
ACME++: Secure ACME Client Verification for Web-PKI
Paper # 2631, 8 pages body, 9 pages total

Abstract
The Automatic Certificate Management Environment (ACME) pro-
tocol automates the SSL certificate issuance and renewal process,
streamlining large-scale certificate management. Its caching mecha-
nism allows Certificate Authorities (CAs) to store domain validation
results for up to 30 days. While this mechanism reduces the burden
of re-validation on the CA server, it also introduces a vulnerability
where attackers can bypass domain validation using stolen ACME
account credentials.

In this paper, we introduce the ACME Authz Cache Attack, a
method that enables attackers to request fraudulent certificates
without domain control. We demonstrate that even Let’s Encrypt,
the world’s largest CA, is susceptible to this vulnerability. To ad-
dress this issue, we propose ACME++, an enhanced version of the
protocol that binds the ACME account to the client’s IP address
and a unique ID, ensuring re-validation for each certificate request
from a new client. Our implementation of ACME++ shows that
it effectively mitigates this attack with minimal impact on server
performance.

1 Introduction
Today, about 96% of web traffic through Google is secured via
HTTPS [22], ensuring data integrity and privacy for online services
such as e-commerce and video streaming. At the core of these secure
connections are SSL certificates, which are issued and managed
under theWeb Public Key Infrastructure (Web-PKI). In theWeb-PKI
ecosystem, CA authenticates websites by binding domain identities
to public cryptographic keys via SSL certificates. During the HTTPS
connection establishment, the web server presents the certificate
to the client for secure communication verification.

For a single web server, requesting and deploying an SSL cer-
tificate involves minimal cost and effort. However, managing SSL
certificates at scale in large enterprises introduces considerable
complexity. Manually requesting, deploying, and renewing certifi-
cates becomes time-consuming and error-prone, and even a single
expired or misconfigured certificate can lead to service outages and
substantial financial losses [3, 35].

To address these challenges, the ACME protocol [4] was intro-
duced and has been widely adopted by major CAs, automating
certificate lifecycle management tasks such as issuance, renewal,
and revocation. One notable example is Let’s Encrypt [26], a CA
that issues certificates exclusively through ACME. By 2021, Let’s
Encrypt accounted for nearly 30% of certificates found in IPv4
scans and over 80% of those in CT logs [18], playing a key role in
driving the adoption of ACME-based certificate issuance. Other
commercial CAs have also integrated the ACME protocol into their
platforms [15], making ACME a standard across the industry.

Despite its widespread adoption and operational efficiencies,
ACME introduces certain vulnerabilities into the Web-PKI ecosys-
tem. A key vulnerability stems from ACME’s caching of domain
validation records, a mechanism intended to reduce the workload
on CA servers that can be exploited by attackers to bypass domain

re-validation and obtain fraudulent certificates. Such certificates
enable attackers to conduct man-in-the-middle (MITM) attacks. For
instance, in 2011, hackers breached the CA server of DigiNotar [19]
and issued fraudulent certificates, enabling them to intercept user
traffic intended for Google services [28]. Similarly, in 2015, Google
uncovered that MCS Holdings had deployed self-issued fraudulent
certificates in proxy devices designed to intercept secure traffic [6].
These incidents illustrate how vulnerabilities—whether from opera-
tional errors or design flaws like those in ACME—can be exploited,
compromising user data and privacy and posing significant risks
to the integrity of the Web-PKI ecosystem.

In this paper, we introduce the ACME Authz Cache Attack, a
method that exploits ACME’s caching mechanism to obtain fraudu-
lent certificates without domain control. We show that attackers,
after accessing a victim’s ACME account credentials, can bypass do-
main re-validation by reusing cached authorization (Authz) records.
This attack can be carried out with a standard internet connection
without complex network manipulation. Moreover, attackers can
broaden their targets by identifying associated domains through
CT logs, some of which may have cached Authz records under the
same ACME account. Our evaluation reveals that Let’s Encrypt is
vulnerable to this attack, demonstrating its widespread impact.

To counter this threat, we propose ACME++, an enhanced ver-
sion of the ACME protocol that strengthens security by binding
client IP addresses and unique identifiers to ACME accounts while
requiring domain re-validation for each certificate request from
a new client. ACME++ is designed for seamless integration with
the existing ACME framework, reusing current objects and mes-
sage exchange standards to minimize protocol modifications. We
implemented ACME++ on both the ACME client and CA server,
demonstrating its resilience against similar attacks while maintain-
ing operational efficiency on the CA server.

The main contributions of this paper are as follows:

• We identify and analyze the vulnerabilities in ACME’s caching
mechanism, focusing on how the reuse of cached Authz records
can be exploited by attackers. Additionally, we highlight ACME
implementation flaws in the use of incrementally generated ac-
count IDs, which further weaken the security of the Web-PKI
ecosystem and increase the risk of unauthorized issuance.

• We introduced the ACME Authz Cache Attack, a novel attack
in which an attacker can obtain fraudulent certificates without
domain re-validation, once the attacker acquires ACME account
credentials. We also demonstrate that the attacker can leverage
CT logs to identify associated domains, with an expectation that
about half of these domains are valuable for targeting.

• We designed ACME++, an enhanced version of ACME, to miti-
gate this attack. ACME++ incorporates additional security checks
for ACME clients communicating with CAs, ensuring that stolen
credentials cannot be exploited. We evaluate ACME++ and show
that it introduces no more than a 50% increase in traffic and a 60%
increase in time overhead for CAs in worst-case scenarios while
proving its resilience against other potential attack vectors.



Paper # 2631, 8 pages body, 9 pages total

The remainder of this paper is organized as follows: Section 2
provides the background on the ACME protocol and its vulnerabili-
ties. Section 3 details the ACME Authz cache attack, while Section
4 outlines our proposed mitigation, ACME++. We discuss other
related works for Web-PKI in Section 5, and Section 6 concludes
the paper.

2 Background
In this section, we introduce the foundational concepts related to
attack vectors and mitigation strategies. We begin with an overview
of the Web-PKI ecosystem (Section 2.1), focusing on its role, struc-
ture and SSL certificates. Next, we delve into the ACME protocol
and its caching mechanisms (Section 2.2). Finally, we highlight
vulnerabilities within the implementation of the ACME protocol
(Section 2.3), which serve as the basis for our discussion on potential
attacks and corresponding mitigation techniques.

2.1 Web-PKI and SSL Certificates
Web-PKI is a public key infrastructure (PKI) designed to secure
communication between websites and users, preventing data tam-
pering and MITM attacks. As noted in [13], the core entities in a
PKI include CAs and End Entities (EEs). PKI leverages digital cer-
tificates to authenticate encrypted communication between these
entities. For a more detailed analysis of PKI architecture, readers
can refer to [10, 11, 31].

The CA plays a central role in the Web-PKI framework, man-
aging certificates for all EEs. Web servers act as EEs by deploying
SSL certificates to establish secure HTTPS connections with the
client. As cryptographic assertions, SSL certificates bind the subject,
typically a domain name, to the web server’s public key. In accor-
dance with the X.509 standard [13], SSL certificates also contain
fields such as validity periods, issuer, and X.509 extensions. These
certificates are issued and signed by trusted CAs, which themselves
hold CA certificates. The CA’s certificate is signed by a higher-level
CA, ultimately forming a "chain of trust" that terminates at a trusted
root CA certificate. When users access a website, their browsers
verify this certificate chain to ensure the website’s authenticity.
Through this design, Web-PKI enables users to authenticate web
servers, ensuring the privacy and integrity of data transmissions.

2.2 ACME Protocol with Cache Mechanism
The ACME protocol [4] was developed to mitigate the challenges
and inefficiencies inherent in manual SSL certificate management
for large-scale systems. The manual processes of deploying, re-
newing, and replacing SSL certificates across numerous servers
are prone to human error, time-intensive, and frequently result in
misconfigurations or certificate expirations.

ACME automates the entire certificate lifecycle—including re-
quest, issuance, renewal, and revocation. For each of these actions,
the protocol specifies a unique URL. The client must send a request
to the corresponding URL to complete the desired action. CA servers
provide clients with a Directory object, allowing them to configure
the correct URLs for each ACME action. Table 1 lists all available
services and their corresponding URLs in the CA Directory. The
Directory is a JSON object with field names sourced from the re-
source registry and values as the corresponding URLs. In addition

Table 1: ACME CA Directory Services

Action Directory URL Service Description

newNounce /acme/new-nonce
Getting a new nonce from
CA to avoid replay attack.

newAccount /acme/new-account Registering a ACME account.

newOrder /acme/new-order
Requesting a new certificate
order from the CA.

newAuthz /acme/new-authz
Creating a Authz object for
pre-authorization (Optional).

revokeCert /acme/revoke-cert
Submitting a revocation
request for a certificate.

keyChange /acme/key-change
Changing the public key
binding to an account.

Figure 1: Certificate Request Process via ACME Protocol.
Valid Authz records are cached for 30 days after the CA vali-
dates the client’s domain ownership.

to the Directory, the CA also provides resource URLs for the client
to retrieve objects. For instance, the client can access the corre-
sponding Authz record through /acme/authz/<authz_id>, where
<authz_id> is the unique identifier of the object.

Today, many CAs have integrated ACME into their operations.
Let’s Encrypt [26], which was the first CA to exclusively issue
billions of free Domain Validation (DV) certificates using ACME,
serves as a prominent example. Through ACME clients [1, 16], web-
site operators can easily obtain certificates with a 90-day lifespan.
Figure 1 outlines the typical process of requesting an SSL certificate
using the ACME protocol. In the initial phase, the client submits a
newAccount request to the CA, providing a signed payload contain-
ing an email address and public key. For non-Let’s Encrypt CAs,
external account binding (EAB) requires both an HMAC key and a
key identifier (KID). Once verified, the CA creates an account and
returns a unique account URL with an associated ACME account ID.
The client then sends a newOrder request specifying the domains
for which the certificate is requested.

To validate domain ownership, the CA issues one or more chal-
lenges (e.g., HTTP-01 or DNS-01 [25]). Upon successful completion
of these challenges, the CA caches the domain validation result,
referred to as an authorization object, Authz, for 30 days. This



ACME++: Secure ACME Client Verification for Web-PKI

caching allows quicker reissuance of certificates for the same do-
mains without requiring domain re-validation. When the client
requests a new certificate for previously validated domains, it sub-
mits a newOrder request as usual. If the Authz records for these
domains remain valid, the client can bypass the re-validation step
and directly submit a Certificate Signing Request (CSR) to obtain
the certificate.

However, this caching mechanism presents a critical security
vulnerability. As we demonstrate in Section 3, an attacker can ex-
ploit the cached Authz to acquire fraudulent certificates using the
victim’s ACME account credentials without the need to manipu-
late network traffic. Under normal operational conditions, the CA
would fail to detect such an attack.

2.3 ACME Account Implementation Flaw
In theory, the ACME account ID included in the URL should be
randomly generated to prevent unauthorized access. The RFC rec-
ommends that ACME account unique identifiers (UIDs) be crypto-
graphically secure. However, in Let’s Encrypt’s implementation, ac-
count IDs are assigned as incrementally generated integers, which
weakens the system’s resilience. Attackers can infer valid UIDs
based on the pattern of server responses or by brute-forcing the
range of possible account IDs. Once attackers discover a valid UID,
they can exploit the system further by using the victim’s account
and leveraging cached Authz to request fraudulent certificates.

In Section 3, we demonstrate how this vulnerability leads to
unauthorized access and misuse of ACME accounts. By exploiting
the predictable account UIDs and cached domain Authz records,
attackers can successfully issue fraudulent certificates without the
need to manipulate network traffic. This flaw not only undermines
the integrity of the certificate issuance process but also poses a
significant threat to the security of the broader Web-PKI ecosystem,
potentially facilitating MITM attacks, phishing campaigns, and
other malicious activities.

3 ACME Authz Cache Attack
We introduce a novel attack exploiting the ACME protocol’s caching
mechanism to acquire fraudulent certificates, based on the observa-
tion that cached Authz records can be considered as the ownership
credentials of the domains.We first outline the threatmodel (Section
3.1), followed by a detailed description of the attack methodology
(Section 3.2). Finally, we present real-world experiments, demon-
strating the vulnerability of Let’s Encrypt to this attack (Section
3.3), and discovering the number of associated domains for target
websites (Section 3.4).

3.1 Threat Model
The attack objective is to obtain a fraudulent SSL certificate con-
taining as many victim domains as possible, enabling the attacker
to impersonate the victim’s server through the MITM attack.
Attack Assumptions:
We assume the following conditions for the attacker and victim:

• The victim’s server stores its ACME account private key and
other ACME account credentials locally on the server.

Figure 2: ACME Authz Cache Attack with Four Steps. The
ACME Account Rebuild step can be skipped if the attacker
has obtained full credentials of the victim’s ACME account.

• The victim has requested certificates in the last 30 days and the
corresponding Authz records are cached by the CA and available
for reuse.

• The attacker obtains the victim’s ACME account credentials by
exploiting a server-side vulnerability. One plausible vector is
the Path Traversal Vulnerability [29], which allows unautho-
rized access to files outside intended directories through server
misconfiguration [23]. This vulnerability enables the attacker to
access ACME account credentials.

• The attacker knows at least one domain service deployed on the
victim’s server.

Attacker Abilities:
We consider an attacker with minimal capabilities. While previous
threat models on Web-PKI involve more complex capabilities such
as compromising an Autonomous System border router or manip-
ulating the traffic on CA DNS resolvers or nameservers [5, 8, 14],
in our threat model, the attacker only has a standard Internet con-
nection that can scan web servers to uncover vulnerabilities and
domain services.

3.2 Attack Methodology
Figure 2 illustrates this attack through an example. The attack con-
sists of four main steps: identifying associated domains, rebuilding
the victim’s ACME account profile, retrieving valid Authz records,
and getting fraudulent certificates. In this example, the victim has
an ACME account and requested certificates for a.com, b.com, and
sub.c.org. These domain Authz records remain valid during the
attack. The attacker knows a.com as the target domain.

3.2.1 Associated Domain Identification. The first step is to iden-
tify as many associated domains as possible. A domain (including
wildcard domain) is called an associated domain if it appears in the
same SSL certificate as the target website domain. Website opera-
tors frequently group multiple domains hosted on the same server
in a single certificate to reduce operational costs and complexity.



Paper # 2631, 8 pages body, 9 pages total

Through ACME protocol, Authz records for these associated do-
mains and target domains lie under the same ACME account, mak-
ing them high-value targets for attackers aiming to expand their
attack surface. To discover associated domains, attackers can search
through certificates archived in public CT [21] logs. Although CT
logs contribute to fraudulent certificate detection at the earliest
stage, they may also leak sensitive information to third parties, such
as Fully Qualified Domain Names (FQDNs) and business relation-
ships [30, 32, 33]. In this attack, the attacker can identify certificates
issued for the target domain in the last 30 days, and find associated
domains in the certificates’ Subject Alternative Name (SAN) exten-
sion. In this example, the associated domains of the target domain
a.com are *.a.com, www.a.com, b.com, and sub.c.org.

3.2.2 ACME Account Rebuild. In the second step, the attacker re-
constructs the victim’s ACME account profile from the obtained
ACME account credentials. If the attacker knows both the ACME
account UID and private key (full credentials), the account profile
can be easily restored by setting the correct storage path. If the
attacker only obtains the private key, the account UID can be de-
termined by a brute-force method from CA ACME implementation
flaws discussed in Section 2.3. The attacker sends a POST-as-GET
request to //acme/acct/<guess_id> with an integer UID to the
CA server. If the UID matches the victim’s ACME account private
key, the server responds with an HTTP 200 OK, returning the ac-
count object. If not, an error is returned. By iteratively adjusting
the UID, the attacker can eventually uncover the correct ACME
account profile.

3.2.3 Valid Authz Record Retrieval. Next, with the account profile
and associated domains, the attacker tries to discover valid Authz
records. The attacker submits a certificate request containing all
discovered domains. The CA returns the order object with all Authz
URLs. The attacker can then request to /acme/authz/<authz_id>
directory with the corresponding ID to check the Authz status,
allowing the attacker to distinguish between domains with active
cached authorizations and those without. In the example, the or-
der request consists of a.com, *.a.com, www.a.com, b.com, and
sub.c.org. Only a.com, b.com, and sub.c.org have valid records,
while *.a.com, www.a.com has record status of "pending".

3.2.4 Fraudulent Certificate Retrieval. In the last step, the attacker
requests a fraudulent certificate with the valid domains. As the
Authz records for these domains are all valid, the client can by-
pass undergoing domain control challenges and directly obtain the
fraudulent certificate. 1 In our example, the attacker discovers valid
Authz records for a.com, b.com, and sub.c.org, and successfully
obtains a fraudulent certificate for these domains.

3.3 Evaluation Against Let’s Encrypt
3.3.1 Setup. We evaluated the proposed attack against Let’s En-
crypt, the largest CA fully utilizing the ACME protocol. The victim’s
server hosts the target domain sparklestar.work and resides on
a separate network from the remote attacker. The victim uses Cert-
bot [16] as the ACME client to request certificates. Specifically,

1In fact, the attacker can obtain more than one fraudulent certificate. The number of
certificates an attacker can request is limited by the CA’s rate limits. For Let’s Encrypt,
the limit is 50 certificates per registered domain per week [17].

the victim requests certificates for the domains sparklestar.work
and *.sparklestar.work, with ACME account credentials stored
locally on the server. To simulate the attack, we configure the vic-
tim’s server to be vulnerable to a path traversal vulnerability due
to Nginx alias misconfiguration [23], which the attacker exploits
via internet scanning.

3.3.2 Requesting Fraudulent Certificates. Through the path tra-
versal vulnerability, the attacker acquired the victim’s full ACME
account credentials, including the account UID and private key. Fol-
lowing the attack procedure, the attacker first located the victim’s
certificate in Google’s CT log (argon2024 [20]) and identified as-
sociated domains (sparklestar.work and *.sparklestar.work).
The attacker then used Certbot to submit a new certificate request
to Let’s Encrypt. Due to the cached Authz records on the CA’s
ACME server, the attacker successfully obtained a certificate for
the victim’s domains without undergoing any domain validation.
This confirms the basic feasibility of the attack.

3.3.3 Adding New Domains. We extended our evaluation to exam-
ine whether an attacker could append additional domains, such as
those intended for phishing attacks, to the fraudulent certificate. In
such scenarios, when a web user connects to a phishing website and
inspects the certificate, it becomes more challenging to distinguish
malicious domains, as they appear alongside legitimate ones. For
this experiment, the attacker registered a new domain sparkle
-star.org and followed the procedure outlined in 3.3.2. This time,
the attacker requested a certificate with sparkle-star.org in-
cluded in the SAN field. As anticipated, Let’s Encrypt only required
domain validation for the newly added domain sparkle-star.org,
bypassing validation for sparklestar.work and *.sparklestar
.work, since their Authz records remained valid in the cache.

As a result, the attacker successfully obtained a certificate that in-
cludes sparkle-star.org, sparklestar.work, and *.sparklestar
.work. This experiment demonstrates a serious security vulnera-
bility, as attackers can not only obtain fraudulent certificates for
legitimate victim domains but also append unrelated or malicious
domains. Such behavior further erodes the trustworthiness of the
Web-PKI infrastructure by potentially allowing fraudulent domains
to appear as trustworthy to unsuspecting users.

3.3.4 Let’s Encrypt ACME Implementation Flaws. In the previous
scenario (Section 3.3.2), the attacker had all account credentials,
without the need to rebuild the account.We also investigated scenar-
ios where the attacker only possesses the victim’s ACME account
private key and attempts to obtain fraudulent certificates. As de-
tailed in Section 3.2.2, the attacker must determine the account UID
to complete the ACME account profile. We used a script to simulate
a brute-force approach, continuously increasing the account inte-
ger UID. Our results showed that once the account UID matches
the private key, the attacker can successfully rebuild the victim’s
ACME account and proceed to request certificates. This indicates
that Let’s Encrypt’s ACME implementation has a critical flaw in
generating account UIDs.

3.4 Associated Domain Analysis
We evaluated the attack surface by analyzing the discovery of asso-
ciated domains, aiming to determine how many associated domains



ACME++: Secure ACME Client Verification for Web-PKI

Table 2: Top-1M Websites Associated Domain Data Overview.
Certificates are issued in Sept. 2024.

CT Log Name Nimbus [12] Sabre [34]

#Certificates 1,195,862 663,813
#Top Domains in Certificates 135,569 117,993
#Associated Domains 7,314,093 1,784,209
#Domains with JARM FP 842,671 525,596

(a) CDF Graph For #Associated
Domains (In Log Scale).

(b) Websites Rank Distribution
(Bin = 10,000).

Figure 3: Associated Domains Distribution Result.

could be identified given a target website. Using domains from
Cisco’s Top-1M websites [36] as test targets, we searched for cer-
tificates containing associated domains through CT logs. Each CT
log was analyzed independently to simulate a scenario where an
attacker might focus on a specific log. For each target domain, we
retrieved certificates issued in September 2024 from these logs and
enumerated the associated domains.

As CT logs do not directly indicate where certificates are de-
ployed, simply extracting certificate copies can produce many as-
sociated domains, including false positives. To refine the analysis,
we verified associated domains using JARM TLS fingerprinting [2].
Domains sharing the same JARM fingerprint suggest that the web
servers for these domains are managed by the same administrator
or organization. Administrators using different ACME accounts
may encounter re-validation of domains, leading them to use the
same ACME account for convenience. As a result, certificate re-
quests for these domains originate from a single ACME account,
with valid Authz records cached under that account. This means
that compromising the management account for one domain could
potentially be used to attack many other associated domains.

The results are summarized in Table 2. Preliminary results indi-
cate that 135,569 and 117,993 target domains have certificates and
associated domains in Nimbus and Sabre, respectively. We first cal-
culated the number of associated domains for these target domains.
As illustrated in Figure 3a, over 40% of these target domains have at
least one associated domain beyond themselves in Sabre, and about
30% in Nimbus. The CDF line shows a long tail with an extremely
large number of associated domains. Certain target domains (e.g.,
domains owned by CDNs) have over 1 million associated domains,
presenting a substantial attack surface.

We then analyzed the relationship between the presence of as-
sociated domains and the rank of the target websites. Figure 3b
displays the distribution of these domains in Nimbus and Sabre,
showing similar distributions across the rank spectrum. This sug-
gests that attackers can identify potential targets both among highly
ranked and less prominent domains.

(a) Nimbus

(b) Sabre

Figure 4: Associated Domain JARM Hit Percentage In Target
Domain Groups and CDF Line for Group Domain Counting
in Different CT Logs.

Figure 4 presents the JARM hit results. The x-axis represents
the group index, where each group corresponds to a specific range
in the number of associated domains. The CDF line represents
the cumulative percentage of domains within each group, while
the boxplots display the JARM hit rate percentage for each target
domain group. Group lengths were selected to ensure a smooth
increase in the CDF line.

The results indicate that across all groups in Nimbus (Figure 4a)
and Sabre (Figure 4b), the median JARM hit rates are consistently
above 50% (except the last group), suggesting that the expected
proportion of true associated domains identified in each CT log
exceeds 50%. Although the last group exhibits higher variability and
a lower median, this group comprises a very small proportion of
target domains (<0.01%), thus having minimal impact on the overall
findings. Furthermore, for almost all target domains in the first
group, the JARM hit rate reaches 100%, indicating a high probability
that these associated domains are hosted on the same server, making
them susceptible to potential attacks. Furthermore,

Takeaways. In conclusion, the associated domain analysis demon-
strates that an attacker could identify numerous target domains
across a broad range of ranks in each CT log, with associated do-
main counts ranging from 1 to more than 1,000,000. Approximately
half of these associated domains are likely to be hosted on the same
server, making them valuable targets in the third step of the ACME
Authz Cache Attack in Section 3.2.3.

3.5 Ethics Considerations
This research investigates vulnerabilities in the ACME protocol
and its implementation by major CAs, with a focus on how ma-
licious actors can exploit these weaknesses to obtain fraudulent
SSL certificates. The primary goal is to improve the security of the
Web-PKI ecosystem and raise awareness of risks related to ACME
misconfiguration. All experiments involving Let’s Encrypt were
conducted in a controlled environment, utilizing test domains that
we registered and servers intentionally configured with known
vulnerabilities for evaluation purposes. For the domain analysis,



Paper # 2631, 8 pages body, 9 pages total

all certificate data was sourced from public CT logs. When getting
JARM fingerprinting, only 10 Client Hello messages were sent to
each target server per scan, ensuring minimal risk of triggering
denial-of-service attacks.

4 ACME++: Secure ACME Client Verification
The core vulnerability in our ACME Authz Cache Attack stems
from a design flaw in the ACME protocol, which treats posses-
sion of an ACME account as sufficient proof of domain control.
To mitigate this threat, we propose ACME++, an enhanced ver-
sion of the ACME protocol that introduces additional verification
mechanisms for account ownership while preserving the existing
Web-PKI infrastructure and compatibility with current CA config-
urations. In this section, we detail the design principles (4.1 - 4.3),
and experimental evaluation of ACME++ (4.4).

4.1 Design Goals
ACME++ builds upon the existing cache mechanisms in ACME,
incorporating supplementary checks for clients sharing the same
ACME account. The design of ACME++ adheres to the following
key objectives:

• Minimal overhead for CAs. The original ACME cache mech-
anism was introduced to reduce the computational burden on
CAs by avoiding redundant domain control validation during
high-frequent certificate reissuance. ACME++ follows this prin-
ciple, ensuring that additional verification steps are lightweight
and leverage caching to minimize CA overhead.

• Ease of deployment. ACME++ is designed as a seamless up-
grade to existing ACME implementations, requiring minimal
modifications to both the client and CA server. The design re-
mains aligned with the original ACME CA server structure and
protocol transmission process, adding new functionalities within
the existing CA server framework without introducing entirely
new methods.

• Robust security. ACME++ must not introduce new attack vec-
tors into the Web-PKI system, such as vulnerabilities to brute-
force attacks. It must strengthen security while maintaining
resilience against existing and potential future threats.

4.2 Client Authz Object Design
The key improvement introduced in ACME++ over the original
ACME protocol is the addition of enhanced verificationmechanisms
for ACME clients, specifically aimed at preventing attackers from
obtaining fraudulent certificates after compromising a victim’s
ACME account private key. Building on the core principles of Authz
and domain control challenges, ACME++ introduces Client Authz,
a novel data object for client verification.

The Client Authz object (format detailed in Table 3) serves as a
unique verification token that binds an ACME client to a specific
account. Each object associates a unique identifierwith both the
client’s IP address and a client-specific ID. The IP address corre-
sponds to the machine executing the ACME client, while the client
ID is a string generated by the client. This identifier scheme not
only helps to differentiate legitimate ACME clients from potential
attackers but also enhances resilience against brute-force attempts
and similar attack vectors (further discussed in Section 4.5). Similar

Table 3: Client Authz Object Fields

Field Name Contents

status Current verification status of the identifier.
expires Current verification expiration time.
identifier The unique identifier of the client to be verified.

It consists of the client IP and a client ID
generated randomly.

challenges A list of ACME challenge objects for client
verification, each corresponds to identifier,
type, url and toekn.

Figure 5: ACME++ Flow Illustration and Message Change

to the domain Authz record in ACME, the CA caches the Client
Authz object for 30 days, provided that the associated challenges
are completed. The challenges field contains multiple Challenge
objects that must be fulfilled by the client. The specific method for
generating these challenges will be described in Section 4.3.

4.3 Protocol Design
The ACME++ workflow is illustrated in Figure 5. When an ACME
client initiates a newOrder request, it includes its IP address and
client ID along with its ACME account key and UID in the request
to the CA server. Upon receiving the request, the CA performs two
verification steps: (1) checking if the client’s communication IP
matches the submitted IP address, and (2) verifying the existence
of a valid Client Authz record for the client. If both conditions are
met, the CA proceeds with certificate issuance according to the
standard ACME protocol. If the IP addresses do not match, the
CA terminates the connection, as this mismatch may suggest that
the ACME account information has been compromised. If no valid
Client Authz record exists, the CA generates a new Client Authz
object for the client, assigns it a "pending" status, and returns the
object ID with challenges to the client.

The generation of challenges follows a structured approach: the
CA first retrieves all validAuthz records associated with the account
and randomly selects 𝑛 = ⌈log(𝑁 + 1)⌉ domain names from these
records, where 𝑁 denotes the total number of domains with valid
Authz for the account. These 𝑛 domains serve as the foundation
for new challenges, which the client must complete to re-establish
domain ownership.



ACME++: Secure ACME Client Verification for Web-PKI

(a) Time Overhead. (b) Traffic Overhead.

Figure 6: ACME++ Overhead on CA Server Simulation Result
in Worst Case Scenarios.

ACME++ also introduces a new endpoint, newClientAuthz, to
the ACME CA server Services (as detailed in Table 1). If the client
proceeds to client verification, it sends a POST-as-GET request
to /acme/client-authz/<authz_id> to access the Client Authz
object, where <authz_id> corresponds to the ID of the Client Authz
object. The client then completes the required challenges using
either the HTTP-01 or DNS-01 challenge types. Upon successfully
completing all challenges, the client is verified, and the CA updates
the status of the Client Authz object to "valid." At this point, the CA
may proceedwith certificate issuance. Additionally, theClient Authz
record is cached for 30 days, allowing the client to request further
certificates within this period without needing re-verification.

In summary, the core principle of ACME++ is that if the client
fails to complete the challenges, it signifies an inability to prove
domain ownership, prompting the CA to terminate the issuance
process. This mechanism prevents exploitation of the ACME Authz
cache vulnerability, as discussed in Section 3.

4.4 Overhead Evaluation
In this section, we evaluate the ACME++ protocol design in terms
of CA server overhead.

4.4.1 Setup. We implemented the updates for both ACME and
ACME++ in Python, covering the CA server and the ACME client,
following the RFC documentation. The implementation simulates
the complete ACME protocol message exchange process, excluding
certain checks and signature verification required in production
environments. We configured the CA server to directly verify chal-
lenges on the client using the HTTP-01 challenge type. To simulate
real-world certificate issuance between a CA and a client, we de-
ployed the client and the server on separate hosts across different
ISP networks.

4.4.2 Overhead Analysis. Normal Case. In typical use cases, such
as a web server with a fixed public IP address that periodically
requests certificates, the overhead remains minimal due to the 30-
day caching of the Client Authz record. Consequently, both types
of overhead occur infrequently, maintaining efficiency and min-
imizing traffic between the client and the CA. Additionally, the
logarithmic selection of domain challenges greatly reduces chal-
lenge overhead in large-scale scenarios. For example, if a client
manages 𝑁 = 10, 000 domains, it would only need to complete
𝑛 = ⌈log(10, 000 + 1)⌉ = 14 challenges, representing just 0.14% of
the total domains.
Worst Case.When clients operate with dynamic IP addresses (e.g.,

within a campus network), Client Authz validation may fail with
each certificate request, necessitating re-verification and introduc-
ing overhead for each request. To evaluate this, we simulated two
extreme scenarios to assess the certificate issuance overhead. In the
first scenario, the client requests a certificate without any valid Au-
thz records cached in the CA server (referred to as Pending Authz).
Here, the client must undergo both the ACME++ client verification
and the domain validation processes. The second scenario involves
the client requesting a certificate with all validAuthz records cached
in the CA server (referred to as Valid Authz), requiring only the
client verification step.

We used two metrics for evaluation: traffic overhead, defined as
the ratio of total bytes transmitted between the client and the CA
server, and time overhead, measured as the ratio of the duration
from the client’s newOrder request to the final certificate issuance.
The number of identifiers in each newOrder request ranged from
1, 5, 10, 50, to the maximum of 100 allowed by Let’s Encrypt per
certificate. To standardize the time for challenge completion, we
assumed a fixed duration of 1 second per domain, with parallel pro-
cessing for multiple domain challenges. Each process was repeated
10 times, and the average overhead ratios were calculated.

Figures 6a and 6b present the simulation results for time and
traffic overhead in the ACME++ process. For time overhead, Valid
Authz incurs an average additional ratio of approximately 40%,
while Pending Authz experiences about 20%. The time overhead is
more variable when the number of identifiers is small (e.g., 1 or
5), likely due to network variability. However, as the number of
identifiers increases, the time overhead stabilizes, indicating more
consistent performance. For traffic overhead, a clear decreasing
trend emerges as the number of identifiers (𝑁𝑖 ) increases. This trend
suggests that the relative impact of challenge traffic diminishes with
larger 𝑁𝑖 , as the fixed communication costs are distributed over
more identifiers, resulting in a lower per-identifier traffic overhead
ratio.

In summary, even under conditions simulating maximum over-
head, ACME++ maintains a time overhead below 60%, and traffic
overhead consistently falls below 50%. These results demonstrate
that ACME++ provides a scalable and efficient solution, even when
managing a large number of identifiers.

4.5 Resilience to Potential Attacks
In this section, we demonstrate that the ACME++ protocol provides
strong security against various attack scenarios.

1. Client Authz Caching Attack. Similar to the ACME Authz Cache
Attack, in this scenario, the attacker possesses knowledge of the
victim’s ACME account key, UID, client IP, and client ID and at-
tempts to exploit cached Client Authz records to obtain fraudulent
certificates.

Feasibility Analysis: If the attacker uses their own IP address to
communicate with the CA, the CA will detect a mismatch between
the submitted client IP and the attacker’s IP, causing the Client
Authz verification to fail. If the attacker attempts to spoof the IP
address to appear as the victim’s, they would not receive responses
from the CA unless they can control the victim’s network traffic
throughmethods like BGP prefix hijacking, which is highly unlikely.
Thus, the attacker could only succeed if they possess both the



Paper # 2631, 8 pages body, 9 pages total

correct ACME account credentials and the capability to execute a
BGP prefix hijack—an improbable combination.

2. Brute Force Attack. In this scenario, we assume the attacker has
access to the victim’s ACME key and UID, allowing them to com-
municate with the CA from the victim’s IP address, but they lack
the client ID.

Feasibility Analysis: If the client ID is composed of both upper-
case and lowercase letters and digits, and its length is 8 characters,
the complexity of a brute-force attack would be 628 ≈ 2.18 × 1014
(approximately 218 trillion possible combinations), rendering such
an attack infeasible.

3. Partial Domain Control Attack. In this scenario, the attacker pos-
sesses the victim’s ACME account key and UID and has control
over some of the victim’s domains. The attacker seeks to obtain a
fraudulent certificate that includes other domains belonging to the
victim.

Feasibility Analysis: During the account challenge process,
the attacker must ensure that at least 𝑛 domains under their control
have valid Authz records to pass the challenge and proceed with the
attack. Since the domains for the challenge are selected randomly,
the attacker would need significant control over the victim’s domain
portfolio to meet this condition. At this point, the attacker would
likely already possess substantial access to the victim’s resources,
making the attack scenario redundant.

5 Related Work
5.1 Web-PKI Attack Model
Private Key Compromise.
The Web-PKI ecosystem, based on cryptography and SSL certifi-
cates, relies on secure private key management for maintaining
communication integrity. Early studies examined risks of private
key leakage through public vulnerabilities, like the 2008 Debian
OpenSSL flaw [37], allowing attackers to match public keys with
known compromised ones, and the 2014 Heartbleed bug [38], which
exposed keys by leaking server memory.

Subsequent work by Cangialosi et al. [9] revealed key reuse
across certificates, including private keys accessible by third-party
hosting providers like CDNs. More recently, Ma et al. [27] intro-
ducedCertificate Invalidation Events, where entities such as previous
domain owners or CDN providers retained valid certificate keys
despite changes in domain ownership.

While prior work has concentrated on SSL certificate private
keys, our research focuses on compromised ACME account keys.
We demonstrate that a compromised ACME account key has far-
reaching consequences for Web-PKI, as it allows attackers to issue
entirely new, valid fraudulent certificates using their key pairs,
whereas compromised certificates can often be quickly revoked by
their owners.

Fraudulent Certificate Retrieval.
To execute an MITM or phishing attack, attackers must first ac-
quire a fraudulent certificate that matches the victim’s identity.
Prior research has developed several methods to obtain fraudulent
certificates within the Web-PKI framework. These methods primar-
ily target domain validation processes through either network-level
or DNS-level attacks. In [5], Birge-Lee et al. demonstrate an attack

where BGP prefix hijacking allows an attacker to successfully com-
plete domain validation and obtain a fraudulent certificate. Other
notable attacks focus on DNS-based vulnerabilities. Borgolte et al.
[7] present CloudStrife, which exploits dangling DNS records in
cloud environments to obtain certificates for unallocated IP ad-
dresses. Similarly, Brandt et al. [8] introduces a DNS cache poison-
ing attack, wherein fragmented responses to a DNS resolver are
manipulated to point the victim domain to an attacker-controlled
IP address. Dai et al. [14] propose off-path attacks on nameservers
to manipulate the domain validation process, forcing the CA to rely
on attacker-specified nameservers.

Unlike these approaches, which involve deceiving the CA into
validating attacker-controlled domains, our attack circumvents the
domain validation step entirely by exploiting the ACME Authz
cachingmechanism. Once the attacker possesses the victim’s ACME
account private key, they can directly communicate with the CA
to request a fraudulent certificate without triggering any domain
validation. This approach significantly reduces the attacker’s over-
head, eliminating the need for DNS or network-level manipulation,
and lowers the barrier for attackers.

5.2 CT Information Leakage
In our attack model, CT logs provide a wealth of information, en-
abling attackers to identify associated domains. As CT logs continue
to grow, researchers have increasingly raised concerns about po-
tential information leakage and privacy violations [30, 32, 33].

Scheitle et al. [33] were among the first to provide a heuristic
analysis of both the positive and negative aspects of CT. They high-
lighted how CT logs expose FQDNs and subdomains that would
otherwise be hidden from public scans. Kales et al. [24] further
expanded on this by identifying sensitive information such as user-
names, email addresses, and business relationships that could be
inferred from CT logs. More recently, Pletinckx et al. [30] demon-
strated how attackers could leverage CT logs to identify domains
that have ceased renewing their certificates, which are more likely
to be vulnerable to known security vulnerabilities.

In our work, we harness the publicly available CT logs to identify
domains associated with the victim’s ACME account, thus expand-
ing the attack surface. This approach further underscores the dual
nature of CT logs, which, while designed to increase transparency
and security, can also inadvertently assist attackers in reconnais-
sance efforts.

6 Conclusion
This paper exposed a critical vulnerability in the ACME protocol,
allowing attackers to obtain fraudulent certificates by exploiting the
Authz cache mechanism. We introduced the ACME Authz Cached
attack and found that the world’s largest CA, Let’s Encrypt, is
vulnerable to this attack. We proposed ACME++, an enhanced pro-
tocol that introduces Client Authz on a new Directory service to
strengthen client verification. ACME++ mitigates the risk of unau-
thorized certificate issuance without altering the existing PKI in-
frastructure or imposing significant overhead on CAs. Our solution
effectively prevents attackers from exploiting compromised ACME
accounts while maintaining the efficiency of certificate reissuance,
ensuring continued trust in the Web-PKI ecosystem.



ACME++: Secure ACME Client Verification for Web-PKI

References
[1] acmesh-official. n.d.. acme.sh. https://github.com/acmesh-official/acme.sh

Accessed: 2024-09-25.
[2] John Althouse. 2023. Easily Identify Malicious Servers on the Internet with

JARM. https://engineering.salesforce.com/easily-identify-malicious-servers-
on-the-internet-with-jarm-e095edac525a/ Accessed: 2024-09-28.

[3] Trust Asia. 2020. Extremely Dangerous! Tesla Suffers Major Failure Due to
Expired Certificates, Causing Large-Scale Outage. https://www.trustasia.com/
view-tesla-expired/ Published: 2020-05-19 10:40:08.

[4] R. Barnes, J. Hoffman-Andrews, D. McCarney, and J. Kasten. 2019. Automatic
Certificate Management Environment (ACME). RFC 8555. https://doi.org/10.
17487/RFC8555

[5] H. Birge-Lee, Y. Sun, A. Edmundson, J. Rexford, and P. Mittal. 2018. Bamboozling
Certificate Authorities with BGP. In Proceedings of the 27th USENIX Conference on
Security Symposium (Baltimore, MD, USA) (SEC’18). USENIX Association, USA,
833–849.

[6] Google Security Blog. 2015. Maintaining Digital Certificate Secu-
rity. https://security.googleblog.com/2015/03/maintaining-digital-certificate-
security.html Accessed: 2024-10-14.

[7] K. Borgolte, T. Fiebig, S. Hao, C. Kruegel, and G. Vigna. 2018. Cloud Strife:
Mitigating the Security Risks of Domain-Validated Certificates. In Proceedings of
the 2018 Applied Networking Research Workshop (Montreal, QC, Canada) (ANRW
’18). Association for Computing Machinery, New York, NY, USA, 4. https:
//doi.org/10.1145/3232755.3232859

[8] M. Brandt, T. Dai, A. Klein, H. Shulman, and M. Waidner. 2018. Domain Val-
idation++ For MitM-Resilient PKI. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (Toronto, Canada) (CCS
’18). Association for Computing Machinery, New York, NY, USA, 2060–2076.
https://doi.org/10.1145/3243734.3243790

[9] F. Cangialosi, T. Chung, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and C.
Wilson. 2016. Measurement and Analysis of Private Key Sharing in the HTTPS
Ecosystem. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (Vienna, Austria) (CCS ’16). Association for Comput-
ing Machinery, New York, NY, USA, 628–640. https://doi.org/10.1145/2976749.
2978301

[10] L. Chuat, A. Abdou, R. Sasse, C. Sprenger, D. Basin, and A. Perrig. 2020. SoK:
Delegation and Revocation, the Missing Links in the Web’s Chain of Trust. In
2020 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, Genova,
Italy, 624–638. https://doi.org/10.1109/EuroSP48549.2020.00046

[11] J. Clark and P. C. van Oorschot. 2013. SoK: SSL and HTTPS: Revisiting Past
Challenges and Evaluating Certificate Trust Model Enhancements. In 2013 IEEE
Symposium on Security and Privacy. IEEE, Berkeley, CA, USA, 511–525. https:
//doi.org/10.1109/SP.2013.41

[12] Cloudflare. 2024. Cloudflare Nimbus Certificate Transparency Logs. https://ct.
cloudflare.com/logs/nimbus2024/ Additional logs available at https://ct.cloudflare.
com/logs/nimbus2025/.

[13] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. 2008.
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. Technical Report RFC 5280. Network Working Group. https:
//www.rfc-editor.org/rfc/rfc5280 Obsoletes RFC 3280, 4325, 4630.

[14] T. Dai, H. Shulman, and M. Waidner. 2021. Let’s Downgrade Let’s Encrypt. In
Proceedings of the 2021 ACM SIGSACConference on Computer and Communications
Security (Virtual Event, Republic of Korea) (CCS ’21). Association for Computing
Machinery, New York, NY, USA, 1421–1440. https://doi.org/10.1145/3460120.
3484815

[15] DigiCert. [n. d.]. Third-Party ACME Integration Guide. https:
//docs.digicert.com/en/certcentral/certificate-tools/certificate-lifecycle-
automation-guides/third-party-acme-integration.html Accessed: 2024-10-14.

[16] Electronic Frontier Foundation. [n. d.]. Certbot. https://certbot.eff.org/ Accessed:
2024-09-25.

[17] Let’s Encrypt. 2024. Rate Limits. https://letsencrypt.org/docs/rate-limits/
Accessed: 2024-10-06.

[18] S. M. Farhan and T. Chung. 2023. Exploring the Evolution of TLS Certificates. In
Passive and Active Measurement: 24th International Conference, PAM 2023, Virtual
Event, March 21–23, 2023, Proceedings. Springer-Verlag, Berlin, Heidelberg, 71–84.
https://doi.org/10.1007/978-3-031-28486-1_4

[19] Dennis Fisher. 2012. Final Report on DigiNotar Hack Shows Total Compromise
of CA Servers. https://threatpost.com/final-report-diginotar-hack-shows-total-
compromise-ca-servers-103112/77170/. Posted at 2:49 pm.

[20] Google. [n. d.]. Google CT Argon 2024 Log. https://ct.googleapis.com/logs/us1/
argon2024/ Accessed: 2024-10-14.

[21] Google. 2024. Certificate Transparency. https://certificate.transparency.dev/.
Accessed: August 18, 2024.

[22] Google. 2024. HTTPS Encryption on the Web. https://transparencyreport.google.
com/https/overview. Accessed: August 18, 2024.

[23] David Hamann. 2022. nginx alias misconfiguration allowing path traversal.
https://davidhamann.de/2022/08/14/nginx-alias-traversal/ Updated: August 14,

2022.
[24] D. Kales, O. Omolola, and S. Ramacher. 2019. Revisiting User Privacy for Certifi-

cate Transparency. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). 432–447. https://doi.org/10.1109/EuroSP.2019.00039

[25] Let’s Encrypt. n.d.. Challenge Types. https://letsencrypt.org/docs/challenge-
types/ Accessed: 2024-09-25.

[26] Let’s Encrypt. n.d.. Let’s Encrypt. https://letsencrypt.org/ Accessed: 2024-09-25.
[27] Z. Ma, A. Faulkenberry, T. Papastergiou, Z. Durumeric, M. D. Bailey, A. D.

Keromytis, F. Monrose, and M. Antonakakis. 2023. Stale TLS Certificates: In-
vestigating Precarious Third-Party Access to Valid TLS Keys. In Proceedings
of the 2023 ACM on Internet Measurement Conference (Montreal QC, Canada)
(IMC ’23). Association for Computing Machinery, New York, NY, USA, 222–235.
https://doi.org/10.1145/3618257.3624802

[28] J. Nightingale. 2011. Fraudulent *.google.com Certificate. https://blog.mozilla.
org/security/2011/08/29/fraudulent-google-com-certificate/. Accessed: August
18, 2024.

[29] OWASP. n.d.. Path Traversal Attack. https://owasp.org/www-community/
attacks/Path_Traversal Accessed: 2024-09-25.

[30] S. Pletinckx, T.-D. Nguyen, T. Fiebig, C. Kruegel, and G. Vigna. 2023. Certifiably
Vulnerable: Using Certificate Transparency Logs for Target Reconnaissance. In
2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P). 817–831.
https://doi.org/10.1109/EuroSP57164.2023.00053

[31] R. Prodanović, I. Vulić, and I. Tot. 2019. A Survey of PKI Architecture. 5th
International Conference – ERAZ 2019 – Knowledge Based Sustainable Development,
Selected Papers (2019), 169–176. https://doi.org/10.31410/ERAZ.S.P.2019.169
Conference held in Budapest, Hungary, May 23, 2019.

[32] R. Roberts and D. Levin. 2019. When Certificate Transparency Is Too Transparent:
Analyzing Information Leakage in HTTPS Domain Names. In Proceedings of
the 18th ACM Workshop on Privacy in the Electronic Society (London, United
Kingdom) (WPES’19). Association for Computing Machinery, New York, NY,
USA, 87–92. https://doi.org/10.1145/3338498.3358655

[33] Q. Scheitle, O. Gasser, T. Nolte, J. Amann, L. Brent, G. Carle, R. Holz, T. C. Schmidt,
and M. Wählisch. 2018. The Rise of Certificate Transparency and Its Implications
on the Internet Ecosystem. In Proceedings of the Internet Measurement Conference
2018 (Boston, MA, USA) (IMC ’18’). Association for Computing Machinery, New
York, NY, USA, 343–349. https://doi.org/10.1145/3278532.3278562

[34] Sectigo. 2024. Sectigo Sabre Certificate Transparency Logs. https://sabre2025h2.
ct.sectigo.com/ Additional logs available at https://sabre2025h1.ct.sectigo.com/,
https://sabre2024h2.ct.sectigo.com/, https://sabre2024h1.ct.sectigo.com/.

[35] Dan Swinhoe. 2023. SpaceX Starlink Outage Caused by Expired Ground Station
Certificates. https://www.datacenterdynamics.com/en/news/spacex-starlink-
outage-caused-by-expired-ground-station-certificates/

[36] Cisco Umbrella. 2024. Umbrella Popularity List. https://umbrella-static.s3-us-
west-1.amazonaws.com/index.html Accessed: 2024-10-06.

[37] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. 2009. When
Private Keys Are Public: Results from the 2008 Debian OpenSSL Vulnerabil-
ity. In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measure-
ment (IMC). Association for Computing Machinery, New York, NY, USA, 15–27.
https://doi.org/10.1145/1644893.1644896

[38] L. Zhang, D. Choffnes, D. Levin, T. Dumitras, , A. Mislove, A. Schulman, and C.
Wilson. 2014. Analysis of SSL Certificate Reissues and Revocations in theWake of
Heartbleed. In Proceedings of the 2014 Conference on Internet Measurement Confer-
ence (Vancouver, BC, Canada) (IMC ’14). Association for Computing Machinery,
New York, NY, USA, 489–502. https://doi.org/10.1145/2663716.2663758

https://github.com/acmesh-official/acme.sh
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a/
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a/
https://www.trustasia.com/view-tesla-expired/
https://www.trustasia.com/view-tesla-expired/
https://doi.org/10.17487/RFC8555
https://doi.org/10.17487/RFC8555
https://security.googleblog.com/2015/03/maintaining-digital-certificate-security.html
https://security.googleblog.com/2015/03/maintaining-digital-certificate-security.html
https://doi.org/10.1145/3232755.3232859
https://doi.org/10.1145/3232755.3232859
https://doi.org/10.1145/3243734.3243790
https://doi.org/10.1145/2976749.2978301
https://doi.org/10.1145/2976749.2978301
https://doi.org/10.1109/EuroSP48549.2020.00046
https://doi.org/10.1109/SP.2013.41
https://doi.org/10.1109/SP.2013.41
https://ct.cloudflare.com/logs/nimbus2024/
https://ct.cloudflare.com/logs/nimbus2024/
https://ct.cloudflare.com/logs/nimbus2025/
https://ct.cloudflare.com/logs/nimbus2025/
https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc5280
https://doi.org/10.1145/3460120.3484815
https://doi.org/10.1145/3460120.3484815
https://docs.digicert.com/en/certcentral/certificate-tools/certificate-lifecycle-automation-guides/third-party-acme-integration.html
https://docs.digicert.com/en/certcentral/certificate-tools/certificate-lifecycle-automation-guides/third-party-acme-integration.html
https://docs.digicert.com/en/certcentral/certificate-tools/certificate-lifecycle-automation-guides/third-party-acme-integration.html
https://certbot.eff.org/
https://letsencrypt.org/docs/rate-limits/
https://doi.org/10.1007/978-3-031-28486-1_4
https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
https://ct.googleapis.com/logs/us1/argon2024/
https://ct.googleapis.com/logs/us1/argon2024/
https://certificate.transparency.dev/
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://davidhamann.de/2022/08/14/nginx-alias-traversal/
https://doi.org/10.1109/EuroSP.2019.00039
https://letsencrypt.org/docs/challenge-types/
https://letsencrypt.org/docs/challenge-types/
https://letsencrypt.org/
https://doi.org/10.1145/3618257.3624802
https://blog.mozilla.org/security/2011/08/29/fraudulent-google-com-certificate/
https://blog.mozilla.org/security/2011/08/29/fraudulent-google-com-certificate/
https://owasp.org/www-community/attacks/Path_Traversal
https://owasp.org/www-community/attacks/Path_Traversal
https://doi.org/10.1109/EuroSP57164.2023.00053
https://doi.org/10.31410/ERAZ.S.P.2019.169
https://doi.org/10.1145/3338498.3358655
https://doi.org/10.1145/3278532.3278562
https://sabre2025h2.ct.sectigo.com/
https://sabre2025h2.ct.sectigo.com/
https://sabre2025h1.ct.sectigo.com/
https://sabre2024h2.ct.sectigo.com/
https://sabre2024h1.ct.sectigo.com/
https://www.datacenterdynamics.com/en/news/spacex-starlink-outage-caused-by-expired-ground-station-certificates/
https://www.datacenterdynamics.com/en/news/spacex-starlink-outage-caused-by-expired-ground-station-certificates/
https://umbrella-static.s3-us-west-1.amazonaws.com/index.html
https://umbrella-static.s3-us-west-1.amazonaws.com/index.html
https://doi.org/10.1145/1644893.1644896
https://doi.org/10.1145/2663716.2663758

	Abstract
	1 Introduction
	2 Background
	2.1 Web-PKI and SSL Certificates
	2.2 ACME Protocol with Cache Mechanism
	2.3 ACME Account Implementation Flaw

	3 ACME Authz Cache Attack
	3.1 Threat Model
	3.2 Attack Methodology
	3.3 Evaluation Against Let's Encrypt
	3.4 Associated Domain Analysis
	3.5 Ethics Considerations

	4 ACME++: Secure ACME Client Verification
	4.1 Design Goals
	4.2 Client Authz Object Design
	4.3 Protocol Design
	4.4 Overhead Evaluation
	4.5 Resilience to Potential Attacks

	5 Related Work
	5.1 Web-PKI Attack Model
	5.2 CT Information Leakage

	6 Conclusion
	References

