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Abstract

Named Entity Recognition (NER) is a critical001
task in natural language processing, particularly002
challenging in identifying discontinuous enti-003
ties. This study is the first to explore the appli-004
cation of image data augmentation techniques005
in the preprocessing phase for discontinuous006
entity recognition, aiming to overcome the limi-007
tations of traditional text segmentation methods.008
Through experiments, we found that traditional009
sentence segmentation methods might lead to010
incorrect segmentation of cross-sentence dis-011
continuous entities, affecting the accuracy of012
model training and entity recognition. To ad-013
dress this, we introduced a new preprocessing014
strategy that combines graphic cropping, scal-015
ing, and padding techniques to improve the016
model’s ability to recognize discontinuous enti-017
ties. Experiments on three benchmark datasets,018
CADEC, ShARe13, and ShARe14, demon-019
strated that our preprocessing method increased020
the F1 scores of two state-of-the-art grid mod-021
els by approximately 1% to 2.5%, proving the022
effectiveness of this method. 1023

1 Introduction024

Named Entity Recognition (NER) is a crucial task025

in the field of natural language processing, aiming026

to locate and classify named entities into predefined027

categories from text. In recent years, NER research028

has been subdivided into various task types, includ-029

ing flat (Lample et al., 2016; Strubell et al., 2017),030

overlapping (Yu et al., 2020; Shen et al., 2021), and031

discontinuous (Dai et al., 2020a; Li et al., 2021)032

NER tasks, with discontinuous NER seen as the033

most challenging among them. As shown in Fig-034

ure 1, entities in the sentence are discontinuous;035

their representation might be nested, overlapping,036

or even span multiple sentences. This diversity sig-037

nificantly increases the difficulty of the recognition038

task.039

1The code is publicly available at
https://github.com/fang1204/SEDA.git

Figure 1: Example showing two discontinuous entities

Therefore, preprocessing methods for discon- 040

tinuous entities are particularly tricky, requiring 041

special consideration to maintain entity integrity af- 042

ter text processing. A literature review reveals that 043

most studies focus on enhancing model architec- 044

tures or developing related auxiliary loss functions 045

(Tang et al., 2018; Lu and Roth, 2015; Katiyar and 046

Cardie, 2018; Wang and Lu, 2018; Yan et al., 2021; 047

Fei et al., 2021; Wang et al., 2020a; Yu et al., 2020; 048

Shen et al., 2021), with few discussing preprocess- 049

ing methods. Among these, we notice that many 050

research teams adopted the preprocessing script 051

proposed by Dai et al. (2020b) to segment datasets, 052

including specific character retention and tokeniza- 053

tion of sentences. In terms of sentence breaking, 054

a simple newline character is used as the division 055

standard, for example in Figure 1, the sentence is 056

divided into "Sentence one: A patient at the down- 057

town health clinic reports severe muscle" and "Sen- 058

tence two: pain in their legs and ankles.", where the 059

two discontinuous entities will be separated. Thus, 060

when cross-sentence discontinuous entities occur, 061

this method will fail to correctly identify the entity, 062

thereby affecting the model’s training performance. 063

Recently, with various model architecture inno- 064

vations, Li et al. (2022) introduced a unified model 065

to address different NER tasks, called the Unified 066

Word-Word Framework (Word2NER), transform- 067

ing discontinuous named entity recognition into 068

a problem of relationships between words, and 069

calculating lexical relations through a grid struc- 070

ture to identify entity boundaries and words. This 071

framework has shown excellent performance in 072

NER tasks. This method starts from a graphical 073
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perspective, incorporating CNN-related technolo-074

gies, prompting us to consider whether we could075

adopt graphical preprocessing methods for the do-076

main of discontinuous entity recognition. Thus,077

this paper proposes a preprocessing method com-078

bining image data enhancement techniques and a079

self-learning strategy to further enhance model per-080

formance. Our adopted image data enhancement081

techniques (Mikołajczyk and Grochowski, 2018;082

Connor and Khoshgoftaar, 2019) include graphical083

cropping, scaling, and filling intervals, to improve084

model predictions.085

Visual explanation of image data augmenta-086

tion, as shown in Figure 2: assuming the main087

task is to identify a cat, the target object inside088

the red frame can be recognized, and the blue area089

fills out the supplemental intervals. We apply this090

concept to the grid model, as shown below Figure091

2, in the sentence "I do experience stomach pain092

from time to time," where the entity "stomach pain"093

corresponds to the key part in the red area, while094

the surrounding blue blocks serve as supplemental095

intervals, extending the key area, with other areas096

serving as background information. Overall, our097

research contributions can be summarized in three098

points:099

• To our knowledge, we are the first to propose100

the application of image enhancement meth-101

ods to the field of discontinuous entity recog-102

nition.103

• Our proposed method uses various image en-104

hancement techniques to overcome the limita-105

tions of grid models.106

• Finally, we demonstrate the generalizability107

and effectiveness of our method through dif-108

ferent datasets and grid models.109

2 Related work110

2.1 Grid-tagging method111

Recently, grid-tagging methods have shown112

promising performance in the domain of discon-113

tinuous Named Entity Recognition (NER). These114

methods use architectures such as CLN(Liu et al.,115

2021) and convolutional neural networks(Yu and116

Koltun, 2016) to predict the relationships between117

words. The earliest related research can be traced118

back to Wang et al. (2020b), who proposed con-119

verting the boundaries of entities into a token pair120

linking problem and designed it on a grid. The fol-121

lowing year, Wang et al. (2021) further proposed122

Figure 2: The object boundaries in the image correspond
to the entity boundaries in the grid

using two grids to predict entity boundaries and en- 123

tity word relationships, then decoding the complete 124

entities from the entity fragment graph through 125

maximal clique discovery (Dutta and Lauri, 2019). 126

Subsequently, Li et al. (2022) also proposed a grid- 127

labeling based approach. It transforms discontinu- 128

ous Named Entity Recognition (NER) into a prob- 129

lem of identifying relationships between words, 130

setting up two textual relations: Next-Neighboring- 131

Word (NNW) and Tail-Head-Word (THW), and 132

using a grid to contain all relationships between 133

words. Lastly, Liu et al. (2022) proposed extend- 134

ing the word-to-word relationships introduced by 135

Li et al., by further expanding with two additional 136

labels: Previous-Neighboring-Word (PNW) and 137

Head-Tail-Word (HTW), to enrich the representa- 138

tion of relationships between words. 139

2.2 Image Data Augmentation 140

Image data augmentation is a technique used to en- 141

hance the performance of machine learning models, 142

particularly in the fields of image processing and 143

computer vision (Wang et al., 2017; Kumar et al., 144

2023). This technique involves applying a series of 145

transformations to original images to generate new 146

training samples, thereby increasing the diversity 147

and size of the dataset. The primary goal of data 148

augmentation is to improve the model’s generaliz- 149

ability to new, unseen data, enhancing its accuracy 150
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Figure 3: Flowchart of the method

and robustness (Fawzi et al., 2016; Mikołajczyk151

and Grochowski, 2018). In this study, we have152

chosen to adjust scaling and cropping as our meth-153

ods of augmentation, which are applied within a154

grid framework. We will detail our methods in155

subsequent chapters.156

3 Methodology157

This paper proposes a preprocessing method that158

enhances grid training by combining image data159

augmentation techniques, leveraging a self-adapted160

learning approach to progressively train the model161

to be entity-centric. This method is named162

“SEDA”. Initially, the method optimizes the entity163

boundaries predicted by the model and re-predicts164

through an augmentation process. The process165

comprises four stages: entity boundary prediction,166

grid size normalization, entity localization, and167

supplementary interval. The detailed methodolo-168

gies for each stage will be explained in Sections169

3.1 to 3.4, with Figure 3 illustrating the process ar-170

chitecture. Subsequently, we can further optimize171

the predictions iteratively. This concept is based172

on using the results after a single augmentation173

as a baseline to develop this stage, repeating the174

process outlined in Sections 3.1 to 3.4. In each 175

iteration, we intersect the current predictions with 176

the previous predictions and continue with the sub- 177

sequent augmentation steps, allowing the entities 178

to progressively approach the correct answers. The 179

subsequent experimental analysis will separately 180

demonstrate the effects of single and multiple aug- 181

mentations. Next, we will introduce each stage in 182

detail. 183

3.1 Entity Boundary Prediction 184

Firstly, as shown in Figures 3(a) to (c), we use 185

a grid tagging model to generate initial target en- 186

tities and obtain better entity boundary positions 187

through entity boundary prediction. To evaluate 188

these results, we designed a unique set of scoring 189

metrics—Entity Boundary F1 score (EBF), Entity 190

Boundary Precision (EBP), and Entity Boundary 191

Recall (EBR), where EBF is the primary scoring 192

metric used in the initial boundary prediction phase 193

as well as in the subsequent section 3.4. Unlike 194

the traditional F1 score, EBF employs a more le- 195

nient strategy, allowing for the prediction of more 196

potential entities. Specifically, we only consider 197

whether the head and tail tokens of the predicted 198
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entity match those of the correct entity.199

Assuming there are |D| number of documents,200

each with correct entities E = {e1, ..., en}, where201

n is the number of answer entities, and predicted202

entities E′ = {e′1, ..., e′m}, where m is the num-203

ber of predicted answer entities. Extract the last204

word of each entity from texts E and E′, resulting205

in G = {g1, ..., gn}, the last words of the correct206

entities, and their corresponding last words of pre-207

dicted entities P = {p1, ..., pm}, with a specific208

formula design as follows:209

EBP =
1

|D|m

|D|∑
d

n∑
i

m∑
j

S(pi, gj) (1)210

211

EBR =
1

|D|n

|D|∑
d

n∑
i

m∑
j

S(pi, gj) (2)212

213

S(pi, gj) =

{
1 pi = gj

0 pi ̸= gj
(3)214

215

EBF =
2× EBP × EBR

EBP + EBR
(4)216

Document length Grid Size
∼200 7

200∼350 9
350∼500 11
500∼1000 13

1000∼1350 15
1350∼1500 16
1500∼2000 17

2000∼ 19

Table 1: Setting grid sizes corresponding to document
sizes

217

3.2 Grid Size Standardization218

The purpose of grid size standardization is to keep219

the grid size within a specific range to address the220

issue of reduced model prediction capability when221

the input is too long. Entity Boundary Prediction222

results are arranged in an odd-even pattern: sen-223

tences at odd positions represent predicted entities2,224

and even-positioned sentences contain the remain-225

ing text and are longer. As shown in Figure 3(d),226

we extract these predicted entities and use them227

as a basis for segmentation. To limit the grid size,228

2When entities are predicted to be close to each other
(char<=10), we merge them.

we segment sentences at even positions into block 229

sizes according to the size of different texts, as de- 230

tailed in Table 1. For instance, the size specification 231

for the text in the example is 7, and the sentence 232

"In one ankle then a knee the other knee. This may 233

be related to an underlying disease." exceeds the 234

size specification, so it is split into three segments: 235

2-1, 2-2, and 2-3, as illustrated in Figure 3(e). This 236

approach effectively maintains the grid size within 237

a certain range. 238

3.3 Entity Localization 239

Next, we design the placement of predicted entities 240

at predetermined locations, primarily positioning 241

the predicted entities later, detailed location choices 242

can be seen in Appendix A. The purpose of this 243

stage is to allow the model to learn the regularity 244

of the data, enhancing its training efficiency. We 245

merge the odd and even-positioned sentences, ar- 246

ranging them in the order of even sentences first, 247

followed by odd sentences, ensuring that each pre- 248

dicted entity is positioned at the end of the sentence, 249

as the change from (e) to (f) in Figure 3 shows, 250

sequentially connecting even sentence "0" to odd 251

sentence "1". For cases like "2-1", "2-2", "2-3" 252

where the sentences are even-numbered and do not 253

contain predicted entities, and no predicted entities 254

are subsequently found, no action is taken in this 255

stage. Simultaneously, we also define two types of 256

sentences: ES (sentences containing predicted enti- 257

ties) and NES (sentences not containing predicted 258

entities), for subsequent use. 259

3.4 Supplemental Intervals 260

Subsequently, to prevent the unintended truncation 261

of entities during text segmentation and to ensure 262

the integrity of the predicted entities, we draw inspi- 263

ration from the concept of magnification in graphic 264

data enhancement to adjust grid size, as shown in 265

(g) of Figure 3. The blue blocks in the example 266

represent the supplemental intervals. Specifically, 267

we designed strategies for pre-supplemental and 268

post-supplemental intervals. For sentences contain- 269

ing predicted entities (ES), one can choose to apply 270

either a pre-supplemental or a post-supplemental; 271

for sentences that do not contain predicted entities 272

(NES), it’s possible to apply either or both types 273

of supplements. In the figure, the setting is to ap- 274

ply a post-supplemental of 3 to ES. This method 275

effectively compensates for the parts of predicted 276

entities that might be missed or lacking. 277

4



CADEC ShARe13 ShARe14
All Train Dev Test All Train Dev Test All Train Dev Test

#Entities 6,318 4,430 898 990 11,161 5,146 675 5,340 19,157 10,354 810 7,993
#Discontinuous 675 489 93 93 1,090 560 93 437 1,710 992 93 635
%Discontinuous 10.7 11 10.4 9.4 9.8 10.9 13.8 8.2 8.9 9.6 11.5 7.8

Table 2: Complete statistics of three datasets.

Finally, in the testing phase, the process is iden-278

tical to the aforementioned stages: starting with279

a preliminary prediction of the target document,280

followed by steps such as grid size normalization,281

entity localization, and supplemental intervals, and282

then prediction. Next, through experiments, we283

will demonstrate the effectiveness using the current284

state-of-the-art (SOTA) grid model.285

4 Experiments and Results Analysis286

4.1 Dataset Introduction287

To validate the effectiveness of our method, we288

selected three Named Entity Recognition (NER)289

datasets from the biomedical or clinical domain,290

each featuring discontinuous, nested, and flat enti-291

ties, namely CADEC, Share/CLEF 2013 (abbrevi-292

ated as ShARe13), and Share/CLEF 2014 (abbre-293

viated as ShARe14). Additionally, this study con-294

tinues previous research on Adverse Drug Events295

(ADEs) entities and Disorder entities. We have296

tabulated the number of entities in each dataset and297

the proportion of discontinuous entities as shown298

in Table 2. Furthermore, we have corrected the test299

data counts for past datasets, adjusting the number300

for ShARe13 from 5333 to 5340, for ShARe14301

from 7922 to 7993, while the data for CADEC302

remains unchanged. For a detailed comparison of303

entity counts, please refer to the table 10.304

4.2 Backbone Models305

We employ the two most state-of-the-art (SOTA)306

grid models currently used in discontinuous NER:307

1) W2NER (Li et al., 2022): This model repre-308

sents the adjacency relationships between entity309

words as a two-dimensional grid and refines the310

grid representation through multi-granularity two-311

dimensional convolution operations to capture com-312

plex relationships between entities.313

2) TOE (Liu et al., 2022): Based on the W2NER314

model, this model constructs additional textual rela-315

tions and designs a Tag Representation Embedding316

Module (TREM) to enhance the model’s under-317

standing and representation of entity relationships.318

We apply our method to these two models and319

demonstrate its effectiveness through experimental 320

results. 321

4.3 Results and Analyses 322

The results are shown in Table 3, where the first 323

two columns, W2NER and TOE, represent the orig- 324

inal scores from the papers, and † denotes our re- 325

sults after multiple validations. The discrepancy 326

between the original paper scores and our execu- 327

tion results was discussed with other researchers 328

and is preliminarily attributed to randomness. Ad- 329

ditionally, we discovered a lack of completeness 330

in the original dataset statistics. Therefore, we up- 331

dated the dataset to reflect the correct number of 332

entities and fixed the seed for subsequent experi- 333

ments, executing both the original model and our 334

method. Parameter settings are detailed in Table 335

9. The final scores were calculated based on all 336

test entities in each dataset. “SEDA-Once” and 337

“SEDA-Mul” represent the results of single and 338

multiple enhancements, respectively. It can be ob- 339

served that applying our method to the grid models 340

significantly improved scores across all datasets. 341

Under single enhancement, the effects on 342

W2NER and TOE are notable. W2NER’s F1 343

scores increased by 1.79% on CADEC, 1.06% on 344

ShARe13, and 0.56% on ShARe14. TOE’s scores 345

improved by 0.43%, 0.88%, and 0.23%, respec- 346

tively. After multiple enhancements, W2NER’s 347

scores further increased to 2.48% on CADEC, 348

1.27% on ShARe13, and 1.12% on ShARe14, 349

while TOE’s scores improved by 0.95%, 1.4%, and 350

0.93%. This demonstrates that our enhancement 351

technique can improve prediction accuracy by ap- 352

proximately 1%. 353

Comparing W2NER and TOE, we found that 354

TOE’s performance is slightly lower than W2NER. 355

This may be because TOE primarily enhances the 356

relationships between words to improve prediction 357

accuracy, whereas our technique adjusts the grid 358

through trimming and supplementation. 359

Finally, Table 4 shows the upper limits of our 360

method’s scores, all based on single enhancement. 361

If the EBF is successfully increased to 1 during 362
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CADEC ShARe13 ShARe14METHOD P R F1 P R F1 P R F1
W2NER (Li et al., 2022) 74.09 72.35 73.21 85.57 79.68 82.52 79.88 83.71 81.75

TOE (Liu et al., 2022) 77.77 70.66 74.04 85.18 80.12 82.57 82.26 82.57 82.41
W2NER † 71.01 74.24 72.59 81.91 81.16 81.53 79.38 81.63 80.49

W2NER + SEDA-Once 71.34 75.25 *73.29 82.73 82.45 *82.59 78.46 83.81 *81.05
W2NER + SEDA-Mul 74.44 73.54 **73.98 82.92 82.67 **82.80 80.30 82.90 **81.61

TOE † 76.07 68.66 72.17 82.04 80.52 81.27 78.38 82.52 80.39
TOE + SEDA-Once 71.50 73.74 72.60 82.57 81.74 *82.15 80.34 80.91 80.62
TOE + SEDA-Mul 74.14 72.12 *73.12 86.62 79.05 **82.67 79.46 83.26 *81.32

Table 3: The table shows the results of different datasets under two grid architectures, where "†" indicates the
scores we replicated, and bold numbers represent the highest scores in each column. "*" denotes significance at
p− value < 0.05 and "**" denotes < 0.01. Our scores presented are based on calculations from all test entities.
SEDA-Once refers to single data augmentation, while SEDA-Mul refers to multiple data augmentations.

Model Dataset P R F1

W2NER
CADEC 80.41 79.60 80.00
ShARe13 86.95 82.62 84.73
ShARe14 84.11 86.47 85.27

TOE
CADEC 78.95 79.19 79.07
ShARe13 84.61 83.11 83.85
ShARe14 84.31 85.30 84.80

Table 4: Orcale score

CADEC ShARe13 ShARe14
ES 1 1 1

NES 1 0 0
look forward 4 3 2

look backward 4 3 2

Table 5: Parameter settings

enhancement, W2NER’s F1 scores on CADEC,363

ShARe13, and ShARe14 could reach 80.00%,364

84.73%, and 85.27%, respectively. TOE’s scores365

could reach 79.07%, 83.95%, and 84.80%. This in-366

dicates that if we can perfectly predict the head and367

tail of discontinuous entities, the model’s perfor-368

mance will further improve under our framework.369

4.4 Experiment Settings370

In terms of experimental settings, the configuration371

of parameters is detailed in Table 5. In the table,372

the ES/NES settings with 1 and 0 indicate whether373

supplemental intervals were used, where 1 repre-374

sents the use of supplemental intervals and 0 rep-375

resents not using them. "Look forward" and "look376

backward" correspond to the ratios of forward and377

backward supplementation, respectively. For other378

model parameters and learning rates, please refer379

to Table 9.380

4.5 SEDA-Mul 381

Figure 4 displays the results of multiple enhance- 382

ments, where the number of enhancements is in- 383

dicated. When the number of enhancements is 0, 384

it shows the score results of the original model; 385

other numbers represent the results after the cor- 386

responding number of enhancements. The table 387

reveals that the performance of the model does not 388

continuously improve with an increase in the num- 389

ber of enhancements. For instance, on the three 390

datasets, the W2NER model’s scores decreased af- 391

ter the second enhancement, while the TOE model 392

first showed a slow increase in scores, followed 393

by a downward trend. Consequently, in practice, 394

we have designed a mechanism in the SEDA-Mul 395

process: if the EBF score on the validation set de- 396

clines, further enhancements are stopped to prevent 397

worsening the predictive performance. 398

4.6 Ablation Experiments 399

We conducted ablation experiments to verify the 400

effectiveness of the enhancement technique in dif- 401

ferent modules. The baseline for comparison was 402

the score of each setting with a single enhancement. 403

According to the results in Section 4.3, the W2NER 404

model combined with the enhancement technique 405

outperformed the TOE model on multiple datasets. 406

Therefore, we chose the W2NER model to further 407

explore its impact. 408

The results are shown in Table 6. We tested three 409

settings: "only look forward" (forward-only sup- 410

plementation), "only look backward" (backward- 411

only supplementation), and "look both sides" (for- 412

ward and backward supplementation), conducting 413

multiple experiments within the range of 2 to 4. 414

The results indicate that as the supplementation ra- 415
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Figure 4: SEDA-Mul score line chart

CADEC ShARe13 ShARe14
P R F1 P R F1 P R F1

Paper Setting 71.34 75.25 73.29 82.73 82.45 82.59 78.46 83.81 81.05
only look forward =2 73.71 70.81 72.23 82.84 81.04 81.93 77.48 83.87 80.55
only look forward =3 71.07 73.94 72.48 82.51 81.85 82.18 79.07 82.27 80.64
only look forward =4 72.11 73.13 72.62 82.86 81.87 82.36 77.93 83.90 80.80
only look backward =2 71.37 74.04 72.68 83.57 80.95 82.24 77.03 84.98 80.81
only look backward =3 70.81 74.75 72.73 82.40 82.24 82.32 77.03 85.07 80.85
only look backward =4 71.95 74.34 73.12 82.80 82.22 82.51 77.78 84.32 80.92
look both side =2 71.00 73.94 72.44 82.76 82.11 82.44 78.46 83.81 81.05
look both side =3 72.04 74.44 73.22 82.73 82.45 82.59 79.46 82.61 81.00
look both side =4 71.34 75.25 73.29 82.45 82.21 82.33 79.99 81.92 80.94
w/o EBF 70.45 73.43 71.91 82.74 81.42 82.07 77.52 84.11 80.64

Table 6: Comparison table of scores for ablative experiments on the W2NER grid model

tio increases, the F1 score improves, confirming416

the effectiveness of the supplemental information.417

The "only look backward" setting outperformed418

the "only look forward" setting at supplementation419

ratios of 2 to 4.420

When combining the "look both sides" strategy,421

performance on all three datasets was better than422

with single-direction supplementation. Regarding423

parameter selection, the effect did not always in-424

crease with the ratio. The optimal parameter set-425

tings for each dataset are shown in Table 9, with426

the scores based on the best results from multiple427

experiments.428

The ablation analysis of the prediction selection429

strategy demonstrated its importance in improv-430

ing the accuracy of entity prediction at the end 431

positions. Without EBF, model performance signif- 432

icantly dropped, nearing the baseline level without 433

enhancement. This is mainly because EBF effec- 434

tively selects the correct entity positions, avoiding 435

numerous incorrect predictions, thus playing a cru- 436

cial role in the successful implementation of the 437

enhancement method. 438

4.7 Case Study 439

Table 7 shows the comparison before and after 440

SEDA, with the experimental setup using a block 441

size of 7 and the supplementation interval be- 442

ing only look backward 2. During the enhance- 443

ment process, we were able to remove some non- 444
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essential information, making the sentence transfor-445

mation grid more streamlined. As shown in Exam-446

ples 1 and 2, this resolves the issue of incomplete447

entity counts caused by discontinuous sentence seg-448

mentation. Example 3 originally contained two449

sentences, one of which included the discontinuous450

entity "diffuse...pain". Due to the segmentation of451

the original text, some entities could not be fully452

predicted. After SEDA, we were effectively able to453

predict new entities and gain additional information454

through the supplemental intervals (marked in blue455

font). These three examples showed significant im-456

provement after re-prediction, further proving the457

efficacy of our method.458

5 Conclusion459

In this paper, we propose a novel approach that460

applies the concept of image enhancement tech-461

niques to neural network models for Named Entity462

Recognition (NER), which has not been previously463

introduced in earlier works. This method results in464

more comprehensive prediction outcomes. After465

conducting evaluations and analyses across three466

different datasets, it was found that the integration467

of enhancement techniques significantly improved468

the prediction results. Ablation experiments further469

validated the effectiveness of these enhancements.470

Further experimental analysis indicates that our471

proposed model is better at identifying discontinu-472

ous entities.473

6 Limitations474

In the Limitations section, we explore the limita-475

tions of our research method from three perspec-476

tives. First, our method applies image enhance-477

ment techniques to discontinuous Named Entity478

Recognition (NER), and the enhancement process479

might disrupt the semantic structure, thus results480

could be limited when using architectures other481

than convolutional networks like CNNs. Second,482

our method relies on initial prediction results to483

proceed with subsequent SEDA processes, which484

might lead to higher time complexity in practical485

operations or computations, but this is acceptable if486

applied only in preprocessing. Lastly, we observe487

that the effectiveness of enhancements gradually488

diminishes after multiple iterations, possibly due to489

the multi-round intersect strategy still generating490

erroneous predicted entities. Therefore, in practical491

applications, one or two enhancements are usually492

sufficient. Future research will focus on how to493

Origin:
1. Lower legs starting to hurt after three weeks
of very painful feet. Can hardly walk without
higher pain level.
Ground Truth:
Lower legs. . . hurt/ very painful feet /
hardly walk / pain
First Predict:
hurt / very painful feet /walk / pain

SEDA:
1.Lower legs starting to hurt after three
2.after three weeks of very painful feet . Can
3.. Can hardly walk without higher
4.without higher pain level.
5.level.

SEDA Predict:
very Painful feet/ Legs. . . hurt /
hardly walk / pain
Origin:
1. Constant gas and constipation. It has re-
duced my cholesterol level.
Ground Truth:
gas/ constipation
First Predict:
Constant gas / constipation

SEDA:
1.Constant gas and constipation. It
2. . It has reduced my cholesterol level.
3. .

SEDA Predict: gas/ constipation
Origin:
1. Investigation of the transfusion reaction
revealed diffuse trunk
2.and arm pain during transfusion of compati-
ble red blood cells.
Ground Truth:
transfusion reaction / diffuse...pain
First Predict:
transfusion reaction / pain

SEDA:
1. Investigation of the transfusion reaction
revealed diffuse
2. revealed diffuse trunk and arm pain during
transfusion
3. during transfusion of compatible red blood
cells .
4. .

SEDA Predict:
transfusion reaction / diffuse...pain

Table 7: Case Study
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effectively remove these erroneous entities.494
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A Impact of Entity Boundaries623

To enhance the efficiency of the model in learning624

key features, at the beginning of our research, we625

explored the impact of entity boundaries on model626

predictions. We designed a series of experiments627

using the CADEC dataset, where parts of the given628

text unrelated to entities were masked. The experi-629

ments included masking the content before the first630

entity in the text, after the last entity, and both ends631

simultaneously, to observe the impact of bound-632

aries on model predictions. The results, as shown633

in Table 8, indicate that each masking effect signif-634

icantly influences entity prediction. It is observed635

that the model performs best when both ends are636

masked, with an F1 score of 0.7919; followed by637

masking only after the last entity with a score of638

0.7615, and finally masking only before the first639

entity with a score of 0.7456. These findings moti-640

vate us to further explore: if we choose a relatively641

ample approach in predictions by positioning the642

prediction of entity locations posteriorly, simulat-643

ing the situation through boundary confirmation644

by answers, whether it can enhance model perfor-645

mance.646

647

P R F1
Origin 75.65 67.78 71.50
Masking before the first
entity

76.71 72.53 74.56

Masking after the last en-
tity

78.92 73.74 76.15

Masking on both sides 78.99 79.39 79.19

Table 8: The influence of CADEC boundaries on enti-
ties.

B Model parameter settings 648

CADEC ShARe13 ShARe14
dh 768 768 768
dEd 20 20 20
dEt 20 20 20
dc 80 80 80
Dropout 0.5 0.5 0.5
Learning rate(BERT) 5e− 6 5e− 6 5e− 6
Learning rate(other) 1e− 3 1e− 3 1e− 3
Batch size 16 20 20
warm factor 0 0 0.1
weight decay 0 0.4 0.4
epoch 10 20 10
W2NER seed 123 123 123
TOE seed 1898 1898 1898

Table 9: Model parameter settings
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System Statistics CADEC ShARe13 ShARe14
Train Dev Test Train Dev Test Train Dev Test

Our
#Entities 4,430 898 990 5,146 675 5,340 10,354 810 7,993

#Discontinuous 489 93 93 560 93 437 992 93 625
%Discontinuous 11 10.4 9.4 10.9 13.8 8.2 9.6 11.5 7.8

W2NER/TOE
#Entities 4,430 898 990 5,146 669 5,333 10,354 771 7,922

#Discontinuous 491 94 94 581 71 436 1,004 80 566
%Discontinuous 11.1 10.5 9.5 11.3 10.6 8.2 9.7 10.4 7.1

CADEC ShARe 13 ShARe 14

Text type online posts clinical notes clinical notes
Entity type ADE Disorder Disorder

# Documents 1,250 298 433
# Tokens 121K 264K 494K

# Sentences 7,597 18,767 34,618
# Mentions 6,318 11,161 19,131

# Disc.M 675 (10.6) 1,090 (9.7) 1,710 (8.9)

Avg mention L. 2.7 1.8 1.7
Avg Disc.M L. 3.5 2.6 2.5
Avg interval L. 3.3 3.0 3.2

Discontinuous Mentions

2 components 650 (95.7) 1,026 (94.3) 1,574 (95.3)
3 components 27 ( 3.9) 62 ( 5.6) 76 ( 4.6)
4 components 2 ( 0.2) 0 ( 0.0) 0 ( 0.0)

No overlap 82 (12.0) 582 (53.4) 820 (49.6)
Overlap at left 351 (51.6) 376 (34.5) 616 (37.3)

Overlap at right 152 (22.3) 102 ( 9.3) 170 (10.3)
Multiple overlaps 94 (13.8) 28 ( 2.5) 44 ( 2.6)

Continuous Mentions

Overlap 326 ( 5.7) 157 ( 1.5) 228 ( 1.3)

Table 10: Statistics for three datasets are presented in each paper. The descriptive statistics of the data sets. ADE:
adverse drug events; Disc.M: discontinuous mentions; Disc.M L.: discontinuous mention length, where intervals
are not counted. Numbers in parentheses are the percentage of each category. This table is referenced by Dai
et al. (2020b). Note: We have discovered discrepancies in the total counts of discontinuous entities in the CADEC
database as reported by the W2NER and TOE systems compared to the totals described in the Dai et al. (2020b)
paper. This may be due to statistical errors or an increase in data volume. To avoid controversy, the experiments in
this paper are conducted using the entity counts we have recalculated.
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