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Abstract

Named Entity Recognition (NER) is a critical
task in natural language processing, particularly
challenging in identifying discontinuous enti-
ties. This study is the first to explore the appli-
cation of image data augmentation techniques
in the preprocessing phase for discontinuous
entity recognition, aiming to overcome the limi-
tations of traditional text segmentation methods.
Through experiments, we found that traditional
sentence segmentation methods might lead to
incorrect segmentation of cross-sentence dis-
continuous entities, affecting the accuracy of
model training and entity recognition. To ad-
dress this, we introduced a new preprocessing
strategy that combines graphic cropping, scal-
ing, and padding techniques to improve the
model’s ability to recognize discontinuous enti-
ties. Experiments on three benchmark datasets,
CADEC, ShARel3, and ShARel4, demon-
strated that our preprocessing method increased
the F1 scores of two state-of-the-art grid mod-
els by approximately 1% to 2.5%, proving the
effectiveness of this method. !

1 Introduction

Named Entity Recognition (NER) is a crucial task
in the field of natural language processing, aiming
to locate and classify named entities into predefined
categories from text. In recent years, NER research
has been subdivided into various task types, includ-
ing flat (Lample et al., 2016; Strubell et al., 2017),
overlapping (Yu et al., 2020; Shen et al., 2021), and
discontinuous (Dai et al., 2020a; Li et al., 2021)
NER tasks, with discontinuous NER seen as the
most challenging among them. As shown in Fig-
ure 1, entities in the sentence are discontinuous;
their representation might be nested, overlapping,
or even span multiple sentences. This diversity sig-
nificantly increases the difficulty of the recognition
task.

'The code is publicly available at

https://github.com/fang1204/SEDA.git

A patient at the downtown health clinic reports severe muscle \n
E1
pain in their legs and ankles.

Figure 1: Example showing two discontinuous entities

Therefore, preprocessing methods for discon-
tinuous entities are particularly tricky, requiring
special consideration to maintain entity integrity af-
ter text processing. A literature review reveals that
most studies focus on enhancing model architec-
tures or developing related auxiliary loss functions
(Tang et al., 2018; Lu and Roth, 2015; Katiyar and
Cardie, 2018; Wang and Lu, 2018; Yan et al., 2021;
Fei et al., 2021; Wang et al., 2020a; Yu et al., 2020;
Shen et al., 2021), with few discussing preprocess-
ing methods. Among these, we notice that many
research teams adopted the preprocessing script
proposed by Dai et al. (2020b) to segment datasets,
including specific character retention and tokeniza-
tion of sentences. In terms of sentence breaking,
a simple newline character is used as the division
standard, for example in Figure 1, the sentence is
divided into "Sentence one: A patient at the down-
town health clinic reports severe muscle" and "Sen-
tence two: pain in their legs and ankles.", where the
two discontinuous entities will be separated. Thus,
when cross-sentence discontinuous entities occur,
this method will fail to correctly identify the entity,
thereby affecting the model’s training performance.

Recently, with various model architecture inno-
vations, Li et al. (2022) introduced a unified model
to address different NER tasks, called the Unified
Word-Word Framework (Word2NER), transform-
ing discontinuous named entity recognition into
a problem of relationships between words, and
calculating lexical relations through a grid struc-
ture to identify entity boundaries and words. This
framework has shown excellent performance in
NER tasks. This method starts from a graphical



perspective, incorporating CNN-related technolo-
gies, prompting us to consider whether we could
adopt graphical preprocessing methods for the do-
main of discontinuous entity recognition. Thus,
this paper proposes a preprocessing method com-
bining image data enhancement techniques and a
self-learning strategy to further enhance model per-
formance. Our adopted image data enhancement
techniques (Mikotajczyk and Grochowski, 2018;
Connor and Khoshgoftaar, 2019) include graphical
cropping, scaling, and filling intervals, to improve
model predictions.

Visual explanation of image data augmenta-
tion, as shown in Figure 2: assuming the main
task is to identify a cat, the target object inside
the red frame can be recognized, and the blue area
fills out the supplemental intervals. We apply this
concept to the grid model, as shown below Figure
2, in the sentence "I do experience stomach pain
from time to time," where the entity "stomach pain"
corresponds to the key part in the red area, while
the surrounding blue blocks serve as supplemental
intervals, extending the key area, with other areas
serving as background information. Overall, our
research contributions can be summarized in three
points:

* To our knowledge, we are the first to propose
the application of image enhancement meth-
ods to the field of discontinuous entity recog-
nition.

* Our proposed method uses various image en-
hancement techniques to overcome the limita-
tions of grid models.

* Finally, we demonstrate the generalizability
and effectiveness of our method through dif-
ferent datasets and grid models.

2 Related work

2.1 Grid-tagging method

Recently, grid-tagging methods have shown
promising performance in the domain of discon-
tinuous Named Entity Recognition (NER). These
methods use architectures such as CLN(Liu et al.,
2021) and convolutional neural networks(Yu and
Koltun, 2016) to predict the relationships between
words. The earliest related research can be traced
back to Wang et al. (2020b), who proposed con-
verting the boundaries of entities into a token pair
linking problem and designed it on a grid. The fol-
lowing year, Wang et al. (2021) further proposed

I do experience stomach pain from time to time.
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Figure 2: The object boundaries in the image correspond
to the entity boundaries in the grid

using two grids to predict entity boundaries and en-
tity word relationships, then decoding the complete
entities from the entity fragment graph through
maximal clique discovery (Dutta and Lauri, 2019).
Subsequently, Li et al. (2022) also proposed a grid-
labeling based approach. It transforms discontinu-
ous Named Entity Recognition (NER) into a prob-
lem of identifying relationships between words,
setting up two textual relations: Next-Neighboring-
Word (NNW) and Tail-Head-Word (THW), and
using a grid to contain all relationships between
words. Lastly, Liu et al. (2022) proposed extend-
ing the word-to-word relationships introduced by
Li et al., by further expanding with two additional
labels: Previous-Neighboring-Word (PNW) and
Head-Tail-Word (HTW), to enrich the representa-
tion of relationships between words.

2.2 Image Data Augmentation

Image data augmentation is a technique used to en-
hance the performance of machine learning models,
particularly in the fields of image processing and
computer vision (Wang et al., 2017; Kumar et al.,
2023). This technique involves applying a series of
transformations to original images to generate new
training samples, thereby increasing the diversity
and size of the dataset. The primary goal of data
augmentation is to improve the model’s generaliz-
ability to new, unseen data, enhancing its accuracy
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Figure 3: Flowchart of the method

and robustness (Fawzi et al., 2016; Mikotajczyk
and Grochowski, 2018). In this study, we have
chosen to adjust scaling and cropping as our meth-
ods of augmentation, which are applied within a
grid framework. We will detail our methods in
subsequent chapters.

3 Methodology

This paper proposes a preprocessing method that
enhances grid training by combining image data
augmentation techniques, leveraging a self-adapted
learning approach to progressively train the model
to be entity-centric. This method is named
“SEDA”. Initially, the method optimizes the entity
boundaries predicted by the model and re-predicts
through an augmentation process. The process
comprises four stages: entity boundary prediction,
grid size normalization, entity localization, and
supplementary interval. The detailed methodolo-
gies for each stage will be explained in Sections
3.1 to 3.4, with Figure 3 illustrating the process ar-
chitecture. Subsequently, we can further optimize
the predictions iteratively. This concept is based
on using the results after a single augmentation
as a baseline to develop this stage, repeating the

process outlined in Sections 3.1 to 3.4. In each
iteration, we intersect the current predictions with
the previous predictions and continue with the sub-
sequent augmentation steps, allowing the entities
to progressively approach the correct answers. The
subsequent experimental analysis will separately
demonstrate the effects of single and multiple aug-
mentations. Next, we will introduce each stage in
detail.

3.1 Entity Boundary Prediction

Firstly, as shown in Figures 3(a) to (c), we use
a grid tagging model to generate initial target en-
tities and obtain better entity boundary positions
through entity boundary prediction. To evaluate
these results, we designed a unique set of scoring
metrics—Entity Boundary F1 score (EBF), Entity
Boundary Precision (EBP), and Entity Boundary
Recall (EBR), where EBF is the primary scoring
metric used in the initial boundary prediction phase
as well as in the subsequent section 3.4. Unlike
the traditional F1 score, EBF employs a more le-
nient strategy, allowing for the prediction of more
potential entities. Specifically, we only consider
whether the head and tail tokens of the predicted



entity match those of the correct entity.

Assuming there are |D| number of documents,
each with correct entities £ = {ey, ..., e, }, where
n is the number of answer entities, and predicted
entities £/ = {e, ..., e}, }, where m is the num-
ber of predicted answer entities. Extract the last
word of each entity from texts E and E’, resulting
in G = {g1, ..., gn }, the last words of the correct
entities, and their corresponding last words of pre-
dicted entities P = {p1, ..., pm }, With a specific
formula design as follows:

Dl n m

1
EBP = Bim Zd:z zj: S(pi,g;) (1)

Dl n m

EBR = |D1|n S Skng) @
d % 7

1 pi=gyj
S(pi»gj) = 3)
’ 0 pi#gj
2x EBP x EBR
EBF = 4
EBP + EBR @)

Document length | Grid Size
~200 7
200~350 9
350~500 11
500~-1000 13
1000~1350 15
1350~1500 16
1500~2000 17
2000~ 19

Table 1: Setting grid sizes corresponding to document
sizes

3.2 Grid Size Standardization

The purpose of grid size standardization is to keep
the grid size within a specific range to address the
issue of reduced model prediction capability when
the input is too long. Entity Boundary Prediction
results are arranged in an odd-even pattern: sen-
tences at odd positions represent predicted entities,
and even-positioned sentences contain the remain-
ing text and are longer. As shown in Figure 3(d),
we extract these predicted entities and use them
as a basis for segmentation. To limit the grid size,

2When entities are predicted to be close to each other
(char<=10), we merge them.

we segment sentences at even positions into block
sizes according to the size of different texts, as de-
tailed in Table 1. For instance, the size specification
for the text in the example is 7, and the sentence
"In one ankle then a knee the other knee. This may
be related to an underlying disease." exceeds the
size specification, so it is split into three segments:
2-1, 2-2, and 2-3, as illustrated in Figure 3(e). This
approach effectively maintains the grid size within
a certain range.

3.3 Entity Localization

Next, we design the placement of predicted entities
at predetermined locations, primarily positioning
the predicted entities later, detailed location choices
can be seen in Appendix A. The purpose of this
stage is to allow the model to learn the regularity
of the data, enhancing its training efficiency. We
merge the odd and even-positioned sentences, ar-
ranging them in the order of even sentences first,
followed by odd sentences, ensuring that each pre-
dicted entity is positioned at the end of the sentence,
as the change from (e) to (f) in Figure 3 shows,
sequentially connecting even sentence "0" to odd
sentence "1". For cases like "2-1", "2-2", "2-3"
where the sentences are even-numbered and do not
contain predicted entities, and no predicted entities
are subsequently found, no action is taken in this
stage. Simultaneously, we also define two types of
sentences: ES (sentences containing predicted enti-
ties) and NES (sentences not containing predicted
entities), for subsequent use.

3.4 Supplemental Intervals

Subsequently, to prevent the unintended truncation
of entities during text segmentation and to ensure
the integrity of the predicted entities, we draw inspi-
ration from the concept of magnification in graphic
data enhancement to adjust grid size, as shown in
(g) of Figure 3. The blue blocks in the example
represent the supplemental intervals. Specifically,
we designed strategies for pre-supplemental and
post-supplemental intervals. For sentences contain-
ing predicted entities (ES), one can choose to apply
either a pre-supplemental or a post-supplemental;
for sentences that do not contain predicted entities
(NES), it’s possible to apply either or both types
of supplements. In the figure, the setting is to ap-
ply a post-supplemental of 3 to ES. This method
effectively compensates for the parts of predicted
entities that might be missed or lacking.



CADEC ShARel3 ShARel4
All Train Dev Test All Train Dev  Test All Train Dev  Test
#Entities 6,318 4,430 898 990 | 11,161 5,146 675 5,340 | 19,157 10,354 810 7,993
#Discontinuous 675 489 93 93 1,090 560 93 437 1,710 992 93 635
%Discontinuous  10.7 11 104 94 9.8 109 13.8 8.2 8.9 9.6 11.5 7.8

Table 2: Complete statistics of three datasets.

Finally, in the testing phase, the process is iden-
tical to the aforementioned stages: starting with
a preliminary prediction of the target document,
followed by steps such as grid size normalization,
entity localization, and supplemental intervals, and
then prediction. Next, through experiments, we
will demonstrate the effectiveness using the current
state-of-the-art (SOTA) grid model.

4 Experiments and Results Analysis

4.1 Dataset Introduction

To validate the effectiveness of our method, we
selected three Named Entity Recognition (NER)
datasets from the biomedical or clinical domain,
each featuring discontinuous, nested, and flat enti-
ties, namely CADEC, Share/CLEF 2013 (abbrevi-
ated as ShARe13), and Share/CLEF 2014 (abbre-
viated as ShARe14). Additionally, this study con-
tinues previous research on Adverse Drug Events
(ADESs) entities and Disorder entities. We have
tabulated the number of entities in each dataset and
the proportion of discontinuous entities as shown
in Table 2. Furthermore, we have corrected the test
data counts for past datasets, adjusting the number
for ShARel3 from 5333 to 5340, for ShARel4
from 7922 to 7993, while the data for CADEC
remains unchanged. For a detailed comparison of
entity counts, please refer to the table 10.

4.2 Backbone Models

We employ the two most state-of-the-art (SOTA)
grid models currently used in discontinuous NER:
1) W2NER (Li et al., 2022): This model repre-
sents the adjacency relationships between entity
words as a two-dimensional grid and refines the
grid representation through multi-granularity two-
dimensional convolution operations to capture com-
plex relationships between entities.

2) TOE (Liu et al., 2022): Based on the W2NER
model, this model constructs additional textual rela-
tions and designs a Tag Representation Embedding
Module (TREM) to enhance the model’s under-
standing and representation of entity relationships.

We apply our method to these two models and

demonstrate its effectiveness through experimental
results.

4.3 Results and Analyses

The results are shown in Table 3, where the first
two columns, W2NER and TOE, represent the orig-
inal scores from the papers, and § denotes our re-
sults after multiple validations. The discrepancy
between the original paper scores and our execu-
tion results was discussed with other researchers
and is preliminarily attributed to randomness. Ad-
ditionally, we discovered a lack of completeness
in the original dataset statistics. Therefore, we up-
dated the dataset to reflect the correct number of
entities and fixed the seed for subsequent experi-
ments, executing both the original model and our
method. Parameter settings are detailed in Table
9. The final scores were calculated based on all
test entities in each dataset. “SEDA-Once” and
“SEDA-Mul” represent the results of single and
multiple enhancements, respectively. It can be ob-
served that applying our method to the grid models
significantly improved scores across all datasets.

Under single enhancement, the effects on
W2NER and TOE are notable. W2NER’s F1
scores increased by 1.79% on CADEC, 1.06% on
ShARel3, and 0.56% on ShARel4. TOE’s scores
improved by 0.43%, 0.88%, and 0.23%, respec-
tively. After multiple enhancements, W2NER’s
scores further increased to 2.48% on CADEC,
1.27% on ShARel3, and 1.12% on ShARel4,
while TOE’s scores improved by 0.95%, 1.4%, and
0.93%. This demonstrates that our enhancement
technique can improve prediction accuracy by ap-
proximately 1%.

Comparing W2NER and TOE, we found that
TOE’s performance is slightly lower than W2NER.
This may be because TOE primarily enhances the
relationships between words to improve prediction
accuracy, whereas our technique adjusts the grid
through trimming and supplementation.

Finally, Table 4 shows the upper limits of our
method’s scores, all based on single enhancement.
If the EBF is successfully increased to 1 during



CADEC ShARel3 ShARel4
METHOD P R F1 P R F1 P R F1
W2NER (Li et al., 2022) 74.09 72.35 73.21 85.57 79.68 82.52 79.88 83.71 81.75
TOE (Liu et al., 2022)  77.77 70.66 74.04 85.18 80.12 82.57 8226 8257 82.41
W2NER 71.01 74.24 72.59 8191 8l1.16 81.53 79.38 81.63 80.49
W2NER + SEDA-Once  71.34 75.25  *73.29 82.73 8245 *82.59 7846 83.81 *81.05
W2NER + SEDA-Mul  74.44 7354 **7398 8292 82.67 **82.80 80.30 82.90 **81.61
TOE 7 76.07 68.66 72.17 82.04 80.52 81.27 7838 82.52 80.39
TOE + SEDA-Once 71.50 73.74 72.60 82.57 81.74  *82.15 80.34 80.91 80.62
TOE + SEDA-Mul 74.14 72,12 *73.12 86.62 79.05 **82.67 79.46 83.26  *81.32

Table 3: The table shows the results of different datasets under two grid architectures, where "{" indicates the
scores we replicated, and bold numbers represent the highest scores in each column. "*" denotes significance at
p — value < 0.05 and "**" denotes < 0.01. Our scores presented are based on calculations from all test entities.
SEDA-Once refers to single data augmentation, while SEDA-Mul refers to multiple data augmentations.

Model Dataset P R F1
CADEC 80.41 79.60 80.00
W2NER ShARel3 86.95 82.62 84.73
ShARel4 84.11 86.47 85.27
CADEC 7895 79.19 79.07
TOE ShARel3 84.61 83.11 83.85
ShARel4 84.31 85.30 84.80
Table 4: Orcale score
CADEC ShARel3 ShARel4
ES 1 1 1
NES 1 0 0
look forward 4 3 2
look backward 4 3 2

Table 5: Parameter settings

enhancement, W2NER’s F1 scores on CADEC,
ShARel13, and ShARel4 could reach 80.00%,
84.73%, and 85.27%, respectively. TOE’s scores
could reach 79.07%, 83.95%, and 84.80%. This in-
dicates that if we can perfectly predict the head and
tail of discontinuous entities, the model’s perfor-
mance will further improve under our framework.

4.4 Experiment Settings

In terms of experimental settings, the configuration
of parameters is detailed in Table 5. In the table,
the ES/NES settings with 1 and 0 indicate whether
supplemental intervals were used, where 1 repre-
sents the use of supplemental intervals and O rep-
resents not using them. "Look forward" and "look
backward" correspond to the ratios of forward and
backward supplementation, respectively. For other
model parameters and learning rates, please refer
to Table 9.

4.5 SEDA-Mul

Figure 4 displays the results of multiple enhance-
ments, where the number of enhancements is in-
dicated. When the number of enhancements is O,
it shows the score results of the original model;
other numbers represent the results after the cor-
responding number of enhancements. The table
reveals that the performance of the model does not
continuously improve with an increase in the num-
ber of enhancements. For instance, on the three
datasets, the W2NER model’s scores decreased af-
ter the second enhancement, while the TOE model
first showed a slow increase in scores, followed
by a downward trend. Consequently, in practice,
we have designed a mechanism in the SEDA-Mul
process: if the EBF score on the validation set de-
clines, further enhancements are stopped to prevent
worsening the predictive performance.

4.6 Ablation Experiments

We conducted ablation experiments to verify the
effectiveness of the enhancement technique in dif-
ferent modules. The baseline for comparison was
the score of each setting with a single enhancement.
According to the results in Section 4.3, the W2NER
model combined with the enhancement technique
outperformed the TOE model on multiple datasets.
Therefore, we chose the W2NER model to further
explore its impact.

The results are shown in Table 6. We tested three
settings: "only look forward" (forward-only sup-
plementation), "only look backward" (backward-
only supplementation), and "look both sides" (for-
ward and backward supplementation), conducting
multiple experiments within the range of 2 to 4.
The results indicate that as the supplementation ra-
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Figure 4: SEDA-Mul score line chart

CADEC ShARel3 ShARe1l4
P R F1 P R F1 P R F1
Paper Setting 71.34 7525 7329 8273 8245 82.59 7846 83.81 81.05
only look forward =2~ 73.71 70.81 72.23 82.84 81.04 8193 7748 83.87 80.55
only look forward =3 ~ 71.07 7394 7248 8251 81.85 82.18 79.07 82.27 80.64
only look forward=4  72.11 73.13 72.62 82.86 81.87 8236 77.93 8390 80.80
only look backward =2 71.37 74.04 72.68 83.57 8095 8224 77.03 8498 80.81
only look backward =3  70.81 74.75 72.73 8240 8224 8232 77.03 85.07 80.85
only look backward =4 71.95 74.34 73.12 82.80 8222 8251 77.78 84.32 80.92
look both side =2 71.00 7394 7244 8276 82.11 8244 7846 83.81 81.05
look both side =3 72.04 7444 7322 8273 8245 8259 7946 8261 81.00
look both side =4 71.34 7525 7329 8245 8221 8233 79.99 8192 80.94
w/o EBF 7045 7343 7191 8274 8142 82.07 77.52 84.11 80.64

Table 6: Comparison table of scores for ablative experiments on the W2NER grid model

tio increases, the F1 score improves, confirming
the effectiveness of the supplemental information.
The "only look backward" setting outperformed
the "only look forward" setting at supplementation
ratios of 2 to 4.

When combining the "look both sides" strategy,
performance on all three datasets was better than
with single-direction supplementation. Regarding
parameter selection, the effect did not always in-
crease with the ratio. The optimal parameter set-
tings for each dataset are shown in Table 9, with
the scores based on the best results from multiple
experiments.

The ablation analysis of the prediction selection
strategy demonstrated its importance in improv-

ing the accuracy of entity prediction at the end
positions. Without EBF, model performance signif-
icantly dropped, nearing the baseline level without
enhancement. This is mainly because EBF effec-
tively selects the correct entity positions, avoiding
numerous incorrect predictions, thus playing a cru-
cial role in the successful implementation of the
enhancement method.

4.7 Case Study

Table 7 shows the comparison before and after
SEDA, with the experimental setup using a block
size of 7 and the supplementation interval be-
ing only look backward 2. During the enhance-
ment process, we were able to remove some non-



essential information, making the sentence transfor-
mation grid more streamlined. As shown in Exam-
ples 1 and 2, this resolves the issue of incomplete
entity counts caused by discontinuous sentence seg-
mentation. Example 3 originally contained two
sentences, one of which included the discontinuous
entity "diffuse...pain". Due to the segmentation of
the original text, some entities could not be fully
predicted. After SEDA, we were effectively able to
predict new entities and gain additional information
through the supplemental intervals (marked in blue
font). These three examples showed significant im-
provement after re-prediction, further proving the
efficacy of our method.

5 Conclusion

In this paper, we propose a novel approach that
applies the concept of image enhancement tech-
niques to neural network models for Named Entity
Recognition (NER), which has not been previously
introduced in earlier works. This method results in
more comprehensive prediction outcomes. After
conducting evaluations and analyses across three
different datasets, it was found that the integration
of enhancement techniques significantly improved
the prediction results. Ablation experiments further
validated the effectiveness of these enhancements.
Further experimental analysis indicates that our
proposed model is better at identifying discontinu-
ous entities.

6 Limitations

In the Limitations section, we explore the limita-
tions of our research method from three perspec-
tives. First, our method applies image enhance-
ment techniques to discontinuous Named Entity
Recognition (NER), and the enhancement process
might disrupt the semantic structure, thus results
could be limited when using architectures other
than convolutional networks like CNNs. Second,
our method relies on initial prediction results to
proceed with subsequent SEDA processes, which
might lead to higher time complexity in practical
operations or computations, but this is acceptable if
applied only in preprocessing. Lastly, we observe
that the effectiveness of enhancements gradually
diminishes after multiple iterations, possibly due to
the multi-round intersect strategy still generating
erroneous predicted entities. Therefore, in practical
applications, one or two enhancements are usually
sufficient. Future research will focus on how to

Origin:

1. Lower legs starting to hurt after three weeks
of very painful feet. Can hardly walk without
higher pain level.

Ground Truth:

Lower legs. .. hurt/ very painful feet /

hardly walk / pain

First Predict:

hurt / very painful feet /walk / pain

SEDA:

1.Lower legs starting to hurt after three
2.after three weeks of very painful feet . Can
3.. Can hardly walk without higher
4.without higher pain level.

S.level.

SEDA Predict:
very Painful feet/ Legs. .. hurt /
hardly walk / pain

Origin:

1. Constant gas and constipation. It has re-
duced my cholesterol level.

Ground Truth:

gas/ constipation

First Predict:

Constant gas / constipation

SEDA:

1.Constant gas and constipation. It

2. . It has reduced my cholesterol level.
3.

SEDA Predict: gas/ constipation

Origin:

1. Investigation of the transfusion reaction
revealed diffuse trunk

2.and arm pain during transfusion of compati-
ble red blood cells.

Ground Truth:

transfusion reaction / diffuse...pain

First Predict:

transfusion reaction / pain

SEDA:

1. Investigation of the transfusion reaction
revealed diffuse

2. revealed diffuse trunk and arm pain during
transfusion

3. during transfusion of compatible red blood

cells .
4. .

SEDA Predict:

transfusion reaction / diffuse...pain

Table 7: Case Study



effectively remove these erroneous entities.
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A Impact of Entity Boundaries

To enhance the efficiency of the model in learning
key features, at the beginning of our research, we
explored the impact of entity boundaries on model
predictions. We designed a series of experiments
using the CADEC dataset, where parts of the given
text unrelated to entities were masked. The experi-
ments included masking the content before the first
entity in the text, after the last entity, and both ends
simultaneously, to observe the impact of bound-
aries on model predictions. The results, as shown
in Table 8, indicate that each masking effect signif-
icantly influences entity prediction. It is observed
that the model performs best when both ends are
masked, with an F1 score of 0.7919; followed by
masking only after the last entity with a score of
0.7615, and finally masking only before the first
entity with a score of 0.7456. These findings moti-
vate us to further explore: if we choose a relatively
ample approach in predictions by positioning the
prediction of entity locations posteriorly, simulat-
ing the situation through boundary confirmation
by answers, whether it can enhance model perfor-
mance.
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P R F1
Origin 75.65 67.78 71.50
Masking before the first 76.71 72.53 74.56
entity
Masking after the last en- 78.92 73.74 76.15
tity
Masking on both sides 7899 79.39 79.19

Table 8: The influence of CADEC boundaries on enti-

ties.

B Model parameter settings

CADEC ShARel3 ShARel4

dp, 768 768 768
dgq 20 20 20
dpt 20 20 20
dec 80 80 80
Dropout 0.5 0.5 0.5
Learning rate(BERT)  5e — 6 Se — 6 5e — 6
Learning rate(other) le—3 le—3 le—3
Batch size 16 20 20
warm factor 0 0 0.1
weight decay 0 0.4 0.4
epoch 10 20 10
W2NER seed 123 123 123
TOE seed 1898 1898 1898

Table 9: Model parameter settings


https://doi.org/10.18653/v1/2020.coling-main.138
https://doi.org/10.18653/v1/2021.acl-long.63
https://doi.org/10.18653/v1/2021.acl-long.63
https://doi.org/10.18653/v1/2021.acl-long.63
https://doi.org/10.18653/v1/2021.acl-long.63
https://doi.org/10.18653/v1/2021.acl-long.63
http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/1511.07122

CADEC ShARel3 ShARel4

Train Dev Test | Train Dev  Test Train Dev  Test
#Entities 4430 898 990 | 5,146 675 5,340 | 10,354 810 7,993

Our #Discontinuous 489 93 93 560 93 437 992 93 625

%Discontinuous 11 104 94 | 109 138 82 9.6 11.5 7.8
#Entities 4430 898 990 | 5,146 669 5,333 | 10,354 771 7,922

W2NER/TOE #Discontinuous 491 94 94 581 71 436 1,004 80 566

%Discontinuous  11.1  10.5 9.5 11.3 106 8.2 9.7 104 7.1

System Statistics

CADEC ShARe13 ShARe 14

Text type online posts clinical notes clinical notes

Entity type ADE Disorder Disorder

# Documents 1,250 298 433

# Tokens 121K 264K 494K

# Sentences 7,597 18,767 34,618

# Mentions 6,318 11,161 19,131

#Disc.M 675 (10.6) 1,090 (9.7) 1,710 (8.9)

Avg mention L. 2.7 1.8 1.7
Avg Disc.M L. 35 2.6 2.5
Avg interval L. 33 3.0 32

Discontinuous Mentions

2 components 650 (95.7) 1,026 (94.3) 1,574 (95.3)
3 components 27 ( 3.9) 62 ( 5.6) 76 ( 4.6)
4 components 2(0.2) 0( 0.0 0( 0.0

Nooverlap 82 (12.0) 582(53.4) 820 (49.6)
Overlap at left 351 (51.6) 376 (34.5) 616 (37.3)
Overlap atright 152 (22.3)  102( 9.3)  170(10.3)
Multiple overlaps 94 (13.8) 28 ( 2.5) 44 ( 2.6)

Continuous Mentions

Overlap 326 ( 5.7) 157( 1.5) 228( 1.3)

Table 10: Statistics for three datasets are presented in each paper. The descriptive statistics of the data sets. ADE:
adverse drug events; Disc.M: discontinuous mentions; Disc.M L.: discontinuous mention length, where intervals
are not counted. Numbers in parentheses are the percentage of each category. This table is referenced by Dai
et al. (2020b). Note: We have discovered discrepancies in the total counts of discontinuous entities in the CADEC
database as reported by the W2NER and TOE systems compared to the totals described in the Dai et al. (2020b)
paper. This may be due to statistical errors or an increase in data volume. To avoid controversy, the experiments in
this paper are conducted using the entity counts we have recalculated.
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