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Figure 1. We propose ZeroPS, a novel zero-shot 3D part segmentation pipeline by leveraging pretrained foundation models, SAM [18] and
GLIP [22], without training or fine-tuning. The figure shows our unlabeled segmentation results. Left: PartNetE’s simulated data. Right:
AKBSeg’s real-world data. In each example, the input 3D object and output two visualizations are shown in turn. Please zoom in to see
accurate 3D segmentation boundaries. ZeroPS also supports instance segmentation. Please refer to Fig. 5 for the qualitative comparison.

Abstract

Zero-shot 3D part segmentation is a challenging and
fundamental task. In this work, we propose a novel pipeline,
ZeroPS, which achieves high-quality knowledge transfer
from 2D pretrained foundation models (FMs), SAM and
GLIP, to 3D object point clouds. We aim to explore the nat-
ural relationship between multi-view correspondence and
the FMs’ prompt mechanism and build bridges on it. In Ze-
roPS, the relationship manifests as follows: 1) lifting 2D
to 3D by leveraging co-viewed regions and SAM’s prompt
mechanism, 2) relating 1D classes to 3D parts by leveraging
2D-3D view projection and GLIP’s prompt mechanism, and
3) enhancing prediction performance by leveraging multi-
view observations. Extensive evaluations on the PartNetE
and AKBSeg benchmarks demonstrate that ZeroPS signifi-
cantly outperforms the SOTA method across zero-shot unla-
beled and instance segmentation tasks. ZeroPS does not re-
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quire additional training or fine-tuning for the FMs. ZeroPS
applies to both simulated and real-world data. It is hardly
affected by domain shift. The project page is available at
https://luis2088.github.io/ZeroPS_page/.

1. Introduction
3D part segmentation is a crucial task in computer vision
and computer graphics, leading to various applications such
as robotics, shape editing, and AR/VR [2, 23, 27, 50, 65].
Due to the scarcity of 3D training data, recent research ef-
forts focus on leveraging knowledge from foundation mod-
els (FMs) in other modalities (e.g., text or images) to design
a zero-shot manner, i.e., zero-shot 3D part segmentation.
During inference, zero-shot 3D part segmentation requires
not only making predictions on unseen data and classes but
also ensuring accurate 3D segmentation. Though challeng-
ing, this task aligns with practical scenarios, like accurately
segmenting a 3D object in an unfamiliar environment.

In this work, we propose a novel pipeline, ZeroPS,

https://luis2088.github.io/ZeroPS_page/


which achieves high-quality knowledge transfer from 2D
pretrained FMs, SAM [18] and GLIP [22], to 3D object
point clouds. We aim to explore the natural relationship
between multi-view correspondence and the FMs’ prompt
mechanism and build bridges on it. The following two sub-
sections describe the manifestations of the relationship.

Intuitively, for a 3D object, we can obtain 2D groups by
leveraging SAM to segment 2D images from different view-
points. By back-projecting these groups into 3D and merg-
ing them, we can obtain 3D unlabeled parts. However, an
important insight is that there exists a natural relationship
between co-viewed regions and SAM’s prompt mechanism.
For any group in 3D, the visible portion of the group in ad-
jacent viewpoints can be used as SAM’s prompt to further
extend it. By leveraging other viewpoints to continuously
extend the 2D segmentation results, they will gradually be-
come more complete in 3D. Therefore, as shown in Figs. 2
and 3, we design a component self-extension, which obtains
2D groups and extends each group from 2D to 3D. Self-
extension leverages the natural relationship between co-
viewed regions and SAM’s prompt mechanism to lift 2D
to 3D in a training-free manner.

To assign an instance label to each 3D unlabeled part,
we integrate the GLIP model. As shown in Fig. 4, given a
text prompt containing part classes, GLIP predicts many 2D
bounding boxes. Since 2D boxes and 3D parts are not in the
same space, we propose a two-dimensional checking mech-
anism (TDCM) to vote each 2D box to the best-matched
3D part, yielding a Vote Matrix. We select the highest vote
in each column (part), thereby assigning an instance label
to each 3D part. TDCM leverages the natural relation-
ship between 2D-3D view projection and GLIP’s prompt
mechanism (1D-2D) to relate 1D to 3D in a training-
free manner. To enhance the accuracy of label assignment
for 3D parts, we propose a Class Non-highest Vote Penalty
(CNVP) function to refine the Vote Matrix. Since GLIP
inevitably produces incorrect predictions, the Vote Matrix
exhibits certain unfairness (See Sec. 3.5 for details). An in-
sight is that in each row (class) of the Vote Matrix, the high-
est vote represents GLIP’s prediction for that class across
as many views as possible, indicating most likely to be the
correct prediction. CNVP penalizes other votes by using
the highest vote in each row (class), yielding a refined ver-
sion of the Vote Matrix. CNVP leverages multi-view ob-
servations, which allows it to enhance prediction perfor-
mance while retaining GLIP’s zero-shot generalization
in a training-free manner.

In the experiment, we conduct extensive evaluations on
the public PartNetE [28] benchmark. Our method outper-
forms the SOTA method by a large margin across unla-
beled and instance segmentation tasks. Our method fur-
ther narrows the gap between zero-shot and 3D fully super-
vised counterparts. Ablation studies demonstrate that both

self-extension and CNVP contribute significantly to perfor-
mance improvements. To better evaluate the generaliza-
tion of all zero-shot methods concerning unseen data, un-
seen classes, and hyperparameters, we propose an AKBSeg
benchmark from the existing AKB-48 [26] dataset. Retain-
ing the default configurations from the evaluation on Part-
NetE, all zero-shot methods are re-evaluated on the AKB-
Seg benchmark. Our method continues to outperform the
SOTA method by a large margin. Overall, the main contri-
butions of our paper include:
• A novel zero-shot 3D part segmentation pipeline by lever-

aging pretrained foundation models, SAM and GLIP,
without training or fine-tuning, is based only on multi-
view correspondence and the foundation models’ prompt
mechanism, allowing it to demonstrate superior segmen-
tation performance while preserving the zero-shot gener-
alization from the pretrained foundation models.

• Three training-free manners: 1) self-extension lifts 2D to
3D by leveraging co-viewed regions and SAM’s prompt
mechanism; 2) TDCM relates 1D classes to 3D parts by
leveraging 2D-3D view projection and GLIP’s prompt
mechanism; and 3) CNVP enhances prediction perfor-
mance by leveraging multi-view observations.

• Our method achieves better zero-shot generalization and
segmentation performance than the SOTA method.

2. Related Work
2.1. Supervised 3D Segmentation
Most methods [36–38, 49, 53, 58, 75] are fully supervised
training on 3D datasets. These works focus on the design
of network architectures to learn better 3D representations.
The classical PointNet [36] considers the data structure of
3D points. Subsequent works [5, 20, 25, 30, 31, 56, 59, 60,
69, 71, 73] introduce ideas from the common deep learn-
ing field, such as transformer [52], unet [43], graph CNN
[9, 17], rpn [41], etc. However, the 3D datasets [10, 33, 68]
are several orders of magnitude smaller than the image
datasets [44], but the complexity of 3D data is higher than
images. Therefore, many works make up for the defects
of insufficient 3D data through different training strategies,
such as weak supervision [8, 19, 55, 64], self-supervision
[11, 24, 35, 72] or few-shot learning [3, 14, 16, 45, 46, 54,
77]. In this work, we contrast zero-shot methods and 3D
fully supervised counterparts on quantitative metrics.

2.2. 2D Foundation Models (FMs)
Recently, 2D FMs trained on large-scale datasets have
demonstrated impressive zero-shot generalization. Another
notable characteristic is the rich prompt mechanisms that
enable these 2D FMs to establish connections across dif-
ferent modalities. Using free-form text prompts, CLIP [39]
generates pixel-level predictions for a given image. A se-
ries of zero-shot 2D detectors, such as GLIP [22], GDINO



Figure 2. Overview of the proposed pipeline ZeroPS. First, in the unlabeled segmentation phase, the input 3D object is segmented into
unlabeled parts. The self-extension (See Fig. 3) component can extend 2D segmentation from a single viewpoint to 3D segmentation (3D
groups), by using a predefined extension sequence starting from that viewpoint. For example, the red cue on the left side of the figure
illustrates this process. Second, in the instance segmentation phase, given a text prompt, the multi-modal labeling (See Fig. 4) component
assigns an instance label to each 3D unlabeled part.

[29, 42], and Yolo-world [7], can output prediction bound-
ing boxes for target objects based on given the text template
prompt (e.g., ‘arm, back, seat, wheel, leg of chair’). Seg-
ment Anything (SAM) [18] is an FM for zero-shot 2D seg-
mentation. Given an image, SAM output instance masks
at three different granularities (whole, part, and subpart)
based on point or box prompts. Due to SAM’s ground-
breaking impact in 2D segmentation, many SAM-like mod-
els enhance various aspects of SAM, such as quality [6, 15]
and efficiency [62, 74, 76]. For more works about FMs,
please refer to this review [4]. This work leverages 1) the
2D instance-level segmentation capability and point prompt
mechanism of a pretrained SAM model and 2) the 2D
instance-level detection capability and text template prompt
mechanism of a pretrained GLIP model.

2.3. Zero-shot 3D Part Segmentation
Except for: 1) the lack of large-scale 3D training data and
2) the robust zero-shot generalization of 2D FMs, another
factor is 3) the 2D-3D mapping can be established through
view projection and back-projection. These three factors
drive recent research into exploring how to leverage 2D
FMs to perform zero-shot 3D part segmentation.

Most existing works directly transfer knowledge from
2D FMs through multi-view 2D-3D mapping. PointCLIP
V2 [78] proposes a realistic projection technique to enhance
CLIP’s visual encoder. It enables PointCLIP V2 to seg-
ment 3D sparse object point clouds. GeoZe [32] consid-
ers the intrinsic geometric information of 3D objects and
proposes a training-free geometry-driven aggregation strat-
egy. PartSLIP [28] uses the predicted bounding boxes from
GLIP, to determine each initial superpoint’s semantics. A
well-designed grouping module partitions all semantic su-
perpoints into 3D instance parts. Satr [1] also utilizes GLIP,
but while PartSLIP focuses on point cloud segmentation,
Satr is oriented toward mesh segmentation. Unlike these
methods, PartDistill [51] introduces a bi-directional distil-
lation framework, distilling 2D knowledge from CLIP or

GLIP into a 3D student network, fully leveraging unlabeled
3D data for end-to-end training. However, limited by pre-
defined output classes, the 3D network can predict unseen
data but not unseen classes, with CLIP or GLIP’s capability
in this regard not retained in 3D. Our work explores new
ideas for directly transferring knowledge.

The existing work mostly focuses on semantic segmen-
tation [1, 32, 48, 51, 78], with only PartSLIP [28] capable
of performing instance segmentation. To address the gap
in instance segmentation methods, this work continues to
explore new ideas for zero-shot instance segmentation.

Another parallel direction investigates zero-shot meth-
ods for scene segmentation [12, 34, 47, 63, 66, 67, 70].

3. Proposed Method: ZeroPS
3.1. Overview
Given a 3D object point cloud, this work aims to utilize
SAM and GLIP to perform two types of segmentation: un-
labeled and instance segmentation. The overall pipeline
(See Fig. 2) is divided into two phases. In the unlabeled part
segmentation phase, we first define the following operators
by multi-view correspondence (See Sec. 3.2): 1) obtain-
ing the extension sequence Si starting from any viewpoint
Vi; 2) calculating the forward- and back-projection between
any viewpoint Vi and 3D space. Then, each self-extension
(See Sec. 3.3) component inputs an extension sequence Si

and outputs 3D groups. Next, we merge all 3D groups
(See Sec. 3.4) by a merging algorithm and get 3D unlabeled
parts. In the instance segmentation phase, the multi-model
labeling (See Sec. 3.5) component assigns an instance label
to each 3D unlabeled part based on a text prompt.

3.2. Multi-view Correspondence
In 3D space, given an object point cloud Q3D ∈ RN×6 as
input, where N represents the number of points, each point
includes a position {x, y, z} and color {r, g, b}. We arrange
K viewpoints relatively uniformly around Q3D. It can be



Figure 3. The overall structure of self-extension (top subfigure). Given an extension sequence Si = [Vi, Vi1 , Vi2 , . . . , Vij , . . . , Vik−1 ],
self-extension aims to obtain 2D groups from starting viewpoint Vi and extends each group from 2D to 3D by the remaining viewpoints.
Specifically, for the starting viewpoint Vi, self-extension utilizes 3D key points to guide SAM to segment the 2D image. As the segmented
2D groups originate from 2D segmentation results, self-extension continuously extends these groups to 3D segmentation results (3D groups)
by SVE (Single Viewpoint Extension). During continuously extending, the remaining viewpoints in Si, [Vi1 , Vi2 , . . . , Vij , . . . , Vik−1 ], are
iterated. At each iteration, inputting the current viewpoint and each group, SVE extends each input group. As an example, a detailed
process of how SVE extends a single group is provided in the bottom right subfigure.

referred to Table S1 in Supplementary. We use the notation
Vi (i = 1, 2, . . . ,K) to name each viewpoint V . Then, we
perform point cloud rendering of Q3D from each viewpoint
Vi. The output of each Vi consists of a 2D RGB image
denoted as Ii with shape (H ×W × 3) and a point cloud
index matrix denoted as Pi with shape (H×W ×1), where
each element at matching locations in Ii and Pi respectively
represent the 3D position and color of the same point. Now,
for any point of Q3D in 3D space, we can easily find its
position in the pixel coordinate system of Vi, or vice versa.

Extension Sequence. We construct an undirected, un-
weighted graph using all K viewpoints surrounding the
3D object Q3D. In this graph, each node represents
a viewpoint, and edges are established between adjacent
viewpoints based on their spatial arrangement. Starting
from any viewpoint Vi, we can perform a breadth-first
search algorithm on the graph, resulting in a sequence
referred to as the extension sequence, denoted as Si =
[Vi, Vi1 , Vi2 , . . . , Vij , . . . , ViK−1

]. The extension sequence
ensures that at any iteration, there is a co-viewed region
between the current viewpoint and the previously iterated
viewpoints. This allows, during continuously extending,
Single Viewpoint Extension (SVE) to obtain the visible por-
tion of the input group from the input viewpoint.

Bi-directional Projection (BiP). To facilitate the map-

ping of a subset of Q3D between 2D (any Vi) and 3D space,
we denote forward- and back-projection simply as BiP as
follows:

X3D = BiP (X2D, Pi), (1)

X2D = BiP (X3D, Pi), (2)

where X3D indicates a subset of Q3D and X2D indicates
the subset of 2D coordinates of the pixel coordinate system
of Vi. More generally, BiP can also in parallel process mul-
tiple subsets in the same viewpoint.

3.3. Self-extension
Self-extension aims to obtain 2D groups and extends each
group from 2D to 3D. The overall structure of self-extension
is illustrated in Fig. 3. Given an extension sequence Si =
[Vi, Vi1 , Vi2 , . . . , Vij , . . . , Vik−1

], for the starting viewpoint
Vi, self-extension utilizes 3D key points to guide SAM to
segment the 2D image. As the segmented 2D groups orig-
inate from 2D segmentation results, self-extension continu-
ously extends these groups to 3D segmentation by SVE.

3D Guided 2D Segmentation. As shown in the top sub-
figure of Fig. 3, to obtain 2D groups, all key points and 2D
RGB image Ii in Vi are fed into SAM. An automatic seg-
mentation setting is then performed. The overall process



can be formulated as follows:

KPoints2DVi
= BiP (FPS(Q3D

Vi
), Pi), (3)

{G2D
1 , . . . , G2D

n } = SAM(Ii,KPoints2DVi
), (4)

where Q3D
Vi

indicates the visible points of Q3D in Vi,
KPoints2D indicates key points, {G2D

1 , . . . , G2D
n } indi-

cates n 2D groups, and FPS indicates Farthest Point Sam-
pling. These 2D groups are back-projected into 3D space:

{G3D
1 , . . . , G3D

n } = BiP ({G2D
1 , . . . , G2D

n }, Pi). (5)
Single Viewpoint Extension (SVE). Before continu-

ously extending, a Single Viewpoint Extension (SVE) op-
erator needs to be defined. Given a viewpoint, SVE can
extend the input group. For a group in 3D, we observe a nat-
ural relationship between the co-viewed region and SAM’s
prompt mechanism. As shown in the bottom right subfig-
ure of Fig. 3, from Vij , ‘we observe’ a portion of the input
group (green color), as there is a co-viewed region between
Vij and {Vi1 , Vi2 , . . . , Vij−1} (See Sec. 3.2, ‘Extension Se-
quence’). SVE obtains the visible portion of the input group
from Vij . Then, SVE feeds both Iij as 2D RGB and the key
points as prompt into SAM and performs inference. Finally,
SVE obtains the union of the mask and the input group. The
input group is extended to more points with the same se-
mantics. The overall process can be formulated as:

KPoints2DVij
= BiP (FPS(G3D

Vij
) ∪ CC(G3D

Vij
), Pij ),

(6)

Mask = SAM(Iij ,KPoints2DVij
), (7)

G3D ← G3D ∪BiP (Mask, Pij ), (8)

where G3D
Vij

indicates the visible portion of the input group

from Vij , KPoints2DVij
indicates key points in Vij ,← indi-

cates set extension and CC indicates the calculation of the
point closest to the centroid. We propose the Single View-
point Extension (SVE) with input a G3D and V :

G3D ← SV E(G3D, V ), (9)

where SVE is utilized to extend the G3D from V . For SVE’s
input, G3D needs to be within the visual range of view-
point V . Otherwise, it will not be extended (remaining un-
changed). More generally, SVE can in parallel extend a set
of groups in the same viewpoint.

Continuously Extending. To continuously extend each
group of Eq. (5), we iterate over the remaining viewpoints
of Si, [Vi1 , Vi2 , . . . , Vij , . . . , ViK−1

], by SVE:

{G3D
1 , . . . , G3D

n } ← SV E({G3D
1 , . . . , G3D

n }, Vi1)

{G3D
1 , . . . , G3D

n } ← SV E({G3D
1 , . . . , G3D

n }, Vi2)

...

{G3D
1 , . . . , G3D

n } ← SV E({G3D
1 , . . . , G3D

n }, ViK−1
).
(10)

Finally, each group in {G3D
1 , . . . , G3D

n } is extended from
2D (the starting viewpoint Vi) to 3D (all viewpoints). In
summary, the self-extension can be represented as:

{G3D
1 , . . . , G3D

n } = SE(Si), (11)

where Si indicates an extension sequence starting
from Vi, SE indicates self-extension component and
{G3D

1 , . . . , G3D
n } indicates a set of 3D groups resulting

from SE(Si) starting from Vi.

3.4. Merging 3D Groups
To get 3D unlabeled parts, a merging algorithm is em-
ployed to merge 3D groups, which are the output of all self-
extensions (See Fig. 2). The algorithm depends on a merg-
ing threshold T. The pseudocode and detailed explanation
are in the supplementary materials.

3.5. Multi-model Labeling
Multi-model labeling aims to assign an instance label to
each 3D unlabeled part. The main idea is shown in Fig. 4.
To get lots of 2D bounding boxes with instance labels, a
text prompt containing part classes and K images (from all
viewpoints) are fed into GLIP. Then, we vote each box to
the best-matched 3D part and obtain a Vote Matrix that re-
lates 1D classes (rows) to 3D parts (columns). Intuitively,
we simply get the highest vote per column (part) and assign
its class as a label to that part. However, we must face two
problems: 1) How to vote each 2D bounding box to the best-
matched 3D part, given that they are not in the same space;
2) How to enhance the accuracy of label assignment for 3D
parts, since GLIP inevitably produces incorrect predictions.

Two-dimensional Checking Mechanism (TDCM). To
vote each 2D predicted bounding box to the best-matched
3D part, we design a two-dimensional checking mecha-
nism. Meanwhile, some unqualified boxes are discarded.

In detail, for any 2D predicted bounding box BB, we
perform the Intersection over Union (IoU) between the F 3D

and each 3D part P 3D in C = {P 3D
1 , P 3D

2 , . . . , P 3D
m2
}.

Further, we let P 3D
s , with the Maximum IoU, be the best-

matched 3D part in 3D space:

P 3D
s = argmax

P 3D∈C

|F 3D ∩ P 3D|
|F 3D ∪ P 3D|

, (12)

where the F 3D indicates the 3D visible points inside the
BB, and the C indicates m2 unlabeled parts P 3D. Mean-
while, we perform the IoU between the BB and each P box

in C ′ = {P box
1 , P box

2 , . . . , P box
m2
}. Then we let P box

t , with
the Maximum IoU, be the best-matched 3D part in 2D
space:

P box
t = argmax

P box∈C′

|BB ∩ P box|
|BB ∪ P box|

, (13)

where the C ′ indicates m2 2D bounding box P box of all 3D
parts in the viewpoint where the BB is located. Note that



Figure 4. The overall structure of multi-modal labeling.

Pu in the C and C ′ denotes two states of the same 3D part,
3D point set and 2D bounding box, respectively. Finally,
if s = t, the BB is voted to P 3D

s . Otherwise, the BB is
discarded. In other words, it must guarantee that the best-
matched part of the predicted bounding box in both 2D and
3D space is the same 3D part. Overall, TDCM leverages
the natural relationship between 2D-3D view projection and
GLIP’s prompt mechanism (1D-2D) to relate 1D classes to
3D parts into a Vote Matrix.

Class Non-highest Vote Penalty (CNVP). To enhance
the accuracy of label assignment for 3D parts, we propose a
Class Non-highest Vote Penalty function.

In fact, the 2D predicted bounding boxes produced by
GLIP inevitably have incorrect labels (See top right of
Fig. 4). When the highest vote per column (part) is directly
obtained and its class assigned as a label to that 3D part,
this leads to two kinds of unfairness: 1) For a specific col-
umn (part), the highest vote ‘wins’ by only a narrow margin
compared to other votes. For example, in the second col-
umn of the Vote Matrix in Fig. 4, ‘13’ wins over ‘12’ by
just one vote; 2) For different columns (parts), the gap be-

tween the highest votes is too large when their highest votes
are in the same row (class). For example, compared to the
highest vote ‘16’, in the first column (part) of the Vote Ma-
trix, the election of ‘6’ in the penultimate column (part) is
unreasonable. In this case, in the penultimate column (part),
‘5’ is more trustworthy than ‘6’, because ‘5’ possesses the
highest vote in the final row (class), while ‘6’ does not even
reach half of the highest vote in the second row (class).

The unfairness in the Vote Matrix mentioned above
needs improvement. In each row (class), the highest vote
represents GLIP’s prediction for that class across as many
views as possible. This indicates that, compared to other
votes, the highest vote is more likely to be the correct pre-
diction, making it a reliable pivot in the Vote Matrix. There-
fore, we use the highest vote per row (class) to penalize
other votes through CNVP:

α, if α/αrm = 1

α/2, if 0.5 ≤ α/αrm < 1

0, if 0 ≤ α/αrm < 0.5

, (14)

where α indicates each element of the Vote Matrix, αrm in-
dicates the maximum value within the same row where α
is located. CNVP results in a Decision Matrix, a refined
version of the Vote Matrix. It mitigates the incorrect predic-
tions generated by GLIP. Overall, CNVP leverages multi-
view observations, which allows it to enhance prediction
performance while retaining GLIP’s zero-shot generaliza-
tion.

4. Experiments
4.1. Benchmark and Metric
PartNetE. For PartNetE [28], the training data are 28,367
3D objects from PartNet [33] and 45 × 8 3D objects from
PartNet-Mobility [61], and the testing data are 1906 3D ob-
jects from PartNet-Mobility covering 45 object categories.
PartNetE encompasses both common coarse-grained (e.g.,
chair seat) and fine-grained (e.g., knob) parts. This diver-
sity of levels of granularity presents a significant challenge
for the evaluated method.

AKBSeg. To better evaluate the generalization of all
zero-shot baselines, we propose an AKBSeg benchmark.
It collects 508 3D objects from the AKB-48 [26] dataset
covering 16 object categories for testing data. Based on
the original semantic annotations, we provide additional in-
stance labels. Building upon PartNetE’s simulated data, in-
corporating AKBSeg’s real-world data into the experiment
further enhances the zero-shot baseline’s evaluative credi-
bility. This also benefits the evaluation of future work in
zero-shot 3D part segmentation.

Metric. We follow [57] to utilize the Average IoU as
the unlabeled segmentation metric. We use the mask of
instance label as ground truth for evaluating the unlabeled
segmentation. We follow [28] to utilize the category mAP



Figure 5. Qualitative comparison on zero-shot instance segmentation (zoom in for details). Left: PartNetE’s simulated data. Right:
AKBSeg’s real-world data. The red dashed boxes indicate that our method produces more accurate 3D segmentation boundaries compared
to the SOTA method, PartSLIP.

Table 1. Zero-shot unlabeled segmentation results on the PartNetE benchmark. Object category Average IoUs(%) are shown.
Method Overall (45) Bottle Door Lamp Scissors Table Box Kettle KitchenPot Lighter Pliers Stapler Toilet

PartSLIP [28] 36.4 78.0 27.9 47.6 47.2 46.9 38.8 66.2 60.5 53.2 3.5 27.3 45.4
Ours (w/o Extending) 45.6 55.7 23.9 42.8 39.9 47.9 51.6 57.8 70.7 47.3 40.1 39.7 56.0
Ours 56.0 80.4 37.8 72.9 51.1 53.3 63.1 85.5 80.3 64.4 61.3 80.7 58.2
Please refer to the supplementary material for the full table. This also applies to Tabs. 2 to 4.

Table 2. Instance segmentation results on the PartNetE benchmark. Object category mAP50s(%) are shown.
Method Overall (45) Bottle Door Lamp Scissors Table Box Kettle KitchenPot Lighter Pliers Stapler Toilet

PointGroup* [13] 31.0 38.2 23.4 62.7 38.5 46.3 7.2 61.3 59.5 33.6 28.2 88.3 2.2
SoftGroup* [53] 31.9 43.9 21.2 63.3 39.3 46.2 8.6 63.8 59.3 34.6 40.4 94.3 2.4

PartSLIP† [28] 23.3 67.0 10.6 27.8 18.2 28.6 18.9 26.8 58.9 15.1 1.0 16.2 12.9
Ours (w/o CNVP)† 24.1 62.0 14.8 30.9 26.1 26.6 26.0 22.0 54.4 16.3 38.6 22.3 14.3
Ours† 28.5 74.5 15.7 35.9 26.4 29.4 32.2 33.4 64.4 21.1 40.7 44.9 15.5
* fully supervised; † zero-shot; PartSLIP’s overall result reproduces by the official code, with the official paper being 18.0% mAP50.

Table 3. Zero-shot unlabeled segmentation results on the AKBSeg benchmark. Object category Average IoUs(%) are shown.
Method Overall (16) Ballpoint Bottle Box Bucket Condiment Drink Faucet Foldingrack Knife Sauce Shampoo Trashcan

PartSLIP [28] 34.3 3.0 8.7 35.0 49.9 44.4 10.5 11.0 32.4 73.0 22.5 37.6 66.0
Ours (w/o Extending) 49.3 33.7 55.7 54.1 74.1 50.7 49.9 44.6 50.6 74.8 35.7 56.5 72.0
Ours 58.9 48.9 65.7 52.5 75.5 65.2 67.8 52.8 64.1 84.1 45.8 63.2 79.8

Table 4. Zero-shot instance segmentation results on the AKBSeg benchmark. Object category mAP50s(%) are shown.
Method Overall (16) Ballpoint Bottle Box Bucket Condiment Drink Faucet Foldingrack Knife Sauce Shampoo Trashcan

PartSLIP [28] 15.0 1.0 1.1 12.9 34.8 11.4 1.0 3.4 16.7 51.0 5.1 2.8 9.3
Ours (w/o CNVP) 23.9 5.0 26.0 13.6 59.6 28.5 35.0 4.0 35.4 80.3 9.2 4.9 7.1
Ours 26.5 6.5 20.2 16.3 77.8 41.0 36.8 4.0 36.2 80.9 10.1 6.6 10.0

(50% IoU threshold) as the instance segmentation metric.

4.2. Implementation Details
For our method, the input is an RGB object point cloud.
The point cloud rendering resolution of PyTorch3D [40] is
set to 800×800. The number of viewpoints is set to 20. For
details of the viewpoints, please refer to the supplementary
materials. The number of FPS output points in Eq. (3) is set
to 256. Note that the FPS here should be distinguished from
that in Eq. (6). The merge threshold T is set to 0.3, and the
ablation analysis is described in Sec. 4.4.

4.3. Comparison with Existing Methods
First, we conduct the quantitative evaluation on PartNetE
with zero-shot methods and 3D fully supervised counter-
parts (See Tabs. 1 and 2). Second, to further investigate the
impact of factors concerning unseen data, unseen classes,

and hyperparameters (which ablation studies cannot fully
account for), we evaluate all zero-shot baselines on AKB-
Seg again (See Tabs. 3 and 4). The same configuration is
maintained for each baseline across PartNetE and AKBSeg.

Zero-shot method. We compare our method with the
existing SOTA zero-shot instance segmentation method,
PartSLIP. Tabs. 1 and 3 show that, for zero-shot unlabeled
segmentation, our method achieves 56.0% and 58.9% Av-
erage IoUs and outperforms PartSLIP by large margins.
Tabs. 2 and 4 show that, for zero-shot instance segmenta-
tion, our method outperforms PartSLIP by 5.2% and 11.5%
mAP50s, respectively. From PartNetE to AKBSeg, our
method nearly maintains its performance, while PartSLIP
declines significantly. It indicates that our method demon-
strates superior robustness. As shown in Fig. 5, since Part-
SLIP is based on superpoints [21], which are similar to



Figure 6. Ablation Study on self-extension by the ‘Extending’
and ‘Without Extending’ settings. The Average IoU is the overall
result on PartNetE. See Sec. 4.4 for details.

superpixels in 2D, it is challenging to ensure accurate 3D
segmentation boundaries. In contrast, our proposed self-
extension lifts SAM’s mask from 2D to 3D in a training-free
manner, retaining zero-shot generalization while producing
accurate 3D segmentation boundaries. Overall, our method
significantly surpasses PartSLIP in both zero-shot general-
ization and segmentation performance.

3D fully supervised counterparts (methods). To ob-
serve the gap between zero-shot and 3D fully supervised
(3D-FS) methods, we evaluate all baselines on the Part-
NetE. The zero-shot methods do not use any 3D training
data, while the 3D-FS methods are trained on 45× 8+ 28k
3D objects. Since our method improves by 5.2% mAP50
compared to PartSLIP, it reduces the maximum gap between
zero-shot and 3D-FS methods from 8.6% to 3.4% mAP50.
Moreover, notably zero-shot methods possess a unique ad-
vantage in predicting unseen classes, such as directly evalu-
ating on AKBSeg (See Tabs. 2 and 4), unlike 3D-FS meth-
ods limited to predefined fixed classes before training.

4.4. Ablation Study
Self-extension. To analyze the effectiveness of the pro-
posed self-extension, we conduct the ablation study by two
settings (‘Extending’ and ‘Without Extending’). In the
Extending (EXT) setting, we retain all self-extension pro-
cesses. In the Without Extending (NOEXT) setting, we re-
move all steps involving continuously extending, namely all
SVEs (See Fig. 3). In other words, we skip Eq. (10) in each
self-extension. Through the results in Fig. 6, we observe
the following: 1) NOEXT is overall lower than EXT. 2)
NOEXT is overly dependent on the threshold T. Although
fixing T to 0.1 yields relatively good performance, this ap-
proach’s robustness and stability are suboptimal. 3) Com-
pared to NOEXT, EXT demonstrates minimal sensitivity to
changes in T, meanwhile consistently maintaining its supe-

Table 5. Ablation study on the number of viewpoints. The Average
IoU is the overall result on PartNetE.

viewpoints 20 8 4

Average IoU 56.0 50.2 36.2

Figure 7. Qualitative results on self-extension (zoom in for de-
tails). See Sec. 4.4 for details.

rior performance. Overall, EXT demonstrates better robust-
ness and stability compared to NOEXT. On the other hand,
as shown in Tab. 3, EXT similarly exhibits a significant per-
formance improvement on the AKBSeg. Moreover, Fig. 7
also shows that EXT produces better 3D consistency than
NOEXT. This shows that self-extension effectively lever-
ages the natural relationship between co-viewed regions and
SAM’s prompt mechanism to lift 2D to 3D. Since EXT is
almost independent of T, we set T to 0.3 in Sec. 4.2.

Class Non-highest Vote Penalty (CNVP). We conduct
the ablation study on the proposed CNVP. As shown in
Tabs. 2 and 4, CNVP consistently maintains performance
gains across the PartNetE and AKBSeg benchmarks, with
improvements of 4.4% and 2.6% mAP50s, respectively.
This indicates that CNVP effectively utilizes multi-view ob-
servations, enhancing performance while retaining GLIP’s
zero-shot generalization.

Number of Viewpoints. We conduct the ablation study
on the number of viewpoints. As shown in Tab. 5, when the
number drops to 8, the high performance is still maintained.
Since it is difficult for 4 viewpoints to cover the entire 3D
object uniformly, the performance drops substantially.

5. Conclusion
In this work, we propose a novel zero-shot 3D part segmen-
tation pipeline. We explore the natural relationship between
multi-view correspondence and the FMs’ prompt mecha-
nisms. The relationship manifests in the pipeline as self-
extension, TDCM, and CNVP. Through extensive qualita-
tive and quantitative comparison and ablation studies, our
method demonstrates superior zero-shot generalization and
segmentation performance than the SOTA method.
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