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Abstract

This work identifies the first privacy-aware strat-
ified sampling scheme that minimizes the vari-
ance for general private mean estimation under the
Laplace, Discrete Laplace (DLap) and Truncated-
Uniform-Laplace (TuLap) mechanisms within the
framework of differential privacy (DP). We view
stratified sampling as a subsampling operation,
which amplifies the privacy guarantee; however,
to have the same final privacy guarantee for each
group, different nominal privacy budgets need to
be used depending on the subsampling rate. Ignor-
ing the effect of DP, traditional stratified sampling
strategies risk significant variance inflation. We
phrase our optimal survey design as an optimiza-
tion problem, where we determine the optimal
subsampling sizes for each group with the goal of
minimizing the variance of the resulting estima-
tor. We establish strong convexity of the variance
objective, propose an efficient algorithm to iden-
tify the optimal design, and offer insights on the
structure of this design in different settings.

1. Introduction
Differential Privacy (DP), introduced by Dwork et al. (2006),
is a popular probabilistic framework designed to protect indi-
vidual privacy while preserving the utility of data. By intro-
ducing calibrated random noise into the data processing, DP
ensures that outputs remain informative while reducing the
risk of identifying individuals. However, this added noise
introduces unique challenges for data analysis. Neglecting
the effects of DP mechanisms can lead to biased and incor-
rect conclusions (Santos-Lozada et al., 2020; Kenny et al.,
2021). To address these challenges, researchers commonly
employ various inference strategies, such as Bayesian in-
ference (Bernstein & Sheldon, 2018 & 2019; Schein et al.,
2019; Kulkarni et al., 2021; Ju et al., 2022), asymptotic anal-
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ysis (Gaboardi et al., 2016; Gaboardi & Rogers, 2017; Wang
et al., 2018), simulation-based inference (Awan & Wang,
2024), and bootstrapping methods (Ferrando et al., 2022;
Wang et al., 2022). However, there is also a growing need
to integrate DP into the design of data collection schemes.

Survey sampling traditionally encompasses three compo-
nents: sample selection, data collection, and estimation
(Brick, 2011). Over time, survey sampling has been evolv-
ing to incorporate new technologies (Frankel & Frankel,
1987), such as registration-based sampling (Green & Ger-
ber, 2006), telephone sampling (Force et al., 2010), and
computerization (Baker, 1998). Differential privacy rep-
resents one of the latest advances, fostering the need to
optimize data collection to balance privacy and utility.

Among survey sampling methods, stratified sampling stands
out as a robust scheme that leverages auxiliary informa-
tion to collect valuable samples that can minimize variance.
Unlike simple random sampling (SRS), stratified sampling
minimizes the risk of having bad samples by dividing the
population into groups (strata) based on common character-
istics (Lohr, 2021). Neyman (1934) was the first to formal-
ize stratified sampling, introducing an optimal allocation of
samples to minimize variance across groups—a goal aligned
with the principles of experimental design (Wu & Hamada,
2011).

Developing DP techniques for surveys is very important to
protect individual respondents, especially when sensitive
questions are asked. Furthermore, another key motivation
for incorporating DP is as a technique to reduce response
bias—also known as answer bias—which often arises when
individuals avoid answering sensitive or controversial ques-
tions truthfully, leading to skewed or inaccurate conclusions.
Randomized response, introduced by Warner (1965), pro-
vides a mechanism for respondents to address such questions
while satisfying differential privacy (Dwork et al., 2014).
Incorporating appropriate noise through DP techniques, our
framework effectively balances data utility with individual
privacy and can also reduce response biases.

When considering differential privacy for survey sampling,
it is first important to recognize a crucial result of differential
privacy under sampling which plays a key role in the formu-
lation of our problem: When a privacy mechanism is applied
to a randomly sampled subset of a population (while the
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sampled individuals themselves remain secret), a stronger
privacy guarantee can be achieved (Kasiviswanathan et al.,
2011). This effect is referred to as the “secrecy of the sam-
ple” or privacy amplification by subsampling. Thus, in
stratified sampling, where the population is divided into sub-
populations, subsampling within groups can amplify privacy
protection. This effect adds complexity to the optimization
problem of determining the optimal survey design when
integrating differential privacy into stratified sampling.

This paper is the first to consider optimizing a survey design
when incorporating a differential privacy guarantee. Specif-
ically, we develop an optimal stratified sampling scheme
to minimize the estimator variance in private mean estima-
tion under differential privacy. Holding the total sample
size fixed, we search for the optimal subgroup sizes. A key
challenge is that different subsampling rates for each group
require different “nominal privacy budgets” in order to give
the same privacy guarantee to all members of the population,
which results in a complex objective function.

Ignoring DP-induced variance during the design phase can
lead to significant inflation in estimator variance, as demon-
strated in Section 5 and highlighted in the table below. Es-
sentially, the Neyman allocation (Neyman, 1934), referred
to as naive stratified sampling in our setting, only minimizes
the variance from the data but can perform poorly when
incorporating the variance induced by DP. Since the DP
variance objectives in our problem contain both a compo-
nent from the data and one from the DP mechanism, the
DP-optimal design differs from the Neyman allocation.

Table 1 compares the non-private (Neyman) solution and the
DP-optimal design, both evaluated under the DP variance
objective, using Laplace and Truncated-Uniform-Laplace
(TuLap) mechanisms (Awan & Slavković, 2018). The table
reports the ratio of the DP variance objectives—Neyman
over optimal—highlighting the potential inefficiency caused
by ignoring the effect of DP during the design.

ϵ 0.1 10−1/2 1 101/2 10

Laplace 1.828 2.095 2.269 2.311 1.973
TuLap 2.405 3.324 3.877 4.060 4.076

Table 1. Ratio of the DP variance objective when using the non-
private solution versus the DP-optimal design for population mean
estimation (1 is optimal, higher is worse).

Contributions: We propose a novel framework for design-
ing stratified sampling schemes under a hybrid local/central
differential privacy regime, leveraging a design of experi-
ment (DOE) perspective. We provide an efficient algorithm
for locating the optimal integer design, which practitioners
can easily implement in practice. Our approach accounts

for variance from sampling as well as from the DP noise
amplified by subsampling during the design phase, allocat-
ing the best subsampling sizes to minimize the variance of
our final estimator.

This work is, to the best of our knowledge, the first to apply
experimental design principles to data collection under dif-
ferential privacy, fundamentally altering optimal stratified
sampling schemes to accommodate DP considerations. Our
contributions include the following:

• We identify and formulate the problem as a constrained
integer-programming problem, identifying its align-
ment within the framework of DOE.

• We establish strong convexity for a general variance ob-
jective, covering important cases such as A-optimality
(minimizing the trace of the covariance matrix) and
population mean estimation, under three common ad-
ditive DP mechanisms: Laplace, Discrete Laplace, and
Truncated-Uniform-Laplace.

• For the population mean estimate, we derive closed-
form continuous solutions under Discrete Laplace and
Truncated-Uniform-Laplace mechanisms; additionally,
we derive the optimal continuous design when using
purely Laplace noise, which reveals the DP-aware de-
sign lies between the original, no-noise design and the
pure Laplace noise design.

• By leveraging the strong convexity of the variance ob-
jectives, we develop a computationally efficient algo-
rithm to locate the integer-optimal design, overcoming
the intractability of exhaustive search methods.

Organization: The rest of the paper is structured as follows:
Section 2 provides the necessary background on local and
central differential privacy as well as privacy amplification
by subsampling. Section 3 formulates the main problem, a
convex-constrained minimization problem with a general
variance objective. Section 4 establishes the strong con-
vexity of the problem, a key property enabling the efficient
search for the integer-optimal design. In Section 5, we illus-
trate variance inflation resulting from naive stratified sam-
pling without considering DP effects and demonstrate the
efficiency of our algorithm in locating the integer-optimal
design, even as the number of groups increases. Finally,
Section 6 discusses the implications of our findings and
potential avenues for future work.

Related Work: Although optimal survey design for private
estimation remains unexplored, differentially private survey
sampling has recently been studied in other contexts. Lin
et al. (2024) construct confidence intervals for proportions
using data collected through stratified sampling. Bun et al.
(2020) examine stratified and cluster sampling, highlighting
that certain sampling schemes can degrade privacy rather
than enhance it and can increase privacy risks.
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Sampling has also been employed as a technique to ad-
dress DP-related problems. Ebadi et al. (2016) examine
the impact of various sampling schemes on differential pri-
vacy, demonstrating that only Bernoulli sampling amplifies
privacy protection. Joy & Gerla (2017) propose a sampling-
based privacy mechanism satisfying differential privacy,
while Bichsel et al. (2018) develop a correlated sampling
method to detect privacy violation.

The concept of “secrecy of the sample,” proposed and for-
malized by Kasiviswanathan et al. (2011), highlights the role
of random sampling from population in enhancing privacy
guarantees while keeping the members of the dataset secret.
Li et al. (2012) demonstrate that implementing k-anonymity
safely after a random sampling step ensures (ϵ, δ)-DP. Cheu
et al. (2019) employ “secrecy of the sample” to establish
the privacy guarantee of the shuffled model, an intermedi-
ate variant between central and local models that enhances
privacy by relying on a trusted curator to shuffle the locally
privatized data before releasing a final private statistic. Ar-
colezi et al. (2021) incorporate random sampling into their
solution for multivariate frequency estimation in locally
differentially private (LDP) settings.

Variance minimization and estimation, as well as utility-
maximization mechanisms, have been widely investigated
under DP. Treating multi-agent systems as probabilistic mod-
els of environmental states parameterized by agent profiles,
Wang et al. (2017) establish a lower bound on the l1-induced
norm of the covariance matrix for minimum-variance un-
biased estimators when the agents’ profiles are ϵ-DP. Li
et al. (2023b) expose how output poisoning attacks can
manipulate and deteriorate mean and variance estimation
under local DP. Amin et al. (2019) identify a bias-variance
trade-off caused by clamping in DP learning and provide
careful tuning on the clamping bound. For a fixed count
query, Ghosh et al. (2009) show that the geometric mecha-
nism minimizes the expected loss for virtually all possible
users while satisfying the DP constraint. Similarly, for a
single real-valued query function, Geng & Viswanath (2015)
demonstrate that the staircase mechanism can minimize ℓ1
and ℓ2 costs under specific parameter settings.

2. Background
We introduce the necessary background of local and central
differential privacy and relevant subsampling results.

Differential privacy can be ensured from two perspectives:
local DP and central DP. Both approaches achieve privacy
guarantees by employing randomized mechanisms that per-
turb sensitive data or statistics and produce their privatized
outputs. Local DP offers stronger privacy protection by pri-
vatizing individual data, ensuring that sensitive information
remains unknown to anyone, thereby shielding individu-

als from both internal and external threats. However, this
comes at the cost of reduced data utility. In contrast, central
DP relies on trusted data curators to collect sensitive data
and subsequently release a privatized summary, protecting
individual only from external adversaries.

Definition 2.1 (Local Differential Privacy: Duchi et al.,
2013). Let X be the set of possible contributions of an
individual. A privacy mechanism M provides local ϵ-
differential privacy, if for any two data points x, x′ ∈ X and
for any measurable set S ⊆ Range(M),

Pr[M(x) ∈ S] ≤ eϵ Pr[M(x′) ∈ S].

To safeguard individual privacy through added noise, the
amount of noise must be carefully quantified, with sensi-
tivity playing a pivotal role in this process. Greater data
dispersion increases sensitivity, which in turn requires scal-
ing up the noise in the privacy mechanism.

Definition 2.2 (Sensitivity). Let f : X → R be a statistic.
The sensitivity of f is ∆f = maxx,x′∈X |f(x)− f(x′)|.

In Example 2.3, we introduce three DP mechanisms to
which we apply our findings throughout the paper.

Example 2.3. The following are three common DP mech-
anisms. For local ϵ-DP, given a real-valued statistic f(x),

• the Laplace mechanism is Z = f(x) + L, where L ∼
Lap(0, s) with s = ∆f/ϵ.

• the Discrete Laplace mechanism (DLap) (Inusah &
Kozubowski, 2006; Ghosh et al., 2009) for integer-
valued data is Z = f(x) + K, where K ∼ P (K =
k) = 1−p

1+p p|k| with p = exp (−ϵ/∆f).

• the Truncated-Uniform-Laplace mechanism (TuLap)
(Awan & Slavković, 2018) is Z = f(x) + K +
U , where K is the same as in DLap and U ∼
Uniform(−1/2, 1/2). TuLap is a canonical noise dis-
tribution (Awan & Vadhan, 2023) and it is related to
the Staircase distribution (Geng & Viswanath, 2015).

While local DP offers strong protection against both exter-
nal adversaries as well as the data collectors themselves, it
requires a large amount of noise for privatization. For ex-
ample, Duchi et al. (2013) show that local DP mechanisms
have inferior asymptotic variance compared to non-private
estimators. On the other hand, central DP has a trusted cura-
tor, but gives the same DP guarantee to external adversaries
and allows for asymptotically negligible noise to be added
(Smith, 2011; Barber & Duchi, 2014).

Definition 2.4 (Central Differential Privacy: Dwork et al.,
2006). Let Xn be the set of possible datasets with sam-
ple size n and dH(·, ·) be the Hamming distance on
Xn × Xn, a privacy mechanism M provides (central) ϵ-
differential privacy, if for any two datasets X,X ′ ∈ Xn

3



Optimal Survey Design for Private Mean Estimation

such that dH(X,X ′) ≤ 1, and for any measurable set
S ⊆ Range(M),

Pr[M(X) ∈ S] ≤ eϵ Pr[M(X ′) ∈ S].

Note that all local DP mechanisms are also central DP.
Therefore, the following lemmas on central DP can be ap-
plied to local DP mechanisms.

Lemma 2.5 (Parallel Composition: McSherry, 2009). Let
M1,M2, . . . ,Mk be a set of k mechanisms, where each Mi

satisfies ϵi-DP. Suppose these mechanisms are applied to dis-
joint subsets of the dataset Xn, denoted as D1, D2, . . . , Dk,
such that Xn =

⋃k
i=1 Di, and where the sizes of Di’s are

public. Then, the combined mechanism M = (Mi)
k
i=1

satisfies maxi ϵi-DP.

Lemma 2.5 states that the ultimate privacy guarantee of
a set of privacy mechanisms applied to disjoint datasets
only hinges on the worst among all guarantees. In stratified
sampling, a set Di represents a stratum (group).

Lemma 2.6 (Subsampling: Corollary 3, Dong et al., 2022;
Ullman, 2017). If M is a privacy mechanism that satisfies
ϵ-DP for a dataset of size n, and Sm is the subsampling
operator that chooses a subset of size m from the dataset of
size n uniformly at random, then the subsampled mechansim
M ◦Sm satisfies log(1−q+q exp(ϵ))-DP, where q = m/n.

Lemma 2.6 shows how subsampling creates its randomness,
thereby bringing about privacy amplification. It follows
from Lemma 2.5 that if N is decomposed into k disjoint
groups of size Ni for i = 1, . . . , k, and we want to sample
subsets of size ni from each group, uniformly at random,
then the privacy guarantee for a nominal ϵ-DP mechanism
M applied to the subsamples is log(1−qmax+qmax exp(ϵ)),
where qmax = maxi

ni

Ni
.

Finally, we recall the post-processing property of DP: If
M : Xn → Y is an ϵ-DP mechanism and g : Y → Z
is another mechanism, then g ◦ M : Xn → Z satisfies
ϵ-DP (Dwork et al., 2014). This property allows us to con-
struct customized estimators from the DP outputs, without
compromising the privacy guarantee.

3. Problem Setup
In this paper, we minimize the variance of a mean estimator,
which comprises data randomness and additive privacy noise
centered at zero, with the following problem setup:

Suppose there are k groups (strata) of people Di (i =
1, . . . , k) with size Ni that make up the entire population. In
each group i, Yij represents the survey response of the j-th
individual (j = 1, . . . , Ni) which has mean µi and variance
σ2
i with bounded support. In a local DP setting, instead

of Yij , Zij = Yij +Wij is the privatized survey response,

where Wij is the i.i.d. additive noise with mean 0 and fi-
nite variance γ2 depending on ni, Ni and ϵ. Assume that
ni samples are drawn from group Di with a total sample
size of η ∈ [k,

∑k
i=1 Ni]. The constrained minimization

problem of interest becomes

argmin

k∑
i=1

α2
i

ni

[
σ2
i + γ2(ni, Ni, ϵ)

]
, (1)

subject to Cn := {n ∈ Nk :
∑

ni = η and 0 < ni ≤
Ni,∀i}, where αi are pre-determined weights.

This problem is classified as a nonlinear integer program.
As it will be addressed later using the Lagrangian, which in-
troduces a continuous multiplier for the equality constraint,
it can be generally treated as a mixed-integer programming
problem (Lee & Leyffer, 2011).

Note that αi, Ni, σi, (i = 1, .., k) and η are assumed to be
given or determined prior to subsampling. The following
examples show how the αi can be chosen to optimize for
various variance objectives.

Example 3.1 (Population Mean Estimation). One of the
most important parameters to estimate in survey sampling
is the population mean. For group i, the group mean
µi can be estimated by µ̂i = 1

ni

∑ni

j=1 Zij , which is an
unbiased estimator of µi. The population mean µ can
thus be unbiasedly estimated by µ̂ =

∑k
i=1 Niµ̂i∑k
i=1 Ni

. Then,

Var(µ̂) = 1
(
∑

Ni)2

∑k
i=1

Ni
2

ni

[
σ2
i + γ2(ni, Ni, ϵ)

]
. Thus,

the constrained minimization problem is

argmin

k∑
i=1

Ni
2

ni

[
σ2
i + γ2(ni, Ni, ϵ)

]
(2)

s.t.
∑

ni = η, ni ≤ Ni, ni ∈ N, ∀i.

This aligns with (1) as αi = Ni for all i.

Example 3.2 (A-Optimal Experimental Design). Another
important case is the A-optimal experimental design, where
the goal is to estimate each group mean with the A-optimal
weighting. Denote the covariance matrix of (µ̂1, . . . , µ̂k)

⊤

as Eµ, then the A-optimal experimental design is

argmin tr(Eµ) =

k∑
i=1

1

ni

[
σ2
i + γ2(ni, Ni, ϵ)

]
(3)

s.t.
∑

ni = η, ni ≤ Ni, ni ∈ N, ∀i.

This algins with (1) as αi = 1 for all i.

Remark 3.3. There are other interesting settings that fit into
this framework. For instance, one may be interested in a
unit-free optimal design by setting αi = 1/σi.

Now, we look into the variance component from the pri-
vacy mechanism, that is, γ2(ni, Ni, ϵ) for all i, where the
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subsampling comes into play. Rather than using qmax for
all k groups as in Lemma 2.6, we consider qi = ni

Ni
such

that Mi ◦Sni satisfies ϵ-DP, where Mi is the privacy mecha-
nism for group i and Sni

is the subsampling operator which
chooses a subset of size ni from the group i. This ensures
every person gets the same level of central DP privacy pro-
tection, regardless of their group size.

Population

1st group 2nd group k-th group· · ·

Y11, · · · , Y1n1
Y21, · · · , Y2n2

Yk1, · · · , Yknk
· · ·

ϵ

· · ·
Sn1

Sn2

Snk

Local MechanismsM1 M2 Mk

Subsampling Operations

Figure 1. Diagram of the DP stratified sampling

Illustrated in Figure 1, the key challenge lies as follows:

• To avoid wasting the final privacy budget ϵ across
groups, the parallel composition between groups must
account for the subsampling operations when determin-
ing a central nominal budget for each group. This bud-
get is then distributed as a local nominal budget to each
individual in the group in order to protect individual
survey response, ensuring—via parallel composition
within group—that the group as a whole satisfies the
central nominal privacy guarantee.

• Since the total sample size η is fixed, allocating fewer
samples to one group may allow for less local noise in
that group, while simultaneously increasing the local
noise required for other groups and amplifying the
1/ni factor in the overall variance objective.

Therefore, our method has dual privacy guarantees: a local
DP guarantee from the nominal privacy loss budget against
the data collector, and a central DP guarantee, boosted by
subsampling, against external adversaries.

Proposition 3.4. If the nominal privacy budget of Mi is
log

(
exp (ϵ/∆f)−1+qi

qi

)
-DP, then Mi ◦ Sni satisfies ϵ-DP.

Proposition 3.4 establishes the dual privacy guarantees for
our mechanisms, ensuring uniform privacy protection for
all individuals from public disclosure.

Example 3.5. Applying Proposition 3.4 to the three mecha-
nisms with si = 1/log

(
1 + exp (ϵ/∆f)−1

ni
Ni

)
, we have the

following:

• The Laplace mechanism for local ϵ-DP is Zij = Yij +
si · Lap(0, 1). The variance objective is

k∑
i=1

αi
2

ni

[
σ2
i + 2 log−2

(
1 +

exp (ϵ/∆f)− 1

ni
Ni

)]
. (4)

• The Discrete Laplace mechanism for local ϵ-
DP is Zij = Yij + Kij , where Kij ∼
DLap (pi = exp(1/si)). The variance objective is

k∑
i=1

αi
2

ni

[
σ2
i + 2

ni

Ni
(exp (ϵ/∆f)− 1 + ni

Ni
)

(exp (ϵ/∆f)− 1)2

]
. (5)

• The Truncated-Uniform-Laplace mechanism for lo-
cal ϵ-DP is Zij = Yij + Kij + Uij where Kij ∼
DLap (pi = exp(1/si)). and Uij ∼ Uniform(− 1

2 ,
1
2 ).

The variance objective is

k∑
i=1

αi
2

ni

[
σ2
i +

1

12
+ 2

ni

Ni
(exp (ϵ/∆f)− 1 + ni

Ni
)

(exp (ϵ/∆f)− 1)2

]
. (6)

By using an exhaustive search, the complexity of solving
(1) is O

((
η−1
k−1

))
(Ross, 1974), motivating the need for a

customized optimization method.

4. Theoretical Results and Algorithm
In this section, we develop the optimal integer design which
solves (1). In Section 4.1, we discover and prove the strong
convexity of the variance objectives under Laplace, DLap,
and TuLap mechanisms, which enables us to precisely locate
the optimal design in Section 4.3. In Section 4.2 we also
derive some closed-form solutions over continuous space
for some special cases.

4.1. Strong Convexity

We begin by establishing the strong convexity of our vari-
ance objectives. Strong convexity ensures a unique optimum
over the reals and provides a quadratic lower bound for the
objective function. These properties are leveraged in Sec-
tion 4.3 to develop an efficient optimization algorithm.
Theorem 4.1 (Strong Convexity). Let αi, Ni, σi, and η be
given for all i = 1, . . . , k. Then, the continuous relaxations
of the variance objectives (4), (5) and (6), with (n1, . . . , nk)
replaced by a continuous vector x ∈ Cx := {x ∈ Rk :∑

xi = η, 0 < xi ≤ Ni,∀i}, are strongly convex.

Proof Sketch. We first prove that the variance objectives
are strongly convex over (0, η)k and then show that this
property continues to hold under the constraints. For the
DLap and TuLap mechanisms, strong convexity follows by
inspection; for Laplace, strong convexity is established by
change of variables and repeated differentiation.
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Strong convexity in Theorem 4.1 guarantees a unique so-
lution over the reals. This solution can be found via New-
ton’s method with established R packages such as optim,
nloptr or alabama. However, solving the mixed-integer
programming problem is more complex, as existing pack-
ages do not provide direct solutions. Strong convexity is
key in identifying the integer-optimal design in Section 4.3.
Note that neither CVX’s free solvers in MatLab nor any R
package support mixed-integer programming.

4.2. Closed-Form Solution for Population Mean

A closed-form continuous solution is desirable for its ease of
implementation and the insights it provides into the behavior
of the design. While such a solution does not exist for all
αi, intriguing results emerge when αi = Ni, the case of
population mean estimation.

Proposition 4.2 (Closed-Form Solutions for Population
Mean). If Mi is DLap or TuLap with αi = Ni and as-
sume that [τi/(

∑
τiNi)]η ≤ 1 for all i, the continuous

solution of (5) and (6) under the constraint of Cx have a
closed form x∗

i = [(τiNi)/(
∑

τiNi)]η, where τ2i = σ2
i for

DLap and τ2i = σ2
i +

1
12 for TuLap.

Proof Sketch. We first formulate the Lagrangian of the con-
strained optimization problem. The KKT conditions give
a proportional relation xi ∝ τiNi for all i. Then, the con-
straint provides a unique solution for the xi’s.

Remark 4.3. The solution of (5) is identical to the naive strat-
ified sampling design, also known as the Neyman allocation
(Neyman, 1934) or the optimal allocation (Kempf-Leonard,
2004), where the sample size allocated to each group is
proportional to both the variability and the size of the group.
In contrast, (6) has a regularization effect on its sample sizes
that results in a different allocation.

As for the Laplace noise, although we were unable to derive
a general closed-form solution for (4), we have an interest-
ing finding in the case of population mean estimates, which
offers insight in the interplay between the no-DP and purely
DP solutions. First, we define the non-private variance as

1

(
∑

Ni)2

{
k∑

i=1

Ni
2

xi
σ2
i

}
. (7)

Under the constraint of Cx, the non-private variance (7) is
minimized at x∗

i = (σiNi/
∑

σiNi)η for all i. On the other
hand, we can define the pure DP variance as

1

(
∑

Ni)2

{
k∑

i=1

Ni
2

xi

[
2 log−2

(
1 +

exp (ϵ/∆f)− 1

xi/Ni

)]}
.

(8)

Proposition 4.4 (Closed-Form Solution of Purely Laplace
Variance for Population Mean). Under the constraint of Cx,
the purely DP variance from the Laplace mechanism (8) is
minimized at x∗

i = (Ni/
∑

Ni)η for all i.

Proof Sketch. In addition to the similar Lagrangian proof
argument in Proposition 4.2, we use the result that φ(y) =
2
y log−2 (1 + c/y) is strongly convex, as proved in Theo-
rem 4.1, to identify the solution form.

Proposition 4.4 indicates that the sample size allocated to
each group is merely proportional to the size of the group.
This corresponds to the concept of the proportional allo-
cation (Kempf-Leonard, 2004). It is surprising that the
solution is independent of ϵ as (8) can be blown up when ϵ
drops. Although ϵ does not play a role in either the solution
of the original variance or that of the pure DP variance, it
plays a critical role in the solution of the total variance. We
illustrate this phenomenon in Section 5.

4.3. Algorithm to Find the Optimal Integer Design

Since Theorem 4.1 only ensures the existence and unique-
ness of the continuous-optimal design, in this section we use
the strong convexity property to derive a small region that
is guaranteed to contain the integer-optimal design. This
result is leveraged in Algorithm 1 to efficiently find the
integer-optimal design.

The search over integer points satisfying the convex con-
straint is finite, as the set of feasible integer-valued solutions,
D = {n ∈ Nk :

∑
ni = η, 0 < ni < Ni,∀i}, is inherently

limited. Moreover, the strong convexity of the variance
objective provides a quadratic lower bound, ensuring that
a certain level set of this bound must contain the integer-
optimal point. This level set can be characterized in terms
of Euclidean distance, with the radius determined by the
smallest eigenvalue of the objective function.
Lemma 4.5 (Range to Search for Integer-Optimal Design).
Let g1, g2, g3 be the objective function from (4), (5), (6)
respectively, and Cx such that x∗ = argminC gj(x), then

n∗ = argmin
D

gj(n), (9)

is located within Bx∗(r) = {x : ∥x − x∗∥2 ≤ r} with
r =

√
2(gj(ninit.)− gj(x∗))/λ for any given j ∈ {1, 2, 3},

where λ is the smallest eigenvalue of the Hessian of gj(x∗)
and ninit. = argminE gj(n) with E = {n ∈ Nk :

∑
ni =

η, ⌊x∗
i ⌋ ≤ ni ≤ ⌈x∗

i ⌉}.

Applying the result of Lemma 4.5, we propose Algorithm 1
which starts with the continuous solution, identifies a small
set of candidate integer solutions, and then identifies the
integer-optimal design within this smaller set.

6
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Algorithm 1 Integer-Optimal Design
Input: x∗ (the optimal continuous solution) and Hessian

matrix of g : Hg(x
∗)

for i = 1, . . . , k − 1 do
Define Ti = {ni ∈ N : ⌊x∗

i ⌋ ≤ ni ≤ ⌈x∗
i ⌉}

end for
Define T = {(n1, . . . , nk−1, nk) : nk = η −∑k−1

i=1 ni,where (n1, . . . , nk−1) ∈ T1 × . . .× Tk−1}
Select ninit. = argminn∈T g(n)
Calculate the smallest eigenvalue λ of Hg(x

∗)

Calculate radius r =
√
2(g(ninit.)− g(x∗))/λ

for i = 1, . . . , k − 1 do
Define Si = {ni ∈ N : max(x∗

i − r, 1) ≤ ni ≤
min(x∗

i + r,Ni, η − k + 1)}
end for
Define S = {(n1, . . . , nk−1, nk) : nk = η −∑k−1

i=1 ni,where (n1, . . . , nk−1) ∈ S1 × . . .× Sk−1}
Select n∗ = argminn∈S g(n) by an exhaustive search.

Output: n∗

Theorem 4.6 (Integer-Optimal Design). Algorithm 1 out-
puts the integer-optimal design (9).

Remark 4.7. Before entering the second for-loop in Algo-
rithm 1, the practitioner may decide to check the optimality
gap [g(ninit.)− g(x∗)]/g(x∗). If the optimality gap is suffi-
ciently small, it may be acceptable to adopt the suboptimal
design ninit.. This is demonstrated in Section 5.4.

x∗

n∗

ninit.

r

Figure 2. Illustration of Algorithm 1: level set (dotted blue),
Bx∗(r) and its enclosing sphere and cube (dashed black), fea-
sible region induced from r (thick green), integer points (black)

Figure 2 illustrates the main idea behind Lemma 4.5 and
Algorithm 1. Note that the dotted blue ellipse repre-
sents the level set of the variance objective g evaluated at
ninit., the nearest integer design from the continuous op-
timum x∗. Starting by locating ninit., our method then
constructs a ball Bx∗(r) centered at x∗ with radius r =√

2(gj(ninit.)− gj(x∗))/λ. This ball corresponds to the
level set of a quadratic lower bound of g, and thus still
contains the integer-optimal design. We then enclose the
ball in a cube to simplify the search. The solid green cube

marks the final exhaustive search region, which includes all
feasible candidates for the integer-optimal design.
Remark 4.8. Strong convexity of the variance objective
plays a key role in identifying the optimal design. While
an exhaustive grid search has O

((
η−1
k−1

))
different combina-

tions, scaling O(ηk−1) when k is fixed, Algorithm 1 reduces
η to 2r, giving a much lower complexity of O

(
(2r)k−1

)
.

We show in Section 5 that r is relatively small.

5. Simulation
We numerically illustrate our method through simulation
studies. Section 5.1 compares compares variances between
naive and DP-aware stratified sampling. Section 5.2 ex-
plores the interplay between the non-private and purely
DP designs. Section 5.4 showcases the computational ef-
ficiency of our algorithm. The input of Algorithm 1, x∗,
is obtained by package nloptr and alabama in R. All
computations, including runtime measurements, were con-
ducted on the Purdue Bell clusters using multiple cores. The
source codes are available at https://github.com/
garyUAchen/DP_OptimSurvey.

5.1. Suboptimality of Naive Stratified Subsampling

As shown in Table 1, stratified sampling under our DP frame-
work requires a tailored design to minimize the variance
objective. Both private mean estimation and private A-
optimal estimation face variance inflation under specific
privacy mechanisms.

In this simulation, there are 4 groups with population
sizes N = (7000, 8000, 9000, 10000) and variance σ2 =
(0.08, 0.082, 0.083, 0.084) and a total sample size η = 200.
We plot the variance ratio from a naive subsampling scheme
to that of the integer-optimal design while varying ϵ from
0.01 to 100.

For the population mean case, Figure 3 illustrates that, under
the Laplace mechanism, the naive subsampling variance can
be up to 2.5 times larger than the optimal design variance
within 1 < ϵ < 10. Under TuLap, the variance ratio can
reach as high as 4. Note that DLap gives the same design
for population mean.

Figure 3. Variance Ratio on population mean
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For A-optimal cases, illustrated in Figure 4, the naive sub-
sampling variance under the Laplace mechanism can be up
to 1.8 times larger than the optimal design variance within
the range 1 < ϵ < 10. For the TuLap mechanism, a notice-
able jump in the variance ratio occurs around ϵ = 10, driven
by the variance of the Unif(0, 1) component. Similarly, the
DLap mechanism follows a trend comparable to TuLap but
demonstrates the smallest variance ratio gap between the
naive subsampling scheme and the optimal integer design.
This behavior aligns with the population mean scenario,
where the ratio remains constant at 1.

Figure 4. Variance Ratio for A-Optimal Design

The trend of the Laplace mechanism differs from those of
DLap and TuLap because, in the latter two, strong convex-
ity arises only from the data variance, while the variance
induced from the Discrete Laplace mechanism is actually
linear. In contrast, both the data and Laplace variance com-
ponents are strongly convex in the Laplace mechanism. In-
tuitively, when both sources of randomness are strongly
convex, each favors its own optimal design (for example,
Neyman allocation for data variance and proportional allo-
cation for purely Laplace variance in the population mean
case). The interplay between these competing effects shapes
the overall optimal design, as shown more clearly in Sec-
tion 5.2.

5.2. Interplay between No-noise and Purely Laplace
Noise Optimal Designs

While a closed-form solution for private mean estimation
under the Laplace mechanism is unavailable, the optimal
design tends to fall between the no-noise and pure-Laplace
noise designs.

In our simulation, there are 3 groups with population sizes
N = (1000, 2000, 3000), σ2 = (0.08, 0.081.5, 0.082),
ϵ = 1 and a total sample size η = 200. We use the set-
ting of the population mean with Laplace noise. Figure 5
demonstrates that the integer-optimal design largely inter-
polates between the no-noise and pure-noise designs. As
privacy protection strengthens, the design shifts closer to the
pure-noise configuration; conversely, with weaker privacy

protection the optimal design more closely aligns with the
Neyman allocation.

Figure 5. Optimal, no-noise, and pure-noise designs as ϵ varies

5.3. Sensitivity Analysis

The setting is the same as in Section 5.2, with additional
consideration of misspecifying the sample variance σ̂2 rela-
tive to the true variance σ2. We examine four cases where
σ̂2 = 3σ2, 1.2σ2, 0.9σ2, or 0.3σ2. As shown in Figure 6,
the DP-optimal design is largely robust to misspecification
within ±20%. The convergence of curves near ϵ = 100
occurs because, under weak privacy constraints, the DP-
optimal design approaches Neyman allocation, which is
proportional to σ, and thus to σ̂ in this setting.

Figure 6. Sensitivity Analysis

5.4. Computational Efficiency of Algorithm 1

Our problem is formulated as a mixed-integer programming
task, which lacks an off-the-shelf solution method, partic-
ularly in R. While exhaustive search becomes infeasible
as either the total sample size η or the number of groups
k increases, our algorithm proves to be relatively efficient
for practical implementation. Although it struggles with
scenarios involving large k, it remains highly efficient for
substantial η values—up to 100, 000 and more—when k is
kept at a reasonable scale.

In this simulation, there are 10 groups with N =
(N1, N2, . . . , N10) = (20000, 19000, . . . , 11000) and
σ2 = (σ2

1 , σ
2
2 , . . . , σ

2
10) = (0.081.1, 0.081.2, . . . , 0.082)
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and ϵ = 1. We measure the computation time for an ex-
haustive search and for our proposed algorithm as the total
sample size η increases from 30 to 48, using the population
mean case with Laplace noise. Figure 7 demonstrates that
the exhaustive search exhibits exponential growth in compu-
tation time, whereas Algorithm 1 effectively mitigates this
growth. In fact, we see that Algorithm 1 can effectively find
the optimal solution with sample sizes up to 105 in less time
than an exhaustive search takes for η = 30.

Figure 7. Computation time comparison

Now, we consider k groups with N = (N1, N2, . . . , Nk) =
(10000 + 1000 · k, 10000 + 900 · k, . . . , 11000) and σ2 =
(σ2

1 , σ
2
2 , . . . , σ

2
k) = (0.081.1, 0.081.2, . . . , 0.081+k/10) and

ϵ = 1. We implement our full algorithm from k = 2 to
12, locating the optimal design n∗, and that of the first part
of our algorithm from k = 14 to 26, locating the nearest
integer design ninit..

If r > 1, then as k increases the computation time exhibits
exponential growth, which becomes large especially when
k ≥ 14. In practice, if r > 1.5 and k is large, we rec-
ommend identifying the nearest integer design ninit., corre-
sponding to the first half of the algorithm. In this simulation,
it maintains an optimality gap (the relative increase in the
DP variance objective at ninti. compared to the continuous
optimal x∗) of less than 10−4 from the continuous-optimal
design x∗. Notably, locating the continuous-optimal de-
sign is independent of Algorithm 1 and requires less than 1
second for any k in the simulation.

Figure 8. Curse of dimensionality in number of groups

6. Discussion
We proposed a new framework for integrating differential
privacy (DP) into stratified sampling, aiming to achieve two
main goals: minimizing the total variance and protecting
individual privacy. A significant contribution of our work is
the inclusion of privacy considerations in the data collection
design. While traditional stratified sampling focuses on min-
imizing variance assuming non-private data, our approach
takes into account the noise introduced by privacy mecha-
nisms as well as the privacy amplification by subsampling,
ensuring more reliable results under privacy constraints.

Our framework is fairly flexible, as it works with three
common DP mechanisms: Laplace, Discrete Laplace, and
Truncated-Uniform-Laplace. Furthermore, the strong con-
vexity of the variance objective ensures that the optimization
problem is well-defined, which leads to solid theoretical re-
sults. We also addressed the computational challenges of
exhaustive search methods by developing an efficient algo-
rithm for finding the optimal integer design.

However, there are some limitations to our framework. We
assume prior knowledge of population variances across
groups. In practice, a pilot study is commonly conducted,
where a small portion of pilot samples are drawn from each
group to estimate group sample variances. The fixed sam-
ple size constraint, while reasonable, may be too strict or
may not account for more complex scenarios (e.g. chance
constraints). Additionally, our algorithm may be inefficient
when the search radius r is large. Exploring alternative meth-
ods for finding the integer-optimal design could improve
efficiency; for example Gurobi, MOSEK, and Julia’s
Pajarito all have generic mixed-integer programming
packages. Lastly, our analysis is limited to ϵ-DP with the
Laplace, DLap, and TuLap mechanisms and uses subsam-
pling without replacement. Future work could extend our
results to other privacy and subsampling frameworks, such
as the Staircase mechanism Geng & Viswanath (2015),
Gaussian mechanism, or general canonical noise distribu-
tions Awan & Vadhan (2023) as well as the ρ-zCDP (Bun
& Steinke, 2016), µ-GDP, f -DP frameworks (Dong et al.,
2022) or subsampling with replacement (Balle et al., 2018).

Some directions for future work are as follows: Incorpo-
rating the double privacy amplification effect of subsam-
pling and shuffling (Li et al., 2023a) could strengthen pri-
vacy guarantees but also introduces additional optimization
challenges. Applying our framework in a fully central DP
context, assuming a trusted curator, is another option and
would yield a different variance objective. Finally, extend-
ing the framework to more complex sampling designs, such
as multi-stage or adaptive sampling, would broaden its ap-
plicability. These directions would further solidify the role
of DP-aware stratified sampling in privacy-preserving data
collection.
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A. Proofs and Technical Details
Lemma A.1. For all y > 0, ((

1 +
1

y

)
log(1 + y)− 2

)2

− 1 + log(1 + y) > 0. (10)

Proof. First, since we focus on the positive real line (y > 0), we can do change of variable by letting y = ex − 1 with
domain x > 0, then (10) becomes (

xex

ex − 1
− 2

)2

− 1 + x.

We can multiply through by (ex − 1)2 to give us the equivalent of problem of establishing that h(x) > 0, where

h(x) := (xex − 2ex + 2)2 + (x− 1)(ex − 1)2.

To analyze h(x), we compute its derivatives up to the third order:

dh(x)

dx
=e2x

(
2x2 − 4x+ 3

)
+ 2ex (x− 2) + 1,

d2h(x)

dx2
=2ex

(
ex

(
2x2 − 2x+ 1

)
+ x− 1

)
,

d3h(x)

dx3
=2xex(4xex + 1).

We begin by noting that d3h(x)
dx3 > 0 for all x > 0, which implies that d2h(x)

dx2 is increasing. Since d2h(x)
dx2

∣∣
x=0

= 0, it follows

that d2h(x)
dx2 > 0 for all x > 0. By the same argument, knowing that dh(x)

dx

∣∣
x=0

= 0, we conclude that dh
dx > 0 for all x > 0.

Finally, since h(0) = 0, we establish that h(x) > 0 for all x > 0.

Theorem 4.1 (Strong Convexity). Let αi, Ni, σi, and η be given for all i = 1, . . . , k. Then, the continuous relaxations of
the variance objectives (4), (5) and (6), with (n1, . . . , nk) replaced by a continuous vector x ∈ Cx := {x ∈ Rk :

∑
xi =

η, 0 < xi ≤ Ni,∀i}, are strongly convex.

Proof. Since we intend to prove that the variance objective is strongly convex on the reals, we substitute x ∈ Rk
+ for n in

the proof for distinction. We will first prove that the variance objective is strongly convex as a function of x (without the
constraint

∑
xi = η) and then verify that they remain strongly convex under the constraint of

∑k
i=1 xi = η.

Let g1(n) = (4). The Hessian matrix Hf is a diagonal matrix with diagonal entry (Hg1)ii as follows:

∂2g1
∂xi

2
(x1, . . . , xk) = 2α2

i

[
σ2
i

x3
i

+
(xi + ci)

2 log2(1 + ci
xi
)− ci(4xi + 3ci) log(1 +

ci
xi
) + 3c2i

x3
i (xi + ci)2 log

4(1 + ci
xi
)

]
, (11)

which is positive for xi ∈ (0, η) for all i = 1, . . . , k, where ci = (exp (ϵ/∆f)− 1)Ni. This is because the first term and the
denominator of the second term of (11) are clearly positive for all xi ∈ (0, η) and hence it remains to check the numerator
of the second term; by letting yi =

ci
xi

and completing the squares, we have

(xi + ci)
2 log2(1 +

ci
xi

)− ci(4xi + 3ci) log(1 +
ci
xi

) + 3c2i

=(
ci
yi

+ ci)
2 log2(1 + yi)− ci(4

ci
yi

+ 3ci) log(1 + yi) + 3c2i

=c2i

[
(1 +

1

yi
)2 log2(1 + yi)− (3 +

4

yi
) log(1 + yi) + 3

]
=c2i

[(
(1 +

1

yi
) log(1 + yi)− 2

)2

− 1 + log(1 + yi)

]
>0 (Lemma A.1).
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Similarly, let g2(n) = (5) and g3(n) = (6). The Hessian matrix Hg2 is a diagonal matrix with diagonal entry (Hg2)ii =

2α2
i

(
σ2
i

x3
i

)
and the Hessian matrix Hg3 is a diagonal matrix with diagonal entry (Hg3)ii = 2α2

i

(
σ2
i+

1
12

x3
i

)
, which are both

positive for xi ∈ (0, η) for all i = 1, . . . , k.

Since gj is strongly convex with respect to (x1, . . . , xk−1, xk) for j = 1, 2, 3, it remains to show that they are strongly
convex under the constraint η =

∑k
i=1 xi. Let P = {(x1, . . . , xk) : η =

∑
xi} and a, b ∈ P . For t ∈ (0, 1),

gj(ta+ (1− t)b) < tgj(a) + (1− t)gj(b) because a, b ∈ dom(gj); meanwhile, ta+ (1− t)b ∈ P due to the convexity of
the constrained subspace. Therefore, the strong convexity holds for an additional box constraint, i.e. P ′ = {(x1, . . . , xk) :∑

xi = η, 0 < xi < Ni}.

Proposition 4.2 (Closed-Form Solutions for Population Mean). If Mi is DLap or TuLap with αi = Ni and assume
that [τi/(

∑
τiNi)]η ≤ 1 for all i, the continuous solution of (5) and (6) under the constraint of Cx have a closed form

x∗
i = [(τiNi)/(

∑
τiNi)]η, where τ2i = σ2

i for DLap and τ2i = σ2
i +

1
12 for TuLap.

Proof. Consider

min
1

(
∑

Ni)2

{
k∑

i=1

[
Ni

2

xi
τ2i + 2

xi + (exp (ϵ/∆f)− 1)Ni

(exp (ϵ/∆f)− 1)2

]}
s.t.

∑
xi = η.

We can write its Lagrangian as

L(x, ν) =
1

(
∑

Ni)2

{
k∑

i=1

[
Ni

2

xi
τ2i + 2

xi + (exp (ϵ/∆f)− 1)Ni

(exp (ϵ/∆f)− 1)2

]}
+ ν(

∑
xi − η).

The KKT condition implies that for all 1 ≤ i ≤ k,{
∂L
∂xi

= 1
(
∑

Ni)2

[
−Ni

2

xi
2 τ2i + 2

(exp (ϵ/∆f)−1)2

]
+ ν = 0

∂L
∂ν =

∑
xi − η = 0.

Then, ν(
∑

Ni)
2 + 2

(exp (ϵ/∆f)−1)2 = Ni
2

xi
2 τ

2
i implies xi ∝ τiNi, as the LHS of the equation is constant for all i. Therefore,

x∗
i =

τiNi∑
τiNi

η,

where τ2i = σ2
i for Discrete Laplace and τ2i = σ2

i +
1
12 for TuLap.

Proposition 4.4 (Closed-Form Solution of Purely Laplace Variance for Population Mean). Under the constraint of Cx, the
purely DP variance from the Laplace mechanism (8) is minimized at x∗

i = (Ni/
∑

Ni)η for all i.

Proof. We can express the problem as an equality-constrained minimization problem

min

∑
Niφ(

xi

Ni
)

(
∑

Ni)2

s.t.
∑

xi = η,

where, with c = exp (ϵ/∆f)− 1, φ(y) = 2
y log−2

(
1 + c

y

)
is strongly convex w.r.t. y. Its Lagrangian is

L(x, ν) =

∑
Niφ(

xi

Ni
)

(
∑

Ni)2
+ ν(

∑
xi − η).

14
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The KKT condition implies that for all 1 ≤ i ≤ k{
∂L
∂xi

=
φ′(

xi
Ni

)

(
∑

Ni)2
+ ν = 0

∂L
∂ν =

∑
xi − η = 0.

Thus, −ν
∑

Ni = φ′( x1

N1
) = · · · = φ′( xk

Nk
). Note that φ is strongly convex if and only if φ′ is strictly increasing, which

implies x1

N1
= x2

N2
= · · · = xk

Nk
is a sufficient and necessary condition for the system of equations to hold. Now, since∑

xi = η and xi ∝ Ni (i.e. xi = bNi for some b ∈ R),
∑

xi = b
∑

Ni = η and hence b = η∑
Ni

, which gives{
x∗
i = η∑

Ni
Ni for all i,

ν∗ = −1
(
∑

Ni)2
φ′( η∑

Ni
).

Lemma 4.5 (Range to Search for Integer-Optimal Design). Let g1, g2, g3 be the objective function from (4), (5), (6)
respectively, and Cx such that x∗ = argminC gj(x), then

n∗ = argmin
D

gj(n), (9)

is located within Bx∗(r) = {x : ∥x− x∗∥2 ≤ r} with r =
√

2(gj(ninit.)− gj(x∗))/λ for any given j ∈ {1, 2, 3}, where λ
is the smallest eigenvalue of the Hessian of gj(x∗) and ninit. = argminE gj(n) with E = {n ∈ Nk :

∑
ni = η, ⌊x∗

i ⌋ ≤
ni ≤ ⌈x∗

i ⌉}.

Proof. Let Lf (c) = {x : f(x) ≤ c} be the level set of f at c. For any fixed j ∈ {1, 2, 3}, let

lj(x) := gj(x
∗) +∇gj(x

∗)⊤(x− x∗) +
λ

2
∥x− x∗∥2.

We see that, for any c ∈ R, Lgj (c) ⊆ Llj (c). Thus, we plug gj(ninit.) in and get

n∗ ∈ Lgj (gj(ninit.)) ⊆ Llj (gj(ninit.)).

Now, to calculate the radius of Llj (gj(ninit.)), we look at the boundary of it, where {x : lj(x) = gj(ninit.)}. Then, the set of
boundary points satisfy

gj(ninit.) = gj(x
∗) +∇gj(x

∗)⊤(x− x∗) +
λ

2
∥x− x∗∥2

= gj(x
∗) +

λ

2
∥x− x∗∥2.

The conclusion follows as we set the radius r =
√

2(gj(ninit.)− gj(x∗))/λ such that n∗ ∈ Bx∗(r).
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