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Abstract

World model (WM) agents enable sample-efficient reinforcement learning by learn-1

ing policies entirely from simulated experience. However, existing token-based2

world models (TBWMs) are limited to visual inputs and discrete actions, restricting3

their adoption and applicability. Moreover, although both intrinsic motivation and4

prioritized WM replay have shown promise in improving WM performance and gen-5

eralization, they remain underexplored in this setting, particularly in combination.6

We introduce Simulus, a highly modular TBWM agent that integrates (1) a modular7

multi-modality tokenization framework, (2) intrinsic motivation, (3) prioritized8

WM replay, and (4) regression-as-classification for reward and return prediction.9

Simulus achieves state-of-the-art sample efficiency for planning-free WMs across10

three diverse benchmarks. Ablation studies reveal the individual contribution of11

each component while highlighting their synergy. Our code and model weights are12

publicly available at https://anonymous.4open.science/r/Simulus-FBF5.13

1 Introduction14

Sample efficiency refers to the ability of a reinforcement learning (RL) algorithm to learn effective15

policies using as few environment interactions as possible. In many real-world domains such as16

robotics, autonomous driving, and healthcare, this is particularly critical, as interactions are costly,17

slow, or constrained. World model agents, methods that learn control entirely from simulated18

experience generated by a learned dynamics model, have emerged as a promising approach to19

improving sample efficiency [17, 20, 37, 57].20

Here, we focus on token-based world models (TBWMs) [37, 38, 11], sample-efficient RL methods21

that learn the dynamics entirely within a learned discrete token space, where each observation22

comprises a sequence of tokens. Evidently, most large scale world models [1, 12, 14] operate on23

multi-token observations, suggesting that such representations are advantageous at scale. TBWMs24

offer a clear modular design, separating the optimization of its representation, dynamics, and control25

models. As modular systems, TBWMs are easier to scale, develop, study, and deploy, as individual26

modules can be treated independently without interfering and are easier to master through divide and27

conquer. In addition, such separation leads to simpler optimization objectives and avoids interference28

between them (Appendix B.1).29

However, existing TBWMs are restricted to image observations and discrete actions, such as Atari30

games, limiting both their adoption and broader applicability, as their effectiveness in diverse31

environments and modalities remains unclear. While multi-modality tokenization approaches exist for32

large-scale offline settings [43, 47, 33, 34], these methods rely on large vocabularies (e.g., 33K tokens)33

which are inefficient for online, data-limited regimes. Whether substantially smaller vocabularies can34

preserve competitive precision and performance is still an open question, leaving these approaches35

underexplored for sample-efficient RL.36
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Figure 1: Results overview. Simulus exhibits state-of-the-art sample-efficiency performance for
planning-free methods across all three benchmarks. † [44], ‡ [13].

Furthermore, despite compelling results [46, 49, 30], intrinsic motivation and prioritized world model37

replay remain underexplored in sample-efficient world model agents [19, 20, 60, 11, 3], particularly38

in combination. We conjecture that intrinsic motivation is underused as it may steer the agent toward39

task-irrelevant regions, potentially wasting limited interaction budget. Prioritized replay [30], while40

promising, lacks robust empirical support and proved challenging to tune in our experiments.41

To address these limitations, we propose Simulus, a modular world model that extends a recent42

TBWM method [11] by integrating several powerful advances from the literature: (1) a modular43

multi-modality tokenization framework for handling arbitrary combinations of observation and action44

modalities, (2) intrinsic motivation for epistemic uncertainty reduction [50, 49], (3) prioritized world45

model replay [30], and (4) regression-as-classification (RaC) for reward and return prediction [16, 20].46

To evaluate the impact of the proposed components, we conducted extensive empirical evaluations47

across three diverse benchmarks, ranging from the visual Atari 100K [28], to the continuous proprio-48

ception tasks of the DeepMind Control Suite [53], to Craftax [35], which combines symbolic 2D grid49

maps with continuous state features. There, Simulus achieves state-of-the-art sample-efficiency for50

planning-free world models. Ablation studies further show the contribution and effectiveness of each51

component.52

Summary of contributions:53

• Through extensive empirical evaluations across three diverse benchmarks, we show that54

intrinsic motivation, prioritized replay, and RaC significantly improve performance in the55

sample-efficiency setting for world model agents, particularly when combined.56

• Our results demonstrate the effectiveness of the multi-modality tokenization approach, as57

Simulus achieves state-of-the-art planning-free performance across benchmarks, establishing58

TBWMs as widely-applicable methods.59

• We propose Simulus, a versatile TBWM agent that follows a highly modular design, offering60

a solid foundation for future developments. To support future research and adoption of61

TBWMs, we open-source our code and weights.62

2 Method63

Notations We consider the Partially Observable Markov Decision Process (POMDP) setting. How-64

ever, since in practice the agent has no knowledge about the hidden state space, consider the following65

state-agnostic formulation. Let Ω,A be the sets of observations and actions, respectively. At every66

step t, the agent observes ot ∈ Ω and picks an action at ∈ A. From the agent’s perspective, the envi-67

ronment evolves according to ot+1, rt, dt ∼ p(ot+1, rr, dt|o≤t,a≤t), where rt, dt are the observed68

reward and termination signals, respectively. The process repeats until a positive termination signal69

dt ∈ {0, 1} is obtained. The agent’s objective is to maximize its expected return E[
∑∞
t=0 γ

trt+1]70

where γ ∈ [0, 1] is a discount factor.71
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For multi-modal observations, let ot = {o(i)
t }|κ|i=1 where κ is the set of environment modalities and72

o
(i)
t denotes the features of modality κi.73

Overview Simulus builds on REM [11]. The agent comprises a representation module V , a world74

model M, a controller C, and a replay buffer. To facilitate a modular design, following REM, each75

module is optimized separately. The training process of the agent involves a repeated cycle of four76

steps: data collection, representation learning (V), world model learning (M), and control learning in77

imagination (C).78

2.1 The Representation Module V79

V is responsible for encoding and decoding raw observations and actions. It is a modular tokenization80

system with encoder-decoder pairs for different input modalities. Encoders produce fixed-length81

token sequences, creating a common interface that enables combining tokens from various sources82

into a unified representation. After embedding, these token sequences are concatenated into a single83

representation, as described in Section 2.2. Note that encoder-decoder pairs need not be learning-84

based methods; however, when learned, they are optimized independently. This design enables V to85

deal with any combination of input modalities, provided the respective encoder-decoder pairs.86

Tokenization V transforms raw observations o to sets of fixed-length integer token sequences87

z = {z(i)}|κ|i=1 by applying the encoder of each modality z(i) = enci(o
(i)). Actions a are tokenized88

using the encoder-decoder pair of the related modality to produce za. The respective decoders89

reconstruct observations from their tokens: ô(i) = deci(z
(i)).90

Simulus natively supports four modalities: images, continuous vectors, categorical variables, and91

image-like multi-channel grids of categorical variables, referred to as "2D categoricals". More92

formally, 2D categoricals are elements of ([k1]× [k2]× . . .× [kC ])
m×n where k1, . . . , kC are per93

channel vocabulary sizes, C is the number of channels, m,n are spatial dimensions, and [k] =94

{1, . . . , k}.95

Following REM, we use a VQ-VAE [15, 55] for image observations. For the tokenization of96

continuous vectors, each feature is quantized to produce a token, as in [43]. However, to improve97

learning efficiency, we reduce the vocabulary size from 1024 to 125, and modify the quantization98

levels for optimal coverage (Appendix A.2.2). Unbounded vectors are first transformed using the99

symlog function [20], defined as symlog(x) = sign(x) ln(1+ |x|), which compresses the magnitude100

of large absolute values. Lastly, while no special tokenization is required for categorical inputs, 2D101

categoricals are flattened along the spatial dimensions to form a sequence of categorical vectors. The102

embedding of each token vector is obtained by averaging the embeddings of its entries.103

2.2 The World Model M104

The purpose of M is to learn a model of the environment’s dynamics. Concretely, given trajectory105

segments τt = z1, z
a
1, . . . , zt, z

a
t in token representation, M models the distributions of the next106

observation and termination signal, and the expected reward:107

Transition: pθ(ẑt+1|τt), (1)
Reward: r̂t = r̂θ(τt), (2)

Termination: pθ(d̂t|τt), (3)

where θ is the parameters vector of M and r̂θ(τt) is an estimator of Ert∼p(rt|τt)[rt].108

Architecture M comprises a sequence model fθ and multiple heads for the prediction of tokens109

of different observation modalities, rewards, termination signals, and for the estimation of model110

uncertainty. Concretely, fθ is a retentive network (RetNet) [51] augmented with a parallel observation111

prediction (POP) [11] mechanism. All heads are implemented as multilayer perceptrons (MLP) with112

a single hidden layer. We defer the details about these architectures to Appendix A.3.113

Embedding M translates token trajectories τ into sequences of d-dimensional embeddings X114

using a set of embedding (look-up) tables. By design, each modality is associated with a separate115
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table. In cases where an embedding table is not provided by the appropriate encoder-decoder pair, M116

and C learn dedicated tables separately and independently. As embeddings sequences are composed117

hierarchically, we use the following hierarchical notation:118

Observation-action block: Xt = (Xo
t ,X

a
t),

Observation block: Xo
t = (X

(1)
t , . . . ,X

(|κ|)
t ),

where Ki denotes the number of embedding vectors in X
(i)
t . Similarly, K =

∑|κ|
i=1Ki. To combine119

latents of each zt, V concatenates their token sequences along the temporal axis based on a predefined120

modality order. We defer the full details on the embedding process to Appendix A.3.121

(a) Observation tokeniza-
tion and embedding.

Sampling

(b) Prediction of observa-
tion tokens.

Figure 2: An illustration of the independent pro-
cessing of modalities for an observation with two
modalities.

Sequence Modeling Given a sequence of122

observation-action blocks X = X1, . . . ,Xt,123

the matching outputs Y1, . . . ,Yt are com-124

puted auto-regressively as follows:125

(St,Yt) = fθ(St−1,Xt),

where St is a recurrent state that summarizes126

X≤t and S0 = 0. However, the output Yu
t+1,127

from which ẑt+1 is predicted, is computed128

using the POP mechanism via another call as129

(·,Yu
t+1) = fθ(St,X

u),

where Xu ∈ RK×d is a learned embedding se-130

quence. Intuitively, Xu acts as a learned prior,131

enabling the parallel generation of multiple132

tokens into the future.133

To model pθ(ẑt+1|Yu
t+1), the distributions134

pθ(ẑ|y) of each token ẑ of ẑ(i)t+1 of each modal-135

ity κi are modeled using modality-specific pre-136

diction heads implemented as MLPs with a137

single hidden layer and an output size equal138

to the vocabulary size of enci (Figure 2b). For139

2D categoricals, C heads are used to predict140

the C tokens from each y.141

Similarly, rewards and termination signals are predicted by additional prediction heads as r̂t =142

r̂θ(y), d̂t ∼ pθ(d̂t|y), slightly abusing notations, where y is the last vector of Yu
t+1. An illustration143

is provided in Figure 3.144

Reducing Epistemic Uncertainty via Intrinsic Motivation The world model M serves as the145

cornerstone of the entire system. Any controller operating within a world model framework can only146

perform as well as the underlying world model allows, making its quality a fundamental limiting147

factor. In deep learning methods, the model’s performance depends heavily on the quality of its148

training data. Accurate dynamics modeling requires comprehensive data collection that captures the149

full spectrum of possible environmental behaviors. This presents a particular challenge in online RL,150

where the controller must systematically and efficiently explore its environment. Success depends on151

intelligently guiding the controller toward unexplored or undersampled regions of the dynamics space.152

An effective approach to this challenge involves estimating the world model’s epistemic uncertainty153

and directing the controller to gather data from regions where this uncertainty is highest [46, 50, 49].154

Our approach estimates epistemic uncertainty using an ensemble of Nens = 4 next observation155

prediction heads {pϕi
(ẑ| sg(Yu))}Nens

i=1 with parameters {ϕi}Nens
i=1 [49, 31] where sg(·) is the stop156

gradient operator. To quantify disagreement between the ensemble’s distributions, we employ the157

Jensen-Shannon divergence (JSD) [50]. For probability distributions P1, . . . , Pn, the JSD is defined158

as:159

JSD(P1, . . . , Pn) = H(
1

n

n∑
i=1

Pi)−
1

n

n∑
i=1

H(Pi),
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Figure 3: World model training and imagination. To maintain visual clarity, we omitted token
embedding details, as well as optimization details of rewards and termination signals.

where H(·) denotes the Shannon entropy. Since observations comprise multiple tokens, we average160

the per-token JSD values to obtain a single uncertainty measure δt. Training data is divided equally161

among ensemble members, with each predictor processing a distinct subset of each batch. Despite162

the ensemble approach, our implementation maintains computational efficiency, with negligible163

additional overhead in practice.164

To guide C towards regions of high epistemic uncertainty, M provides C with additional intrinsic165

rewards rint
t = δt during imagination. Here, the reward provided by M at each step t is given by166

r̄t = wintrint
t + wextr̂t,

where wint, wext ∈ R are hyperparameters that control the scale of each reward type. Optimizing167

the controller in imagination allows it to reach areas of high model uncertainty without additional168

real-environment interaction.169

Prioritized Replay Recent work has demonstrated that prioritizing replay buffer sampling during170

world model training could lead to significant performance gains in intrinsically motivated agents171

[30]. While their approach showed promise, it required extensive hyperparameter tuning in practice.172

We propose a simpler, more robust prioritization scheme for world model training.173

Here, the replay buffer maintains a world model loss value for each stored example, with newly174

added examples assigned a high initial loss value ν0. During M’s training, we sample each batch175

using a mixture of uniform and prioritized sampling, controlled by a single parameter α ∈ [0, 1]176

that determines the fraction of prioritized samples. For the prioritized portion, we sample examples177

proportional to their softmax-transformed losses pi = softmax(L)i. The loss values are updated178

after each world model optimization step using the examples’ current batch losses.179

Training We use the cross-entropy loss for the optimization of all components of M. Specifically,180

for each t, the loss of pθ(ẑt|Yu
t ) is obtained by averaging the cross-entropy losses of its individual181

tokens. The same loss is used for each ensemble member pϕi
(ẑt| sg(Yu

t )). The optimization and182

design of the reward predictor is similar to that of the critic, as described in Section 2.3. A formal183

description of the optimization objective can be found in Appendix A.3.1.184

2.3 The Controller C185

C is an extended version of the actor-critic of REM [11] that supports additional observation and186

action spaces and implements regression-as-classification for return predictions.187

Architecture At the core of C’s architecture, parameterized by ψ, is an LSTM [26] sequence model.188

At each step t, upon observing zt, a set of modality-specific encoders map each modality tokens z(i)t to189
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a latent vector x(i), where we abuse our notation x as the context of the discussion is limited to C. The190

latents are then fused by a fully-connected network to obtain a single vector x = gψ(x
(1), . . . ,x(|κ|)).191

xt ∈ RdC is processed by C’s sequence model to produce ht, ct = LSTM(xt,ht−1, ct−1;ψ) where192

ht, ct are the LSTM’s hidden and cell states, respectively. Lastly, two linear output layers produce the193

logits from which the actor and critic outputs π(at|ht), V̂ π(ht) are derived. For continuous action194

spaces, the actor uses a categorical distribution over a uniformly spaced discrete subset of [−1, 1].195

We defer the full details about the encoding process to Appendix A.4.196

Regression as Classification for Reward and Return Prediction Robustly handling unbounded197

reward signals has long been challenging as they can vary dramatically in both magnitude and198

frequency. Hafner et al. [20] addressed this challenge by using a classification network that predicts199

the weights of exponentially spaced bins and employed a two-hot loss for the network’s optimization.200

Farebrother et al. [16] studied the use of cross-entropy loss in place of the traditional mean squared201

error loss for value-based deep RL methods. In their work, the HL-Gauss method was shown202

to significantly outperform the two-hot loss method. Building on these developments, we adopt203

the classification network with exponential bins from [20], and apply the HL-Gauss method for204

its optimization. Concretely, the critic’s value estimates are predicted using a linear output layer205

parameterized by W ∈ Rm×dC with m = 128 outputs corresponding to m uniform bins defined by206

m+ 1 endpoints b = (b0, . . . , bm). The predicted value is given by207

ŷ = symexp
(
softmax(Wh)⊤b̂

)
where symexp(x) = sign(x)(exp(|x|) − 1) is the inverse of the symlog function and b̂ =208 (
b1+b0

2 , . . . , bm+bm−1

2

)
are the bin centers. Given the true target y ∈ R, the HL-Gauss loss is209

given by210

LHL-Gauss(W,h, y) = ỹ⊤ log softmax(Wh)

where ỹi = Φ( bi−symlog(y)
σ ) − Φ( bi−1−symlog(y)

σ ), Φ is the cumulative density function of the211

standard normal distribution and σ is a standard deviation hyperparameter that controls the amount of212

label smoothing.213

Training in Imagination C is trained entirely from simulated experience generated through interac-214

tion with M. Specifically, M and C are initialized with a short trajectory segment sampled uniformly215

from the replay buffer and interact for H steps. An illustration of this process is given in Figure 3216

(orange path). λ-returns are computed for each generated trajectory segment and are used as targets217

for critic learning. For policy learning, a REINFORCE [52] objective is used, with a V̂ π baseline for218

variance reduction. See Appendix A.4.2 for further details.219

3 Experiments220

To evaluate sample efficiency, we used benchmarks that measure performance within a fixed, limited221

environment interaction budget. These benchmarks were also selected to address key research222

questions: (1) whether the proposed multi-modality approach is effective—both in continuous control223

settings and in handling multi-modal observations; and (2) whether the integrated components are224

effective across diverse environments (Section 3.3).225

3.1 Experimental Setup226

Benchmarks: We evaluate Simulus on three sample-efficiency benchmarks of different observation227

and action modalities: Atari 100K [28], DeepMind Control Suite (DMC) Proprioception 500K [53],228

and Craftax-1M [35].229

Atari 100K has become the gold standard in the literature for evaluating sample-efficient deep RL230

agents. The benchmark comprises a subset of 26 games. Within each game, agents must learn from231

visual image signal under a tightly restricted budget of 100K interactions, corresponding to roughly232

two hours of human gameplay.233

The DeepMind Control Suite (DMC) is a set of continuous control tasks involving multiple agent234

embodiments ranging from simple single-joint models to complex humanoids. Here, we follow the235
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subset of proprioception tasks used for the evaluation of DreamerV3 [20], where observations and236

actions are continuous vectors. At each task, the agent’s interaction budget is limited to 500K steps.237

Craftax is a 2D open-world survival game benchmark inspired by Minecraft, designed to evaluate238

RL agents’ capabilities in planning, memory, and exploration. The partially-observable environment239

features procedurally generated worlds where agents must gather and craft resources while surviving240

against hostile creatures. Observations consist of a 9×11 tile egocentric map, where each tile consists241

of 4 symbols, and 48 state features corresponding to state information such as inventory and health.242

Here, we consider the sample-efficiency oriented Craftax-1M variant which only allows an interaction243

budget of one million steps.244

Baselines On Atari-100K, we compare Simulus against DreamerV3 [20] and several methods245

restricted to image observations: TWM [44], STORM [60], DIAMOND [3], and REM [11]. On246

DMC, we compare exclusively with DreamerV3, currently the only planning-free world model247

method with published results on the 500K proprioception benchmark. On Craftax-1M, we compare248

against TWM [13], a concurrent work that proposes a Transformer based world model with a focus on249

the Craftax benchmark, and the baselines reported in the Craftax paper: Random Network Distillation250

(RND) [10], PPO [48] with a recurrent neural network (PPO-RNN), and Exploration via Elliptical251

Episodic Bonuses (E3B) [23]. As Craftax is a recent benchmark, there are no other published results252

in existing world models literature. Following the standard practice in the literature, we exclude253

planning-based methods [21, 57], as planning is an orthogonal component that operates on any given254

model, typically incurring significant computational overhead.255

Metrics and Evaluation For Atari, we report human-normalized scores (HNS), calculated as256
agent_score−random_score

human_score−random_score [39]. Following the protocol of Agarwal et al. [2] and using their toolkit, we257

report the mean, median, interquantile mean (IQM), and optimality gap metrics with 95% stratified258

bootstrap confidence intervals. For DMC and Craftax, we report the raw agent returns. We use 5259

random seeds per environment. In each experiment, final performance is evaluated using 100 test260

episodes at the end of training and the mean score is reported.261

3.2 Results262

Simulus achieves state-of-the-art performance across all three benchmarks (Figure 1). On Atari 100k,263

it outperforms all baselines across key metrics (Figure 4). Notably, Simulus is the first planning-free264

world model to reach human-level IQM and median scores, achieving superhuman performance265
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on 13 out of 26 games (Table 9, Appendix B). Building on REM, these gains are attributed to the266

integration of the proposed components, demonstrating their combined effectiveness.267
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Figure 5: Craftax-1M training
curves with mean and 95% confi-
dence intervals.

Effectiveness in continuous environments Figure 4 provides268

compelling evidence that token-based architectures can perform269

well in continuous domains—even with compact vocabularies:270

Simulus consistently matches DreamerV3 across most tasks and271

slightly outperforms it on average.272

Effectiveness in environments with multi-modal observations273

We evaluate multi-modality performance in Craftax, as it com-274

bines an image-like 2D grid map with a vector of features, involv-275

ing multiple tokenizers (V). Simulus maintains sample-efficiency276

in this multi-modal environment, outperforming both concurrent277

world model methods (Figure 1) and all model-free baselines278

(Figure 5), including exploration-focused algorithms. With 444279

tokens per observation arranged into sequences of 147 embed-280

dings, even short trajectories in Craftax contain thousands of281

tokens, demonstrating Simulus’s efficient handling of long se-282

quences. These findings indicate that the world model (M) and283

controller (C) maintain strong performance under multi-modal284

inputs when processed by the proposed modular tokenizer.285

3.3 Ablation Studies286

We ablate the intrinsic rewards, prioritized replay, and regression-as-classification to demonstrate287

their individual contributions to Simulus’s performance. In each experiment, Simulus is modified288

by disabling a single component. Due to limited computational resources, we consider a subset of289

8 tasks for each of the Atari and DMC benchmarks, and exclude Craftax from this analysis. For290

Atari 100K, we used games in which significant improvements were observed. For DMC, we chose a291

subset that includes different embodiments. We defer the specific environment names to Appendix C.292

The results are presented in Figure 6. Although all components contributed to Simulus’s final293

performance, intrinsic rewards were especially crucial for achieving competitive performance in both294

benchmarks. Interestingly, the Atari 100K results indicate that combining all three components yields295

a significantly stronger algorithm. These findings also suggest that both prioritized world model296

replay and regression-as-classification enhance the effectiveness of intrinsic rewards.297

More broadly, the results in Figure 6 demonstrate that encouraging the controller to explore regions of298

high epistemic uncertainty through intrinsic rewards significantly improves its performance in world299

model agents, even in reward-rich environments. This observation is non-trivial in a sample-efficient300

setting, where the limited interaction budget makes model-driven exploration particularly costly, as it301

consumes resources that could otherwise be used for task-related exploration during data collection.302

The latter type of exploration aims to collect new information about the true reward signal, which303

defines the task and its success metric. On the other hand, model-driven exploration may guide the304

controller towards environment regions that are irrelevant to the task at hand.305
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Figure 6: Ablations results on the Atari-100K and DeepMind Control Proprioception 500K bench-
marks. A subset of 8 games was used for each ablation.
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4 Related Work306

Offline Multi-Modal Methods Large-scale token sequence models for multi-modal agent trajecto-307

ries have been proposed in [33, 34, 43, 47]. Gato [43] and TDM [47] tokenize inputs via predefined308

transformations, while Unified IO [33, 34] leverages pretrained models. These methods do not309

learn control through RL but rely on expert data. They also use massive models—with billions of310

parameters, large vocabularies, and significantly more data and compute than sample-efficient world311

models. Consequently, it remains unclear whether their design choices would be effective in online,312

sample-efficient settings with non-stationary and limited data.313

World Model Agents Model-based agents that learn policies solely from simulated data generated314

by a learned world model were introduced by Ha and Schmidhuber [17], followed by the influential315

Dreamer family [18–20]. Dreamer jointly optimizes its representation and recurrent world models via316

a KL divergence between learned prior and posterior distributions, leading to interfering objectives317

(Appendix B.1) and a complex, monolithic architecture that complicates development and scaling [59].318

With the rise of Transformer architectures in language modeling [56, 9], Transformer-based Dreamer319

variants emerged [60, 44], alongside token-based world models (TBWMs) that treat trajectories as320

discrete token sequences [37, 11]. However, these methods are limited to visual environments with321

discrete actions (e.g., Atari 100K), leaving their performance in other modalities uncertain. Recently,322

DIAMOND [3], a diffusion world model inspired by advances in generative modeling [45], was323

introduced. While it generates visually compelling outputs, it remains limited to visual domains.324

Intrinsically Motivated World Model Agents Although intrinsic motivation (IM) has been exten-325

sively studied [41, 10, 22, 5, 4], its use in world models typically involves an exploration pretraining326

phase followed by limited task-specific fine-tuning [49, 36, 30]. While combining IM with prioritized327

replay has shown promise [30], it remains unexplored in standard sample-efficiency settings with328

external rewards.329

Large-Scale Video World Models Building on recent advances in video generative modeling330

[25, 7, 8], recent works have introduced large-scale video world models [14, 1, 12, 54], trained offline331

on extensive pre-collected data to predict future frames. However, these models do not address control332

learning, particularly RL. While recent efforts aim to bridge this gap [59], they remain confined to333

visual environments and lack comprehensive empirical evaluation.334

5 Limitations and Future Work335

Here, we briefly highlight several limitations of this work. First, although the feature quantization336

approach for tokenizing continuous vectors showed promise, it leads to excessive sequence lengths.337

We believe that more efficient solutions can be found for dealing with continuous inputs. Second, due338

to the scarcity of rich multi-modal RL benchmarks, we could not extensively explore diverse modality339

combinations in our experiments. Lastly, token-based world model agents remain significantly slower340

to train than other baselines in sample-efficient RL. Nonetheless, their modular design enables faster341

policy inference as the controller is independent of the world model.342

6 Conclusions343

In this paper, we demonstrated the effectiveness of several underutilized techniques for improving344

world model agents. A modular multi-modality tokenization framework broadens their applicability345

across diverse domains, while intrinsic motivation, prioritized world model replay, and regression-346

as-classification enhance sample efficiency, particularly when combined. These techniques were347

incorporated into a token-based world model, yielding Simulus. Extensive experiments show that348

Simulus achieves state-of-the-art performance across diverse benchmarks, including visual, contin-349

uous, and symbolic domains. It outperforms all baselines on key metrics in both Atari-100K and350

the challenging Craftax benchmarks. Ablations further highlight the individual contribution of each351

component. We hope that the highly modular design of Simulus, along with the released code and352

model weights, provides a strong foundation for future work.353
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A Models and Hyperparameters588

A.1 Hyperparameters589

We detail shared hyperparameters in Table 1, training hyperparameters in Table 2, world model590

hyperparameters in Table 3, and controller hyperparameters in Table 4. Environment hyperparameters591

are detailed in Table 5 (Atari-100K) and Table 6 (DMC).592

For the DMC benchmark, we use a lower embedding dimension (Table 3) due to the significantly593

lower dimensionality of its observations compared to other benchmarks. As in prior work (e.g.,594

DreamerV3), we adopt a smaller model for this setting. Note that the reduced number of Retention595

heads ensures a consistent head dimensionality (64).596

Additionally, we used a limited decay range in DMC (Table 3) as observations effectively represent597

full MDP states, eliminating the need for long-term memory. By constraining the decay range, we598

explicitly encode this inductive bias into the model.599

In the Craftax benchmark, we reduce the number of layers (Table 3) to lower computational cost. The600

interaction budget in Craftax is 1M steps, resulting in a particularly expensive training process. Here,601

we increase the decay range as an inductive bias to encourage long-term memory.602

The weighting of intrinsic versus extrinsic rewards (Table 4) varies across benchmarks due to603

differences in reward structure and scale. For instance, DMC provides dense rewards with typical604

task scores reaching around 1000, whereas Craftax has extremely sparse rewards, with cumulative605

scores rarely exceeding 20—even over thousands of steps.606

Tuning All remaining hyperparameters were tuned empirically or based on REM [11], with minimal607

impact on training cost and adjusted primarily for performance. Due to limited computational608

resources, we were unable to conduct extensive tuning, and we believe that further optimization could609

improve Simulus’s performance.610

Table 1: Shared hyperparameters.

Description Symbol Value

Eval sampling temperature 0.5
Optimizer AdamW
Learning rate (V , M, C) (1e-4, 2e-4, 2e-4)
AdamW β1 0.9
AdamW β2 0.999
Gradient clipping threshold (V , M, C) (10, 3, 3)
Weight decay (V , M, C) (0.01, 0.05, 0.01)

Prioritized replay fraction α 0.3
Prioritized replay initial loss value ν0 10
M ensemble size Nens 4

HL-Gauss num bins 128
Label smoothing σ 3

4
bin_width = 0.1758
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Table 2: Training hyperparameters.

Description Symbol Atari-100K DMC Craftax

Horizon H 10 20 20
Observation sequence length K 64 3-24 147
Action sequence length Ka 1 1-6 1
Tokenizer vocabulary size N 512 125 (37,5,40,20,4,125)

Epochs 600 1000 10000
Experience collection epochs 500 1000 10000
Environment steps per epoch 200 500 100
Batch size (V , M, C) (128, 32, 128) (-, 16, 128) (-, 8, 128)
Training steps per epoch (V , M, C) (200, 200, 80) (-, 300, 100) (-, 100, 50)
Training start after epoch (V , M, C) (5, 25, 50) (-, 15, 20) (-, 250, 300)

Table 3: World model (M) hyperparameters.

Description Symbol Atari-100K DMC Craftax

Number of layers 10 10 5
Number of heads 4 3 4
Embedding dimension d 256 192 256
Dropout 0.1 0.1 0.1
Retention decay range [ηmin, ηmax] [4, 16] [2, 2] [8, 40]

Table 4: Actor-critic (C) hyperparameters.

Description Symbol Atari-100K DMC Craftax

Environment reward weight wext 1 1 100
Intrinsic reward weight wint 1 10 1
Encoder MLP (gψ) hidden layer sizes [512] [384] [512, 512]
Shared backbone True False True
Number of quantization values (continuous actions) 51
(2D) Categoricals embedding dimension 64

Table 5: Atari 100K hyperparameters.

Description Symbol Value

Frame resolution 64× 64
Frame Skip 4
Max no-ops (train, test) (30, 1)
Max episode steps (train, test) (20K, 108K)
Terminate on live loss (train, test) (No, Yes)

Table 6: DeepMind Control Suite Proprioception hyperparameters.

Description Symbol Value

Action repeat 2
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A.2 The Representation Module V611

A.2.1 Image Observations612

Image observations are tokenized using a vector-quantized variational auto-encoder (VQ-VAE)613

[55, 15]. A VQ-VAE comprises a convolutional neural network (CNN) encoder, an embedding table614

E ∈ Rn×d, and a CNN decoder. Here, the size of the embedding table n determines the vocabulary615

size.616

The encoder’s output h ∈ RW×H×d is a grid of W ×H multi-channel vectors of dimension d that617

encode high-level learned features. Each such vector is mapped to a discrete token by finding the618

closest embedding in E:619

z = argmin
i

∥h−E(i)∥,

where E(i) is the i-th row of E. To reconstruct the original image, the decoder first maps z to their620

embeddings using E. During training, the straight-through estimator [6] is used for backpropagating621

the learning signal from the decoder to the encoder: ĥ = h+ sg(Ez − h). The architecture of the622

encoder and decoder models is presented in Table 7.623

The optimization objective is given by624

L(enc,dec,E) =

∥o− dec(z)∥22 + ∥ sg(enc(o))−E(z)∥22 + ∥ sg(E(z)− enc(o)∥22 + Lperceptual(o,dec(z)),

where Lperceptual is a perceptual loss [27, 32], proposed in [37].625

Crucially, the learned embedding table E is used for embedding the (image) tokens across all stages626

of the algorithm.627

A.2.2 Continuous Vectors628

The quantization of each feature uses 125 values (vocabulary size) in the range [−6, 6], where 63629

values are uniformly distributed in [− ln(1 + π), ln(1 + π)] and the rest are uniformly distributed in630

the remaining intervals.631
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Table 7: The encoder and decoder architectures of the VQ-VAE model. “Conv(a,b,c)" represents a
convolutional layer with kernel size a×a, stride of b and padding c. A value of c = Asym. represents
an asymmetric padding where a padding of 1 is added only to the right and bottom ends of the image
tensor. “GN" represents a GroupNorm operator with 8 groups, ϵ = 1e− 6 and learnable per-channel
affine parameters. SiLU is the Sigmoid Linear Unit activation [24, 42]. “Interpolate" uses PyTorch’s
interpolate method with scale factor of 2 and the “nearest-exact" mode.

Module Output Shape

Encoder

Input 3× 64× 64
Conv(3, 1, 1) 64× 64× 64
EncoderBlock1 128× 32× 32
EncoderBlock2 256× 16× 16
EncoderBlock3 512× 8× 8
GN 512× 8× 8
SiLU 512× 8× 8
Conv(3, 1, 1) 256× 8× 8

EncoderBlock

Input c× h× w
GN c× h× w
SiLU c× h× w
Conv(3, 2, Asym.) 2c× h

2
× w

2

Decoder

Input 256× 8× 8
BatchNorm 256× 8× 8
Conv(3, 1, 1) 256× 8× 8
DecoderBlock1 128× 16× 16
DecoderBlock2 64× 32× 32
DecoderBlock3 64× 64× 64
GN 64× 64× 64
SiLU 64× 64× 64
Conv(3, 1, 1) 3× 64× 64

DecoderBlock

Input c× h× w
GN c× h× w
SiLU c× h× w
Interpolate c× 2h× 2w
Conv(3, 1, 1) c

2
× 2h× 2w
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A.3 The World Model M632

Embedding Details Each token in z(i) of each modality is mapped to a d-dimensional embedding633

vector X(i) using the embedding (look-up) table E(i) of modality κi. The embedding vector that634

corresponds to token z is simply the z-th row in the embedding table. Formally, x(i)
t,j = E(i)(l), l =635

z
(i)
t,j where E(l) refers to the l-th row in E. In the special case of 2D categorical inputs, x(i)

t,j =636

1
C

∑C
n=1 E

(i)
n (ln), ln = z

(i)
t,j,n where C is the number of channels and i is the index of the 2D637

categorical modality in κ.638

To concatenate the embeddings, we use the following order among the modalities: images, continuous639

vectors, categorical variables, and 2D categoricals.640

Prediction Heads Each prediction head in M is a multi-layer perceptron (MLP) with a single641

hidden layer of dimension 2d where d is the embedding dimension.642

Epistemic Uncertainty Estimation Working with discrete distributions enables efficient643

entropy computation and ensures that the ensemble disagreement term δt is bounded by644
1

|zt|
∑
z∈zt

log(vocab_size(z)).645

A.3.1 Optimization646

For each training example in the form of a trajectory segment in token representation τ =647

z1, z
a
1, . . . , zH , z

a
H , the optimization objective is given by648

LM(θ, ϕ, τ) =

H∑
t=1

Lobs(θ, zt, pθ(ẑt|Yu
t )) + Lreward(θ, rt, r̂t)− log(pθ(dt|Yu

t ))

+

Nens∑
i=1

Lobs(ϕi, zt, pϕi
(ẑt| sg(Yu

t ))),

where649

Lobs(θ, zt, pθ(ẑt|Yu
t )) = − 1

K

K∑
i=1

log pθ(zi|yi)

is the average of the cross-entropy losses of the individual tokens, and Lreward(θ, rt, r̂t) is the LHL-Gauss650

loss with the respective parameters of the reward head. Here, yi is the vector of Yu
t that corresponds651

to zi, the i-th token of zt.652

A.3.2 Retentive Networks653

Retentive Networks (RetNet) [51] are sequence model architectures with a Transformer-like structure654

[56]. However, RetNet replaces the self-attention mechanism with a linear-attention [29] based655

Retention mechanism. At a high level, given an input sequence X ∈ R|X|×d of d-dimensional656

vectors, the Retention operator outputs657

Retention(X) = (QK⊤ ⊙D)V,

where Q,K,V are the queries, keys, and values, respectively, and D is a causal mask and decay658

matrix. Notably, the softmax operation is discarded in Retention and other linear attention methods.659

As a linear attention method, the computation can also be carried in a recurrent form:660

Retention(xt,St−1) = Stqt,

St = ηSt−1 + vtk
⊤
t ∈ Rd×d,

where η is a decay factor, St is a recurrent state, and S0 = 0. In addition, a hybrid form of recurrent661

and parallel forward computation known as the chunkwise mode allows to balance the quadratic662

cost of the parallel form and the sequential cost of the recurrent form by processing the input as a663

sequence of chunks. We refer the reader to [51] for the full details about this architecture.664

19



In our implementation, since inputs are complete observation-action block sequences X1, . . . ,Xt,665

we configure the decay factors of the multi-scale retention operator in block units:666

η = 1− 2− linspace(log2(Kηmin),log2(Kηmax),Nh),

where linspace(a, b, c) is a sequence of c values evenly distributed between a and b, Nh is the667

number of retention heads, and ηmin, ηmax are hyperparameters that control the memory decay in668

observation-action block units.669

A.3.3 Parallel Observation Prediction (POP)670

POP [11] is a mechanism for parallel generation of non-causal subsequences such as observations in671

token representation. It’s purpose is to improve generation efficiency by alleviating the sequential672

bottleneck caused by generating observations a single token at a time (as done in language models).673

However, to achieve this goal, POP also includes a mechanism for maintaining training efficiency.674

Specifically, POP extends the chunkwise forward mode of RetNet to maintain efficient training of the675

sequence model.676

To generate multiple tokens into the future at once, POP introduces a set of prediction tokens677

u = u1, . . . , uK and embeddings Xu ∈ RK×d where K is the number of tokens in an observation.678

Each token in u corresponds to an observation token in z. These tokens, and their respective learned679

embeddings, serve as a learned prior.680

Let X1, . . . ,XT be a sequence of T observation-action (embeddings) blocks. Given St−1 sum-681

marizing all key-value outer products of elements of X≤t−1, the outputs Yu from which the next682

observation tokens are predicted are given by:683

(·,Yu
t ) = fθ(St−1,X

u).

Importantly, the recurrent state is never updated based on the prediction tokens u (or their embeddings).684

The next observation tokens ẑt are sampled from pθ(ẑt|Yu
t ). Then, the next action is generated by the685

controller, and the next observation-action block Xt can be processed to predict the next observation686

ẑt+1.687

To maintain efficient training, a two step computation is carried at each RetNet layer. First, all688

recurrent states St for all 1 ≤ t ≤ T are calculated in parallel. Although there is an auto-regressive689

relationship between time steps, the linear structure of S allows to calculate the compute-intensive690

part of each state in parallel and incorporate past information efficiently afterwards. In the second691

step, all outputs Yu
t for all 1 ≤ t ≤ T are computed in parallel, using the appropriate states St−1692

and Xu in batch computation. Note that this computation involves delicate positional information693

handling. We refer the reader to [11] for full details of this computation.694
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A.4 The Controller C695

Critic The value prediction uses 128 bins in the range b = (−15, . . . , 15).696

Continuous Action Spaces The policy network outputs m = 51 logits corresponding to m697

quantization values uniformly distributed in [−1, 1] for each individual action in the action vector.698

A.4.1 Input Encoding699

The controller C operates in the latent token space. Token trajectories τ = z1, z
a
1, . . . , zH , z

a
H are700

processed sequentially by the LSTM model. At each time step t, the network gets zt as input, outputs701

π(at|τ≤t−1, zt) and V̂ π(at|τ≤t−1, zt), samples an action at and then process the sampled action as702

another sequence element.703

The processing of actions involve embedding the action into a latent vector which is then provided704

as input to the LSTM. Embedding of continuous action tokens is performed by first reconstructing705

the continuous action vector and then computing the embedding using a linear projection. Discrete706

tokens are embedded using a dedicated embedding table.707

To embed observation tokens z, the tokens of each modality are processed by a modality-specific708

encoder. The outputs of the encoders are concatenated and further processed by a MLP gψ that709

combines the information into a single vector latent representation.710

The image encoder is a convolutional neural network (CNN). Its architecture is given in Table 8.711

Categorical variables are embedded using a learned embedding table. For 2D categoricals, shared712

per-channel embedding tables map tokens to embedding vectors, which are averaged to obtain a713

single embedding for each multi-channel token vector. For both types of categorical inputs we use 64714

dimensional embeddings. The embeddings are concatenated and processed by gψ .715

Table 8: The image observation encoder architecture of the actor-critic controller C.

Module Output Shape

Input 256× 8× 8
Conv(3, 1, 1) 128× 8× 8
SiLU 128× 8× 8
Conv(3, 1, 1) 64× 8× 8
SiLU 64× 8× 8
Flatten 4096
Linear 512
SiLU 512

A.4.2 Optimization716

λ-returns are computed for each generated trajectory segment τ̂ =717

(z1,a1, r̄1, d1, ẑ2,a2, r̄2, d2, . . . , ẑH ,aH , r̄H , dH):718

Gt =

{
r̄t + γ(1− dt)((1− λ)V̂ πt+1 + λGt+1) t < H

V̂ πH t = H
,

where V̂ πt = V̂ π(τ̂≤t). These λ-returns are used as targets for critic learning. For policy learning, a719

REINFORCE [52] objective is used, with a normalized V̂ π baseline for variance reduction:720

Lπ(ψ) = E
π

[
H∑
t=1

sg

(
Gt − V̂ πt
max(1, c)

)
log π(at|τ̂≤t−1, ẑt) + wentH(π(at|τ̂≤t−1, ẑt))

]
,

where c is an estimate of the effective return scale similar to DreamerV3 [20] and went is a hyper-721

parameter that controls the entropy regularization weight. c is calculated as the difference between722

the running average estimators of the 97.5 and 2.5 return percentiles, based on a window of return723

estimates obtained in the last 500 batches (imagination).724
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B Additional Results725

The average per-game scores for Atari-100K are presented in Table 9. The performance profile plot726

for Atari 100K is presented in Figure 7.727

Table 9: Mean returns on the 26 games of the Atari 100k benchmark followed by averaged human-
normalized performance metrics. Each game score is computed as the average of 5 runs with different
seeds. Bold face mark the best score.

Game Random Human DreamerV3 TWM STORM DIAMOND REM SIMULUS (ours)

Alien 227.8 7127.7 959.4 674.6 983.6 744.1 607.2 687.2
Amidar 5.8 1719.5 139.1 121.8 204.8 225.8 95.3 102.4
Assault 222.4 742.0 705.6 682.6 801.0 1526.4 1764.2 1822.8
Asterix 210.0 8503.3 932.5 1116.6 1028.0 3698.5 1637.5 1369.1
BankHeist 14.2 753.1 648.7 466.7 641.2 19.7 19.2 347.1
BattleZone 2360.0 37187.5 12250.0 5068.0 13540.0 4702.0 11826.0 13262.0
Boxing 0.1 12.1 78.0 77.5 79.7 86.9 87.5 93.5
Breakout 1.7 30.5 31.1 20.0 15.9 132.5 90.7 148.9
ChopperCommand 811.0 7387.8 410.0 1697.4 1888.0 1369.8 2561.2 3611.6
CrazyClimber 10780.5 35829.4 97190.0 71820.4 66776.0 99167.8 76547.6 93433.2
DemonAttack 152.1 1971.0 303.3 350.2 164.6 288.1 5738.6 4787.6
Freeway 0.0 29.6 0.0 24.3 0.0 33.3 32.3 31.9
Frostbite 65.2 4334.7 909.4 1475.6 1316.0 274.1 240.5 258.4
Gopher 257.6 2412.5 3730.0 1674.8 8239.6 5897.9 5452.4 4363.2
Hero 1027.0 30826.4 11160.5 7254.0 11044.3 5621.8 6484.8 7466.8
Jamesbond 29.0 302.8 444.6 362.4 509.0 427.4 391.2 678.0
Kangaroo 52.0 3035.0 4098.3 1240.0 4208.0 5382.2 467.6 6656.0
Krull 1598.0 2665.5 7781.5 6349.2 8412.6 8610.1 4017.7 6677.3
KungFuMaster 258.5 22736.3 21420.0 24554.6 26182.0 18713.6 25172.2 31705.4
MsPacman 307.3 6951.6 1326.9 1588.4 2673.5 1958.2 962.5 1282.7
Pong -20.7 14.6 18.4 18.8 11.3 20.4 18.0 19.9
PrivateEye 24.9 69571.3 881.6 86.6 7781.0 114.3 99.6 100.0
Qbert 163.9 13455.0 3405.1 3330.8 4522.5 4499.3 743.0 2425.6
RoadRunner 11.5 7845.0 15565.0 9109.0 17564.0 20673.2 14060.2 24471.8
Seaquest 68.4 42054.7 618.0 774.4 525.2 551.2 1036.7 1800.4
UpNDown 533.4 11693.2 7567.1 15981.7 7985.0 3856.3 3757.6 10416.5

#Superhuman (↑) 0 N/A 9 8 9 11 12 13
Mean (↑) 0.000 1.000 1.124 0.956 1.222 1.459 1.222 1.645
Median (↑) 0.000 1.000 0.485 0.505 0.425 0.373 0.280 0.982
IQM (↑) 0.000 1.000 0.487 0.459 0.561 0.641 0.673 0.990
Optimality Gap (↓) 1.000 0.000 0.510 0.513 0.472 0.480 0.482 0.412
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Figure 7: Performance profile. For each human-normalized score value on the x-axis, the curve
of each algorithm represents the fraction of runs achieving a score greater than that value. Shaded
regions denote pointwise 95% confidence intervals, computed using stratified bootstrap sampling [2].
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B.1 Interfering Objectives in RSSM Optimization728

Here, we study the interplay between the objectives of a Dreamer-like world model, PWM [58], which729

uses a slightly modified version of the recurrent state space model (RSSM) of Dreamer. Concretely,730

we aim to understand whether the representation and sequence modeling objectives interfere by731

decoupling the optimization of the encoder-decoder models from that of the world model. We opted732

for this implementation due to its simplicity, fast runtime, and accessibility, as it is written in PyTorch733

[40].734

Formally, the model consists of the following components:735

Encoder: zt ∼ qθ(zt|ot),
Decoder: ôt ∼ pθ(ôt|zt),

Sequence model: ht, xt = fθ(xt−1, zt−1, at−1),

Dynamics predictor: ẑt ∼ pθ(ẑt|ht).

We omit the reward and termination predictors and objectives for brevity. Note that in contrast to the736

RSSM in Dreamer, the encoder and decoder models do not depend on the recurrent state ht, xt. The737

optimization objective of PWM is given by738

L(θ) = E
qθ
[

T∑
t=1

βpredLpred(θ) + βdynLdyn(θ) + βrepLrep(θ)],

where βpred, βdyn, and βrep are coefficients and739

Lpred(θ) =∥ôt − ot∥22,
Ldyn(θ) =max(1,KL[sg(qθ(zt|ot))∥pθ(ẑt|ht)]),
Lrep(θ) =max(1,KL[qθ(zt|ot)∥ sg((pθ(ẑt|ht))]).

To decouple the optimization, we modify the sequence model by introducing a stop-gradient operator740

on the encoder’s output during world model training:741

ht, xt = fθ(xt−1, sg(zt−1), at−1).

Moreover, this modification allows to train the encoder-decoder models using large batches of single742

frames, rather than small highly-correlated batches of long trajectories. This further highlights the743

flexibility and advantage of a modular design.744

We compare the original PWM algorithm to its decoupled variant, PWM-decoupled, across four Atari745

environments: Breakout, DemonAttack, Hero, and RoadRunner. These are games where PWM746

performed either particularly well (Hero and RoadRunner) or poorly (Breakout and DemonAttack).747

Each variant is trained online from scratch on each game. The results are presented in Figure 8.748

In addition, we present the achieved episodic returns in Figure 9, and the reconstruction quality of749

example episodes in Figure 10 (PWM) and Figure 11 (PWM-decoupled).750

Although our results are based on a single random seed and are limited to only four environments, we751

observe a consistent trend. First, the reconstruction losses are consistently and significantly lower752

when decoupling the optimization, while the dynamics losses are significantly higher. This suggests753

that the objectives are interfering.754

Second, we observe similar or better episodic returns (Figure 9) using the decoupled optimization,755

suggesting that the higher dynamics loss might not lead to worse world modeling performance in756

practice. Note that a higher dynamics loss in this case does not necessarily mean worse performance,757

as for example multiple discrete combinations could represent the same or similar frame. Thus, when758

the dynamics model fails to predict a specific combination, it leads to high loss values while the759

underlying representations are accurate.760

Lastly, we report that similar trends were observed when training only the world model in an761

offline, supervised-learning fashion on pre-collected datasets. We explored this setting to eliminate762

complexities that may arise due to the online collection of the data.763

While the presented preliminary results are noisy and limited, we believe that they uncover an764

interesting observation on the design and optimization of current world models.765

23



Step
10 2

10 1

100

Re
co

ns
tru

ct
io

n 
Lo

ss

Breakout

Step

5

10

15

Dy
na

m
ics

 L
os

s

Breakout

Step

100

Re
co

ns
tru

ct
io

n 
Lo

ss

DemonAttack

Step
0

10

20

30

Dy
na

m
ics

 L
os

s

DemonAttack

Step
10 1

100

Re
co

ns
tru

ct
io

n 
Lo

ss

Hero

Step

5

10

15

Dy
na

m
ics

 L
os

s

Hero

0 20000 40000 60000 80000 100000
Step

100

3 × 10 1

4 × 10 1

6 × 10 1

2 × 100

Re
co

ns
tru

ct
io

n 
Lo

ss

RoadRunner

0 20000 40000 60000 80000 100000
Step

5

10

15

20

Dy
na

m
ics

 L
os

s

RoadRunner

PWM-decoupled PWM

Figure 8: Reconstruction (Lpred) and dynamics (Ldyn) losses of PWM and PWM-decoupled on four
Atari games (single seed). The first column uses a log-scaled y-axis. Decoupling the optimization
objectives consistently reduces reconstruction loss while increasing dynamics loss, suggesting inter-
ference between the two objectives.
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Figure 9: Agent episodic returns throughout training of PWM and PWM-decoupled on four Atari
games (single seed). Each marker corresponds to a single episode.

Figure 10: Ground truth (top) and reconstructed (bottom) frames from a training episode of PWM
after 50K steps (half way though training). Notably, the ball is missing in most frames, suggesting
the reason for its poor performance in this game.

Figure 11: Ground truth (top) and reconstructed (bottom) frames from a training episode of PWM-
decoupled after 50K steps (half way though training). Here, the ball is reconstructed in most frames,
demonstrating the significantly improved representation performance.
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C Implementation Details766

Ablation Studies For the Atari 100K benchmark, we conducted ablations on the767

following games: Assault, Breakout, ChopperCommand, CrazyClimber, JamesBond,768

Kangaroo, Seaquest, and UpNDown. For the DeepMind Control Suite, we used the769

tasks: acrobot-swingup, cartpole-swingup-sparse, cheetah-run, finger-turn-hard,770

hopper-stand, pendulum-swingup, reacher-hard, and walker-run.771

Code We open-source our code and trained model weights. Our code is written in Pytorch [40].772

Hardware All Atari and DMC experiments were performed on V100 GPUs, while for Craftax a773

single RTX 4090 was used.774

Run Times Experiments on Atari require approximately 12 hours on an RTX 4090 GPU and775

around 29 hours on a V100 GPU. For DMC, the runtime is about 40 hours on a V100 GPU. Craftax776

runs take roughly 94 hours, equivalent to 3.9 days.777

Craftax The official environment provides the categorical variables in one-hot encoding format.778

Our implementation translates these variables to integer values which can be interpreted as tokens.779

Setup in Atari Freeway For the Freeway environment, we adopted a modified sampling strategy780

where a temperature of 0.01 is used instead of the standard value of 1, following [37, 11]. This781

adjustment helps directing the agent toward rewarding paths. Note that alternative approaches in the782

literature tackle the exploration challenge through different mechanisms, including epsilon-greedy783

exploration schedules and deterministic action selection via argmax policies [37].784
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NeurIPS Paper Checklist785

1. Claims786

Question: Do the main claims made in the abstract and introduction accurately reflect the787

paper’s contributions and scope?788

Answer: [Yes]789

Justification: We provide extensive empirical evidence in Section 3, including ablation790

studies, which directly relate to our contributions and claims. The scope of our paper791

is sample-efficient, planning-free world model agents (RL), which is explicitly stated in792

the abstract and introduction, while it is also reflected by the choice of baselines in our793

experiments.794

Guidelines:795

• The answer NA means that the abstract and introduction do not include the claims796

made in the paper.797

• The abstract and/or introduction should clearly state the claims made, including the798

contributions made in the paper and important assumptions and limitations. A No or799

NA answer to this question will not be perceived well by the reviewers.800

• The claims made should match theoretical and experimental results, and reflect how801

much the results can be expected to generalize to other settings.802

• It is fine to include aspirational goals as motivation as long as it is clear that these goals803

are not attained by the paper.804

2. Limitations805

Question: Does the paper discuss the limitations of the work performed by the authors?806

Answer: [Yes]807

Justification: Section 5 explicitly discuss the limitations of our work. Additional limitations808

are discussed in Section 3 (e.g., the absence of ablations on Craftax due to computational809

limitations).810

Guidelines:811

• The answer NA means that the paper has no limitation while the answer No means that812

the paper has limitations, but those are not discussed in the paper.813

• The authors are encouraged to create a separate "Limitations" section in their paper.814

• The paper should point out any strong assumptions and how robust the results are to815

violations of these assumptions (e.g., independence assumptions, noiseless settings,816

model well-specification, asymptotic approximations only holding locally). The authors817

should reflect on how these assumptions might be violated in practice and what the818

implications would be.819

• The authors should reflect on the scope of the claims made, e.g., if the approach was820

only tested on a few datasets or with a few runs. In general, empirical results often821

depend on implicit assumptions, which should be articulated.822

• The authors should reflect on the factors that influence the performance of the approach.823

For example, a facial recognition algorithm may perform poorly when image resolution824

is low or images are taken in low lighting. Or a speech-to-text system might not be825

used reliably to provide closed captions for online lectures because it fails to handle826

technical jargon.827

• The authors should discuss the computational efficiency of the proposed algorithms828

and how they scale with dataset size.829

• If applicable, the authors should discuss possible limitations of their approach to830

address problems of privacy and fairness.831

• While the authors might fear that complete honesty about limitations might be used by832

reviewers as grounds for rejection, a worse outcome might be that reviewers discover833

limitations that aren’t acknowledged in the paper. The authors should use their best834

judgment and recognize that individual actions in favor of transparency play an impor-835

tant role in developing norms that preserve the integrity of the community. Reviewers836

will be specifically instructed to not penalize honesty concerning limitations.837

27



3. Theory assumptions and proofs838

Question: For each theoretical result, does the paper provide the full set of assumptions and839

a complete (and correct) proof?840

Answer: [NA]841

Justification: Our paper does not include theoretical results.842

Guidelines:843

• The answer NA means that the paper does not include theoretical results.844

• All the theorems, formulas, and proofs in the paper should be numbered and cross-845

referenced.846

• All assumptions should be clearly stated or referenced in the statement of any theorems.847

• The proofs can either appear in the main paper or the supplemental material, but if848

they appear in the supplemental material, the authors are encouraged to provide a short849

proof sketch to provide intuition.850

• Inversely, any informal proof provided in the core of the paper should be complemented851

by formal proofs provided in appendix or supplemental material.852

• Theorems and Lemmas that the proof relies upon should be properly referenced.853

4. Experimental result reproducibility854

Question: Does the paper fully disclose all the information needed to reproduce the main ex-855

perimental results of the paper to the extent that it affects the main claims and/or conclusions856

of the paper (regardless of whether the code and data are provided or not)?857

Answer: [Yes]858

Justification: In Section 2 and in the appendix we discuss our method in full detail, including859

architectures, hyperparameters, etc.860

Guidelines:861

• The answer NA means that the paper does not include experiments.862

• If the paper includes experiments, a No answer to this question will not be perceived863

well by the reviewers: Making the paper reproducible is important, regardless of864

whether the code and data are provided or not.865

• If the contribution is a dataset and/or model, the authors should describe the steps taken866

to make their results reproducible or verifiable.867

• Depending on the contribution, reproducibility can be accomplished in various ways.868

For example, if the contribution is a novel architecture, describing the architecture fully869

might suffice, or if the contribution is a specific model and empirical evaluation, it may870

be necessary to either make it possible for others to replicate the model with the same871

dataset, or provide access to the model. In general. releasing code and data is often872

one good way to accomplish this, but reproducibility can also be provided via detailed873

instructions for how to replicate the results, access to a hosted model (e.g., in the case874

of a large language model), releasing of a model checkpoint, or other means that are875

appropriate to the research performed.876

• While NeurIPS does not require releasing code, the conference does require all submis-877

sions to provide some reasonable avenue for reproducibility, which may depend on the878

nature of the contribution. For example879

(a) If the contribution is primarily a new algorithm, the paper should make it clear how880

to reproduce that algorithm.881

(b) If the contribution is primarily a new model architecture, the paper should describe882

the architecture clearly and fully.883

(c) If the contribution is a new model (e.g., a large language model), then there should884

either be a way to access this model for reproducing the results or a way to reproduce885

the model (e.g., with an open-source dataset or instructions for how to construct886

the dataset).887

(d) We recognize that reproducibility may be tricky in some cases, in which case888

authors are welcome to describe the particular way they provide for reproducibility.889

In the case of closed-source models, it may be that access to the model is limited in890

some way (e.g., to registered users), but it should be possible for other researchers891

to have some path to reproducing or verifying the results.892
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5. Open access to data and code893

Question: Does the paper provide open access to the data and code, with sufficient instruc-894
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material?896

Answer: [Yes]897
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//nips.cc/public/guides/CodeSubmissionPolicy) for more details.912
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• The authors should provide scripts to reproduce all experimental results for the new915
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versions (if applicable).919
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6. Experimental setting/details922

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-923

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the924

results?925

Answer: [Yes]926

Justification: We specify all experimental details in Section 3 and in Appendix A and C.927
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• The answer NA means that the paper does not include experiments.929

• The experimental setting should be presented in the core of the paper to a level of detail930

that is necessary to appreciate the results and make sense of them.931

• The full details can be provided either with the code, in appendix, or as supplemental932

material.933

7. Experiment statistical significance934

Question: Does the paper report error bars suitably and correctly defined or other appropriate935

information about the statistical significance of the experiments?936

Answer: [Yes]937

Justification: We utilize the rliable toolkit [2] to generate plots with appropriate error bars938

(Figure 4 bottom, Figure 6). Figure 5 also includes error bars. In addition, our open-sourced939

repository includes the full results of all runs.940

Guidelines:941

• The answer NA means that the paper does not include experiments.942
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• The assumptions made should be given (e.g., Normally distributed errors).951
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of the mean.953

• It is OK to report 1-sigma error bars, but one should state it. The authors should954

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis955

of Normality of errors is not verified.956

• For asymmetric distributions, the authors should be careful not to show in tables or957

figures symmetric error bars that would yield results that are out of range (e.g. negative958

error rates).959

• If error bars are reported in tables or plots, The authors should explain in the text how960

they were calculated and reference the corresponding figures or tables in the text.961

8. Experiments compute resources962

Question: For each experiment, does the paper provide sufficient information on the com-963

puter resources (type of compute workers, memory, time of execution) needed to reproduce964

the experiments?965

Answer: [Yes]966

Justification: We provide this information in Appendix C.967
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• The answer NA means that the paper does not include experiments.969

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,970

or cloud provider, including relevant memory and storage.971

• The paper should provide the amount of compute required for each of the individual972

experimental runs as well as estimate the total compute.973

• The paper should disclose whether the full research project required more compute974

than the experiments reported in the paper (e.g., preliminary or failed experiments that975

didn’t make it into the paper).976

9. Code of ethics977
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Justification: This paper presents a foundational work in the field of Machine Learning. As994

such, there are no direct positive or negative societal impacts.995
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release of data or models that have a high risk for misuse (e.g., pretrained language models,1021

image generators, or scraped datasets)?1022

Answer: [NA]1023

Justification: Our work does not pose any additional risks beyond those of common deep1024

reinforcement learning methods. Hence, we do not introduce additional safeguards.1025

Guidelines:1026

• The answer NA means that the paper poses no such risks.1027

• Released models that have a high risk for misuse or dual-use should be released with1028

necessary safeguards to allow for controlled use of the model, for example by requiring1029

that users adhere to usage guidelines or restrictions to access the model or implementing1030

safety filters.1031

• Datasets that have been scraped from the Internet could pose safety risks. The authors1032

should describe how they avoided releasing unsafe images.1033

• We recognize that providing effective safeguards is challenging, and many papers do1034

not require this, but we encourage authors to take this into account and make a best1035

faith effort.1036

12. Licenses for existing assets1037

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1038

the paper, properly credited and are the license and terms of use explicitly mentioned and1039

properly respected?1040

Answer: [Yes]1041

Justification: Our paper cites all relevant assets, and our open-sourced repository includes1042

a credits section with the relevant credits. We follow the licenses of all assets used in our1043

work.1044

Guidelines:1045

• The answer NA means that the paper does not use existing assets.1046

31



• The authors should cite the original paper that produced the code package or dataset.1047

• The authors should state which version of the asset is used and, if possible, include a1048

URL.1049

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1050

• For scraped data from a particular source (e.g., website), the copyright and terms of1051

service of that source should be provided.1052

• If assets are released, the license, copyright information, and terms of use in the1053

package should be provided. For popular datasets, paperswithcode.com/datasets1054

has curated licenses for some datasets. Their licensing guide can help determine the1055

license of a dataset.1056

• For existing datasets that are re-packaged, both the original license and the license of1057

the derived asset (if it has changed) should be provided.1058

• If this information is not available online, the authors are encouraged to reach out to1059

the asset’s creators.1060

13. New assets1061

Question: Are new assets introduced in the paper well documented and is the documentation1062

provided alongside the assets?1063

Answer: [Yes]1064

Justification: Our open-sourced repository includes all new assets and is well documented.1065

Guidelines:1066

• The answer NA means that the paper does not release new assets.1067

• Researchers should communicate the details of the dataset/code/model as part of their1068

submissions via structured templates. This includes details about training, license,1069

limitations, etc.1070

• The paper should discuss whether and how consent was obtained from people whose1071

asset is used.1072

• At submission time, remember to anonymize your assets (if applicable). You can either1073

create an anonymized URL or include an anonymized zip file.1074

14. Crowdsourcing and research with human subjects1075

Question: For crowdsourcing experiments and research with human subjects, does the paper1076

include the full text of instructions given to participants and screenshots, if applicable, as1077

well as details about compensation (if any)?1078

Answer: [NA]1079

Justification: The paper does not involve crowdsourcing nor research with human subjects.1080

Guidelines:1081

• The answer NA means that the paper does not involve crowdsourcing nor research with1082

human subjects.1083

• Including this information in the supplemental material is fine, but if the main contribu-1084

tion of the paper involves human subjects, then as much detail as possible should be1085

included in the main paper.1086

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1087

or other labor should be paid at least the minimum wage in the country of the data1088

collector.1089

15. Institutional review board (IRB) approvals or equivalent for research with human1090

subjects1091

Question: Does the paper describe potential risks incurred by study participants, whether1092

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1093

approvals (or an equivalent approval/review based on the requirements of your country or1094

institution) were obtained?1095

Answer: [NA]1096

Justification: The paper does not involve crowdsourcing nor research with human subjects.1097

32

paperswithcode.com/datasets


Guidelines:1098

• The answer NA means that the paper does not involve crowdsourcing nor research with1099

human subjects.1100
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