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Abstract

While Online Gradient Descent and other no-regret learning procedures are known
to efficiently converge to a coarse correlated equilibrium in games where each
agent’s utility is concave in their own strategy, this is not the case when utilities
are non-concave – a common scenario in machine learning applications involving
strategies parameterized by deep neural networks, or when agents’ utilities are
computed by neural networks, or both. Non-concave games introduce significant
game-theoretic and optimization challenges: (i) Nash equilibria may not exist;
(ii) local Nash equilibria, though they exist, are intractable; and (iii) mixed Nash,
correlated, and coarse correlated equilibria generally have infinite support and
are intractable. To sidestep these challenges, we revisit the classical solution
concept of Φ-equilibria introduced by Greenwald and Jafari [GJ03], which is
guaranteed to exist for an arbitrary set of strategy modifications Φ even in non-
concave games [SL07]. However, the tractability of Φ-equilibria in such games
remains elusive. In this paper, we initiate the study of tractable Φ-equilibria in non-
concave games and examine several natural families of strategy modifications. We
show that when Φ is finite, there exists an efficient uncoupled learning algorithm
that approximates the corresponding Φ-equilibria. Additionally, we explore cases
where Φ is infinite but consists of local modifications, showing that Online Gradient
Descent can efficiently approximate Φ-equilibria in non-trivial regimes.

1 Introduction

Von Neumann’s celebrated minimax theorem establishes the existence of Nash equilibrium in all
two-player zero-sum games where the players’ utilities are continuous as well as concave in their
own strategy [Neu28].1 This assumption that players’ utilities are concave, or quasi-concave, in their
own strategies has been a cornerstone for the development of equilibrium theory in Economics, Game
Theory, and a host of other theoretical and applied fields that make use of equilibrium concepts. In
particular, (quasi-)concavity is key for showing the existence of many types of equilibrium, from
generalizations of min-max equilibrium [Fan53; Sio58] to competitive equilibrium in exchange
economies [AD54; McK54], mixed Nash equilibrium in finite normal-form games [Nas50], and,
more generally, Nash equilibrium in (quasi-)concave games [Deb52; Ros65].

1Throughout this paper, we model games using the standard convention in Game Theory that each player
has a utility function that they want to maximize. This is, of course, equivalent to modeling the players as loss
minimizers, a convention more common in learning. When we say that a player’s utility is concave (respectively
non-concave) in their strategy, this is the same as saying that the player’s loss is convex (respectively non-convex)
in their strategy.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Table 1: A comparison between different solution concepts in multi-player non-concave games. We
include definitions of Nash equilibrium, mixed Nash equilibrium, (coarse) correlated equilibrium,
strict local Nash equilibrium, and second-order local Nash equilibrium in Appendix B. We also give
a detailed discussion on the existence and complexity of these solution concepts in Appendix B.

Solution Concept Incentive Guarantee Existence Complexity
Nash equilibrium ✗

Mixed Nash equilibrium ✓
(Coarse) Correlated equilibrium

Global stability
✓

Strict local Nash equilibrium Local stability ✗
Second-order local Nash equilibrium Second-order stability ✗

NP-hard
[MK87; AZ22]

Local Nash equilibrium First-order stability ✓ PPAD-hard [DSZ21]

Φ-equilibrium (finite |Φ|) Stability against
finite deviations ✓

Efficient ε-approximation
for any ε > 0 (Theorem 2)

Conv(Φ(δ))-equilibrium (finite |Φ(δ)|) ✓
Efficient ε-approximation

for ε = Ω(δ2) (Theorem 4)

Φproj(δ)-equilibrium ✓
Efficient ε-approximation

via GD/OG for ε = Ω(δ2) (Theorem 3,9)

ΦInt(δ)-equilibrium

First-order stability
when ε = Ω(δ2)

✓
Efficient ε-approximation

via no-regret learning for ε = Ω(δ2) (Theorem 5)

Not only are equilibria guaranteed to exist in concave games, but it is also well-established—thanks
to a long line of work at the interface of game theory, learning and optimization whose origins
can be traced to Dantzig’s work on linear programming [Geo63], Brown and Robinson’s work
on fictitious play [Bro51; Rob51], Blackwell’s approachability theorem [Bla56] and Hannan’s
consistency theory [Han57]—that several solution concepts are efficiently computable both centrally
and via decentralized learning dynamics. For instance, it is well-known that the learning dynamics
produced when the players of a game iteratively update their strategies using no-regret learning
algorithms, such as online gradient descent, is guaranteed to converge to Nash equilibrium in two-
player zero-sum concave games, and to coarse correlated equilibrium in multi-player general-sum
concave games [CL06]. The existence of such simple decentralized dynamics further justifies using
these solution concepts to predict the outcome of real-life multi-agent interactions where agents
deploy strategies, obtain feedback, and use that feedback to update their strategies.

While (quasi-)concave utilities have been instrumental in the development of equilibrium theory,
as described above, they are also too restrictive an assumption. Several modern applications and
outstanding challenges in Machine Learning, from training Generative Adversarial Networks (GANs)
to Multi-Agent Reinforcement Learning (MARL) as well as generic multi-agent Deep Learning
settings where the agents’ strategies are parameterized by deep neural networks or their utilities
are computed by deep neural networks, or both, give rise to games where the agents’ utilities are
non-concave in their own strategies. We call these games non-concave, following [Das22].

Unfortunately, classical equilibrium theory quickly hits a wall in non-concave games. First, Nash
equilibria are no longer guaranteed to exist. Second, while mixed Nash, correlated and coarse
correlated equilibria do exist—under convexity and compactness of the strategy sets [Gli52], which
we have been assuming all along in our discussion so far, they have infinite support, in general [Kar14].
Finally, they are computationally intractable; so, a fortiori, they are also intractable to attain via
decentralized learning dynamics.

In view of the importance of non-concave games in emerging ML applications and the afore-described
state-of-affairs, our investigation is motivated by the following broad and largely open question:

Question from [Das22]: Is there a theory of non-concave games? What solution concepts are
meaningful, universal, and tractable?

1.1 Contributions

We study Daskalakis’ question through the lens of the classical solution concept of Φ-equilibria
introduced by Greenwald and Jafari [GJ03]. This concept is guaranteed to exist for virtually any
set of strategy modifications Φ, even in non-concave games, as demonstrated by Stoltz and Lugosi
[SL07].2 However, the tractability of Φ-equilibria in such games remains elusive. In this paper, we
initiate the study of tractable Φ-equilibria in non-concave games and examine several natural families
of strategy modifications.

2Stoltz and Lugosi [SL07] only require the elements of Φ to be measurable functions.
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Figure 1: The relationship between different solution concepts in non-concave games. An arrow
from one solution concept to another means the former is contained in the latter. The dashed arrow
from Conv(Φ(δ))-equilibria to ΦFinite-equilibria means the former is contained in the latter when
Φ(δ) = ΦFinite.

Φ!"#$(𝛿) -Eq. Φ%&'(𝛿)-Eq.CCE

Local NE

NE

MNE

CE

Φ()&)'* -Eq. Conv Φ 𝛿 -Eq.

Global Deviation Local Deviation

Φ-Equilibrium. The concept of Φ-equilibrium generalizes (coarse) correlated equilibrium. A Φ-
equilibrium is a joint distribution over Πni=1Xi, the Cartesian product of all players’ strategy sets,
and is defined in terms of a set, ΦXi , of strategy modifications, for each player i. The set ΦXi

contains functions mapping Xi to itself. A joint distribution over strategy profiles qualifies as a
Φ = Πni=1Φ

Xi-equilibrium if no player i can increase their expected utility by using any strategy
modification function, ϕi ∈ ΦXi , on the strategy sampled from the joint distribution. The larger
the set Φ, the stronger the incentive guarantee offered by the Φ-equilibrium. For example, if ΦXi

contains all constant functions, the corresponding Φ-equilibrium coincides with the notion of coarse
correlated equilibrium. Throughout the paper, we also consider ε-approximate Φ-equilibria, where
no player can gain more than ε by deviating using any function from ΦXi . We study several families
of Φ and illustrate their relationships in Figure 1.

Finite Set of Global Deviations. The first case we consider is when each player i’s set of strat-
egy modifications, ΦXi , contains a finite number of arbitrary functions mapping Xi to itself. As
shown in [GJ03], if there exists an online learning algorithm where each player i is guaranteed
to have sublinear ΦXi-regret, the empirical distribution of joint strategies played converges to a
Φ = Πni=1Φ

Xi-equilibrium. Gordon, Greenwald, and Marks [GGM08] consider Φ-regret minimiza-
tion but for concave reward functions, and their results, therefore, do not apply to non-concave games.
Stoltz and Lugosi [SL07] provide an algorithm that achieves no ΦXi-regret in non-concave games;
however, their algorithm requires a fixed-point computation per step, making it computationally
inefficient.3 Our first contribution is to provide an efficient randomized algorithm that achieves no
ΦXi -regret for each player i with high probability.

Contribution 1: Let X be a strategy set (not necessarily compact or convex), and Ψ an arbitrary
finite set of strategy modification functions for X . We design a randomized online learning
algorithm that achieves O

(√
T log |Ψ|

)
Ψ-regret, with high probability, for arbitrary bounded

reward functions on X (Theorem 2). The algorithm operates in time
√
T |Ψ| per iteration. If

every player in a non-concave game adopts this algorithm, the empirical distribution of strategy
profiles played forms an ε-approximate Φ = Πni=1Φ

Xi-equilibrium, with high probability, for
any ε > 0, after poly

(
1
ε , log

(
maxi |ΦXi |

)
, log n

)
iterations.

If players have infinitely many global strategy modifications, we can extend Algorithm 1 by dis-
cretizing the set of strategy modifications under mild assumptions, such as the modifications being
Lipschitz (Corollary 1). The empirical distribution of the strategy profiles still converges to the
corresponding Φ-equilibrium, but at a much slower rate of O(T− 1

d+2 ), where d is the dimension
of the set of strategies. Additionally, the algorithm requires exponential time in the dimension per
iteration, making it inefficient. This inefficiency is unavoidable, as the problem remains intractable
even when Φ contains only constant functions.

3The existence of the fixed point is guaranteed by the Schauder-Cauty fixed-point theorem [Cau01], a
generalization of the Brouwer fixed-point theorem. Hence, it’s unlikely such fixed points are tractable.
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To address the limitations associated with infinitely large global strategy modifications, a natural
approach is to focus on local deviations instead. The corresponding Φ-equilibrium will guarantee
local stability. The study of local equilibrium concepts in non-concave games has received significant
attention in recent years—see e.g., [RBS16; HSZ17; DP18; JNJ20; DSZ21]. However, these
solution concepts either are not guaranteed to exist, are restricted to sequential two-player zero-sum
games [MV21], only establish local convergence guarantees for learning dynamics—see e.g., [DP18;
WZB20; FCR20], only establish asymptotic convergence guarantees—see e.g., [Das+23], or involve
non-standard solution concepts where local stability is not with respect to a distribution over strategy
profiles [HSZ17].

We study the tractability of Φ-equilibrium with infinitely large Φ sets that consist solely of local
strategy modifications. These local solution concepts are guaranteed to exist in general multi-player
non-concave games. Specifically, we focus on the following three families of natural deviations.

- Projection based Local Deviations: Each player i’s set of strategy modifications, denoted by
ΦXi

Proj(δ), contains all deviations that attempt a small step from their input in a fixed direction and
project if necessary, namely are of the form ϕv(x) = ΠXi

[x− v], where ∥v∥ ≤ δ and ΠXi
stands

for the ℓ2-projection onto Xi.
- Convex Combination of Finitely Many Local Deviations: Each player i’s set of strategy modi-

fications, denoted by Conv(ΦXi(δ)), contains all deviations that can be represented as a convex
combination of a finite set of δ-local strategy modifications, i.e., ∥ϕ(x)−x∥ ≤ δ for all ϕ ∈ ΦXi(δ).

- Interpolation based Local Deviations: each player i’s set of local strategy modifications, denoted
by ΦXi

Int(δ), that contains all deviations that interpolate between the input strategy and another
strategy in Xi. Formally, each element ϕλ,x′(x) of ΦXi

Int(δ) can be represented as (1− λ)x+ λx′

for some x′ ∈ Xi and λ ≤ δ/DXi
(DXi

is the diameter of Xi).

For our three families of local strategy modifications, we explore the tractability of Φ-equilibrium
within a regime we term the first-order stationary regime, where ε = Ω(δ2)4, with δ representing the
maximum deviation allowed for a player. An ε-approximate Φ-equilibrium in this regime ensures first-
order stability. This regime is particularly interesting for two reasons: (i) Daskalakis, Skoulakis, and
Zampetakis [DSZ21] have demonstrated that computing an ε-approximate δ-local Nash equilibrium
in this regime is intractable.5 This poses an intriguing question: can correlating the players’ strategies,
as in a Φ-equilibrium, potentially make the problem tractable? (ii) Extending our algorithm, initially
designed for finite sets of strategy modifications, to these three sets of local deviations results in
inefficiency; specifically, the running time becomes exponential in one of the problem’s natural
parameters. Designing efficient algorithms for this regime thus presents challenges. Despite these,
we show the following:

Contribution 2: For any δ > 0, for each of the three families of infinite δ-local strategy modifi-
cations mentioned above, there exists an efficient uncoupled learning algorithm that converges
to an ε-approximate Φ-equilibrium of the non-concave game in the first-order stationary regime,
i.e., ε = Ω(δ2).

We present our results for the projection-based local deviation in Theorem 3 and Theorem 9. Our
result for the convex combination of local deviations can be found in Theorem 4. Theorem 5 contains
our result for the interpolation-based local deviations. Similar to the finite case, our algorithms
build on the connection between Φ-regret minimization and Φ-equilibrium. Given that our strategy
modifications are non-standard, it is a priori unclear how to minimize the corresponding Φ-regret. For
instance, to our knowledge, no algorithm is known to minimize ΦX

Proj(δ)-regret even when the reward
functions are concave, and provably ΦX

Proj(δ)-regret is incomparable to external regret (Examples 3
and 4). However, via a novel analysis, we show that Online Gradient Descent (GD) and Optimistic
Gradient (OG) achieve a near-optimal ΦX

Proj(δ)-regret guarantee (Theorem 3 and Theorem 8). Our
results provide efficient uncoupled algorithms to compute ε-approximate Φ(δ)-equilibria in the
first-order stationary regime ε = Ω(δ2).

Further related work is discussed in Appendix A.
4The regime ε = Ω(δ) is trivial when the utility is Lipschitz.
5A strategy profile is considered an ε-approximate δ-local Nash equilibrium if no player can gain more than

ε by deviating within a δ distance.
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2 Preliminaries

A ball of radius r > 0 centered at x ∈ Rd is denoted by Bd(x, r) := {x′ ∈ Rd : ∥x− x′∥ ≤ r}. We
use ∥ · ∥ for ℓ2 norm throughout. We also write Bd(δ) for a ball centered at the origin with radius δ.
For a ∈ R, we use [a]+ to denote max{0, a}. We denote DX as the diameter of a set X .

Continuous / Smooth Games. An n-player continuous game has a set of n players [n] :=
{1, 2, . . . , n}. Each player i ∈ [n] has a nonempty convex and compact strategy set Xi ⊆ Rdi .
For a joint strategy profile x = (xi, x−i) ∈

∏n
j=1 Xj , the reward of player i is determined by a utility

function ui :
∏n
j=1 Xj → [0, 1]. We denote by d =

∑n
i=1 di the dimensionality of the game and

assume maxi∈[n]{DXi} ≤ D. A smooth game is a continuous game whose utility functions further
satisfy the following assumption.
Assumption 1 (Smooth Games). The utility function ui(xi, x−i) for any player i ∈ [n] is differen-
tiable and satisfies

1. (G-Lipschitzness) ∥∇xi
ui(x)∥ ≤ G for all i and x ∈

∏n
j=1 Xj;

2. (L-smoothness) there exists Li > 0 such that ∥∇xiui(xi, x−i)−∇xiui(x
′
i, x−i)∥ ≤ Li∥xi − x′i∥

for all xi, x′i ∈ Xi and x−i ∈ Πj ̸=iXj . We denote L = maxi Li as the smoothness of the game.

Crucially, we make no assumption on the concavity of ui(xi, x−i).

Φ-equilibrium and Φ-regret. Below we formally introduce the concept of Φ-equilibrium and its
relationship with online learning and Φ-regret minimization.
Definition 1 (Φ-equilibrium [GJ03; SL07]). In a continuous game, a distribution σ over joint
strategy profiles Πni=1Xi is an ε-approximate Φ-equilibrium for some ε ≥ 0 and a profile of strategy
modification sets Φ = Πni=1Φi if and only if for all player i ∈ [n], maxϕ∈Φi Ex∼σ[ui(ϕ(xi), x−i)] ≤
Ex∼σ[ui(x)] + ε. When ε = 0, we call σ a Φ-equilibrium.

We consider the standard online learning setting: at each day t ∈ [T ], the learner chooses an action xt
from a nonempty convex compact set X ⊆ Rm and the adversary chooses a possibly non-convex loss
function f t : X → R, then the learner suffers a loss f t(xt) and receives feedback. In this paper, we
focus on two feedback models: (1) the player receives an oracle for f t(·); (2) the player receives only
the gradient ∇f t(xt). The classic goal of an online learning algorithm is to minimize the external
regret defined as RegT := maxx∈X

∑T
t=1(f

t(xt)− f t(x)). An algorithm is called no-regret if its
external regret is sublinear in T . The notion of Φ-regret generalizes external regret by allowing more
general strategy modifications.
Definition 2 (Φ-regret). Let Φ be a set of strategy modification functions {ϕ : X → X}. For T ≥ 1,
the Φ-regret of an online learning algorithm is RegTΦ := maxϕ∈Φ

∑T
t=1 (f

t(xt)− f t(ϕ(xt))). An
algorithm is called no Φ-regret if its Φ-regret is sublinear in T .

Many classic notions of regret can be interpreted as Φ-regret. For example, the external regret is
Φext-regret where Φext contains all constant strategy modifications ϕx∗(x) = x∗ for all x∗ ∈ X .
The swap regret on simplex ∆m is Φswap-regret where Φswap contains all linear transformations
ϕ : ∆m → ∆m. A fundamental result for learning in games is that no-Φ-regret learning dynamics in
games converge to an approximate Φ-equilibrium [GJ03].

Theorem 1 ([GJ03]). If each player i’s Φi-regret is upper bounded by RegTΦi
, then their empirical

distribution of strategy profiles played is an (maxi∈[n] Reg
T
Φi
/T )-approximate Φ-equilibrium.

3 Tractable Φ-Equilibrium for Finite Φ via Sampling

In this section, we revisit the problem of computing and learning an Φ-equilibrium in non-concave
games when each player’s set of strategy modifications ΦXi is finite.

The pioneering work of Stoltz and Lugosi [SL07] gives a no-Φ-regret algorithm for this case where
each player chooses a distribution over strategies in each round. This result also implies convergence
to Φ-equilibrium. However, the algorithm by Stoltz and Lugosi [SL07] is not computationally
efficient. In each iteration, their algorithm requires computing a distribution that is stationary under a
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transformation that can be represented as a mixture of the modifications in Φ. The existence of such
a stationary distribution is guaranteed by the Schauder-Cauty fixed-point theorem [Cau01], but the
distribution might require exponential support and be intractable to find.

Our main result in this section is an efficient Φ-regret minimization algorithm (Algorithm 1) that
circumvents the step of the exact computation of a stationary distribution. Consequently, our algorithm
also ensures efficient convergence to a Φ-equilibrium when adopted by all players.

Algorithm 1: Φ-regret minimization for non-concave reward via sampling
Input: xroot ∈ X , h ≥ 2, an external regret minimization algorithm RΦ over Φ
Output: A Φ-regret minimization algorithm for X

1 function NEXTSTRATEGY()
2 pt ← RΦ.NEXTSTRATEGY(). Note that pt is a distribution over Φ.
3 return xt ← SAMPLESTRATEGY(xroot, h, p

t).
4 function OBSERVEREWARD(ut(·))
5 Set utΦ(ϕ) = ut(ϕ(xt)) for all ϕ ∈ Φ.
6 RΦ.OBSERVEREWARD(utΦ(·)).

Algorithm 2: SAMPLESTRATEGY

Input: xroot ∈ X , h ≥ 2, pt ∈ ∆(Φ)
Output: x ∈ X

1 x1 ← xroot.
2 for 2 ≤ k ≤ h do
3 ϕ← sample form Φ according to pt.
4 xk = ϕ(xk−1).
5 return x from {x1, . . . , xh} uniformly at random.

Theorem 2. LetX be a strategy set (not necessarily compact or convex), Φ be an arbitrary finite set of
strategy modifications overX , and u1(·), . . . , uT (·) be an arbitrary sequence of possibly non-concave
reward functions from X to [0, 1]. If we instantiate Algorithm 1 with RΦ being the Hedge algorithm
over Φ and h =

√
T , the algorithm guarantees that, with probability at least 1− β, it produces a

sequence of strategies x1, . . . , xT with Φ-regret at most maxϕ∈Φ

∑T
t=1 u

t(ϕ(xt))−
∑T
t=1 u

t(xt) ≤
8
√
T (log |Φ|+ log(1/β)). Moreover, the algorithm runs in time O(

√
T |Φ|) per iteration.

If all players in a non-concave continuous game employ Algorithm 1, then with probability at least
1− β, for any ε > 0, the empirical distribution of strategy profiles played forms an ε-approximate
Φ = Πni=1Φ

Xi -equilibrium, after poly
(

1
ε , log

(
maxi |ΦXi |

)
, log n

β

)
iterations.

High-level ideas. We adopt the framework in [SL07]. The framework contains two steps in each
iteration t: (1) the learner runs a no-external-regret algorithm over Φ which outputs pt ∈ ∆(Φ) in
each iteration t; (2) the learner chooses a stationary distribution µt =

∑
ϕ∈Φ p

tϕ(µt), where we
slightly abuse notation to use ϕ(µt) to denote the image measure of µ by ϕ. However, how to compute
the stationary distribution µt efficiently is unclear. We essentially provide a computationally efficient
way to carry out step (2) without computing this stationary distribution.

• We first construct an ε-approximate stationary distribution by recursively applying strategy modifi-
cations from Φ. The constructed distribution can be viewed as a tree. Our construction is inspired
by the recent work of Zhang, Anagnostides, Farina, and Sandholm [Zha+24] for concave games.
The main difference here is that for non-concave games, the distribution needs to be approximately
stationary with respect to a mixture of strategy modifications rather than a single one as in concave
games. Consequently, this leads to an approximate stationary distribution with prohibitively high
support size (|Φ|)

√
T , as opposed to

√
T in [Zha+24] for concave games.

• Despite the exponentially large support size of the distribution, we utilize its tree structure to design
a simple and efficient sampling procedure that runs in time

√
T . Equipped with such a sampling
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procedure, we provide an efficient randomized algorithm that generates a sequence of strategies so
that, with high probability, the Φ-regret for this sequence of strategies is at most O(

√
T log |Φ|).

We defer the full proof of Theorem 2 to Section 3.1. An extension of Theorem 2 to infinite Φ holds
when the rewards {ut}t∈[T ] are G-Lipschitz and Φ admits an α-cover with size N(α). In particular,
when Φ is the set of all M -Lipschitz functions over [0, 1]d, Φ admits an α-cover with logN(α) of
the order (1/α)d [SL07]. In this case, we have

Corollary 1. There is a randomized algorithm such that, with probability at least 1− β, the Φ-regret
is bounded by c · T

d+1
d+2 · log(1/β), where c only depends on G and M . The algorithm runs in time

poly(T,N(T−1/(d+2))).

3.1 Proof of Theorem 2

For a distribution µ ∈ ∆(X ) over strategy space X , we slightly abuse notation and define its expected
utility as ut(µ) := Ex∼µ[ut(x)] ∈ [0, 1]. We define ϕ(µ) the image of µ under transformation ϕ. In
each iteration t, the learner chooses their strategy xt ∈ X according to the distribution µt. For a
sequence of strategies {xt}t∈[T ], the Φ-regret is RegTΦ := maxϕ∈Φ

{∑T
t=1 (u

t(ϕ(xt))− ut(xt))
}
.

Algorithm 1 uses an external regret minimization algorithm RΦ over Φ which outputs a distribution
pt ∈ ∆(Φ). We can then decompose the Φ-regret into two parts.

RegTΦ = max
ϕ∈Φ

{
T∑
t=1

ut(ϕ(xt))− Eϕ′∼pt
[
ut(ϕ′(xt))

]}
︸ ︷︷ ︸

I: external regret over Φ

+

T∑
t=1

Eϕ′∼pt
[
ut(ϕ′(xt))

]
− ut(xt)︸ ︷︷ ︸

II: approximation error of stationary distribution

.

I: Bounding the external regret over Φ. The external regret over Φ can be bounded directly. This
is equivalent to an online expert problem: in each iteration t, the external regret minimizer RΦ

chooses pt ∈ ∆(Φ) and the adversary then determines the utility of each expert ϕ ∈ Φ as ut(ϕ(xt)).
We choose the external regret minimizer RΦ to be the Hedge algorithm [FS99]. Then we have
maxϕ∈Φ

{∑T
t=1 u

t(ϕ(xt))− Eϕ′∼pt [u
t(ϕ′(xt))]

}
≤ 2
√
T log |Φ| (Theorem 6), where we use the

fact that the utility function ut is bounded in [0, 1].

II: Bounding error due to sampling from an approximate stationary distribution. We first
define a distribution µt over X using a complete |Φ|-ary tree with depth h. The root of this tree is an
arbitrary strategy xroot ∈ X . Each internal node x has exactly |Φ| children, denoted as {ϕ(x)}ϕ∈Φ.
The distribution µt is supported on the nodes of this tree. Next, we define the probability for each
node under the distribution µt. The root node xroot receives probability 1

h . The probability of other
nodes is defined in a recursive manner. For every node x = ϕ(xp) where xp is its parent, x receives
probability Prµt [x] = Prµt [xp] · pt(ϕ). It is then clear that the total probability of the children of
a node xp is exactly Prµt [x is xp’s child] =

∑
ϕ Pr[xp] · pt(ϕ) = Pr[xp]. Denote the set of nodes

in depth k as Nk. We have Prµt [x ∈ Nk] = 1
h for every depth 1 ≤ k ≤ h. Thus the distribution µt

supports on |Φ|h−1
|Φ|−1 points and is well-defined. By the construction above, we know xt output by

Algorithm 2 is a sample from µt.

Now we show that the approximation error of µt is bounded by O( 1h ). We can evaluate the approxi-
mation error of µt:

Eϕ∼pt
[
ut(ϕ(µt))

]
− ut(µt) = Eϕ∼pt

[
h∑
k=1

∑
x∈Nk

Pr
µt
[x]ut(ϕ(x))

]
−

[
h∑
k=1

∑
x∈Nk

Pr
µt
[x]ut(x)

]

=

h∑
k=1

∑
x∈Nk

(
Eϕ∼pt

[
Pr
µt
[x]ut(ϕ(x))

]
− Pr

µt
[x]ut(x)

)
.
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We recall that for a node x = ϕ(xp) with xp being its parent, we have Prµt [x] = Prµt [xp] · pt(ϕ).
Thus for any 1 ≤ k ≤ h− 1, we have

∑
x∈Nk

(
Eϕ∼pt

[
Pr
µt
[x]ut(ϕ(x))

]
− Pr

µt
[x]ut(x)

)
=
∑
x∈Nk

∑
ϕ∈Φ

pt(ϕ) Pr
µt
[x]ut(ϕ(x))− Pr

µt
[x]ut(x)


=

∑
x∈Nk+1

Pr
µt
[x]ut(x)−

∑
x∈Nk

Pr
µt
[x]ut(x).

Using the above equality, we get

Eϕ∼pt
[
ut(ϕ(µt))

]
− ut(µt)

=

h−1∑
k=1

∑
x∈Nk+1

Pr
µt
[x]ut(x) +

∑
x∈Nh

∑
ϕ∈Φ

pt(ϕ) Pr
µt
[x]ut(ϕ(x))−

h∑
k=2

∑
x∈Nk

Pr
µt
[x]ut(x)− Pr

µt
[xroot]u

t(xroot)

=
∑
x∈Nh

∑
ϕ∈Φ

pt(ϕ) Pr
µt
[x]ut(ϕ(x))− Pr

µt
[xroot]u

t(xroot) ≤
1

h
,

where in the last inequality we use the fact that
∑
x∈Nk

Prµt [x] = 1
h for all 1 ≤ k ≤ h and the

utility function ut is bounded in [0, 1]. Therefore, for xt ∼ µt, the sequence of random variables
{
∑τ
t=1 (Eϕ∼pt [ut(ϕ(xt))]− ut(xt)−

1
h )}τ≥1 is a super-martingale. Thanks to the boundedness of

the utility function, we can apply the Hoeffding-Azuma Inequality and get for any ε > 0.

Pr

[
T∑
t=1

(
Eϕ∼pt

[
ut(ϕ(xt))

]
− ut(xt)− 1

h

)
≥ ε

]
≤ exp

(
− ε

2

8T

)
. (1)

Combining the bounds for I and II with ε =
√
8T log(1/β) and h =

√
T , we have, with probability

1− β, that RegTΦ ≤ 2
√
T log |Φ|+ T

h +
√
8T log(1/β) ≤ 8

√
T (log |Φ|+ log(1/β)).

Convergence to Φ-equilibrium. If all players in a non-concave continuous game employ Algo-
rithm 1, then we know for each player i, with probability 1 − β

n , its ΦXi-regret is upper bounded
by 8

√
T (log |ΦXi |+ log(n/β)). By a union bound over all n players, we get with probability

1− β, every player i’s ΦXi-regret is upper bounded by 8
√
T (log |ΦXi |+ log(n/β)). Now by The-

orem 1, we know the empirical distribution of strategy profiles played forms an ε-approximate
Φ = Πni=1Φ

Xi -equilibrium, as long as T ≥ 64(log(maxi |ΦXi |) + log(n/β))/ε2 iterations.

4 Approximate Φ-Equilibria under Infinite Local Strategy Modifications

This section studies Φ-equilibrium when |Φ| is infinite. It is, in general, computationally hard to
compute a Φ-equilibrium even if Φ contains all constant deviations. Instead, we focus on Φ that
consists solely of local strategy modifications. We introduce several natural classes of local strategy
modifications and provide efficient online learning algorithms that converge to ε-approximate Φ-
equilibrium in the first-order stationary regime where ε = Ω(δ2L). These approximate Φ-equilibria
guarantee first-order stability.
Definition 3 (δ-local strategy modification). For each agent i, we call a set of strategy modifications
ΦXi δ-local if for all x ∈ Xi and ϕi ∈ ΦXi , ∥ϕi(x)− x∥ ≤ δ. We use notation ΦXi(δ) to denote a
δ-local strategy modification set for agent i. We also use Φ(δ) = Πni=1Φ

Xi(δ) to denote a profile of
δ-local strategy modification sets.

Below we present a useful reduction from computing an ε-approximate Φ(δ)-equilibrium in non-
concave smooth games to ΦXi(δ)-regret minimization against convex losses for any ε ≥ δ2L

2 . The
key observation here is that the L-smoothness of the utility function permits, within a δ-neighborhood,
a δ2L

2 -approximation using a linear function. We defer the proof to Appendix D.
Lemma 1 (No Φ(δ)-Regret for Convex Losses to Approximate Φ(δ)-Equilibrium in Non-Concave
Games). For any T ≥ 1 and δ > 0, let A be an algorithm that guarantees to achieve no more than
RegTΦXi (δ) Φ

Xi(δ)-regret for convex loss functions for each agent i ∈ [n]. Then
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1. The ΦXi(δ)-regret of A for non-convex and L-smooth losses is at most RegTΦXi (δ) +
δ2LT

2 , ∀i.

2. When every agent employs A in a non-concave L-smooth game, their empirical distribution of the
joint strategies played converges to a (maxi∈[n]{RegT

ΦXi (δ)
}/T+ δ2L

2 )-approximate Φ(δ)-equilibrium.

4.1 Projection-Based Local Strategy Modifications

In this section, we study a set of local strategy modifications based on projection. Specifically, the
set ΦX

Proj(δ) encompasses all deviations that essentially add a fixed displacement vector v to the
input strategy and project back to the feasible set: ΦX

Proj(δ) := {ϕProj,v(x) = ΠX [x − v] : v ∈
Bd(δ)}. It is clear that ∥ϕv(x)− x∥ ≤ ∥v∥ ≤ δ. The induced ΦX

Proj(δ)-regret is RegTProj,δ :=

maxv∈Bd(δ)

∑T
t=1 (f

t(xt)− f t(ΠX [xt − v])). We also define ΦProj(δ) = Πni=1Φ
Xi

Proj(δ)

By Lemma 1, to achieve convergence to an approximate ΦProj(δ)-equilibrium, it suffices to minimize
ΦX

Proj(δ)-regret against convex losses. However, to our knowledge, there does not exist an algorithm
that minimize ΦX

Proj(δ)-regret even in the convex case. In fact, external regret and ΦX
Proj(δ)-regret are

provably incomparable: a sequence of actions may suffer high RegT but low RegTProj,δ (Example 3)
or vise versa (Example 4). At a high level, the external regret competes against a fixed action, whereas
ΦX

Proj(δ)-regret is more akin to the notion of dynamic regret, competing with a sequence of varying
actions. Despite this, surprisingly, we show that classical algorithms like Online Gradient Descent
(GD) and Optimistic Gradient (OG), known for minimizing external regret, also attain near-optimal
ΦX

Proj(δ)-regret. We defer the examples and missing proofs to Appendix E.

ΦX
Proj(δ)-Regret Minimization in the Adversarial Setting. We show that (GD) enjoys an

O(G
√
δDXT ) ΦX

Proj(δ)-regret despite the difference between the external regret and ΦX
Proj(δ)-

regret. First, let us recall the update rule of GD: given initial point x1 ∈ X and step size η > 0, GD
updates in each iteration t:

xt+1 = ΠX [x− η∇f t(xt)]. (GD)

The key step in our analysis for GD is simple but novel and general (See Appendix E.2). We extend
the analysis to the Optimistic Gradient (OG) algorithm in Appendix E.4.

Theorem 3. Let δ > 0 and T ∈ N. For any convex and G-Lipschitz loss functions {f t : X →
R}t∈[T ], the ΦX

Proj(δ)-regret of (GD) with step size η > 0 is RegTProj,δ ≤ δ2

2η + η
2G

2T + δDX
η . We

can choose η optimally as
√
δ(δ+DX )

G
√
T

and attain RegTProj,δ ≤ 2G
√
δ(δ +DX )T . For any δ > 0

and any ε > 0, when all player employ GD in a smooth game, their empirical distribution of played
strategy profiles converges to an (ε+ δ2L

2 )-approximate ΦProj(δ)-equilibrium in O(1/ε2) iterations.

Remark 1. The ΦX
Proj(δ)-regret can also be viewed as the dynamic regret [Zin03] with changing

comparators {pt := ΠX [x− v]}. However, our analysis does not follow from standard O( (1+PT )
η +

ηT ) dynamic regret bound of GD [Zin03] since PT , defined as
∑T
t=2 ∥pt − pt−1∥, can be Ω(ηT ).

Lower bounds for ΦX
Proj(δ)-regret. We complement our upper bound with two lower bounds for

ΦX
Proj(δ)-regret minimization. The first one is an Ω(δG

√
T ) lower bound for any online learning

algorithms against linear loss functions (Theorem 7). The second one is an Ω(δ2LT ) lower bound
for any algorithm that satisfies the linear span assumption (Proposition 1), which holds for GD and
OG against L-smooth non-convex losses. Combining with Lemma 1, this lower bound suggests that
GD attains nearly optimal ΦX

Proj(δ)-regret, even in the non-convex setting, among a natural family of
gradient-based algorithms. We defer the theorem statements and detailed discussion to Appendix E.3.

Improved ΦX
Proj(δ)-Regret in the Game Setting. We complement the Ω(

√
T ) lower bound in the

adversarial setting by considering the game setting where players interact with each other using
the same algorithm setting, which has been extensively studied for concave games [Syr+15; CP20;
DFG21; Ana+22a; Ana+22b; Far+22a]. We prove an improved O(T

1
4 ) individual ΦX

Proj(δ)-regret
bound for OG (Theorem 9). We defer the details to Appendix E.4
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4.2 Convex Combination of Finite Local Strategy Modifications

This section considers Conv(Φ) where Φ is a finite set of local strategy modifications. The set of
infinite strategy modifications Conv(Φ) is defined as Conv(Φ) = {ϕp(x) =

∑
ϕ∈Φ p(ϕ)ϕ(x) : p ∈

∆(Φ)}. Our main result is an efficient algorithm (Algorithm 3) that guarantees convergence to an
ε-approximate Conv(Φ)-equilibrium in a smooth game satisfying Assumption 1 for any ε > δ2L.
Due to space constraints, we defer Algorithm 3 and the proof to Appendix F.
Theorem 4. Let X be a convex and compact set, Φ be an arbitrary finite set of δ-local strategy
modification functions for X , and u1(·), . . . , uT (·) be a sequence of G-Lipschitz and L-smooth
but possibly non-concave reward functions from X to [0, 1]. If we instantiate Algorithm 3 with
RΦ being the Hedge algorithm over ∆(Φ) and K =

√
T , the algorithm guarantees that, with

probability at least 1− β, it produces a sequence of strategies x1, . . . , xT with Conv(Φ)-regret at
most 8

√
T (Gδ

√
log |Φ|+

√
log(1/β)) + δ2LT . The algorithm runs in time

√
T |Φ| per iteration.

If all players in a non-concave smooth game employ Algorithm 3, then with probability 1− β, for
any ε > 0, the empirical distribution of strategy profiles played forms an (ε + δ2L)-approximate

Φ = Πni=1Φ
Xi -equilibrium„ after poly

(
1
ε , G, log

(
maxi |ΦXi |

)
, log n

β

)
iterations.

4.3 Interpolation-Based Local Strategy Modifications

We introduce a natural set of local strategy modifications and the corresponding local equilibrium
notion. Given any set of (possibly non-local) strategy modifications Ψ = {ψ : X → X}, we define a
set of local strategy modifications as follows: for δ ≤ DX and λ ∈ [0, 1], each strategy modification
ϕλ,ψ interpolates the input strategy x with the modified strategy ψ(x): formally,

ΦX
Int,Ψ(δ) := {ϕλ,ψ(x) := (1− λ)x+ λψ(x) : ψ ∈ Ψ, λ ≤ δ/DX } .

Note that for any ψ ∈ Ψ and λ ≤ δ
DX

, we have ∥ϕλ,ψ(x)− x∥ = λ∥x− ψ(x)∥ ≤ δ, re-
specting the locality constraint. The induced ΦX

Int,Ψ(δ)-regret can be written as RegTInt,Ψ,δ :=

maxψ∈Ψ,λ≤ δ
DX

∑T
t=1 (f

t(xt)− f t((1− λ)xt + λψ(xt))). To guarantee convergence to the corre-

sponding Φ-equilibrium, it suffices to minimize ΦX
Int,Ψ(δ)-regret against convex losses, which we

show further reduces to Ψ-regret minimization against convex losses (Theorem 10 in Appendix G).

CCE-like Instantiation. In the special case where Ψ contains only constant strategy modifications
(i.e., ψ(x) = x∗ for all x), we get a coarse correlated equilibrium (CCE)-like instantiation of local
equilibrium, which limits the gain by interpolating with any fixed strategy. We denote the resulting
set of local strategy modification simply as ΦX

Int(δ). We can apply any no-external regret algorithm
for efficient ΦX

Int(δ)-regret minimization and computation of ε-approximate ΦInt(δ)-equilibrium in
the first-order stationary regime as summarized in Theorem 5. We also discuss faster convergence
rates in the game setting in Appendix G.

Theorem 5. For the Online Gradient Descent algorithm (GD) [Zin03] with step size η = DX
G
√
T

, its

ΦX
Int(δ)-regret is at most 2δG

√
T . Furthermore, for any δ > 0 and any ε > δ2L

2 , when all players
employ the GD algorithm in a smooth game, their empirical distribution of played strategy profiles
converges to an (ε+ δ2L

2 )-approximate ΦInt(δ)-equilibrium in O(1/ε2) iterations.

5 Discussion and Future Directions

Lower Bound in the Global Regime When δ equals the diameter of our strategy set, it is NP-hard to
compute an ε-approximate Φ(δ)-equilibrium (for Φ(δ) = ΦProj(δ),ΦInt(δ)), even when ε = Θ(1)
and G,L = O(poly(d)). Moreover, given black-box access to value and gradient queries, finding
such equilibria requires exponentially many queries in at least one of the parameters d,G,L, 1/ε.
These results are presented as Theorem 12 and Theorem 13 in Appendix I.

More Efficient Φ-Equilibria We include the discussion of another natural class of local strategy
modifications that is based on beam search, where GD suffers linear regret to Appendix H. This
result shows that even for simple local strategy modification sets Φ(δ), the landscape of efficient local
Φ(δ)-regret minimization is already quite rich and many questions remain open. A fruitful future
direction is to identify more classes of Φ that admit efficient regret minimization.
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A Related Work

Non-Concave Games. An important special case of multi-player games are two-player zero-sum
games, which are defined in terms of some function f : X × Y → R that one of the two players say
the one choosing x ∈ X , wants to minimize, while the other player, the one choosing y ∈ Y , wants
to maximize. Finding Nash equilibrium in such games is tractable in the convex-concave setting,
i.e. when f(x, y) is convex with respect to the minimizing player’s strategy, x, and concave with
respect to the maximizing player’s strategy, y, but it is computationally intractable in the general
nonconvex-nonconcave setting. Namely, a Nash equilibrium may not exist, and it is NP-hard to
determine if one exists and, if so, find it. Moreover, in this case, stable limit points of gradient-
based dynamics are not necessarily Nash equilibria, not even local Nash equilibria [DP18; MRS20].
Moreover, there are examples including the “Polar Game” [Pet+22] and the “Forsaken Matching
Pennies” [HMC21b] showing that for GD / OG and many other no-regret learning algorithms in
nonconvex-nonconcave min-max optimization, the last-iterate does not converge and even the average-
iterate fails to be a stationary point. We emphasize that the convergence guarantees we provide
for GD / OG in Section 4.1 and Section 4.3 holds for the empirical distribution of play, not the
average-iterate or the last-iterate.

A line of work focuses on computing Nash equilibrium under additional structure in the game.
This encompasses settings where the game satisfies the (weak) Minty variational inequality [MZ19;
DDJ21; Pet+22; CZ23], or is sufficiently close to being bilinear [ALW21]. However, the study of
universal solution concepts in the nonconvex-nonconcave setting is sparse. Daskalakis, Skoulakis,
and Zampetakis [DSZ21] proved the existence and computational hardness of local Nash equilibrium.
In a more recent work, [Das+23] proposes second-order algorithms with asymptotic convergence to
local Nash equilibrium. Several works study sequential two-player zero-sum games with additional
assumptions about the player who goes second. They propose equilibrium concepts such as local
minimax points [JNJ20], differentiable Stackelberg equilibrium [FCR20], and greedy adversarial
equilibrium [MV21]. Notably, local minimax points are stable limit points of Gradient-Descent-
Ascent (GDA) dynamics [JNJ20; WZB20; FR21] while greedy adversarial equilibrium can be
computed efficiently using second-order algorithms in the unconstrained setting [MV21]. In contrast
to these studies, we focus on the more general case of multi-player non-concave games.

Local Equilibrium. To address the limitations associated with classical, global equilibrium con-
cepts, a natural approach is to focus on developing equilibrium concepts that guarantee local stability
instead. One definition of interest is the strict local Nash equilibrium, wherein each player’s strat-
egy corresponds to a local maximizer of their utility function, given the other players’ strategies.
Unfortunately, a strict local Nash equilibrium may not always exist, as demonstrated in Example 1.
Furthermore, a weaker notion—the second-order local Nash equilibrium, where each player has no
incentive to deviate based on the second-order Taylor expansion estimate of their utility, is also not
guaranteed to exist as illustrated in Example 1. What’s more, it is NP-hard to check whether a given
strategy profile is a strict local Nash equilibrium or a second-order local Nash equilibrium, as implied
by the result of Murty and Kabadi [MK87] and Ahmadi and Zhang [AZ22].6 Finally, one can consider
local Nash equilibrium, a first-order stationary solution, which is guaranteed to exist [DSZ21]. Unlike
non-convex optimization, where targeting first-order local optima sidesteps the intractability of global
optima, this first-order local Nash equilibrium has been recently shown to be intractable, even in

6Murty and Kabadi [MK87] shows that checking whether a point is a local maximizer of a multi-variate
quadratic function is NP-hard, and Ahmadi and Zhang [AZ22] shows that computing a local maximize of a
multi-variate quadratic function over a polytope is NP-hard.



two-player zero-sum non-concave games with joint feasibility constraints [DSZ21].7 See Table 1 for
a summary of solution concepts in non-concave games.

Online Learning with Non-Convex Losses. A line of work has studied online learning against
non-convex losses. To circumvent the computational intractability of this problem, various approaches
have been pursued: some works assume a restricted set of non-convex loss functions [GLZ18], while
others assume access to a sampling oracle [MM10; Kri+15] or access to an offline optimization
oracle [AGH19; SN20; Hél+20] or a weaker notion of regret [HSZ17; AZF19; HMC21a; GZL23].
The work most closely related to ours is [HSZ17]. The authors propose a notion of w-smoothed local
regret against non-convex losses, and they also define a local equilibrium concept for non-concave
games. They use the idea of smoothing to average the loss functions in the previous w iterations
and design algorithms with optimal w-smoothed local regret. The concept of regret they introduce
suggests a local equilibrium concept. However, their local equilibrium concept is non-standard in
that its local stability is not with respect to a distribution over strategy profiles sampled by this
equilibrium concept. Moreover, the path to attaining this local equilibrium through decentralized
learning dynamics remains unclear. The algorithms provided in [HSZ17; GZL23] require that every
agent i experiences (over several rounds) the average utility function of the previous w iterates,
denoted as F ti,w := 1

w

∑w−1
ℓ=0 u

t−ℓ
i (·, xt−ℓ−i ). Implementing this imposes a significant coordination

burden on the agents. In contrast, we focus on a natural concept of Φ(δ)-equilibrium, which is
incomparable to that of [HSZ17], and we also show that efficient convergence to this concept is
achieved via decentralized gradient-based learning dynamics.

Φ-regret and Φ-equilibrium. The concept of Φ-regret and the associated Φ-equilibrium is in-
troduced by Greenwald and Jafari [GJ03] and has been broadly investigated in the context of
concave games [GJ03; SL07; GGM08; RST11; Pil+22; Ber+23; Dag+24; PR24] and extensive-
form games [VF08; Mor+21a; Mor+21b; Far+22b; Bai+22; SMB22; AFS23; Zha+24]. The work
of [Sha24] studies internal regret minimization against non-convex losses. To our knowledge, no
efficient algorithm exists for the classes of Φ-equilibria we consider for non-concave games. Specifi-
cally, all of these algorithms, when applied to compute a (ε,Φ(δ))-equilibrium for a general δ-local
strategy modification set Φ(δ) (using Lemma 1), require running time exponential in either 1/ε
or the dimension d. In contrast, we show that for several natural choices of Φ(δ), ε-approximate
Φ(δ)-equilibrium can be computed efficiently, i.e. polynomial in 1/ε and d, using simple algorithms.

B Additional Preliminaries: Solution Concepts in Non-Concave Games

We present definitions of several solution concepts in the literature as well as the existence and
computational complexity of each solution concept.
Definition 4 (Nash Equilibrium). In a continuous game, a strategy profile x ∈

∏n
j=1 Xj is a Nash

equilibrium (NE) if and only if for every player i ∈ [n],

ui(x
′
i, x−i) ≤ ui(x),∀x′i ∈ Xi

Definition 5 (Mixed Nash Equilibrium). In a continuous game, a mixed strategy profile p ∈∏n
j=1 ∆(Xj) (here we denote ∆(Xi) as the set of probability measures over Xi) is a mixed Nash

equilibrium (MNE) if and only if for every player i ∈ [n],

ui(p
′
i, p−i) ≤ ui(p),∀p′i ∈ ∆(Xi)

Definition 6 ((Coarse) Correlated Equilibrium). In a continuous game, a distribution σ over joint
strategy profiles Πni=1Xi is a correlated equilibrium (CE) if and only if for all player i ∈ [n],

max
ϕi:Xi→Xi

Ex∼σ[ui(ϕi(xi), x−i)] ≤ Ex∼σ[ui(x)].

Similarly, a distribution σ over joint strategy profiles Πni=1Xi is a coarse correlated equilibrium
(CCE) if and only if for all player i ∈ [n],

max
x′
i∈Xi

Ex∼σ[ui(x′i, x−i)] ≤ Ex∼σ[ui(x)].

7In general sum games, it is not hard to see that the intractability results [DGP09; CDT09] for computing
global Nash equilibria in bimatrix games imply intractability for computing local Nash equilibria.

17



Definition 7 (Strict Local Nash Equilibrium). In a continuous game, a strategy profile x ∈
∏n
j=1 Xj

is a strict local Nash equilibrium if and only if for every player i ∈ [n], there exists δ > 0 such that

ui(x
′
i, x−i) ≤ ui(x),∀x′i ∈ Bdi(xi, δ) ∩ Xi.

Definition 8 (Second-order Local Nash Equilibrium). Consider a continuous game where each utility
function ui(xi, x−i) is twice-differentiable with respect to xi for any fixed x−i. A strategy profile
x ∈

∏n
j=1 Xj is a second-order local Nash equilibrium if and only if for every player i ∈ [n], xi

maximizes the second-order Taylor expansion of its utility functions at xi, or formally,

⟨∇xi
ui(x), x

′
i − xi⟩+ (x′i − xi)⊤∇2

xi
ui(x)(x

′
i − xi) ≤ 0,∀x′i ∈ Xi.

Existence Mixed Nash equilibria exist in continuous games, thus smooth games [Deb52; Gli52;
Fan53]. By definition, an MNE is also a CE and a CCE. This also proves the existence of CE and
CCE. In contrast, strict local Nash equilibria, second-order Nash equilibria, or (pure) Nash equilibria
may not exist in a smooth non-concave game, as we show in the following example.
Example 1. Consider a two-player zero-sum non-concave game: the action sets are X1 = X2 =
[−1, 1] and the utility functions are u1(x1, x2) = −u2(x1, x2) = (x1 − x2)2. Let x = (x1, x2) ∈
X1×X2 be any strategy profile: if x1 = x2, then player 1 is not at a local maximizer; if x1 ̸= x2, then
player 2 is not at a local maximizer. Thus x is not a strict local Nash equilibrium. Since the utility
function is quadratic, we conclude that the game also has no second-order local Nash equilibrium.

Computational Complexity Consider a single-player smooth non-concave game with a quadratic
utility function f : X → R. The problem of finding a local maximizer of f can be reduced to the
problem of computing a NE, a MNE, a CE, a CCE, a strict local Nash equilibrium, or a second-order
local Nash equilibrium. Since computing a local maximizer or checking if a given point is a local
maximizer is NP-hard [MK87], we know that the computational complexities of NE, MNE, CE, CCE,
strict local Nash equilibria, and second-order local Nash equilibria are all NP-hard.

Representation Complexity Karlin [Kar59] present a two-player zero-sum non-concave game
whose unique MNE has infinite support. Since in a two-player zero-sum game, the marginal
distribution of a CE or a CCE is an MNE, it also implies that the representation complexity of any CE
or CCE is infinite. We present the example in Karlin [Kar59] here for completeness and also prove
that the game is Lipschitz and smooth.
Example 2 ([Kar59, Chapter 7.1, Example 3]). We consider a two-player zero-sum game with action
sets X1 = X2 = [0, 1]. Let p and q be two distributions over [0, 1]. The only requirement for p and q
is that their cumulative distribution functions are not finite-step functions. For example, we can take
p = q to be the uniform distribution.

Let µn and νn denote the n-th moments of p and q, respectively. Define the utility function

u(x, y) = u1(x, y) = −u2(x, y) =
∞∑
n=0

1

2n
(xn − µn)(yn − νn), 0 ≤ x, y ≤ 1.

Claim 1. The game in Example 2 is 2-Lipschitz and 6-smooth, and (p, q) is its unique (mixed) Nash
equilibrium.

Proof. Fix any y ∈ [0, 1], since | 12n (y
n − νn)nxn−1| ≤ n

2n , the series of ∇xu(x, y) is uniformly
convergent. We have |∇xu(x, y)| ≤

∑∞
n=0

n
2n ≤ 2, y ∈ [0, 1]. Similarly, we have |∇2

xu(x, y)| ≤∑∞
n=0

n2

2n ≤ 6 for all y ∈ [0, 1]. By symmetry, we also have |∇y(x, y)| ≤ 2 and |∇2
y(x, y)| ≤ 6 for

all x, y ∈ [0, 1]. Thus, the game is 2-Lispchitz and 6-smooth.

Since | 12n (x
n − µn)(yn − νn)| ≤ 1

2n , the series of u(x, y) is absolutely and uniformly convergent.
We have ∫ 1

0

u(x, y)dFp(x) =

∞∑
n=0

1

2n
(yn − νn)

∫ 1

0

(xn − µn)dFp(x) ≡ 0,

∫ 1

0

u(x, y)Fq(y) =

∞∑
n=0

1

2n
(xn − µn)

∫ 1

0

(yn − νn)dFq(y) ≡ 0.
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In particular, (p, q) is a mixed Nash equilibrium, and the value of the game is 0. Suppose (p′, q′) is
also a mixed Nash equilibrium. Then (p, q′) is a mixed Nash equilibrium. Note that p supports on
every point in [0, 1]. As a consequence, we have

0 ≡
∫ 1

0

u(x, y)dFq′(y) =

∞∑
n=0

1

2n
(xn − µn)(ν′n − νn)

for all x ∈ [0, 1], where ν′n is the n-th moment of q′. Since the series vanished identically, the
coefficients of each power of x must vanish. Thus ν′n = νn and q′ = q. Similarly, we have p′ = p,
and the mixed Nash equilibrium is unique.

C Rerget Bound for Hedge

Theorem 6 ([AHK12]). In an N -expert problem, assume all the rewards are bounded, i.e., ut ∈
[−M,M ]N , then the Hedge algorithm with step size η = min{ 1

M ,
√
logN

M
√
T
} has regret

max
p∈∆(N)

T∑
t=1

〈
ut, p

〉
−

T∑
t=1

〈
ut, pt

〉
≤ 2M

√
T logN.

D Proof of Lemma 1

Let {f t}t∈[T ] be a sequence of non-convex L-smooth loss functions satisfying Assumption 1. Let
{xt}t∈[T ] be the iterates produced by A against {f t}t∈[T ]. Then {xt}t∈[T ] is also the iterates
produced by A against a sequence of linear loss functions {⟨∇f t(xt), ·⟩}. For the latter, we know

max
ϕ∈ΦX (δ)

T∑
t=1

〈
∇f t(xt), xt − ϕ(xt)

〉
≤ RegTΦX (δ).

Then using L-smoothness of {f t} and the fact that ∥ϕ(x)− x∥ ≤ δ for all ϕ ∈ Φ(δ), we get

max
ϕ∈ΦX (δ)

T∑
t=1

f t(xt)− f t(ϕ(xt)) ≤ max
ϕ∈ΦX (δ)

T∑
t=1

(〈
∇f t(xt), xt − ϕ(xt)

〉
+
L

2

∥∥xt − ϕ(xt)∥∥2)
≤ RegTΦX (δ) +

δ2LT

2
.

This completes the proof of the first part.

Let each player i ∈ [n] employ algorithm A in a smooth game independently and produces iterates
{xt}. The averaged joint strategy profile σT that chooses xt uniformly at random from t ∈ [T ]
satisfies for any player i ∈ [n],

max
ϕ∈ΦXi (δ)

Ex∼σ[ui(ϕ(xi), x−i)]− Ex∼σ[ui(x)]

= max
ϕ∈ΦXi (δ)

1

T

T∑
t=1

(
ui(ϕ(x

t
i), x

t
−i)− ui(xt)

)
≤

RegTΦXi (δ)

T
+
δ2L

2
.

Thus σT is a (maxi∈[n]{RegTΦXi (δ)} · T−1 + δ2L
2 )-approximate Φ(δ))-equilibrium. This completes

the proof of the second part.

E Missing Details in Section 4.1

E.1 Differences between External Regret and ΦX
Proj-regret

In the following two examples, we show that ΦX
Proj(δ)-regret is incomparable with external regret for

convex loss functions . A sequence of actions may suffer high RegT but low RegTProj,δ (Example 3),
and vise versa (Example 4).
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Example 3. Let f1(x) = f2(x) = |x| for x ∈ X = [−1, 1]. Then the ΦX
Proj(δ)-regret of the

sequence {x1 = 1
2 , x

2 = − 1
2} for any δ ∈ (0, 12 ) is 0. However, the external regret of the same

sequence is 1. By repeating the construction for T
2 times, we conclude that there exists a sequence of

actions with RegTProj,δ = 0 and RegT = T
2 for all T ≥ 2.

Example 4. Let f1(x) = −2x and f2(x) = x for x ∈ X = [−1, 1]. Then the ΦX
Proj(δ)-regret of

the sequence {x1 = 1
2 , x

2 = 0} for any δ ∈ (0, 12 ) is δ. However, the external regret of the same
sequence is 0. By repeating the construction for T

2 times, we conclude that there exists a sequence of
actions with RegTProj,δ =

δT
2 and RegT = 0 for all T ≥ 2.

At a high level, the external regret competes against a fixed action, whereas ΦX
Proj(δ)-regret is more

akin to the notion of dynamic regret, competing with a sequence of varying actions. When the
environment is stationary, i.e., f t = f (Example 3), a sequence of actions that are far away from the
global minimum must suffer high regret, but may produce low ΦX

Proj(δ)-regret since the change to
the cumulative loss caused by a fixed-direction deviation could be neutralized across different actions
in the sequence. In contrast, in a non-stationary (dynamic) environment (Example 4), every fixed
action performs poorly, and a sequence of actions could suffer low regret against a fixed action but the
ΦX

Proj(δ)-regret that competes with a fixed-direction deviation could be large. Nevertheless, despite
these differences between the two notions of regret as shown above, they are compatible for convex
loss functions: our main results in this section provide algorithms that minimize external regret and
ΦX

Proj(δ)-regret simultaneously.

E.2 Proof of Theorem 3

Proof. Let us denote v ∈ Bd(δ) a fixed deviation and define pt = ΠX [xt − v]. By standard analysis
of GD [Zin03] (see also the proof of [Bub+15, Theorem 3.2] ), we have

T∑
t=1

(
f t(xt)− f t(pt)

)
≤

T∑
t=1

1

2η

(∥∥xt − pt∥∥2 − ∥∥xt+1 − pt
∥∥2 + η2

∥∥∇f t(xt)∥∥2)
≤
T−1∑
t=1

1

2η

(∥∥xt+1 − pt+1
∥∥2 − ∥∥xt+1 − pt

∥∥2)+ δ2

2η
+
η

2
G2T,

where the last step uses ∥x1 − p1∥ ≤ δ and ∥∇f t(xt)∥ ≤ G. Here the terms ∥xt+1 − pt+1∥2 −
∥xt+1 − pt∥2 do not telescope, and we further relax them in the following key step.

Key Step: We relax the first term as:∥∥xt+1 − pt+1
∥∥2 − ∥∥xt+1 − pt

∥∥2 =
〈
pt − pt+1, 2xt+1 − pt − pt+1

〉
=
〈
pt − pt+1, 2xt+1 − 2pt+1

〉
−
∥∥pt − pt+1

∥∥2
= 2
〈
pt − pt+1, v

〉
+ 2
〈
pt − pt+1, xt+1 − v − pt+1

〉
−
∥∥pt − pt+1

∥∥2
≤ 2
〈
pt − pt+1, v

〉
−
∥∥pt − pt+1

∥∥2,
where in the last inequality we use the fact that pt+1 is the projection of xt+1 − v onto X and pt

is in X . Now we get a telescoping term 2⟨pt − pt+1, u⟩ and a negative term −∥pt − pt+1∥2. The
negative term is useful for improving the regret analysis in the game setting, but we ignore it for now.
Combining the two inequalities above, we have

T∑
t=1

(
f t(xt)− f t(pt)

)
≤ δ2

2η
+
η

2
G2T +

1

η

T−1∑
t=1

〈
pt − pt+1, v

〉
=
δ2

2η
+
η

2
G2T +

1

η

〈
p1 − pT , v

〉
≤ δ2

2η
+
η

2
G2T +

δDX

η
.

Since the above holds for any v with ∥v∥ ≤ δ, it also upper bounds RegTProj,δ .
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E.3 Lower bounds for ΦX
Proj-Regret

Theorem 7 (Lower bound for ΦX
Proj(δ)-regret against convex losses). For any T ≥ 1, DX > 0,

0 < δ ≤ DX , and G ≥ 0, there exists a distribution D on G-Lipschitz linear loss functions
f1, . . . , fT over X = [−DX , DX ] such that for any online algorithm, its ΦX

Proj(δ)-regret on the loss
sequence satisfies ED[Reg

T
Proj,δ] = Ω(δG

√
T ).

Remark 2. A keen reader may notice that the Ω(Gδ
√
T ) lower bound in Theorem 7 does not match

the O(G
√
δDXT ) upper bound in Theorem 3, especially when DX ≫ δ. A natural question is:

which of them is tight? We conjecture that the lower bound is tight. In fact, for the special case
where the feasible set X is a box, we obtain a DX -independent bound O(d

1
4Gδ
√
T ) using a modified

version of GD, which is tight when d = 1. See Appendix J for a detailed discussion.

This lower bound suggests that GD achieves near-optimal ΦX
Proj(δ)-regret for convex losses. For

L-smooth non-convex loss functions, we provide another Ω(δ2LT ) lower bound for algorithms that
satisfy the linear span assumption. The linear span assumption states that the algorithm produces
xt+1 ∈ {ΠX [

∑
i∈[t] ai ·xi+bi ·∇f i(xi)] : ai, bi ∈ R,∀i ∈ [t]} as essentially the linear combination

of the previous iterates and their gradients. Many online algorithms such as online gradient descent
and optimistic gradient satisfy the linear span assumption. Combining with Lemma 1, this lower
bound suggests that GD attains nearly optimal ΦX

Proj(δ)-regret, even in the non-convex setting, among
a natural family of gradient-based algorithms.

Proposition 1 (Lower bound for ΦX
Proj(δ)-regret against non-convex losses). For any T ≥ 1,

δ ∈ (0, 1), and L ≥ 0, there exists a sequence of L-Lipschitz and L-smooth non-convex loss functions
f1, . . . , fT on X = [−1, 1] such that for any algorithm that satisfies the linear span assumption, its
ΦX

Proj(δ)-regret on the loss sequence is RegTProj,δ ≥ δ2LT
2 .

E.3.1 Proof of Theorem 7

Our proof technique comes from the standard one used in multi-armed bandits [Aue+02, Theorem
5.1]. Suppose that f t(x) = gtx. We construct two possible environments. In the first environment,
gt = G with probability 1+ε

2 and gt = −G with probability 1−ε
2 ; in the second environment, gt = G

with probability 1−ε
2 and gt = −G with probability 1+ε

2 . We use Ei and Pi to denote the expectation
and probability measure under environment i, respectively, for i = 1, 2. Suppose that the true
environment is uniformly chosen from one of these two environments. Below, we show that the
expected regret of the learner is at least Ω(δG

√
T ).

Define N+ =
∑T
t=1 I{xt ≥ 0} be the number of times xt is non-negative, and define f1:T =

(f1, . . . , fT ). Then we have

|E1[N+]− E2[N+]| =

∣∣∣∣∣∣
∑
f1:T

(
P1(f

1:T )E
[
N+ | f1:T

]
− P2(f

1:T )E
[
N+ | f1:T

] )∣∣∣∣∣∣
(enumerate all possible sequences of f1:T )

≤ T
∑
f1:T

∣∣P1(f
1:T )− P2(f

1:T )
∣∣

= T∥P1 − P2∥TV

≤ T
√
(2 ln 2)KL(P1,P2) (Pinsker’s inequality)

= T

√
(2 ln 2)T ·KL

(
Bernoulli

(
1 + ε

2

)
,Bernoulli

(
1− ε
2

))
= T

√
(2 ln 2)Tε ln

1 + ε

1− ε
≤ T

√
(4 ln 2)Tε2. (2)
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In the first environment, we consider the regret with respect to v = δ. Then we have

E1

[
RegTProj,δ

]
≥ E1

[
T∑
t=1

f t(xt)− f t(ΠX [xt − δ])

]
= E1

[
T∑
t=1

gt(xt −ΠX [xt − δ])

]

= E1

[
T∑
t=1

εG(xt −ΠX [xt − δ])

]
≥ εδGE1

[
T∑
t=1

I{xt ≥ 0}

]
= εδGE1 [N+] ,

where in the last inequality we use the fact that if xt ≥ 0 then xt −ΠX [xt − δ] = xt − (xt − δ) = δ
because D ≥ δ. In the second environment, we consider the regret with respect to v = −δ. Then
similarly, we have

E2

[
RegTProj,δ

]
≥ E2

[
T∑
t=1

f t(xt)− f t(ΠX [xt + δ])

]
= E2

[
T∑
t=1

gt(xt −ΠX [xt + δ])

]

= E2

[
T∑
t=1

−εG(xt −ΠX [xt + δ])

]
≥ εδGE2

[
T∑
t=1

I{xt < 0}

]
= εδG (T − E2 [N+]) .

Summing up the two inequalities, we get
1

2

(
E1

[
RegTProj,δ

]
+ E2

[
RegTProj,δ

])
≥ 1

2
(εδGT + εδG(E1[N+]− E2[N+]))

≥ 1

2

(
εδGT − εδGTε

√
(4 ln 2)T

)
. (by (2))

Choosing ε = 1√
(16 ln 2)T

, we can lower bound the last expression by Ω(δG
√
T ). The theorem is

proven by noticing that 1
2

(
E1

[
RegTProj,δ

]
+ E2

[
RegTProj,δ

])
is the expected regret of the learner.

E.3.2 Proof of Proposition 1

Proof. Consider f : [−1, 1]→ R such that f(x) = −L2 x
2 and let f t = f for all t ∈ [T ]. Then any

first-order methods that satisfy the linear span assumption with initial point x1 = 0 will produce
xt = 0 for all t ∈ [T ]. The ΦX

Proj(δ)-regret is thus
∑T
t=1(f(0)− f(δ)) =

δ2LT
2 .

E.4 Improved ΦX
Proj(δ)-Regret in the Game Setting and Proof of Theorem 9

Any online algorithm suffers an Ω(
√
T ) ΦX

Proj(δ)-regret even against linear loss functions by The-
orem 7. This lower bound, however, holds only in the adversarial setting. In this section, we
show an improved O(T

1
4 ) individual ΦX

Proj(δ)-regret bound under a slightly stronger smoothness
assumption (Assumption 2) in the game setting, where players interact with each other using the
same algorithm, previous results show improved external regret [Syr+15; CP20; DFG21; Ana+22a;
Ana+22b; Far+22a]. This assumption is naturally satisfied by finite normal-form games and is also
made for results about concave games [Far+22a].
Assumption 2. For any player i ∈ [n], the utility ui(x) satisfies ∥∇xi

ui(x)−∇xi
ui(x

′)∥ ≤
L∥x− x′∥ for all x, x′ ∈ X .

We study the Optimistic Gradient (OG) algorithm [RS13], an optimistic variant of GD that has been
shown to have improved individual external regret guarantee in the game setting [Syr+15]. The OG
algorithm initializes w0 ∈ X arbitrarily and g0 = 0. In each step t ≥ 1, the algorithm plays xt,
receives feedback gt := ∇f t(xt), and updates wt, as follows:

xt = ΠX
[
wt−1 − ηgt−1

]
, wt = ΠX

[
wt−1 − ηgt

]
. (OG)

We show that OG has O(
√
T ) ΦX

Proj(δ)-regret in the adversarial setting and fast O(T 1/4) ΦX
Proj(δ)-

regret and convergence to approximate ΦX
Proj(δ)-equilibrium in games.

Theorem 8 (Adversarial Regret Bound for OG). Let δ > 0 and T ∈ N. For convex and G-Lipschitz
loss functions {f t : X → R}t∈[T ], the ΦX

Proj(δ)-regret of (OG) with step size η > 0 is

RegTProj,δ ≤
δDX

η
+ η

T∑
t=1

∥∥gt − gt−1
∥∥2.
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Choosing step size η =
√
δDX

2G
√
T

, we have RegTProj,δ ≤ 4G
√
δDXT .

Theorem 9 (Improved Individual ΦX
Proj(δ)-Regret of OG in the Game Setting). In a G-Lipschitz

L-smooth (in the sense of Assumption 2) game, when all players employ OG with step size η > 0,
then for each player i, δ > 0, and T ≥ 1, their individual ΦXi

Proj(δ)-regret denoted as RegT,iProj,δ

is RegT,iProj,δ ≤
δD
η + ηG2 + 3nL2G2η3T. Choosing η = min{(δD/(nL2G2T ))

1
4 , (δD)

1
2 /G}, we

have RegT,iProj,δ ≤ 4(δD)
3
4 (nL2G2T )

1
4 + 2

√
δDG. Furthermore, for any δ > 0 and any ε > 0,

their empirical distribution of played strategy profiles converges to an (ε + δ2L
2 )-approximate

ΦProj(δ)-equilibrium in O(1/ε
4
3 ) iterations.

E.4.1 Proof of Theorem 8

Proof. Fix any deviation v that is bounded by δ. Let us define p0 = w0 and pt = ΠX [xt − v].
Following standard analysis of OG [RS13], we have

T∑
t=1

f t(xt)− f t(pt) ≤
T∑
t=1

〈
∇f t(xt), xt − pt

〉
≤

T∑
t=1

1

2η

(∥∥wt−1 − pt
∥∥2 − ∥∥wt − pt∥∥2)+ η

∥∥gt − gt−1
∥∥2 − 1

2η

(∥∥xt − wt∥∥2 + ∥∥xt − wt−1
∥∥2)

≤
T∑
t=1

(
1

2η

∥∥wt−1 − pt
∥∥2 − 1

2η

∥∥wt−1 − pt−1
∥∥2 + η

∥∥gt − gt−1
∥∥2 − 1

2η

∥∥xt − wt−1
∥∥2) (3)

Now we apply a similar analysis from Theorem 3 to upper bound the term ∥wt−1 − pt∥2 −
∥wt−1 − pt−1∥2:∥∥wt−1 − pt

∥∥2 − ∥∥wt−1 − pt−1
∥∥2

=
〈
pt−1 − pt, 2wt−1 − pt−1 − pt

〉
=
〈
pt−1 − pt, 2wt−1 − 2pt

〉
−
∥∥pt − pt−1

∥∥2
= 2
〈
pt−1 − pt, v

〉
+ 2
〈
pt−1 − pt, wt−1 − v − pt

〉
−
∥∥pt − pt−1

∥∥2
= 2
〈
pt−1 − pt, v

〉
+ 2
〈
pt−1 − pt, xt − v − pt

〉
+ 2
〈
pt−1 − pt, wt−1 − xt

〉
−
∥∥pt − pt−1

∥∥2
≤ 2
〈
pt−1 − pt, v

〉
+
∥∥xt − wt−1

∥∥2,
where in the last-inequality we use ⟨pt−1 − pt, xt − u− pt⟩ ≤ 0 since pt = ΠX [xt − v] and X is a
compact convex set; we also use 2⟨a, b⟩ − b2 ≤ a2. In the analysis above, unlike the analysis of GD
where we drop the negative term−∥pt − pt−1∥2, we use−∥pt − pt−1∥2 to get a term ∥xt − wt−1∥2
which can be canceled by the last term in (3).

Now we combine the above two inequalities. Since the term ∥xt − wt−1∥2 cancels out and
2⟨pt−1 − pt, v⟩ telescopes, we get

T∑
t=1

f t(xt)− f t(pt) ≤ ⟨p
0 − pT , u⟩

η
+

T∑
t=1

η
∥∥gt − gt−1

∥∥2 ≤ δDX

η
+ η

T∑
t=1

∥∥gt − gt−1
∥∥2.

E.4.2 Proof of Theorem 9

In the analysis of Theorem 8 for the adversarial setting, the term ∥gt − gt−1∥2 can be as large as 4G2.
In the game setting where every player i employs OG, gti ,i.e., −∇xi

ui(x), depends on other players’
action xt−i. Note that the change of the players’ actions ∥xt − xt−1∥2 is only O(η2). Such stability

of the updates leads to an improved upper bound on ∥gti − g
t−1
i ∥2 and hence also an improvedO(T

1
4 )

ΦX
Proj(δ)-regret for the player.
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Proof. Let us fix any player i ∈ [n] in the smooth game. In every step t, player i’s loss function
f t : Xi → R is ⟨−∇xiui(x

t), ·⟩ determined by their utility function ui and all players’ actions xt.
Therefore, their gradient feedback is gt = −∇xiui(x

t). For all t ≥ 2, we have∥∥gt − gt−1
∥∥2 =

∥∥∇ui(xt)−∇ui(xt−1)
∥∥2

≤ L2
∥∥xt − xt−1

∥∥2
= L2

n∑
i=1

∥∥xti − xt−1
i

∥∥2
≤ 3L2

n∑
i=1

(∥∥xti − wti∥∥2 + ∥∥wti − wt−1
i

∥∥2 + ∥∥wt−1
i − xt−1

i

∥∥2)
≤ 3nL2η2G2,

where we use L-smoothness of the utility function ui in the first inequality; we use the update rule of
OG and the fact that gradients are bounded by G in the last inequality.

Applying the above inequality to the regret bound obtained in Theorem 8, the individual ΦX
Proj(δ)-

regret of player i is upper bounded by

RegT,iProj,δ ≤
δD

η
+ ηG2 + 3nL2G2η3T.

Choosing η = min{(δD/(nL2G2T ))
1
4 , (δD)

1
2 /G}, we have RegT,iProj,δ ≤ 4(δD)

3
4 (nL2G2T )

1
4 +

2
√
δDG. Using Lemma 1, we have the empirical distribution of played strategy profiles converge to

an (ε+ δ2L
2 )-approximate ΦProj(δ))-equilibrium in O(1/ε

4
3 ) iterations.

F Missing Details in Section 4.2

Algorithm 3: Conv(Φ)-regret minimization for Lipschitz smooth non-concave rewards
Input: x1 ∈ X , K ≥ 2, a no-external-regret algorithm RΦ against linear reward over ∆(Φ)
Output: A Conv(Φ)-regret minimization algorithm over X

1 function NEXTSTRATEGY()
2 pt ← RΦ.NEXTSTRATEGY(). Note that pt is a distribution over Φ.
3 xk ← ϕpt(xk−1), for all 2 ≤ k ≤ K
4 return xt ← uniformly at random from {x1, . . . , xK}.
5 function OBSERVEREWARD(∇xut(xt))
6 utΦ(·)← a linear reward over ∆(Φ) with utΦ(ϕ) = ⟨∇xut(xt), ϕ(xt)− xt⟩ for all ϕ ∈ Φ.
7 RΦ.OBSERVEREWARD(utΦ(·)).

F.1 Proof of Theorem 4

Proof Sketch. We adopt the framework in [SL07; GGM08] (as described in Section 3) with two
main modifications. First, we utilize the L-smoothness of the utilities to transform the problem of
external regret over ∆(Φ) against non-concave rewards into a linear optimization problem. Second,
we use the technique of “fixed point in expectation" [Zha+24] to circumvent the intractable problem
of finding a fixed point.

Proof. For a sequence of strategies {xt}t∈[T ], its Conv(Φ)-regret is

RegTConv(Φ) = max
ϕ∈Conv(Φ)

{
T∑
t=1

(
ut(ϕ(xt))− ut(xt)

)}

= max
p∈∆(Φ)

{
T∑
t=1

ut(ϕp(x
t))− ut(ϕpt(xt))

}
︸ ︷︷ ︸

I: external regret over ∆(Φ)

+

T∑
t=1

ut(ϕpt(x
t))− ut(xt)︸ ︷︷ ︸

II: approximation error of fixed point

.
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Bounding External Regret over ∆(Φ) We can define a new reward function f t(p) := ut(ϕp(x
t))

over p ∈ ∆(Φ). Since ut is non-concave, the reward f t is also non-concave and it is computational
intractable to minimize external regret. We use locality to avoid computational barrier. Here we use
the fact that Φ = Φ(δ) contains only δ-local strategy modifications. Then by L-smoothness of ut, we
know for any p ∈ ∆(Φ)∣∣ut(ϕp(xt)− ut(xt)− 〈∇ut(xt), ϕp(xt)− xt〉)∣∣ ≤ L

2

∥∥ϕp(xt)− xt∥∥2 ≤ δ2L

2
.

Thus we can approximate the non-concave optimization problem by a linear optimization problem
over ∆(Φ) with only second-order error δ

2L
2 . Here we use the notation a = b± c to mean b− c ≤

a ≤ b+ c.

ut(ϕp(x
t)− ut(xt) =

〈
∇ut(xt), ϕp(xt)− xt

〉
± δ2L

2

=

〈
∇ut(xt),

∑
ϕ∈Φ

p(ϕ)ϕ(xt)− xt
〉
± δ2L

2

=
∑
ϕ∈Φ

p(ϕ)
〈
∇ut(xt), ϕ(xt)− xt

〉
± δ2L

2
.

We can then instantiate the external regret RΦ as the Hedge algorithm over reward f t(p) =∑
ϕ∈Φ p(ϕ)⟨∇ut(xt), ϕ(xt)− xt⟩ and get

max
p∈∆(Φ)

{
T∑
t=1

ut(ϕp(x
t))− ut(ϕpt(xt))

}

≤ max
p∈∆(Φ)


T∑
t=1

∑
ϕ∈Φ

(p(ϕ)− pt(ϕ))
〈
∇ut(xt), ϕ(xt)− xt

〉
)

+ δ2LT

≤ 2Gδ
√
T log |Φ|+ δ2LT,

where we use the fact that ⟨∇ut(xt), ϕ(xt)− xt⟩ ≤ ∥∇ut(xt)∥ · ∥ϕ(xt)− xt∥ ≤ Gδ.

Bounding error due to sampling from a fixed point in expectation We choose x1 as an arbitrary
point in X . Then we recursively apply ϕpt to get

xk = ϕpt(xk−1) =
∑
ϕ∈Φ

pt(ϕ)ϕ(xk−1),∀2 ≤ k ≤ K.

We denote µt = Uniform{xk : 1 ≤ k ≤ K}. Then the strategy xt ∼ µt is sampled from µt. We
have that µt is an approximate fixed-point in expectation / stationary distribution in the sense that

Eµt

[
ut(ϕpt(x

t))− ut(xt)
]
=

1

K

K∑
k=1

ut(ϕpt(xk)− ut(xk))

=
1

K

(
ut(ϕpt(xK))− ut(x1)

)
≤ 1

K
.

Thanks to the boundedness of ut, we can use Hoeffding-Azuma’s inequality to conclude that

Pr

[
T∑
t=1

(
ut(ϕpt(x

t))− ut(xt)− 1

K

)
≥ ϵ

]
≤ exp

(
− ε

2

8T

)
. (4)

for any ε > 0. Combining the above with ε =
√

8T log(1/β) and K =
√
T , we get with probability

at least 1− β,

RegTConv(Φ) ≤ 2Gδ
√
T log |Φ|+ δ2LT +

√
T +

√
8T log(1/β)

≤ 8
√
T
(
Gδ
√
log |Φ|+

√
log(1/β)

)
+ δ2LT.
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Convergence to Φ-equilibrium If all players in a non-concave continuous game employ Algo-
rithm 1, then we know for each player i, with probability 1 − β

n , its ΦXi-regret is upper bounded
by

8
√
T

(
Gδ
√
log |ΦXi |+

√
log(n/β)

)
+ δ2LT.

By a union bound over all n players, we get with probability 1− β, every player i’s ΦXi-regret is
upper bounded by 8

√
T (Gδ

√
log |Φ+Xi |+

√
log(n/β))+ δ2LT . Now by Theorem 1, we know the

empirical distribution of strategy profiles played forms an (ε + δ2L)-approximate Φ = Πni=1Φ
Xi-

equilibrium, as long as T ≥ 128(G2δ2 log |ΦXi |+log(n/β))
ε2 iterations.

G Missing details in Section 4.3

We introduce a natural set of local strategy modifications and the corresponding local equilibrium
notion. Given any set of (possibly non-local) strategy modifications Ψ = {ψ : X → X}, we define a
set of local strategy modifications as follows: for δ ≤ DX and λ ∈ [0, 1], each strategy modification
ϕλ,ψ interpolates the input strategy x with the modified strategy ψ(x): formally,

ΦX
Int,Ψ(δ) := {ϕλ,ψ(x) := (1− λ)x+ λψ(x) : ψ ∈ Ψ, λ ≤ δ/DX } .

Note that for any ψ ∈ Ψ and λ ≤ δ
DX

, we have ∥ϕλ,ψ(x)− x∥ = λ∥x− ψ(x)∥ ≤ δ, re-
specting the locality constraint. The induced ΦX

Int,Ψ(δ)-regret can be written as RegTInt,Ψ,δ :=

maxψ∈Ψ,λ≤ δ
DX

∑T
t=1 (f

t(xt)− f t((1− λ)xt + λψ(xt))). We now define the corresponding

ΦInt,Ψ(δ)-equilibrium.

Definition 9. Define ΦInt,Ψ(δ) = Πnj=1Φ
Xj

Int,Ψj
(δ). In a continuous game, a distribution σ over

strategy profiles is an (ε-approximate ΦInt,Ψ(δ)-equilibrium if and only if for all player i ∈ [n],

max
ψ∈Ψi,λ≤δ/DXi

Ex∼σ[ui((1− λ)xi + λψ(xi), x−i)] ≤ Ex∼σ[ui(x)] + ε.

Intuitively speaking, when a correlation device recommends strategies to players according to an
ε-approximate ΦInt,Ψ(δ)-equilibrium, no player can increase their utility by more than ε through a
local deviation by interpolating with a (possibly global) strategy modification ψ ∈ Ψ. The richness of
Ψ determines the incentive guarantee provided by an ε-approximate ΦInt,Ψ(δ)-equilibriumas well as
its computational complexity. When we choose Ψ to be the set of all possible strategy modifications,
the corresponding notion of local equilibrium—limiting the gain of a player by interpolating with any
strategy—resembles that of a correlated equilibrium.

Computation of ε-approximate ΦInt,Ψ(δ)-Equilibrium. By Lemma 1, we know computing an
ε-approximate ΦInt,Ψ(δ)-equilibrium reduces to minimizing ΦX

Int,Ψ(δ)-regret against convex loss
functions. We show that minimizing ΦX

Int,Ψ(δ)-regret against convex loss functions further reduces
to Ψ-regret minimization against linear loss functions.

Theorem 10. Let A be an algorithm with Ψ-regret RegTΨ(G,DX ) for linear and G-Lipschitz loss
functions over X . Then, for any δ > 0, the ΦX

Int,Ψ(δ)-regret of A for convex and G-Lipschitz loss

functions over X is at most δ
DX
· [RegTΨ(G,DX )]

+
.

Proof. By definition and convexity of f t, we get

max
ϕ∈ΦX

Int,Ψ(δ)

T∑
t=1

f t(xt)− f t(ϕ(xt)) = max
ψ∈Ψ,λ≤ δ

DX

T∑
t=1

f t(xt)− f t((1− λ)xt + λψ(xt))

≤ δ

DX

[
max
ψ∈Ψ

T∑
t=1

〈
∇f t(xt), xt − ψ(xt)

〉]+
.
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Figure 2: Illustration of ϕProj,v(x) and ϕBeam,v(x)
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Note that when f t is linear, the reduction is without loss. Thus, any worst-case Ω(r(T ))-lower bound
for Ψ-regret implies a Ω( δ

DX
· r(T )) lower bound for ΦInt,Ψ(δ)-regret. Moreover, for any set Ψ that

admits efficient Ψ-regret minimization algorithms such as swap transformations over the simplex
and more generally any set such that (i) all modifications in the set can be represented as linear
transformations in some finite-dimensional space and (ii) fixed point computation can be carried out
efficiently for any linear transformations [GGM08], we also get an efficient algorithm for computing
an ε-approximate ΦInt,Ψ(δ)-equilibrium in the first-order stationary regime.

CCE-like Instantiation In the special case where Ψ contains only constant strategy modifications
(i.e. ψ(x) = x∗ for all x), we get a coarse correlated equilibrium (CCE)-like instantiation of local
equilibrium, which limits the gain by interpolating with any fixed strategy. We denote the resulting
set of local strategy modification simply as ΦX

Int. We can apply any no-external regret algorithm
for efficient ΦX

Int-regret minimization and computation of ε-approximate ΦInt(δ)-equilibrium in the
first-order stationary regime as summarized in Theorem 5.

The above ΦX
Int(δ)-regret bound of O(

√
T ) is derived for the adversarial setting. In the game setting,

where each player employs the same algorithm, players may have substantially lower external
regret [Syr+15; CP20; DFG21; Ana+22a; Ana+22b; Far+22a] but we need a slightly stronger
smoothness assumption than Assumption 1. This assumption is naturally satisfied by finite normal-
form games and is also made for results about concave games [Far+22a]. Using Assumption 2
and Lemma 1, the no-regret learning dynamics of [Far+22a] that guarantees O(log T ) individual
external regret in concave games can be applied to smooth non-concave games so that the individual
ΦX

Int(δ)-regret of each player is at most O(log T )+ δ2LT
2 . This gives an algorithm with faster Õ(1/ε)

convergence to an (ε+ δ2L
2 )-approximate ΦInt(δ)-equilibrium than GD.

H Beam-Search Local Strategy Modifications and Local Equilibria

In Section 4.1 and Section 4.3, we have shown that GD achieves near-optimal performance for both
ΦX

Int(δ)-regret and ΦX
Proj(δ)-regret. In this section, we introduce another natural set of local strategy

modifications, ΦX
Beam(δ), which is similar to ΦX

Proj(δ). Specifically, the set ΦX
Beam(δ) contains

deviations that try to move as far as possible in a fixed direction (see Figure 2 for an illustration of
the difference between ϕBeam,v(x) and ϕProj,v(x)):

ΦX
Beam(δ) := {ϕBeam,v(x) = x− λ∗v : v ∈ Bd(δ), λ∗ = max{λ : x− λv ∈ X , λ ∈ [0, 1]}}.

It is clear that ∥ϕBeam,v(x)− x∥ ≤ ∥v∥ ≤ δ. We can similarly derive the notion of ΦX
Beam-regret

and (ε,ΦBeam(δ))-equilibrium. Surprisingly, we show that GD suffers linear ΦX
Beam(δ)-regret (proof

deferred to Appendix H.1).

Theorem 11. For any δ, η < 1
2 and T ≥ 1, there exists a sequence of linear loss functions

{f t : X ⊆ [0, 1]2 → R}t∈[T ] such that GD with step size η suffers Ω(δT ) ΦX
Beam(δ)-regret.
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H.1 Proof of Theorem 11

Let X ⊂ R2 be a triangle region with vertices A = (0, 0), B = (1, 1), C = (δ, 0). Consider
v = (−δ, 0). The initial point is x1 = (0, 0).

The adversary will choose ℓt adaptively so that xt remains on the boundary of X and cycles clockwise
(i.e., A→ · · · → B → · · · → C → · · · → A→ · · · ). To achieve this, the adversary will repeat the
following three phases:

1. Keep choosing ℓt = u−−→
BA

(u−−→
BA

denotes the unit vector in the direction of
−−→
BA) until xt+1

reaches B.
2. Keep choosing ℓt = u−−→

CB
until xt+1 reaches C.

3. Keep choosing ℓt = u−→
AC

until xt+1 reaches A.

In Phase 1, xt ∈ AB. By the choice of v = (−δ, 0), we have xt − ϕv(xt) = (−δ(1− xt,1), 0), and
the instantaneous regret is δ(1−xt,1)√

2
≥ 0.

In Phase 2, xt ∈ BC. By the choice of v = (−δ, 0), we have xt − ϕv(xt) = (0, 0), and the
instantaneous regret is 0.

In Phase 3, xt ∈ CA. By the choice of v = (−δ, 0), we have xt − ϕv(xt) = (−δ + xt,1, 0), and the
instantaneous regret is −δ + xt,1 ≤ 0.

In each cycle, the number of rounds in Phase 1 is of order Θ(
√
2
η ), the number of rounds in Phase 2 is

between O( 1η ) and O(
√
2
η ), the number of rounds in Phase 3 is of order Θ( δη ).

Therefore, the cumulative regret in each cycle is roughly
√
2

η
× 0.5δ√

2
+ 0 +

δ

η
(−0.5δ) = 0.5δ − 0.5δ2

η
.

On the other hand, the number of cycles is no less than T√
2

η +
√

2
η + δ

η

= Θ(ηT ). Overall, the cumulative

regret is at least 0.5δ−0.5δ2

η ×Θ(ηT ) = Θ(δT ) as long as δ < 0.5.

I Hardness in the Global Regime

In the first-order stationary regime δ ≤
√
2ε/L, (ε, δ)-local Nash equilibrium is intractable, and we

have shown polynomial-time algorithms for computing the weaker notions of ε-approximate ΦInt(δ))-
equilibrium and ε-approximate ΦProj(δ))-equilibrium. A natural question is whether correlation
enables efficient computation of ε-approximate Φ(δ))-equilibrium when δ is in the global regime,
i.e., δ = Ω(

√
d). In this section, we prove both computational hardness and a query complexity lower

bound for both notions in the global regime

To prove the lower bound results, we only require a single-player game. The problem of computing an
ε-approximate Φ(δ)-equilibrium becomes: given scalars ε, δ,G, L > 0 and a polynomial-time Turing
machine Cf evaluating a G-Lipschitz and L-smooth function f : [0, 1]d → [0, 1] and its gradient
∇f : [0, 1]d → Rd, we are asked to output a distribution σ that is an ε-approximate Φ(δ)-equilibrium
or ⊥ if such equilibrium does not exist.

Hardness of finding ε-approximate ΦX
Int(δ)-equilibria in the global regime When δ =

√
d,

which equals to the diameter D of [0, 1]d, then the problem of finding an ε-approximate ΦX
Int(δ)-

equilibrium is equivalent to finding a (ε, δ)-local minimum of f : assume σ is an ε-approximate
ΦX

Int(δ)-equilibrium of f , then there exists x ∈ [0, 1]d in the support of σ such that
f(x)− min

x∗∈[0,1]d∩Bd(x∗,δ)
f(x∗) ≤ ε.

Then hardness of finding an ε-approximate ΦX
Int(δ)-equilibrium follows from hardness of finding a

(ε, δ)-local minimum of f [DSZ21]. The following Theorem is a corollary of Theorem 10.3 and 10.4
in [DSZ21].
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Theorem 12 (Hardness of finding ε-approximate ΦX
Int(δ)-equilibria in the global regime). In the

worst case, the following two holds.

• Computing an ε-approximate ΦX
Int(δ)-equilibrium for a game on X = [0, 1]d with G =

√
d,

L = d, ε ≤ 1
24 , δ =

√
d is NP-hard.

• Ω(2d/d) value/gradient queries are needed to determine an ε-approximate ΦX
Int(δ)-

equilibrium for a game on X = [0, 1]d with G = Θ(d15), L = Θ(d22), ε < 1, δ =
√
d.

Hardness of finding ε-approximate ΦX
Proj(δ)-equilibria in the global regime

Theorem 13 (Hardness of of finding ε-approximate ΦX
Proj(δ)-equilibria in the global regime). In the

worst case, the following two holds.

• Computing an ε-approximate ΦX
Proj(δ)-equilibrium for a game on X = [0, 1]d with G =

Θ(d15), L = Θ(d22), ε < 1, δ =
√
d is NP-hard.

• Ω(2d/d) value/gradient queries are needed to determine an ε-approximate ΦX
Proj(δ)-

equilibrium for a game on X = [0, 1]d with G = Θ(d15), L = Θ(d22), ε < 1, δ =
√
d.

The hardness of computing ε-approximate ΦX
Proj(δ)-equilibrium also implies a lower bound on

ΦX
Proj(δ)-regret in the global regime.

Corollary 2 (Lower bound of ΦX
Proj(δ)-regret against non-convex functions). In the worst case, the

ΦX
Proj(δ)-regret of any online algorithm is at least Ω(2d/d, T ) even for loss functions f : [0, 1]d →

[0, 1] with G,L = poly(d) and δ =
√
d.

The proofs of Theorem 13 and Corollary 2 can be found in the next two sections.

I.1 Proof of Theorem 13

We will reduce the problem of finding an ε-approximate ΦX
Proj(δ)-equilibrium in smooth games to

finding a satisfying assignment of a boolean function, which is NP-complete.

Fact 1. Given only black-box access to a boolean formula ϕ : {0, 1}d → {0, 1}, at least Ω(2d)
queries are needed in order to determine whether ϕ admits a satisfying assignment x∗ such that
ϕ(x∗) = 1. The term black-box access refers to the fact that the clauses of the formula are not given,
and the only way to determine whether a specific boolean assignment is satisfying is by querying the
specific binary string. Moreover, the problem of finding a satisfying assignment of a general boolean
function is NP-hard.

We revisit the construction of the hard instance in the proof of [DSZ21, Theorem 10.4] and use its
specific structures. Given black-box access to a boolean formula ϕ as described in Fact 1, following
[DSZ21], we construct the function fϕ(x) : [0, 1]d → [0, 1] as follows:

1. for each corner v ∈ V = {0, 1}d of the [0, 1]d hypercube, we set fϕ(x) = 1− ϕ(x).

2. for the rest of the points x ∈ [0, 1]d/V , we set fϕ(x) =
∑
v∈V Pv(x) · fϕ(v) where Pv(x)

are non-negative coefficients defined in [DSZ21, Definition 8.9].

The function fϕ satisfies the following properties:

1. if ϕ is not satisfiable, then fϕ(x) = 1 for all x ∈ [0, 1]d since fϕ(v) = 1 for all v ∈ V ; if ϕ
has a satisfying assignment v∗, then fϕ(v∗) = 0.

2. fϕ is Θ(d12)-Lipschitz and Θ(d25)-smooth.

3. for any point x ∈ [0, 1]d, the set V (x) := {v ∈ V : Pv(x) ̸= 0} has cardinality at most
d+ 1 while

∑
v∈V Pv(x) = 1; any value / gradient query of fϕ can be simulated by d+ 1

queries on ϕ.
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In the case there exists a satisfying argument v∗, then fϕ(v∗) = 0. Define the deviation e so that
e[i] = 1 if v∗[i] = 0 and e[i] = −1 if v∗[i] = 1. It is clear that ∥e∥ =

√
d = δ. By properties of

projection on [0, 1]d, for any x ∈ [0, 1]d, we have Π[0,1]n [x − v] = v∗. Then any ε-approximate
ΦX

Proj(δ)-equilibrium σ must include some x∗ ∈ X with fϕ(x∗) < 1 in the support, since ε < 1.
In case there exists an algorithm A that computes an ε-approximate ΦX

Proj(δ)-equilibrium, A must
have queried some x∗ with fϕ(x∗) < 1. Since fϕ(x∗) =

∑
v∈V (x∗) Pv(x

∗)fϕ(v) < 1, there exists
v̂ ∈ V (x∗) such that fϕ(v̂) = 0. Since |V (x∗)| ≤ d+1, it takes addition d+1 queries to find v̂ with
fϕ(v̂) = 0. By Fact 1 and the fact that we can simulate every value/gradient query of fϕ by d + 1
queries on ϕ, A makes at least Ω(2d/d) value/gradient queries.

Suppose there exists an algorithm B that outputs an ε-approximate ΦX
Proj(δ)-equilibrium σ in time

T (B) for ε < 1 and δ =
√
d. We construct another algorithm C for SAT that terminates in time

T (B) · poly(d). C: (1) given a boolean formula ϕ, construct fϕ as described above; (2) run B and get
output σ (3) check the support of σ to find v ∈ {0, 1}d such that fϕ(v) = 0; (3) if finds v ∈ {0, 1}d
such that fϕ(v) = 0, then ϕ is satisfiable, otherwise ϕ is not satisfiable. Since we can evaluate fϕ
and ∇fϕ in poly(d) time and the support of σ is smaller than T (B), the algorithm C terminates
in time O(T (B) · poly(d)). The above gives a polynomial time reduction from SAT to finding an
ε-approximate ΦX

Proj(δ)-equilibrium and proves the NP-hardness of the latter problem.

I.2 Proof of Corollary 2

Let ϕ : {0, 1}d → {0, 1} be a boolean formula and define fϕ : [0, 1]d → [0, 1] the same as that
in Theorem 13. We know fϕ is Θ(poly(d))-Lipschitz and Θ(poly(d))-smooth. Now we let the
adversary pick fϕ each time. For any T ≤ O(2d/d), in case there exists an online learning algorithm
with RegTProj,δ <

T
2 , then σ := 1

T

∑T
t=1 1xt is an ( 12 , δ)-equilibrium. Applying Theorem 13 and the

fact that in this case, RegTProj,δ is non-decreasing with respect to T concludes the proof.

J Removing the D dependence for ΦX
Proj-regret

For the regime δ ≤ DX which we are more interested in, the lower bound in Theorem 7 is Ω(Gδ
√
T )

while the upper bound in Theorem 3 is O(G
√
δDXT ). They are not tight especially when DX ≫ δ.

A natural question is: which of them is the tight bound? We conjecture that the lower bound is
tight. In fact, for the special case where the feasible set X is a box, we have a way to obtain a
DX -independent bound O(d

1
4Gδ
√
T ), which is tight when d = 1. Below, we first describe the

improved strategy in 1-dimension. Then we show how to extend it to the d-dimensional box setting.

J.1 One-Dimensional Case

In one-dimension, we assume that X = [a, b] for some b− a ≥ 2δ (if b− a ≤ 2δ, then our original
bound in Theorem 3 is already of order Gδ

√
T ). We first investigate the case where f t(x) is a linear

function, i.e., f t(x) = gtx for some gt ∈ [−G,G]. The key idea is that we will only select xt from
the two intervals [a, a + δ] and [b − δ, b], and never play xt ∈ (a + δ, b − δ). To achieve so, we
concatenate these two intervals, and run an algorithm in this region whose diameter is only 2δ. The
key property we would like to show is that the regret is preserved in this modified problem.

More precisely, given the original feasible set X = [a, b], we create a new feasible set Y = [−δ, δ]
and apply our algorithm GD in this new feasible set. The loss function is kept as f t(x) = gtx.
Whenever the algorithm for Y outputs yt ∈ [−δ, 0], we play xt = yt + a + δ in X ; whenever it
outputs yt ∈ (0, δ], we play xt = yt + b− δ. Below we show that the regret is the same in these two
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problems. Notice that when yt ≤ 0, we have for any v ∈ [−δ, δ],

xt −ΠX [xt − v] = xt −max
(
min

(
xt − v, b

)
, a
)

= xt −max
(
xt − v, a

)
(xt − v = yt + a+ δ − v ≤ a+ 2δ ≤ b always holds)

= yt + a+ δ −max
(
yt + a+ δ − v, a

)
= yt −max

(
yt − v,−δ

)
= yt −max

(
min

(
yt − v, δ

)
,−δ

)
(yt − v ≤ δ always holds)

= yt −ΠY [y
t − v]

Similarly, when yt > 0, we can follow the same calculation and prove xt − ΠX [xt − v] = yt −
ΠY [y

t − v]. Thus, the regret in the two problems:

gt
(
xt −ΠX [xt − v]

)
and gt

(
yt −ΠY [y

t − v]
)

are exactly the same for any v. Finally, observe that the diameter of Y is only of order O(δ). Thus,
the upper bound in Theorem 3 would give us an upper bound of O(G

√
δ · δT ) = O(Gδ

√
T ).

For convex f t, we run the algorithm above with gt = ∇f t(xt). Then by convexity we have

f t(xt)− f t(ΠX [xt − v]) ≤ gt(xt −ΠX [xt − v]) = gt(yt −ΠY [y
t − v]),

so the regret in the modified problem (which is O(Gδ
√
T )) still serves as a regret upper bound for

the original problem.

J.2 d-Dimensional Box Case

A d-dimensional box is of the form X = [a1, b1] × [a2, b2] × · · · × [ad, bd]. The box case is easy
to deal with because we can decompose the regret into individual components in each dimension.
Namely, we have

f t(xt)− f t(ΠX [xt − v]) ≤ ∇f t(xt)⊤
(
xt −ΠX [xt − v]

)
=

d∑
i=1

gti
(
xti −ΠXi

[xti − vi]
)

where we define Xi = [ai, bi], gt = ∇f t(xt), and use subscript i to indicate the i-th component of a
vector. The last equality above is guaranteed by the box structure. This decomposition allows as to
view the problem as d independent 1-dimensional problems.

Now we follow the strategy described in Section J.1 to deal with individual dimensions (if bi−ai < 2δ
then we do not modify Xi; otherwise, we shrink Xi to be of length 2δ). Applying the analysis of
Theorem 3 to each dimension, we get

d∑
i=1

gti
(
xti −ΠXi

[xti − vi]
)

≤
d∑
i=1

(
v2i
2η

+
η

2

T∑
t=1

(gti)
2 +
|vi| × 2δ

η

)
(the diameter in each dimension is now bounded by 2δ)

≤ O

(
δ
∑d
i=1 |vi|
η

+ ηG2T

)

≤ O

(
δ2
√
d

η
+ ηG2T

)
. (by Cauchy-Schwarz,

∑
i |vi| ≤

√
d
√∑

i |vi|2 ≤ δ
√
d)

Choosing the optimal η = d
1
4 δ

G
√
T

, we get the regret upper bound of order O
(
d

1
4Gδ
√
T
)

.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We state the problem setting and our main contributions in the abstract and
introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Our results provide efficient uncoupled algorithms to compute ε-approximate
Φ-equilibria in the first-order stationary regime. We leave the computational complexity
of finding ε-approximate Φ-equilibria beyond the first-order stationary regime as an open
question.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide assumptions and proofs for our theoretical results in the main body
and the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
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Justification: This paper does not contain experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: This paper does not contain experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This paper does not contain experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This paper does not contain experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not contain experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and the current paper conforms
the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a purely theoretical paper and we do not see any immediate societal
impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: This is a purely theoretical paper

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This is a purely theoretical paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This is a purely theoretical paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not contain experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not contain experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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