(nt) per epoch.

• GMM clustering: O(nt) (with K = 2, fixed parameter).

Over TS epochs, the whole complexity is O(TSnt).

(3) Decoupling-Forgetting. This stage shares the same formula as (1) but runs in T >= 200 epochs:

O
(
T · L · (NM2 + |E|M)

)
.

(4) Total Complexity. Combining all stages, the total complexity is:

O
(
(TS + T )L(NM2 + |E|M) + TSnt

)
.

We compare LoSplit with RIGBD as both of them follow a two-stage defense paradigm: identifying
poisoned (target) nodes, followed by finetuning GNN model to eliminate the influence of backdoor.
This shared structure places them in the same defense category. Under the SPEAR attack, LoSplit
achieves substantially higher efficiency, as it only requires one full GCN training, one naive training
on Early-stage Dynamic Split stage, and simple clustering, while RIGBD incurs the cost of two full
trainings and repeated random edge perturbations. We run on an NVIDIA RTX 4090 GPU (24GB)
with an Intel i7-13700K CPU, using Python 3.8.19 and PyTorch 1.12.1. According to Table 4, LoSplit
outperforms RIGBD not only in defense effectiveness but also in computational efficiency. It requires
only 42%, 37%, and 15% the runtime of RIGBD on Cora, PubMed, and OGB-arXiv respectively,
highlighting the scalability and practicality of our approach for large graphs.

Table 4: Running Time Comparison (seconds) with Complexity Analysis.

Method Complexity Cora PubMed OGB-arXiv

RIGBD O(L(K + 2T )(NM2 + |E|M)) 4.36s 18.69s 917.12s
LoSplit O(L(TS+T )(NM2 + |E|M) + TSnt) 1.82s 6.88s 138.65s
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C Detailed Proofs

C.1 Proof of Why Target Nodes Converge faster than Clean nodes and Why RCE Loss
Amplifies Such Behavior

To understand why the Reverse Cross-Entropy (RCE) loss amplifies early-stage loss dynamics better
than the standard Cross-Entropy (CE) loss, we analyze and compare their gradient behavior.

Cross-Entropy Loss (CE). The CE loss is defined as:

LCE = −
K−1∑
k=0

q(k|x) · log p(k|x), (10)

where q(k|x) is the one-hot ground-truth label distribution, and p(k|x) is the predicted probability
over K classes.

Reverse Cross-Entropy Loss (RCE). The RCE loss is defined as:

LRCE = −
K−1∑
k=0

p(k|x) · log q(k|x) (11)

= −p(y|x) · log 1 +
∑
k ̸=y

p(k|x) · C (12)

= C · (1− p(y|x)), (13)

where y is the ground-truth label, and C = − log ε with ε = 1−10, which prevents log 0 when
q(k|x) = 0.

We now compute the derivative of both loss functions with respect to the predicted probability p(yt|x)
for the target class yt:

∂LCE

∂p(yt|x)
= − 1

p(yt|x)
, (14)

∂LRCE

∂p(yt|x)
= −C. (15)

Note that while CE loss exhibits a diminishing gradient as p(yt|x) increases, the RCE loss maintains
a constant gradient magnitude due to the constant coefficient C. This property ensures stronger
gradient feedback for confident predictions in early training.

Assuming a 1-layer GCN, let z = σ(Hu) be the pre-softmax logits where σ is the ReLU function.
The predicted probability p(yt|x) = softmax(z). Then the embedding Hu for a target node u is:

Hu =
∑

v∈N (u)

1√
dvdu

XvWB +
1

du
XuWB +

1√
dudδ

δWB , (16)

or in the case of feature perturbation:

Hu =
∑

v∈N (u)

1√
dvdu

XvWC +
1

du
(Xu + δ)WC , (17)

where δ denotes the attributes of embedded trigger, and WB ,WC are trainable weights for target
nodes and clean nodes, respectively.

For a clean node v, the embedding is:

Hv =
∑

u∈N (v)

1√
dudv

XuWC +
1

dv
XvWC . (18)

We now compute gradients using the chain rule. First, the derivative of p(yt|x) with respect to logits
zj is:
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∂p(yt|x)
∂zj

=

{
p(yt|x)(1− p(yt|x)) if j = yt,

−p(yt|x) · p(j|x) if j ̸= yt.
(19)

Next, we have:
∂z

∂Hu
= 1, (20)

and for backpropagation through the linear layer:

∂Hu

∂WB
=

∑
v∈N (u)

1√
dvdu

Xv +
1

du
Xu +

1√
dudδ

δ, (21)

or for feature perturbation:

∂Hu

∂WB
=

∑
v∈N (u)

1√
dvdu

Xv +
1

du
(Xu + δ). (22)

Similarly, for a clean node v, we have:

∂Hv

∂WC
=

∑
u∈N (v)

1√
dudv

Xu +
1

dv
Xv. (23)

Let us define:

SB =
∂Hu

∂WB
, SC =

∂Hv

∂WC
.

Then the gradient of the loss of target nodes with respect to weights are:

∂LCE

∂WB
= (p(yt|x)− 1) · SB , (24)

∂LRCE

∂WB
= C · p(yt|x)(p(yt|x)− 1) · SB . (25)

The gradient of clean nodes:
∂LCE

∂WC
= (p(yc|x)− 1) · SC , (26)

∂LRCE

∂WC
= C · p(yc|x)(p(yc|x)− 1) · SC . (27)

Why Target Nodes Converge Faster During Early Training. Target nodes are connected to trigger-
embedded nodes or features with deliberately crafted attributes δ, which exhibit an exceptionally
strong correlation with the malicious label yt. As a result, SB becomes heavily dominated by δ,
biasing p(yt|x) upward during the early stages of training. From the gradient perspective, when
p(yt|x) < 0.5, the slope of the loss curve with respect to p(yt|x) is much steeper for target nodes
due to the strong influence of δ, resulting in larger gradient magnitudes and faster convergence. In
contrast, clean nodes with SC lack such strong and consistent bias, yielding smaller gradients and
slower updates (i.e., |SC | ≪ |SB |).
Why RCE Loss Amplifies This Behavior. As illustrated in Fig. 7, the gradient magnitude of the
RCE loss is substantially larger than that of the CE loss when p(yt|x) < 0.5, i.e., during the early
stages of training. While CE loss decreases its gradient linearly as the model becomes more confident,
RCE imposes a much steeper penalty for low-confidence predictions. This sharp gradient slope drives
faster updates for target nodes that are initially misclassified, further accelerating their convergence
toward the malicious label. Consequently, RCE amplifies the early-stage dynamics observed in target
nodes, making them more distinguishable from clean nodes during early training.
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C.2 Proof of Assumption 1

We provide a theoretical justification for the existence of an optimal epoch t∗ during early training
with Reverse Cross-Entropy (RCE) loss, at which the loss divergence between target nodes and clean
nodes is maximized. This underpins our assumption that early-stage loss dynamics are informative
for splitting target nodes and clean nodes.

Gradient Behavior Under CE loss and RCE loss.The gradient of the CE loss with respect to model
weights WB for a target node with respect to the prediction p(yt|x) (Eq. 24) is largest in magnitude
when p(yt|x) → 0, and vanishes as p(yt|x) → 1. Thus, CE loss provides diminishing gradient
signals for target nodes that converge early. By contrast, the RCE loss gradient in Eq. 25 is a concave
quadratic function with respect to p(yt|x), which reaches its maximum magnitude at p(yt|x) = 0.5,
and vanishes at both p(yt|x) → 0 and p(yt|x) → 1 as illustrated in Fig. 7.

0.0 0.2 0.4 0.6 0.8 1.0
p(yt|x)

1.0

0.8

0.6

0.4

0.2

0.0

Gr
ad

ie
nt

 M
ag

ni
tu

de

CE Gradient vs p(yt|x)

CE
W

0.0 0.2 0.4 0.6 0.8 1.0
p(yt|x)

6

5

4

3

2

1

0

Gr
ad

ie
nt

 M
ag

ni
tu

de

RCE Gradient vs p(yt|x)

RCE
W

Figure 7: Gradient magnitude (w.r.t. prediction confidence p(yt|x)) for Cross-Entropy (CE) and Reverse Cross-
Entropy (RCE). Unlike CE, RCE induces a peak gradient at p = 0.5, which amplifies early-stage separation
between fast-converging target nodes and slower clean nodes.
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Figure 8: Gradient dynamics over training epochs under Cross-Entropy (left) and Reverse Cross-Entropy
(right). Under CE, both clean and target node gradients quickly decay and overlap. Under RCE, target node
gradients exhibit a transient peak in early epochs while clean gradients remain low, producing a clear early-stage
separation.

Why an Optimal Epoch t∗ Exists. During early training, both clean nodes and target nodes start
with low prediction confidence. However, due to the connection to backdoor triggers, target nodes
quickly converge toward the target class yt, surpassing the p(yt|x) = 0.5 region and entering the
gradient-suppressed regime of RCE loss.

In contrast, clean nodes lack such shortcut connections, progress more slowly and remain within
the high-gradient region centered around p(yt|x) = 0.5. As a result, the RCE loss of clean nodes
temporarily increases (or decreases slowly), while the loss of target nodes decreases sharply.
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These theoretical insights are empirically supported in Fig. 8, which compares the per-epoch gradient
magnitudes of clean nodes and target nodes under CE loss and RCE loss. CE loss quickly flattens the
gradient difference, while RCE loss maintains a transient peak in target gradients, creating a temporal
separation window between the two node types.

This mismatch in the speed of convergence causes the loss gap between the two groups widen during
early epochs and then shrink as both converges just as the black line in Fig. 8. Theoretically, we have:

∆(t) = Ev∈VC
[L(t)

RCE(v)]− Eu∈VB
[L(t)

RCE(u)],

which denotes the expected RCE loss difference at epoch t between clean nodes and target nodes.
Since this equation increases and then decreases during training, thus it will reach a maximum value
at some intermediate epoch t∗, where the two groups are maximally separated in the loss space.

The non-monotonic gradient behavior of RCE loss induces a temporal window during which the
loss values of target nodes and clean nodes diverge maximally, which guarantees the existence of
an optimal early epoch t∗ that maximizes the separation between target nodes and clean nodes.
Consequently, Our Assumption 1 is theoretically justified and supports the design of our Early-Stage
Dynamic Split mechanism.

D Details of Experimental Settings

D.1 Datasets Details

Cora, Citeseer, and Pubmed. These are three widely used citation network benchmarks in graph
learning. In each dataset, nodes represent documents, and edges denote citation relationships.
Cora contains 2,708 nodes and 5,429 edges, with each node described by a 1,433-dimensional
bag-of-words feature vector across 7 classes. CiteSeer includes 3,327 nodes, 4,552 edges, and
3,703-dimensional features across 3 categories. PubMed consists of 19,717 nodes and 44,338 edges,
with 500-dimensional TF/IDF-like features and 3 classes.

Physics. Coauthor Physics is a co-authorship graph based on the Microsoft Academic Graph from the
KDD Cup 2016 challenge [28]. Nodes represent authors, connected by an edge if they co-authored a
paper. Node features represent paper keywords for each author’s papers, and class labels indicate the
most active fields of study for each author. The dataset contains 34,493 nodes and 247,962 edges,
with 8,415-dimensional features across 5 classes.

Flickr. Flickr [29] is a social network graph where each node represents an image uploaded to
Flickr. Edges are established between images that share common properties such as geographic
location, gallery, or user comments. Node features are represented by a 500-dimensional bag-of-
words model from the NUS-wide dataset. We examined the 81 tags assigned to each image and
manually consolidated them into 7 distinct classes, with each image belonging to one category. The
dataset contains 89,250 nodes and 899,756 edges.

OGB-arXiv. OGB-arXiv [30] is provided by the Open Graph Benchmark, OGB-arXiv represents a
large-scale citation network from the arXiv paper corpus. It includes 169,343 nodes and 1,166,243
edges. Each node is described by a 128-dimensional feature derived from title and abstract content,
and classified into one of 40 scientific fields. It uses a temporal split for train/validation/test sets to
better simulate real-world applications.

The details of the six datasets are provided in Table 5.

Table 5: Statistics of datasets used in our experiments.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,552 3,703 3
PubMed 19,717 44,338 500 3
Physics 34,493 247,962 8,415 5
Flickr 89,250 899,756 500 7
OGB-arXiv 169,343 1,166,243 128 40
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D.2 Attack Method

We briefly describe the four backdoor attack methods evaluated in this paper.

GTA: GTA [10] is the first method to leverage a learnable trigger generator that produces sample-
specific subgraph triggers for each target node. The generator is optimized to maximize the attack
success rate (ASR), but it lacks constraints on stealthiness, which may lead to detectable patterns in
the poisoned graphs.

UGBA: UGBA [11] enhances GTA by selecting a set of diverse and representative nodes for poisoning,
improving attack efficiency. It also incorporates a homophily constraint that forces the generated
trigger features to align with those of the target node’s neighbors, improving stealth and making the
backdoor more difficult to detect.

DPGBA: DPGBA [12] proposes an adversarial training framework to generate in-distribution triggers.
A novel loss function ensures that the generated triggers remain close to the data distribution while
still being effective. This design helps the attack remain stealthy and improves the overall ASR
compared to prior methods.

SPEAR: SPEAR [13] targets the feature space instead of the graph structure by learning to perturb a
small number of node features in a subtle but malicious way. It selects stealthy features and vulnerable
nodes to inject the trigger. SPEAR is highly effective and particularly challenging to defend against,
as it leaves the graph structure unchanged and manipulates only a few features.

D.3 Defense Baseline

We evaluate the effectiveness of LoSplit against a range of representative defense baselines, which
can be grouped into three categories:

Detection-Deletion Defenses. These methods aim to remove or weaken the influence of trigger
structures in the graph:

• Prune [11]: Prune observes that trigger patterns often violate the homophily property
commonly found in real-world graphs. It removes edges between nodes with low similarity,
thereby disrupting trigger connections. Prune can be applied during both training and
inference.

• OD [12]: For Outlier Detection (OD) method, we use DOMINANT [35] where a graph auto-
encoder is used to reconstruct node features and filter out nodes with high reconstruction
error. This helps eliminate anomalous triggers while keeping the clean ones. It is only
applied during training.

Robust Training Defense. These defenses aim to improve the integrity of the model by first identify
and isolate target nodes and then retrain the backdoored model:

• RIGBD [17]: RIGBD identifies candidate trigger nodes through random edge perturbations
and performs adversarial training to suppress their influence. It enhances model robustness
against structure-based backdoor attacks.

Training-time Defense.

• ABL [18]: We adapt the Anti-Backdoor Learning (ABL) framework, originally designed for
DNNs, to GCN. ABL leverages two intrinsic weaknesses of backdoor attacks: (1) poisoned
samples are typically learned much faster than clean ones, and stronger attacks further
accelerate this convergence; (2) the backdoor objective is tightly associated with a specific
target class. Based on these observations, ABL employs a Local Gradient Ascent (LGA)
strategy to constrain the loss of each sample around a specific threshold. In parallel, a Global
Gradient Ascent (GGA) objective is introduced to unlearn the backdoor associations by
increasing the loss of poisoned sample while preserving performance on clean nodes.

Robust GNNs. These methods are originally designed for general adversarial attacks but can be
adapted to backdoor scenarios:
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• GNNGuard [32]: GNNGuard uses node feature similarity to adaptively reweight edges
during training, effectively suppressing adversarial perturbations and enhancing model
resilience.

• RobustGCN [31]: RobustGCN models node embeddings as Gaussian distributions and in-
troduces variance-based attention to reduce the influence of anomalous neighbors, improving
robustness against structure attacks.

E Comparison with Alternative Backdoor Recovery Strategies

To further validate the superiority of our proposed Decoupliung-Forgetting strategy that combines
Random Label Reassignment and Gradient Ascent, we compare it with three intuitive methods, i.e.
Node Removal, Feature Reinitialization, and Restoring Original Label, as well as one competitive
machine unlearning framework SCRUB [26].

Table 6: Comparison of different backdoor recovery strategies under four representative attacks on PubMed
dataset. Lower attack success rate (ASR, %) and higher clean accuracy (CA, %) indicate better performance.

Strategy GTA UGBA DPGBA SPEAR
ASR↓ CA↑ ASR↓ CA↑ ASR↓ CA↑ ASR↓ CA↑

GCN (No Defense) 97.81 84.42 95.69 83.16 98.78 84.98 92.90 85.13
Node Removal 0.13 84.98 0.00 85.08 95.30 85.39 0.33 84.73
Feature Reinitialization 100.00 80.92 0.00 84.07 98.39 84.78 100.00 81.78
Restore Original Label 0.00 84.37 0.00 81.28 1.15 84.93 0.08 84.24
SCRUB [26] 0.00 84.58 0.00 82.90 97.75 84.63 0.00 84.47
Decoupling–Forgetting 0.06 85.19 0.00 85.33 1.92 84.93 0.00 85.13

From the results in Table 6, LoSplit consistently outperforms all four alternative backdoor recovery
strategies. We summarize the main insights as follows:

(1) Node Removal. This strategy completely discards the identified target nodes, which indeed
eliminates the backdoor effect but simultaneously disrupts the structural integrity of the graph. Such
removal damages neighborhood information and leads to performance degradation especially in
DPGBA attack ((95.30% ASR)) where triggers mimic benign neighborhood patterns, simple node
deletion fails to fully suppress the trigger influence.

(2) Feature Reinitialization. This method assumes that the backdoor mainly resides in the feature
space and thus resets the features of target nodes. However, resetting node features fails to break the
association between target nodes and the malicious label, which explains why this strategy remains
ineffective or even worse against GTA, DPGBA, and SPEAR attacks.

(3) Restoring Original Label appears to be an intuitive solution by relabeling the target candidates
to their ground-truth classes. While effective in vision domains where poisoned samples (e.g., images
with visible triggers) can be manually corrected at low cost, this approach becomes impractical
in graphs. A node’s label depends not only on its attributes but also on its local topology and
neighborhood context, making it difficult to determine the true label without significant human effort.
Consequently, label restoration is prohibitively expensive and rarely scalable for large graphs.

(4) Mainstream Unlearning Framework. Another competitive alternative is to adapt general
machine unlearning frameworks such as SCRUB [26], which minimize both the cross-entropy and
KL-divergence losses on the retain set (clean nodes), while maximizing the KL-divergence on the
forget set (target nodes):

min
θ

LSCRUB
θ = λu

∑
vj∈VS(t∗)

C

L
(
fθ(vj), yj

)
+ λd

∑
vj∈VS(t∗)

C

KL(vj)

︸ ︷︷ ︸
Retain Set (Clean Nodes)

−
∑

vi∈VS(t∗)
B

KL(vi)

︸ ︷︷ ︸
Forget Set (Target Nodes)

, (28)

where VS(t∗)
C and VS(t∗)

B denote the clean nodes(retain) and target nodes (forget) identified at epoch
t∗, respectively. L is the cross-entropy loss used for label restoration, and KL

(
pfθT (v) ∥ pfθS (v)

)
is
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the Kullback–Leibler divergence between the teacher model fθold and the student model fθ, defined as

KL
(
pfθT (v) ∥ pfθS (v)

)
=

∑
k

p
(k)
fθT

(v) log
p
(k)
fθT

(v)

p
(k)
fθS

(v)
,

where pfθT (v) and pfθS (v) represent the teacher and student predictive distributions, respectively.
This teacher–student design encourages the student to retain the teacher’s knowledge on the clean
(retain) set while deliberately forgetting it on the target (forget) set.

However, to maintain clean accuracy, SCRUB requires substantially more training epochs on the retain
set during alternating optimization process, leading to significant computational cost. Even under
its best settings, the overall robustness of SCRUB remains inferior to our Decoupling–Forgetting
strategy.

Overall, our Decoupling–Forgetting approach achieves consistently lower ASR and competitive CA
across all attacks while remaining lightweight and graph-specific, demonstrating a more effective and
efficient mechanism for backdoor recovery in GNNs.

F Additional Results of The Ability to Split Target Nodes

In this section, we continue to evaluate the ablility of LoSplit in splitting target nodes on larger graphs.
We observe consistent trends with those on Cora, Citeseer, and Pubmed (Sec. 5.3) in Table 7. First,
LoSplit achieves near-perfect Precision and Recall across most attack settings, with FPR close to
zero. For example, under UGBA attack, LoSplit reaches 100% Precision and Recall with 0% FPR
across all three datasets, clearly outperforming ABL and RIGBD. In contrast, ABL often suffers from
under-detection (e.g., Physics, where Recall drops below 7%) or over-detection (e.g., 97.5% in Recall
but only 21.67% in Precision for Flickr dataset). RIGBD shows more balanced detection, but still
fails in cases with complex perturbations (e.g., OGB-arXiv under DPGBA, only 4.42% in Recall).
Second, LoSplit maintains robustness across diverse attacks. Even under strong feature perturbation
attacks like SPEAR, LoSplit achieves high detection quality. For all datasets, Precision and Recall
all achieves over 90% and FPR under 1% This demonstrates that our method can effectively adapt
to both structural and feature perturbations without significant degradation. Overall, these results
confirm that the proposed Early-stage Dynamic Split design generalizes well beyond small citation
graphs. LoSplit consistently outperforms ABL and RIGBD, achieving both high Precision and Recall
while minimizing FPR, even on larger and challenging datasets.

Table 7: The Performance of Target Nodes Split (%) on Physics, Flickr, and OGB-arXiv. Best results are
highlighted in bold. Underlined results indicate cases where the metrics are not consistent, meaning that
achieving the highest Precision or Recall does not necessarily coincide with the lowest FPR. This suggests that
an ideal split should maintain a balanced trade-off among all three metrics.

Attack Defense
Physics Flickr OGB-arXiv

Prec. ↑ Rec. ↑ FPR ↓ Prec. ↑ Rec. ↑ FPR ↓ Prec. ↑ Rec. ↑ FPR ↓

GTA
ABL 12.50 10.00 0.92 21.67 97.50 0.78 8.14 70.00 0.92

RIGBD 87.14 75.00 0.18 93.13 93.13 0.61 97.17 97.17 0.05
LoSplit 96.97 100.00 0.07 96.36 99.37 0.03 99.65 99.82 0.01

UGBA
ABL 8.33 6.25 0.95 21.67 97.50 0.78 7.72 62.50 0.93

RIGBD 92.41 80.00 0.14 99.37 98.12 0.06 98.76 98.76 0.02
LoSplit 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 0.00

DPGBA
ABL 10.71 7.50 0.88 0.00 0.00 1.01 9.26 85.00 0.53

RIGBD 85.29 71.25 0.25 100.00 83.12 0.00 86.21 4.42 0.01
LoSplit 96.97 100.00 0.07 100.00 88.12 0.00 100.00 97.50 0.00

SPEAR
ABL 11.76 9.38 0.90 0.00 0.00 1.01 96.80 58.94 0.03

RIGBD 78.57 72.50 0.33 0.89 100.00 0.00 0.00 0.00 0.00
LoSplit 92.12 90.50 0.56 100.00 100.00 0.00 99.45 96.81 0.01

G Additional Results of Split using Early-Loss Dynamics For Different
Datasets

In this section, we present a further analysis of the target nodes split via early loss dynamics under
other five datasets. As shown in Fig. 9–13, we observe that across all attack variants, target nodes
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Figure 9: Distribution of the Early-Stage Dynamic Split in Target Class on Citeseer.
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Figure 10: Distribution of the Early-Stage Dynamic Split in Target Class on PubMed.
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Figure 11: Distribution of the Early-Stage Dynamic Split in Target Class on Physics.
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Figure 12: Distribution of the Early-Stage Dynamic Split in Target Class on Flicker.
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Figure 13: Distribution of the Early-Stage Dynamic Split in Target Class on OGB-arXiv.
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tend to exhibit distinct early-stage loss distributions compared to clean nodes in the same class. This
separation is particularly clear in GTA and UGBA, where the backdoor introduces a strong shortcut,
leading to rapidly decreasing or highly concentrated loss values for target nodes. Even in more
stealthy attacks such as DPGBA and SPEAR, which aim to minimize detectable differences in graph
structure or features, but the early training dynamics still provides reliable signals for separating
target nodes through careful tuning.

H Additional Results of Split using Early-Loss Dynamics Under Different
Malicious Labels

We further assess the robustness of LoSplit by varying the attacker-specified target class yt categories.
Since different classes may exhibit different learning dynamics—particularly those that are easier to
learn, thus we aim to investigate whether LoSplit remains effective when the backdoor is injected
into such easily learnable classes. This scenario is especially challenging because the clean nodes
belonging to the target class may converge faster during training, potentially obscuring the divergence
between target and clean nodes. Experimental results presented in Fig. 14 and Fig. 15, demonstrate
that LoSplit consistently achieves clear separation, highlighting its robustness regardless of different
malicious label.
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Figure 14: Results of Early-Loss Dynamics Split Under target label 1.
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Figure 15: Results of Early-Loss Dynamics Split Under target label 2.

I Results of Defense Performance and Separation Ability using Early-Loss
Dynamics under Different Trigger Numbers

To further evaluate the robustness of LoSplit against different attack budgets, we vary the number of
backdoor triggers and examine its performance on both Cora and PubMed dataset under the SPEAR
attack. Specifically, we adopt trigger numbers {10, 20, 40, 100, 160} and {40, 80, 160, 200, 320} for
Cora and PubMed, respectively. The hyperparameters in Early-Stage Dynamic Split stage are set to
TS = 10, ηS = 0.008 for Cora, and for PubMed are carefully tuned under different trigger number
setting: TS = 14, ηS = 0.008, γ = 0.9 (40 triggers), TS = 20, ηS = 0.001, γ = 0.15 (80 triggers),
TS = 18, ηS = 0.001, γ = 0.35 (160 triggers), TS = 18, ηS = 0.001, γ = 0.5 (200 triggers), and
TS = 5, ηS = 0.005, γ = 0.75 (320 triggers).

As summarized in Table 8, LoSplit consistently achieves perfect ASR (0%) on the Cora dataset across
all trigger numbers, demonstrating stable and strong defensive capability even as the backdoor budget
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Figure 16: Split on Cora under different attack budget.

0 10
Loss Value

0

100

200

300

No
de

 C
ou

nt

Loss Distribution (Epoch 13)

Clean (Class 2)
Target Nodes
Threshold

(a) Trigger Number = 40

10 15
Loss Value

0

500

1000

No
de

 C
ou

nt

Loss Distribution (Epoch 19)

Clean (Class 2)
Target Nodes
Threshold

(b) Trigger Number = 80

0 10
Loss Value

0

500

1000

No
de

 C
ou

nt

Loss Distribution (Epoch 17)

Clean (Class 2)
Target Nodes
Threshold

(c) Trigger Number = 160

14 16
Loss Value

0

200

400

No
de

 C
ou

nt

Loss Distribution (Epoch 17)

Clean (Class 2)
Target Nodes
Threshold

(d) Trigger Number = 200

10 15
Loss Value

0

500

1000

No
de

 C
ou

nt

Loss Distribution (Epoch 4)

Clean (Class 2)
Target Nodes
Threshold

(e) Trigger Number = 320

Figure 17: Split on PubMed under different attack budget.
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Table 8: ASR and Clean Accuracy before and after applying LoSplit under different trigger numbers.

Dataset Trigger Number No Defense LoSplit

ASR ↓ CA ↑ ASR ↓ CA ↑ Prec. ↑ Rec. ↑ FPR ↓

Cora

10 100.0 82.96 0.00 84.44 100.0 100.0 0.00
20 100.0 83.33 0.00 84.81 100.0 100.0 0.00
40 100.00 81.85 0.00 85.19 100.0 100.0 0.00

100 83.11 82.22 0.00 84.81 98.04 100.0 0.37
160 92.89 80.74 0.00 84.07 98.16 100.0 0.55

PubMed

40 100.00 84.98 0.25 85.44 97.0 100.00 0.10
80 92.82 84.93 0.42 85.19 65.57 100.00 1.07

160 97.41 85.03 0.00 84.37 54.61 100.00 3.37
200 85.14 85.19 0.08 85.19 71.10 100.00 2.05
320 89.73 84.98 0.00 84.52 73.73 100.00 2.89

increases. The split effectively separate target nodes with perfect or perfect recall and near-perfect
precision, while maintaining high clean accuracy (CA) above 84%.

On the PubMed dataset, the challenge becomes more pronounced as the trigger number increases
from 80 to 320. The loss distributions exhibit greater overlap between target and clean nodes, leading
to imperfect split. Despite this, LoSplit maintains remarkable robustness, reducing ASR from above
90% to almost zero while preserving clean accuracy around 84–85%. These results indicate that even
under inaccurate identification scenarios, our proposed method in Decoupling-Forgetting Stage can
still effectively suppress backdoor activation.

We also observe that achieving optimal performance on PubMed requires careful hyperparameter
tuning across different trigger settings. The sensitivity of the Early Loss Dynamics to the data scale
and the poisoning rate requires adjusting the split epoch TS , the split learning rate ηS , and the balance
coefficient γ. This observation highlights the importance of adaptive hyperparameter configuration
in difficult-to-split scenarios, further validating the flexibility and stability of LoSplit under diverse
attack intensities.

In summary, LoSplit exhibits strong robustness and adaptability against various attack budgets. Even
in complex cases where target and clean nodes are not easily separable (e.g., PubMed with large
trigger numbers), the defense remains highly effective with properly tuned parameters. Visualizations
of split under different trigger numbers are shown in Fig. 16 and Fig. 17.

J Additional Results of Defense Performance under Different Backbone
Model

To further evaluate the robustness of our method across different GNN architectures, we conduct
experiments using both GAT and GraphSAGE as backbones. The results in Table 9 summarize
the defense performance of LoSplit and RIGBD under various backdoor attacks (GTA, UGBA,
DPGBA, and SPEAR) on three representative datasets (Cora, PubMed, and OGB-arXiv). Across all
settings, LoSplit consistently achieves significantly lower ASR compared to both the original GAT
and GraphSAGE, as well as the RIGBD defense. Moreover, the clean accuracy (ACC) of LoSplit
remains comparable to or even higher than that of RIGBD, indicating that our decoupling-unlearning
training does not sacrifice model utility. Notably, even under challenging attacks like SPEAR, which
perturb only node features, LoSplit maintains ASR close to 0% and sustantially outperforms RIGBD,
especially on the PubMed and OGB-arXiv datasets. These results demonstrate that LoSplit generalizes
robustly across different GNN architectures. Overall, LoSplit is not tailored to any specific GNN
design and can serve as a general-purpose training-time defense framework across various type of
GNNs.
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Table 9: Comparison of defenses under different attacks and different backbone models.

Attack Defense
Cora PubMed OGB-arXiv

ASR(%) ↓ CA(%) ↑ ASR(%) ↓ CA(%) ↑ ASR(%) ↓ CA(%) ↑

GTA

GAT 83.76 83.33 97.61 81.23 92.67 64.92
GraphSage 99.63 84.07 98.73 84.68 90.83 64.75

RIGBD-GAT 93.96 85.56 1.02 84.63 1.73 64.51
RIGBD-GraphSage 99.63 78.89 98.97 75.14 80.24 64.47

LoSplit-GAT 1.33 83.70 1.16 85.08 0.81 64.70
LoSplit-GraphSage 2.58 80.74 0.58 84.98 0.59 64.30

UGBA

GAT 100.00 76.67 91.28 84.22 92.53 65.01
GraphSage 97.33 84.07 95.38 86.25 96.16 65.66

RIGBD-GAT 4.33 84.81 90.42 84.27 2.04 65.02
RIGBD-GraphSage 98.16 77.04 90.11 82.30 2.06 65.75

LoSplit-GAT 2.66 80.00 0.67 85.12 1.13 65.83
LoSplit-GraphSage 4.00 82.96 1.67 83.51 0.74 65.95

DPGBA

GAT 100.00 83.70 91.53 84.07 92.78 66.13
GraphSage 98.89 82.22 89.30 85.84 91.61 67.53

RIGBD-GAT 6.22 83.33 0.84 83.51 1.28 64.86
RIGBD-GraphSage 1.78 80.74 1.42 85.49 2.03 65.61

LoSplit-GAT 0.89 84.07 0.51 83.90 1.02 65.31
LoSplit-GraphSage 0.44 82.59 0.63 85.44 1.38 65.90

SPEAR

GAT 95.94 83.33 97.98 83.51 100.00 67.55
GraphSage 100.00 84.44 83.00 85.59 95.00 67.00

RIGBD-GAT 84.89 82.96 84.22 83.82 93.42 65.87
RIGBD-GraphSage 100.00 82.96 100.00 85.24 91.56 65.99

LoSplit-GAT 0.44 83.33 0.26 85.45 0.21 65.87
LoSplit-GraphSage 0.37 83.33 0.00 85.64 0.00 66.09

K Training Algorithm

We summarize the training procedure of LoSplit for obtaining a backdoor-free GNN node classifier
in Algorithm 1. Specifically, we begin by randomly initializing the parameters θLoSplit of an L-layer
GNN fLoSplit that adopts the graph convolution operation defined in Eq. 1 (line 1). During the first
training stage (lines 2–12), LoSplit trains fLoSplit on the backdoored graph G′

T using the RCE loss
to capture early-stage loss dynamics. At each epoch t ≤ TS , LoSplit computes the loss per-node of
RCE ℓ

(t)
i and evaluates its intra-class variance to identify the potential malicious label y(t)t via Eq. (4)

(lines 3–5) , and their loss values are standardized into z-scores (lines 6–8). A Gaussian Mixture
Model (GMM) is then fitted to the z-scores to obtain two clusters, C(t)

low and C(t)
high, representing clean

and potentially poisoned nodes, respectively (line 9). LoSplit computes the separation metric D(t)

between these clusters (lines 10–11) and selects the optimal split epoch t∗ that maximizes D(t) (line
13). Based on this epoch, the target and clean nodes are identified using Eq. 8 (line 14). In the
second stage, LoSplit randomly initializes a new L-layer GNN f and finetunes it using the decoupling
objective defined in Eq. 9 to suppress the influence of backdoor nodes (lines 15–16). Finally, the
algorithm outputs the backdoor-free GNN node classifier f (line 17).
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Algorithm 1 Algorithm of LoSplit

Require: Backdoored graph G′

T = (V ′

T ,A
′

T , E
′

T ,X
′

T ,Y
′

T ); split epoch TS , split learning rate ηS ,
Decoupling-Forgetting trade-off γ, RCE Constant C = log(1−10), Default threshold τ = 1−10

Output: Backdoor-free GNN node classifier
1: Randomly initialize θLoSplit for an L-layer GNN fLoSplit using Eq. 1;
2: for t = 1, 2, ..., TS do
3: Compute RCE loss ℓ(t)i for all vi ∈ VT ;
4: For each class yi ∈ Y ′

T , compute intra-class variance of ℓ(t)i ;
5: Malicious label yt identification via Eq. 4;
6: Extract nodes with label yt as V(t)

yt ;
7: Compute µ, σ of ℓ(t)i , ∀vi ∈ V(t)

yt ;
8: Normalize loss into z-scores using Eq. 5;
9: Fit GMM on z-scores to get clusters C(t)

low, C(t)
high;

10: Compute threshold τ (t) via Eq. 6;
11: Compute D(t) = E

vi∈C(t)
high
[ℓ
(t)
i ]− E

vj∈C(t)
low
[ℓ
(t)
j ];

12: end for
13: Select optimal split epoch t∗ = argmaxt D

(t);
14: Split target and clean nodes via Eq. 8;
15: Randomly initialize θ for an L-layer GNN node classifier f ;
16: Finetune f via Eq. 9;
17: Return backdoor-free GNN node classifier f ;

L Sample-wise Loss Distribution under RCE Loss in image and Comparison
of Defense Strategies across Images and Graphs.

Fig. 18 illustrates the early-stage sample-wise loss distributions under the RCE loss on the CIFAR-10
dataset. In image domain, each poisoned example is an independent input with a localized trigger
pattern (e.g., a small patch or pixel alteration) that directly dominates its prediction. As a result,
the model can rapidly overfit to these triggers, leading to a highly stable loss distributionat the
early training stage. This behavior reflects the strong spatial locality of visual backdoors and the
independence among samples, where each image evolves in isolation during optimization. Such
stability stands in sharp contrast to the graph domain discussed in introduction part. Unlike images,
backdoor triggers in graphs are attached to a few interconnected nodes rather than independent
samples, and their influence propagates step-by-step through message passing over limited hops.
This structural dependency prevents the loss from converging smoothly, resulting in the unstable and
oscillatory loss dynamics observed in Fig. 1. Therefore, while the fixed splitting ratio and global
threshold is effective in images, directly transferring this intuition to graphs is not feasible due to the
intrinsic interdependence and propagation characteristics of graph data. Table 10 briefly summarizes
the difference between representative training-time defense in images and our proposed approach in
graphs.

Table 10: Comparison of defense strategies across image and graph domains. “Splitting Ratio” indicates whether
the partition between clean and poisoned samples is fixed or adaptively adjusted; “Threshold” denotes whether
the separation criterion is globally fixed or adaptively determined during training.

Domain Method Defense Strategy Splitting Ratio Threshold

Image ABL [18] Unlearn Fixed –
Image DBD [19] Suppress Fixed –
Image ASD [20] Data Split Fixed Global
Image HARVEY [22] Data Split Adaptive Global
Graph LoSplit (Ours) Data Split Adaptive Adaptive
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Figure 18: Distribution of the Early-Stage RCE Loss in Image Domain under Cifar-10 Dataset.

M Additional Results of Hyperparameter Analysis

To further evaluate the robustness of our method under the SPEAR attack, we conduct addi-
tional hyperparameter analyses on the PubMed and OGB-arXiv datasets. Following Sec. 5.5,
we perform a grid search over TS ∈ {3, 7, 11, 15, 19}, ηS ∈ {0.001, 0.005, 0.01, 0.05, 0.1}, and
γ ∈ {0, 0.05, 0.1, . . . , 1.0}.

For PubMed dataset, the hyperparameter analysis of LoSplit under the SPEAR attack is shown in
Fig. 19. We observe that the ASR remains consistently near 0.0% across almost all configurations,
demonstrating strong resistance to backdoor effects and the reliability of the split-based defense. The
Precision peaks at 88.9% when TS = 19 and ηS ∈ {0.005, 0.01}, while the Recall remains stable
at 100%. These results suggest that a moderately late splitting epoch (TS = 19) combined with a
mid-range learning rate (ηS = 0.005 or 0.01) yields the most balanced trade-off between precision
and recall. Fixing TS = 19 and ηS = 0.005, we further investigate the influence of the trade-off
coefficient γ in the Decoupling–Forgetting stage, which mainly governs the clean accuracy. As shown
in Fig. 19d, the best clean accuracy of 85.13% is achieved at γ = 0.05, demonstrating that LoSplit
effectively preserves model utility while maintaining low ASR. Overall, LoSplit exhibits stable and
consistent performance on PubMed, maintaining high robustness and clean accuracy across a broad
range of hyperparameters.
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Figure 19: Hyperparameter analysis of LoSplit on PubMed dataset under SPEAR attack.

For OGB-arXiv dataset, the results are presented in Fig. 20. We find that small splitting epochs
(TS ≤ 11) and low learning rates (ηS < 0.05) significantly degrade the separation ability of LoSplit,
leading to suboptimal splits. The highest Precision (up to 99.5%) and Recall (up to 96.8%) are
achieved when TS ∈ {19, 23} and ηS = 0.1, suggesting that a sufficiently large learning rate with
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later-stage splitting yields the most effective identification of target nodes. Fixing TS = 19 and
ηS = 0.1, we analyze the effect of γ on clean accuracy. As illustrated in Fig. 20d, the optimal clean
accuracy of 66.68% is achieved at γ = 1.0. These results confirm that LoSplit maintains strong
robustness even on large-scale datasets like OGB-arXiv.
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Figure 20: Hyperparameter analysis of LoSplit on OGB-arXiv dataset under SPEAR attack.

N Reproducibility

Implementation and experimental details are illustrated in Appendix D and Sec. 5.1. We also
provide a detailed training algorithm in Algo.1. The code for our LoSplit is publicly available at:
github.com/zyx924768045/LoSplit.

O Limitations and Future Works

While LoSplit demonstrates strong capability in splitting target nodes and mitigating backdoor effects,
its effectiveness may deteriorate when the distinction between target and clean nodes becomes
less pronounced. In such cases, hyperparameters require careful adjustment through extensive trial
and error, which can be both time-consuming and labor-intensive. Moreover, the performance of
LoSplit can be sensitive to attack-specific parameters and training configurations (e.g. learning rate,
hidden-layer dimensions), potentially limiting its robustness under diverse and real-world settings.

In future works, we plan to explore more self-adaptive defenses in both training-time and inference-
time, and we hope to further enhance the practicality and robustness of backdoor defense across
varying domains.

P Broader Impact

This paper presents work whose goal is improve the robustness of GNNs and thus advance the field
of machine learning. While there may be potential societal consequences, we do not identify any that
must be specifically highlighted here.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract concisely presents the challenges tackled and contributions made,
aligned with the results in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: In conclusion and appendix, we introduce the limitations of our approach
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The assumptions in the paper are clearly stated and proved in the statement of
theorems.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly introduce the model framework and datasets, and provide the
parameters.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We submit the code and data.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In the experimental section and appendix, we provide detailed information
about the training and testing details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct experiments ten times and compute the average value.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources in appendix,
including GPU and CPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We comply with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the impact of LoSplit in Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We did not use data or models that have a high risk of misuse.
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We use LLM only for writing, editing, or formatting purposes and does not
impact the core methodology, scientific rigorousness, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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