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Abstract

Adapting a pretrained diffusion model to new objectives at inference time remains
an open problem in generative modeling. Existing steering methods suffer from
inaccurate value estimation, especially at high noise levels, which biases guidance.
Moreover, information from past runs is not reused to improve sample quality,
resulting in inefficient use of compute. Inspired by the success of Monte Carlo Tree
Search, we address these limitations by casting inference-time alignment as a search
problem that reuses past computations. We introduce a tree-based approach that
samples from the reward-aligned target density by propagating terminal rewards
back through the diffusion chain and iteratively refining value estimates with each
additional generation. Our proposed method, Diffusion Tree Sampling (DTS),
produces asymptotically exact samples from the target distribution in the limit of
infinite rollouts, and its greedy variant, Diffusion Tree Search (DTS™), performs a
global search for high reward samples. On MNIST and CIFAR-10 class-conditional
generation, DTS matches the FID of the best-performing baseline with up to 10x
less compute. In text-to-image generation and language completion tasks, DTS™
effectively searches for high reward samples that match best-of-N with up to 5x
less compute. By reusing information from previous generations, we get an anytime
algorithm that turns additional compute into steadily better samples, providing a
scalable approach for inference-time alignment of diffusion models. Project page:
https://diffusion-tree-sampling.github.iol

1 Introduction

Diffusion models have emerged as one of the most powerful frameworks for generative modeling,
achieving state-of-the-art results across a wide range of modalities, including image synthesis
[30; 75 164], molecule conformer generation [32;[89], and text generation [68} 48]]. Despite their
success, adapting a pretrained diffusion model to satisfy new, user-defined objectives at inference
time without expensive retraining or fine-tuning remains a major challenge [79].

Most objectives can be cast as a reward function, turning alignment into a posterior sampling problem
where the target is to sample from the pretrained model density weighted by exponentiated reward.
The key challenge is that rewards are only available at the end of the denoising trajectory. So,
inference-time alignment seeks to guide the denoising process based on unseen terminal rewards.

A range of different methods have been proposed — gradient-based guidance [[17; 115 3]], where one
uses reward gradients to bias the denoising process; sequential Monte Carlo (SMC) [84;[77;[7;119;39]
which maintains a population of particles and resamples them during denoising based on an estimate
of terminal rewards; or more recently, search-based methods [45; 46; 50] that perform a local greedy
search based on approximate rewards. The common issue undermining all of these methods is that
they rely on certain approximations to estimate the unseen terminal rewards. As we demonstrate in
Section 3] these approximations bias decisions and degrade sample quality.
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Figure 1: Sample text-image pairs using Stable Diffusion v1.5 [64] and ImageReward [88]] as the
guiding function, with generated samples picked at random for each method and prompt.

We therefore address the following challenges or questions in this work: (1) how to guide the diffusion
process at inference-time when rewards are available only at the end? This is also known as the
credit assignment problem in reinforcement learning (RL) literature [51]]; (2) inference-time samples
can potentially inform and improve future samples — how to systematically use this information in a
sequential yet scalable sampling process?

Fortunately, RL also provides a solution that has been historically quite successful in addressing
both challenges — Monte Carlo Tree Search (MCTS) [6]]. We therefore ask: can we leverage MCTS
for steering diffusion models? We observe that during denoising, the pretrained diffusion model
can be viewed as a deterministic policy, while the reverse process Gaussian step can be viewed as a
stochastic environment transition. This is exactly the classical setting for MCTS [41]], suggesting we
could use tree search to solve the problem of inference-time alignment.

Our proposed algorithm, Diffusion Tree Sampling (DTS) is a novel inference-time alignment method
that casts the denoising process as a finite-horizon tree, where similar to MCTS, rollouts are used
to continuously improve value estimates for intermediate noisy states. For applications that require
optimization, rather than sampling from the target density, we propose a search variant — Diffusion
Tree Search (DTS™) — that performs a principled search in the space of denoising trajectories to
identify the modes within high-volume regions of the target density.

Our contributions can be summarized as follows:
* We formulate inference-time alignment of diffusion models as a tree search problem for sampling
from the reward-aligned distribution or optimizing for high reward samples.
* We develop a general tree-based algorithm that yields asymptotically exact samples from the
target distribution in the limit of infinite rollouts.
* We demonstrate that DTS significantly reduces bias and variance in value estimation compared
to common approximations used by many existing methods.

» We show that both DTS and DTS™ scale more favorably compared to leading baselines and
match their performance with up to 10x less compute on class-conditional image generation,
and up to 5x less compute on text-to-image alignment and language completion tasks.

2 Preliminaries

Diffusion models.  Diffusion models [30; define a generative process via a Markov chain that
progressively adds noise to data X ~ pgaa(X), referred to as the forward process, x; = NGCTE R
VI—are, e~N(0,I),wheret € {1,...,T} indexes discrete time steps, and {c; };_, defines
a noise schedule. The noise schedule is chosen such that at ¢ = T', the marginal distribution of
the samples resembles a simple fixed distribution, such as standard Gaussian, p(xr) = N(0, I).



A learned reverse process iteratively denoises samples: pg(x;—1 | x¢) = N (x¢_1; po(X¢, 1), 021),
where o is the posterior variance calculated from the forward noise schedule and (g is parameterized
typically by neural networks and optimized by minimizing the variational bound on the data likelihood
or via denoising score matching. The generative process induces a distribution:
T
po(x0, -, xr-1,%x7) = p(x1) [ [ po(xe-1 | ), plxr) =N (0, 1). )]

t=1

Alignment of diffusion models. Consider a pretrained diffusion model py and an optimality
variable O € {0, 1} which denotes whether a sample x ~ py(x) satisfies some desirable property.
This is equivalent to sampling from the posterior distribution p(x | O = 1) x pp(x) p(O =1 | x).
A typical assumption is that p(O = 1 | x) x exp(Ar(x)) where r is some reward function and \ is
the inverse temperature. For the rest of this paper, we assume that A = 1 unless otherwise stated and
we define the alignment problem as sampling from the target distribution or finding its mode, where
Z is the normalization constant:
1
™ (x) = - P (x) exp(Ar(x)). )
Reinforcement learning approach. Since the generative process in diffusion models defines a
Markov chain, we may consider the model py as a policy. The target distribution 7* can be seen as
the optimal policy for the following objective:

1
7" (x) = argmax Ex () [r(x)] — X Dxy (7 || po) - 3)

This is closely related to the maximum entropy RL objective [93} 22]], except that the entropy
regularization is replaced by the KL divergence with the pretrained model py. We define the soft
value function at timestep ¢ as the expected exponentiated reward starting from x; and following py:

1
‘/t(xt) = X log]Epe(Xo;f,—ﬂxf,) [exp (/\T(XO))] . (4)

This soft value function satisfies the following recursive relation, analogous to the soft Bellman
equation and exactly characterizes the optimal policy 7*:

1
Vi(x¢) = ~ 108 Epg (1 [x.) [exp (A\Vi—1(x¢-1))],  Vo(%0) = 7(x0)- )

« Po(Xe—1 | x¢) exp (A\Vi—1(x¢-1))
my (Xe—1 | X¢) = . 6)
S po(xe—1 | x¢) exp (AVi—q(x4—1)) dx¢—1
This formulation explicitly connects optimal sampling with soft value estimation, motivating various
practical approximations and sampling methods discussed in subsequent sections. For completeness,
we derive Equations (5) and (6) in Section In the rest of the paper, we use V; to denote the true
soft value function and 7, to denote estimates.

3 Inference-time adaptation of diffusion models

One option to obtain the optimal policy in Equation () is to fine-tune the diffusion model using RL
[215 155 1815 18] Sampling from unseen reward functions would require guiding the denoising process
during inference to align with the optimal policy without modifying the prior pretrained model. We
discuss some of the most relevant works below, and works in related areas in Section [A]

Gradient-based guidance. One way to sample from the optimal policy 7* is to use the first-order
Taylor expansion of V;_; around the pretrained mean pg(x¢,t). This yields the gradient-based
denoising step Xy—1 ~N (po(x¢,t) + A0F Vi, Vi—1(x¢—1),07 I). This can be considered a form
of classifier guidance [[17] and is used in many proposed inference-time steering methods [[L15 35 [27].
The gradient approximation can be improved by using Monte Carlo samples for estimation [74].

Sequential Monte Carlo. Particle-based methods are another very popular approach, where a
population of samples is maintained to approximately sample from the desired distribution. Sequential
Monte Carlo (SMC) [I15] uses potential functions, which usually approximate the soft value function,
to assign weights to particles and resample them at every step. Different variations of SMC have
been proposed for diffusion model alignment [84; [77; [7; [19; 395 [72]. Classical SMC guarantees
exact sampling in the limit of infinite particles and exact value estimation. In practice, however,
the repeated sampling procedure can reduce diversity due to weight variance and inaccurate value
estimates. We provide detailed background on SMC for diffusion sampling in Section B}
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Figure 2: One-step prediction X (x;) using Tweedie’s formula for different time steps, along with
average mean squared error with the ground truth data samples. Close to ¢ = 0, the predictions are
fairly accurate, but towards the maximum timestep 7' = 99, they devolve into random predictions.

Search-based methods. Recently, there has been a growing interest in using search-based methods
to align diffusion models [50]. Most of these methods propose doing a local search [45} 46] by
obtaining multiple denoising candidates at each step and selecting the best one based on their value.
More recently, tree search has been combined with best-of-N [92], and an MCTS-based approach
[91] has been applied in the specific context of diffusion forcing [9]] over sequences for planning.
However, these methods either do not use an explicit backup mechanism, resulting in a limited local
search[45} 46; 192; 50], or they rely on inaccurate value estimates [91]. DTS, on the other hand,
performs global credit assignment using all trajectories for asymptotically exact sampling.

3.1 The value estimation problem

Most existing methods use soft values from Equation (3)) either by taking their gradient [11}[74], as
SMC potentials [84;[39]], or for search [45; 46} [91]]. Since estimating these soft values is intractable,
they employ the following set of approximations. The first step is to apply Jensen’s inequality:

1
W(Xt) = X ]'Og EPQ(XO:t—1|xt) [exp ()‘ T(XO))} ~ E;De(xo:t—ﬂxf,) [T(XO)} (7)

Estimation of this expectation is computationally expensive since it requires multiple rollouts from
the current sample at timestep ¢ to the clean sample. The expected reward is further approximated as
By (.0 11%0) '[r (x0)] & r(Xo(x¢)), where X is the posterior mean obtained using Tweedie’s formula
[20; [11]] in a single step:

X0(Xt) = Epy(x0n 1 x0) [xo0] = (x¢ 4+ (1 = @)V, log pe(x¢)) - (8)

1
VOt
The posterior mean is an approximation because the true score function for intermediate marginal
densities Vi, log p:(x:) is replaced by the learned score function. We investigate the effect of this
approximation for a diffusion model trained on a mixture of Gaussians in Figure[2} where we see
that the prediction based on Tweedie’s formula gets increasingly inaccurate for higher noise levels.
Therefore, despite the wide adoption of this approximation, the value estimates used for guidance are
essentially random at higher noise levels even in simple 2D settings.

3.2 Scaling with compute

Efficient utilization of available compute is critical for any inference-time alignment algorithm.
Existing SMC or search-based methods treat each sampling procedure as an independent event, and
all intermediate evaluations are discarded. Consider a streaming or repeated sampling setting. There
is no mechanism to assimilate information from prior runs to improve sample quality. This could be
particularly useful for correcting errors in value estimation, which, as we saw above, is difficult at
high noise levels. In other words, these methods scale parallelly by increasing particle count, but do
not scale sequentially by turning extra compute into cumulative improvements in estimate quality.

4 Diffusion Tree Sampling and Search
The pitfalls above suggest two complementary desiderata for an effective inference—time sampler:

(D1) Use information from low-noise timesteps, where the reward signal is reliable, to refine
decisions made at high-noise timesteps, rather than treating every step in isolation.

(D2) Reuse information from previously explored trajectories so that additional compute improves
sample quality instead of merely increasing parallel particle count (this property is characteris-
tic of an anytime algorithm).
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Figure 3: Illustration of various inference-time steering methods, where size of the node represents
the associated values. Left: Best-of-N denoises multiple samples using the base diffusion model
and selects the one with the highest reward. Center: SMC maintains a population of particles and
resamples based on an estimate of the value function. Right: DTS and DTS* maintain a tree that
accumulates information across multiple rollouts and backs up the terminal reward to refine value
estimates. The diagram illustrates the four phases: selection, expansion, rollout, and backup.

To address these issues, in this section we develop a solution by first interpreting the denoising
process as a tree in Section 4.1} We then introduce a general tree-based algorithm to sample from the
target density in Section[4.2|and describe its application to diffusion model alignment in Section 4.3
Finally, in Section 4.4] we empirically evaluate our method on 2D datasets to validate, in a very clear
and controlled setting, whether DTS satisfies the desiderata mentioned above.

4.1 Denoising tree

The Markov property of the reverse diffusion chain naturally induces a finite horizon tree in R?,
where d is the dimensionality of the space over which we are diffusing. Here, the nodes at depth ¢
represent noisy states x; and the edges represent a denoising step. Each node x; can be stochastically
denoised into multiple children x; 1 ~ pg(- | x¢).

This framing allows us to keep track of information across multiple denoising trajectories, including
estimates of the soft value function, which helps with global credit assignment. Using the tree
structure gives us the flexibility to sample from the target density or search for the highest reward
sample with minimal changes to the underlying algorithm. We call the sampling variant Diffusion
Tree Sampling (DTS) and the search variant Diffusion Tree Search (DTS™).

4.2 Tree-based sampling

Similar to MCTS, we construct a tree 7, where nodes represent states x; and edges represent
transitions pg(x:—1 | x+) following the base diffusion model. Each node maintains the current state
and timestep (x¢, t), an estimate of the soft value function ¥(x;), and the visit count N (x;). Since
we do not have a fixed starting state, we introduce a dummy state as the root x7 . that transitions
to the prior in our diffusion model —i.e., p(x7 | xr11) = M (0, I). Additionally, we use C(x;) to
denote the set of children of node x;.

The goal is to expand this tree while improving value estimates as we expand it, so that it can be
used for approximate sampling from the target distribution at any time during the construction. The
resulting tree sampling process provably samples from the target distribution 77* in the limit of infinite
rollouts. The tree-building procedure of DTS repeats the following steps iteratively:

1. Selection. Starting from the root x4 1, sample a child x;_; € C(x;) from Boltzmann distribu-
tion o< exp (A 0(x;—1)) recursively until either an unexpanded node is reached or ¢ = 0.

2. Expansion. If we reach a node x; such that the number of children is less than the maximum
allowed value and ¢ > 0, we create a new child node x;_1 ~ pg(- | x;) and initialize 0(x;—1) =
0, N(thl) =1.

3. Rollout. From the newly created node, we perform a rollout till terminal states x by recursively
sampling from py(- | x¢) for#’ = ¢ —1,...,0. An important distinction from traditional MCTS
is that we add the rollout path to 7.



4. Backup. Evaluate the terminal node using the reward function 9(xg) = r(xg) and use soft
Bellman equation (Equation (3)) to update parent node values using the children node values
recursively for £ = 0,...,T. The visit counts for all nodes in the path are also updated.

Each traversal of the tree, from the root to the backup of the value function, constitutes one tree-
building iteration. For sampling from 7, we simply start from the root and perform selection steps
until we reach a terminal node. A formal algorithm is provided in Section [E]

Proposition 1 (Asymptotic consistency). Let r be bounded and X > 0, then DTS produces a
sequence of terminal states whose empirical distribution converges to the optimal policy m* as the
number of tree iterations M — oo.

Proof sketch. By construction, the tree policy selects x;11 with unnormalized probability pg(x;41 |
x¢) exp(Ad(xy41)), which is the optimal policy defined in Equation (6). By telescoping the product
over t, we obtain the final samples at ¢ = T are sampled from py(x) exp(r(xo)). A more detailed
proof is given in Section D}

4.3 Design choices for diffusion alignment

The algorithm discussed above can be applied to any Markov chain. However, in this work, we apply
it to the problem of inference-time alignment of diffusion models. We discuss various considerations
and design choices below, with more implementation details in Section [F]

Sampling or Search. DTS is designed to sample from the target distribution 7*, but for settings
where a single high-quality sample is required, we introduce a search variant, DTS*. It keeps the
same soft value backup but modifies the selection step by always selecting the child with the largest
soft value estimate instead of Boltzmann sampling. Since DTS* uses soft values, this is different
from standard MCTS - it implements a marginal-MAP (max—sum) inference scheme [63]] over the
tree. At every noise step, the algorithm selects the branch whose subtree carries the greatest mass
under 77* and, once ¢ = 0 is reached, returns the highest-density leaf inside that dominant region. As
we will see in the Section[5] this volume-based selection helps avoid reward over-optimization.

Branching. Extensions of MCTS to continuous spaces commonly use progressive widening [14]]
to decide the maximum number of branches B(x;) allowed per node based on the number of visits:
B(x¢) =C - N(x)*, C >0, a € (0,1). The high-level intuition is that nodes that are visited more
often should be expanded more, since they represent more promising directions for denoising. We
adopt the same strategy and during tree traversal, if we encounter a node such that |C(x;)| < B(x;)
and ¢ > 0, we will always expand.

Exploration. There is a rich literature on search methods for classical MCTS, and the most popular
approach, UCT [41], is an application of upper-confidence bounds [2]] to trees. We employ this
exploration strategy for DTS, i.e. we choose the child x;_; € C(x;) with the maximum value of
the UCT estimate:

log N (x,)
N (Xt—l) ’
For DTS, we do not employ explicit exploration, because, in practice we observe that sampling

obviates the need for an exploration bonus or handcrafted mechanism. This is also supported
theoretically by recent work in the bandit setting [57]].

UCT(x¢—1) = 9(x¢—1) + Cuct Cuct > 0. 9)

Efficient implementation. The main computational cost is incurred when using the diffusion model
proposal to sample new children or perform rollouts. We implement an efficient batched version of
the algorithm by collecting nodes in a batch and performing a single batched denoising rollout per
iteration. The selection and backup steps involve simple tensor operations and pointer manipulation
with negligible cost. Therefore, while the control flow of our method is sequential, the practical
algorithm can be parallelized. Note that once the tree has been built, sampling is near instantaneous
by repeatedly selecting children without any model calls.

4.4 Illustrative experiments
In this section, we perform experiments on simple 2D settings to answer the following questions:

* Does DTS sample accurately from the target distribution?
* Does reward backup in DTS result in more accurate value estimates (desideratum D1)?
* Does sample quality of DTS improve with more inference-time compute (desideratum D2)?
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Figure 4: Samples from the prior p(xg), target p(xg) exp(r(xp)) / Z and different sampling methods
at 10% NFEs. Top: The prior is an equal-weighted mixture of Gaussians, and the reward function dis-
tributes mass unevenly. Bottom: The prior has support on alternate square regions in a checkerboard
pattern, and the reward function 7(x,y) = —0.5(x? + y?) is negative distance from the origin. More
details on the experimental setup are provided in Section @
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Figure 5: Left: Maximum mean discrepancy (MMD) between generated samples and target ground
truth samples as a function of number of function evaluations of the prior diffusion model. Right:
Bias and variance of value estimates for different approaches at 106 NFEs.

Setting. We compare DTS with several inference-time steering methods including some which were
originally proposed for posterior sampling in inverse problems, and adapt them to the reward-guidance
setting: (1) DPS-RG (our reward-guided version of DPS [11]]) = gradient-based guidance only, (2)
SMC [71], (3) TDS-RG (reward-guided version of TDS [84]]) = SMC + gradient guidance, (4) DAS
[39] = SMC + gradient guidance + tempering. We also implement a version of SMC, which we call
SMC-Rollout, where the values are estimated via one full DDIM [73]] rollout. For fair comparison,
we benchmark with respect to the number of function evaluations (NFEs) of the diffusion model.

Results. Figure [ plots the samples obtained using different methods for two different settings. In
both cases, DTS approximates the ground truth target density more accurately, with other methods
distributing mass inaccurately to different areas of the support. In particular, gradient-based methods
like DPS-RG and TDS-RG suffer from instability and require gradient clipping to stabilize denoising
steps. Figure [5] shows the Maximum mean discrepancy (MMD) between generated samples and
ground truth samples for an increasing amount of inference budget, measured in terms of the number
of function evaluations of the diffusion model. The results empirically validate that the sample quality
of DTS improves with more compute, satisfying desideratum D2.

Bias-variance analysis of value estimates. To verify if DTS leads to more accurate soft value
estimates, we perform a bias-variance analysis. We estimate ground truth soft value estimates based
on 1000 rollouts from noisy states and then compute the bias and variance of the value estimates.
Figure [5] compares DTS, Tweedie’s formula (SMC + variants), and a single full DDIM rollout
(SMC-Rollout). Both one-step denoising and single rollout have high bias and variance, which
generally get worse for higher timesteps. Our tree-based approach reduces bias by using accurate
reward information and reduces variance by aggregating information from multiple rollouts. This
empirically validates that DTS satisfies desideratum D1.

5 Experiments

We validate the efficacy of DTS and DTS™ for image and text generation. Our experiments show
that DTS draws faithful samples from high-dimensional posteriors, and DTS* efficiently searches
high-dimensional image space to discover high-reward samples. We also test our method on image



Table 1: Comparison of inference-time posterior sampling methods. We report the mean+siw of each
metric across the relevant classes and highlight +£5% values from the best experimental value.
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Figure 6: FID (lower is better) versus number of function evaluations for different methods on MNIST
single digit generation averaged over all 10 digits (left), MNIST odd and even digit generation (center),
and CIFAR-10 single class generation averaged over all 10 classes (right). All methods were evaluated
with 5000 generated samples per class.

inpainting task in Section[[} provide detailed memory/wall-clock time analysis in Section[H] and
some additional results in Section[J]} A detailed description of each experimental setting is provided
in Section|[F2] and details of baseline implementations are in Section [G]

5.1 Class-conditional posterior sampling

We evaluate DTS on the task of sampling from a class-conditioned posterior distribution p(x | ¢)
po(x)p(c | x) where py(x) is a pretrained unconditional diffusion model and p(c | x) is a classifier.
This would correspond to setting r(x) = log p(c | x) in Equation (2).

Setting. We use MNIST and CIFAR-10 datasets, each with 10 classes. In both cases, the priors
are unconditional diffusion models in pixel-space — we train one from scratch on MNIST and use an
off-the-shelf model for CIFAR-10. For MNIST, we consider two settings: sampling from individual
digits, and sampling from even/odd digits. The latter is a multimodal posterior with reward function
r(X) = maxg—g2.4,6,8) logp(c = i | x) for the even digits and similarly for odd digits. For
CIFAR-10, we sample from individual classes.

DTS (Car) DPS (Car) SMC (Car) TDS (Car)

Figure 7: Samples generated from the CIFAR-10 (top) and MNIST (bottom) base diffusion models,
and posterior samples using different methods at 10° NFEs. Gradient-based guidance such as DPS can
be unstable, leading to samples that lie outside the support of the prior. SMC-based methods struggle
to accurately sample from multi-modal distributions — for MNIST even digits, TDS oversamples
from the digit two and undersamples from the digit four, and for CIFAR-10 car, both SMC and TDS
suffer from mode collapse.



Baselines. 'We compare the performance of DTS with DPS [11]], SMC/FK [71]], TDS [84] and DAS
[39]. DPS, TDS, and DAS use reward gradients, while SMC/FK is derivative-free. We report two
distribution-based metrics — Fréchet Inception Distance (FID) and CLIP maximum mean discrepancy
(CMMD) — that compare generated samples with ground truth samples from the dataset, in
addition to average rewards and CLIP diversity (pairwise cosine distance).

Results. Table[l]reports the mean-su of various metrics for different methods after 105 NFEs. In
all three settings, DTS achieves the lowest FID and CMMD by a considerable margin, indicating it
closely matches the true posterior. We observe that the margin of improvement on CIFAR-10 narrows
slightly. We attribute this to reward noise: the CIFAR-10 classifier achieves an accuracy of ~85%, so
its logits provide a noisier signal than the near-perfect classifier used on MNIST. Even so, DTS still
outperforms all baselines. TDS and SMC in particular show characteristics of mode collapse with
very high average rewards and low diversity, whereas DPS often generates samples that lie outside
the support of the base model. Figure[f]shows that DTS achieves very low FID across different NFEs
and has better scaling properties with more compute compared to existing methods. Figure[7] presents
example outputs from each method, highlighting their specific characteristics. We present samples
for all classes and plots of additional metrics as a function of NFEs in Section[J.2]

5.2 Text-to-image generation

Setting. We use Stable Diffusion v1.5 [64]], a latent diffusion model, as the prior over 512 x 512
images x ~ pp(x | y) where y denotes the text prompt. We evaluate on two different settings:
(a) DrawBench [67], which is comprehensive benchmark of 200 prompts, with ImageReward [88]]
r(x,y) that encodes prompt accuracy as well as human preferences; and (b) following Black et al. [3],
we use 45 common animals from the ImageNet-1000 dataset as prompts, with the LAION aesthetics
predictor [69] (x) that encodes aesthetic quality of an image but does not check for prompt accuracy.

Baselines. A strong baseline for high-reward generation is best-of- N, which draws N samples from
the base model and keeps the one with the highest reward. SMC has also been applied to this problem
[71], but (a) as discussed in Section@ it relies on one-step value estimates that become inaccurate
at high noise, and (b) Section [5.1] shows that it often collapses onto narrow modes. We compare
DTS™ with best-of-N and FK-Steering (SMC) [71]. We compare all methods in a compute-matched
setting, measured in terms of the number of diffusion model calls (NFEs).

Results. Figure[§]plots the maximum ImageReward and aesthetic score versus inference compute.
DTS™ outperforms the baselines for DrawBench prompts, see Figurefor examples. One strong
feature of DTS™ is its favorable scaling properties with more compute. In the aesthetic score setting,
FK/SMC achieves the highest rewards across NFEs, but we see severe over-optimization on all
prompts. DTS* manages to strike the right balance between achieving high rewards while still
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Figure 8: Left: Maximum ImageReward [88] vs. compute (NFEs) per prompt, averaged over 200
prompts from DrawBench [67]], and maximum aesthetic score [69] vs. compute (NFEs) per prompt,
averaged over 45 common animal prompts. Right: Samples generated using SD-v1.5 [64] for simple
animal prompts and aesthetic score as the reward at 100k NFEs. For each prompt, DTS™ faithfully
matches the prompt while achieving high reward, whereas SMC samples score higher but visibly
over-optimize. Numbers in the corner show aesthetic scores.
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Figure 9: Left: Maximum reward and distinct trigrams vs. compute (NFEs) per prompt, across
15 simple prompts with MDLM [68]] using a classifier trained on CoLA [54] as the reward. DTS™
obtains the highest reward while maintaining diverse outputs. Right: Typical samples generated by
the base model, FK/SMC, and DTS* for the prompt *“The city’’ at 2'® NFEs.
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maintaining faithfulness to the prior model. We hypothesize that since DTS* backs up soft values,
each node aggregates posterior mass rather than peak density. Consequently, a reward spike that lies
in a vanishing-probability region of the prior contributes negligibly to the value estimates, resulting
in an implicit KL-regularization effect (cf. Section [2).

5.3 Text generation

Setting. We evaluate DTS™ on text generation using MDLM [68]], a discrete diffusion language
model. We generate three text completions of length 64 for each of 15 prompts introduced by Han et al.
[23]. The reward is defined as the log probability that the text is classified grammatically ‘acceptable’
by a BERT-based classifier [54] trained on the Corpus of Linguistic Acceptability (CoLA) [83]. We
also report diversity by computing the number of distinct trigrams in each generated sequence. For
decoding, we find that using DTS* with max-backup (A — o) yields the best performance. We
compare our method against two baselines: FK/SMC [71] and best-of-N.

Results. As shown in Figure E], DTS* consistently achieves the highest rewards as the number of
function evaluations (NFEs) increases. Notably, reward functions in text domains are particularly
susceptible to over-optimization [31; 255 8], leading to the less diverse outputs observed when using
FK/SMC. By contrast, DTS™ produces outputs that have both high rewards and high diversity. We
perform evaluation using an LLM in Section[I.4] since it aligns better with human judgement [47].

6 Discussion

We have introduced a novel framework that casts inference—time alignment of diffusion models as a
finite-horizon tree search. By propagating terminal rewards via a soft value backup, our approach
achieves global credit assignment and improved sample quality as compute increases. Below, we
highlight practical considerations, point out limitations, and suggest directions for further work.

High-dimensions and the role of pretrained model. In high dimensions, an uninformed search
tree grows exponentially with dimension, rendering pure tree search infeasible. A good quality
pretrained model acts as a powerful prior, significantly pruning the effective search space. Even then,
without gradient information, such methods can struggle if the posterior is very sharp, such as in
certain inverse problems (Section [I)).

Learning the value function. In several applications of MCTS in game play, such as AlphaZero
[70], deep neural networks approximate both policy and value. While our current work focuses on
zero-shot inference-time alignment for any unseen reward, an exciting future direction would be to
integrate a learned value network for a fixed reward.

Compute cost. The control flow of tree-based methods is sequential, which makes them less
parallelizable than particle-based methods such as SMC. However, as discussed in Section[4.3] we
implement an efficient version by batching calls to the diffusion model. Moreover, once the tree is
constructed, sampling incurs no further model calls, making repeated draws effectively free.
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A Extended related work

We discussed the main approaches that have been proposed for inference-time alignment of diffusion
models in Section 3] Below, we briefly review additional steering works and three tangentially related
areas: fine-tuning of diffusion models, their use in reinforcement learning, and entropy-regularized
variations of Monte Carlo Tree Search.

Additional steering methods. Some gradient-steering works treat guidance as stochastic control:
Pandey et al. [56] learn KL-regularised drifts for differentiable rewards but break when high-reward
modes lack coverage; Rout et al. [66] propose a training-free method to modify the drift for style
transfer in vision; Huang et al. [33] extend to non-differentiable music rules via high-variance
REINFORCE. Our search-based alignment does not require differentiability or dense coverage
assumptions and is domain-agnostic. A different line of work focuses on plug-and-play samplers
[86;[13] which also use Tweedie’s formula to get biased values and use compute-heavy MCMC/Gibbs
chains for inverse problems. Skreta et al. Our principled search method produces high-quality
samples by using unbiased values and works with arbitrary rewards.

Fine-tuning of diffusion models. To sample from the target distribution 7* for a fixed, known
reward function, one option is to amortize the posterior sampling problem and update the model
parameters via fine-tuning. The paradigm mirrors the trajectory of large—language-model alignment
[94; l61]]. Supervised preference finetuning trains directly on synthetic pairs scored by a reward
model [44} 85]. Some early methods exploit differentiable objectives to back-propagate a single
scalar all the way to the noise prediction network [12;|58]], whereas more traditional reinforcement
learning approaches cast each reverse step as an action and optimize expected reward [3]]. To avoid
over-optimization of the reward, recent works use KL regularization [21; 78} 81]].

Diffusion models in reinforcement learning. Since the introduction of diffusion models as power-
ful frameworks for generative modeling, they have become popular for sampling actions or future
states in RL. The earliest successes were in offline imitation learning, where some approaches model
trajectories [36} [1]] or expert policies [10] from offline datasets. Other works maximize a Q-function
in addition to behavior cloning [82; [38]], employ an explicit actor—critic scheme [24]], or treat the
critic as an energy function to guide the denoiser [49]. Some goal-conditioned extensions have also
been proposed [62}134]. Recent works have explored similar ideas in the online setting [90} 59; 35]].
Those methods aim to maximize return for control tasks, while we aim to draw unbiased samples
from the reward-tilted distribution for any chosen reward.

Entropy-regularized MCTS. Monte-Carlo Tree-Search (MCTS) has recently been extended to
soft-value objectives that incorporate an entropy bonus [87]], which uses a log-sum-exp value update
and samples actions from a Boltzmann distribution, guaranteeing improved exploration at the cost
of converging to the soft rather than the standard optimum. Follow-up work proposed to adapt the
entropy term to a predefined value [42] and decay the entropy term [S5]]. Very recently, Morozov et al.
[53] used soft-backup MCTS to improve planning in Generative Flow Networks [4]. Our Diffusion
Tree Sampling (DTS) follows the same Boltzmann selection and soft value backup pattern, it is the
first to embed a pre-trained diffusion kernel inside the tree and to prove consistency for sampling
from the KL-regularised posterior, not just selecting a single high-reward action. In this sense, DTS
bridges the gap between entropy-regularized MCTS used for control and unbiased posterior sampling
required for inference-time alignment of generative models.

B Sequential Monte Carlo for diffusion sampling

Many existing methods for inference-time diffusion alignment [84; 775 (7} [19; [39]] apply sequential
Monte Carlo (SMC) [[15] to the reverse diffusion chain. SMC maintains a population of K particles
to approximately sample from a sequence of intermediate targets {m;(x;.7)}?_, culminating in the
desired 7*(xg) o pp(xo) exp(Ar(Xg)). In diffusion alignment, one usually sets

T
7Tt(Xt:T) X p(XT) H p0<xs—1 | Xs) exXp (>‘ ﬁt(xt)) s (10)
s=t+1
where ¥ is a potential approximating the soft value V;. Each SMC iteration fort =7,7 —1,...,0
has three steps:
1. Propagation. Sample particles ig@l ~q(| xik)), fork =1,..., K where ¢, is the proposal

distribution, often set to be the diffusion transition py(- | x¢).
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2. Weighting. Assign importance weights

~(k k
(k) _ PG(X§7)1 |X£ )) . ~ (k)
w, ) = ——————> X exp ()\vt_l(xt_l) . (11)
(k))
importance ratio

The first factor corrects for using a proposal and the second tilts weights toward high estimated
value.

3. Resampling. Resample {igk)l}kK 1 proportional to {wgﬁ)l}szl to obtain an equally weighted
particle set {xt L HE_ | for the next iteration.
Classical SMC guarantees that, as K — oo and if the potentials are exact, the empirical measure

DopW s (xok)> converges to the target distribution 7*, where 6(x) is the Dirac delta at z. In

practlce, however, this repeated sampling procedure can reduce the diversity of samples, especially
when the weights have high variance. This results in an effective sample size which is much lower
than K.

Another major issue when applying SMC to diffusion models is that estimating the soft value function
V; is not straightforward and errors in the approximation can lead to inaccurate sampling. The next
subsection discusses the value-estimation problems in more detail.

C Connection with Generative Flow Networks

Diffusion Tree Sampling can be viewed as an on-the-fly, non-parametric realization of the ideas
behind Generative Flow Network (GFlowNet) [4]]. Both frameworks ultimately seek to sample from

an unnormalised density:
. 1
") = S 2= [ f)ds

but they do so with different machinery and at different points in the learning—inference pipeline.

GFlowNets assume a unique initial state sy and define a probability over complete paths 7 = (sg —
-+—sp = x) through

T
Py(st [ st—1) = Po(sr) H (st—1 | st),

I
P

and train the parameters 6 so that the forward flow, leaving every non-terminal state equals the
backward flow, entering it plus injected terminal reward r(x) = log f(x). For the special case of a
tree-structured graph, this constraint in log form is a soft Bellman equation [76;16; 52]:

F(s):%log S Pa(s|s) exp(AF(S)),
s/ €Child(s)

with F'(s) the learned log-flow function.

DTS satisfies the same soft Bellman recursion (cf. Equation (3))), but does so without learning
parameters. During tree construction, DTS estimates the soft value V; by Monte-Carlo log-sum-exp
backups; selection then samples children proportionally to exp(Ad;_1 ), where ©;_1 is the estimated
soft value. Repeated roll-outs make the empirical terminal distribution converge to the reward-tilted
posterior 7*(xg) o pg(x0) exp (A\r(xp)), just as a perfectly trained GFlowNet would.

The key differences between DTS and GFlowNets are summarized below.

* Proposal. DTS uses a fixed, pretrained diffusion kernel py as a proposal, whereas GFlowNets
learn their forward policy Pp.

* Learning vs. search. DTS performs pure inference without updating any parameters, whereas
GFlowNets learn the parameters of the sampler to amortize future sampling.

* Computational regime. DTS excels when one has a strong prior and large inference budget
for new rewards; GFlowNets shine when the reward is fixed and repeated queries amortize the
training cost.

18



Because DTS is a search procedure, it is ideal for adapting a pretrained diffusion model to different
unseen reward functions without retraining. GFlowNets, in contrast, learn a fast parametric sampler
for a single reward.

D Proofs and derivations

D.1 Derivation of Equations 5 and 6

We derive the recursive relation satisfied by the soft value function as well as the expression for the
optimal policy in Section 2] for completeness.

Soft value function. This recursive relation is analogous to the soft Bellman equation in maximum
entropy RL [93}22]. Starting from the definition of V;(x;):

1
‘/t(xt) = X log ]EPG(XO:t—llxt) [exp (AT(XO))]
1
= Xlog/p(xo,xl, - Xeo1]xg) exp (Ar(xo)) dxodxy . .. dx;—

1
=3 log/p(xo, X1, .. Xi—2|Xi—1) p(Xe—1]%¢) exp (A\r(xg)) dxodx; ... dx¢—1

1
=3 log/p(xt,l\xt) (/p(xo,xl, o Xpa|xe—1) exp (A\r(xo)) dxodx; . .. dxt2> dxi_1

=exp(AVi—1(x¢-1))

1 1
=5 log/p(xt_l\xt) exp (AVi—1(x¢—1)) dxi—1 = " log Epx,_ 1 |x,) lexp (AVi—1(x¢-1))] -

The above relation combined with the terminal condition V;(xg) = r(xg) gives Equation .

Optimal policy. The joint target density over the full chain (xg, ..., X¢—1,X;) is given by:

7T*(XOa sy X1, Xt) = E p9(X07 sy Xt—1, Xt) €xXp (AT(XO)) ’
where Z represent the normalization constant of this joint density.

The marginal joint density of (x;,x¢—1) under 7* is:

1
T (X, Xp—1) = Z /pg(XO, ceyXeo1,%Xg) exp (Ar(xo)) dxg . . . dX¢—o

1
Spolxpolxi | %) ( [t xima ) e O o) o dxtz)
1
= Epe (x¢)po(xi—1 | X¢) exp (AVi—1(x¢-1))
Similarly, the marginal density of x; under 7* is:
1
2 palx) exp (AVi(x1))
By dividing these two marginals, we get the transitions under the optimal policy:

(%) =

T (Xe, Xe—1)  Po(Xe—1 | X¢) exp (AVi_1(x¢-1))
(%) exp (AVi(xt))
- Po(X¢—1 | x¢) exp (AVi—_1(x¢-1))
[ po(xe—1 | x¢) exp (AVi1(x—1)) dxp—1
The above relation gives the optimal policy from Equation (€)).

7T*<Xt,1 | Xt) =

D.2 Proof of Proposition 1

Proposition 1 (Asymptotic consistency). Let r be bounded and A > 0, then DTS produces a
sequence of terminal states whose empirical distribution converges to the optimal policy m* as the
number of tree iterations M — oo.
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Proof. We use p(- | x¢) to denote a general proposal distribution. For application to diffusion
alignment, this would correspond to transitions under the pretrained model pg(- | x¢). Additionally,
we use §(- | x¢) to denote the transition density of DTS.

Step 1: Transition probability under DTS. Recall that under DTS, given a node x;, we create each
child by sampling from the base model p(- | x;). During tree traversal, we select the next state x;_1
proportional to the exponentiated soft value function. Thus, the transition probability of DTS from
X4 to X4 is given by:

p(xe1 | xe)exp Mo(xi1)) _ p(xio | xi) exp (Mi(xi1))
dc 1% = o Txdew i) dos — ew i) 02

where the second equality follows from the definition of the soft Bellman equation:

1 .
3 log By, p(-x,) [exP (AD(%¢-1))] -

o(x;) =
Step 2: Joint density of trajectory. Recall that the root node of DTS contains a dummy state X741
that transitions to the diffusion process prior §(xr | xr+1) = N(0, I). Then, the joint density of a
full trajectory {xr,Xr_1,...,Xo} under DTS is given by:

zﬁl p(xt—1 | X¢) exp (AO(x¢—1))

exp (Ao (x1))

+
4(xX7,X7-1,...,X0) = H G(xe—1 [ x¢)
=1

T+1

exp (A6(x0))
:—prt 1] %)
exp (A\O(x741)) P

7M X7,X X
= oD gy ) LT X150 X0).

Step 3: Marginalizing. Marginalizing over intermediate states X1, ..., X7, we get the distribution
of terminal state x:

d(Xo) :/(j(XT,XT,h...,Xo) dXTdXT,]_...dxl

exp (AD(x0)) /
= —— 1y dxpdxp_q...d
oxp A (X711)) (X7, XT-1, - .+, X0) dX7dXT 1 X1
exp (AD(x
= D TR0 (A (x0)) p(x0)-
exp (AD(x141))
By definition, the soft value function at the terminal node is 0(xg) = r(xg). Plugging this and using
the definition of value function from Equation @]), we have:

exp (Ar(xo)) p(x0)
fp XT,XT—1,.--,X0 | X741) €xp (Ar(X0)) dxpdxr_1...dx1dx0
__exp (Ar(x0)) p(*o)
[ p(x0) exp (Ar(x¢)) dxo "

q4(xo0) =

This has the form of the target distribution in Equation (6), except that it uses the value estimates ©
that are calculated based on rollouts starting from each state x;. In the limit of infinite rollouts, these
value estimates approach the true soft values, confirming that the sampling distribution § from DTS
exactly matches the target distribution 7*.

Therefore, DTS is consistent, as it correctly generates samples from the desired target distribution
asymptotically.
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E DTS and DTS” algorithm

Algorithm 1 Diffusion Tree Sampling (DTS) and Diffusion Tree Search (DTS™)

1: Input: base policy pg, reward function r, number of iterations M, inverse temperature A,
parameters C', «v, Cye

2: Initialize root node x741 with dummy value, ¢(xr41) = 0, N(x741) =1
3: Initialize tree 7 with root node x7;
4: form=1,...,M do
5: P+ {XT+1}
6: Sett<+T+1
7: // Selection
8:  while |C(x¢)| > C - N(x;)*and t > 0 do
9: [DTS] select child probabilistically: x; ;1 ~ x/i’;‘:ij;’é:;a%)(x,))
10: [DTS*] select child maximizing UCT: x;,_; = arg MaXyec(x;) V(X') + Cuet %
11: P+« PU{x;_1}
12: t+—t—1
13:  end while
14: // Expansion: expand x; by sampling a new child
15:  ift > 0, and |C(x¢)] < C - N(x¢)® then
16: // Rollout: from new node x;_; sample rollout path to terminal Xy
17: while ¢ > 0 do
18: i1 ~po(- | %), 0(x¢-1) =0, N(x¢-1)=1
19: P+ PU{x¢t-1}
20: t+—t—1
21: end while
22:  endif

23:  Evaluate terminal reward: 9(x¢) = r(xq)
24: // Backup: update value along path P
25 fort=0,...,Tdo

26: Soft backup: 9(x;41) + 5 log (m D oxieC(xis) exp()\@(xt)))
27: Update visits: N (x341) < N(x¢p1) + 1

28:  end for

29: end for

30: return 7

Algorithm 2 Diffusion Tree Sampling (DTS) and Diffusion Tree Search (DTS™) inference

1: Input: Constructed tree 7, number of samples NV, inverse temperature A
2: Initialize population of samples S < ¢
3: forn=1,...,Ndo

4:  Sett<+T+1

5:  whilet¢ > 0do
6.
7
8

exp(AD(x¢—1))
ZX’EC(xt) exp(Ad(x’))

[DTS™] select child maximizing value: X;_1 = arg maxy cc(x,) 0(x')

[DTS] select child probabilistically: x;_1 ~

: t+—t—1
9:  end while
10: S+ SU{xg}
11: end for

12: return Samples S

F Implementation details for DTS and DTS*

F.1 Tree structure

The algorithm presented in Section .2] and Section [E] allows every state x; along the denoising
trajectory to be considered for branching. However, in practice, we only branch every few timesteps.
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We noticed very little difference in performance between the two cases for the same number of
function evaluations, however, we expect branching at every step to outperform for a very high
compute budget. We match the tree branching schedule with the resampling schedule for all baselines
with SMC, similar to the setting from Singhal et al. [71]]. The exact setting for each experiment is
presented in Table 2] where we always branch at the root node corresponding to t = 7.

Table 2: Branching schedule for DTS and DTS*, which is also the resampling schedule used for
SMC-based methods — SMC/FK [[71]], TDS [84]], DAS [39].

Domain Total denoising steps Branching schedule
Two-dimensional 100 100(root), 80, 60, 40, 20
Image pixels (MNIST, CIFAR-10) 50 50(root), 40, 30, 20, 10
Image latents (SD-v1.5) 50 50(root), 40, 30, 20, 10
Text tokens (MDLM) 64 64(root), 54,44, 34,24, 14

Apart from this, we have hyperparameters associated with progressive widening that control the
maximum number of branches at any node. We used oo = 0.8 and C' = 2 for all two-dimensional and
image experiments and o = 0.7 and C' = 2 for text generation. There is a scope of improving the
performance of DTS and DTS™ further by tuning these parameters for specific tasks.

F.2 Experiment details

Illustrative 2D

Base diffusion model: The denoising network is an MLP that takes as input the 2-dimensional
data x; and the timestep ¢ and outputs a 2-dimensional noise prediction. The timestep is
transformed using sinusoidal embeddings [80]. The network has four hidden layers of 128
dimension each with the sigmoid linear unit (SiLU, [28]]) activation. We used the linear noise
schedule with B, = 0.001 and B, = 0.07 and the score matching objective. The optimizer
used for training was Adam with a learning rate of 3 x 102, We train the model for 500
epochs on a training set of 10000 samples.

Reward function: Gaussian mixture: The reward function is:

8
r(x) = log (sz exp(—|Jx — Nz‘||2/202)> ’

i=1

where w; = exp(1.54), p; = 4 (cos 202D gin Q’T(g‘l)) . i=1,...,8 witho = 0.3,

Checkerboard: The reward is negative distance from the center r(x) = —0.5]|x]|?.

Class-conditional MNIST

Base diffusion model: The denoising network is a Unet architecture [65]] that operates on images
of size 32 x 32 x 1 (upscaled from 28 x 28 x 1) with block channels {32, 64, 128,256}. We
use the DDIMScheduler] from diffusers library with default parameters, except we set 7 = 1.0
so the inference process is stochastic like DDPMs [30]. We use the AdamW optimizer with a
learning rate of 10~* for 100 epochs on the MNIST training set.

Reward function: We train a classifier p(c | x) on the MNIST training set. The classifier is a
convolutional neural network using two 5 X 5 kernels with (16, 32) channels followed by
2 x 2 max pooling operation with ReLU activations. The features are then flattened and followed
by a linear layer with 10 outputs corresponding to the classes. The network was trained using
Adam optimizer with learning rate 10~°. The reward function for single class generation is the
log likelihood of the class r;(x) = logp(c =4 | x) fori € {0,1,...,9}. For the even or odd
generation, it is defined as r(x) = max;ecs logp(c =i | x), where S = {0, 2,4, 6,8} for even
digit generation and S = {1, 3,5, 7,9} for odd digit generation.

“https://huggingface.co/docs/diffusers/en/api/schedulers/ddim
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Class-conditional CIFAR-10

Base diffusion model: We used the pre-trained diffusion model ddpm-cifar10-327 from
Hugging Face, which uses a Unet architecture and diffuses over 32 x 32 x 3 images in pixel-
space. We use the DDIMScheduler with 7 = 1.0 for stochastic denoising.

Reward function: We train a classifier p(c | x) on the CIFAR-10 training set. The classifier
uses a ResNet-18 [26] backbone that outputs an embedding which is average pooled, flattened,
and passed to a single linear layer with 10 outputs. The network is trained using Adam optimizer
with learning rate 10~3. Similar to MNIST single class generation, the reward function is the log
likelihood of the class r;(x) = log p(c = i | x) fori € {0,1,...,9}.

“https://huggingface.co/google/ddpm-cifar10-32

Text-to-image

Base diffusion model: We use Stable Diffusion v1.57 from Hugging Face, which is a latent
diffusion model [64]. The diffusion process is defined over 64 x 64 x 4 latent variables, which
are obtained by encoding 512 x 512 x 3 images using a variational autoencoder. The model
uses CLIP [60] to encode text prompts into embeddings which are then used to condition the
generative process via classifier-free guidance [29]. We use the DDIMScheduler with p = 1.0.

Reward function: We use pre-trained models as reward functions including ImageRewarCﬂ
r(x,y) that encodes prompt accuracy as well as human preferences the LAION aesthetic score
predictoxﬁ r(x) that encodes aesthetic quality of an image.

“https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5

"https://github.com/THUDM/ImageReward
‘https://github.com/LAION-AI/aesthetic-predictor

Conditional text

Base diffusion model: We use MDLMfor our text generation experiments. This is a discrete
diffusion model with 110M parameters that directly predicts the tokens. We define the diffusion
process over a context length of 64 tokens with 64 sampling steps and use the standard discrete
unmasking update for stochastic denoising.

Reward function: We use a BERT-based classiﬁerEl trained on the Corpus of Linguistic Accepat-
bility (CoLA) [83]]. This reward function r(x) encodes the linguistic acceptability of a given
string x. The reward is the log probability of the text being "acceptable”. We find this model to
be more robust to reward-hacking than alternatives.

“https://huggingface.co/kuleshov-group/mdlm-owt
"https://huggingface.co/textattack/roberta-base-CoLA

F.3 Compute

We report execution times on a single A100 GPU with 80 gigabytes of memory.
¢ Each 2D experiment including all methods runs in 15 minutes. Adding up the time over five
seeds and two different datasets, the combined run time is approximately 2.5 GPU hours.

e The MNIST and CIFAR-10 class-conditional experiments use approximately 3 GPU hours per
class including all methods. Over all 22 tasks (10 MNIST single digit + 2 MNIST even/odd + 10
CIFAR-10 classes) equals approximately 66 GPU hours.

* The text-to-image experiments using Stable Diffusion v1.5 require roughly 30 minutes per
prompt across all methods. Adding up all 200 prompts from DrawBench and 45 animal prompts,
reproducing all experiments requires approximately 123 GPU hours.

* The text generation experiments using MDLM requires roughly 30 minutes per prompt. Thus,
generating 3 completions per prompt for the 15 prompts requires roughly 22.5 GPU hours.
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G Details of baselines

We re-implemented all baseline methods in our unified codebase since most of them use SMC as
a backbone and share the same underlying infrastructure. Each implementation was validated by
reproducing the quantitative results reported in its original paper. Section [B|provides a concise primer
on SMC for reference. The complete source code including all baselines will be released publicly
upon publication of this work.

DPS. Diffusion Posterior Sampling [[11] was originally proposed for noisy inverse problems such
as image super-resolution and de-blurring using the gradient of the final objective. To adapt this
method for general reward functions, we make a minor modification by replacing the gradient of the
inverse problem objective with the gradient of the reward function:

%1 ~ N (pg(xe,t) + Nof Vi, r(Xo(xt)),07 1), (13)

where X is obtained using Tweedie’s formula (cf. Section[3), s is the predicted mean of the base
diffusion model, and r(x) is the reward function in the two-dimensional experiments and classifier
log likelihoods log p(¢ = i | x) for class-conditional image experiments. The official implementation
is provided here!l

SMC/FK-Steering. In our paper, SMC refers to the simplest variant, FK-Steering [71]], which
defines different weighting schemes and uses the pre-trained diffusion model as the proposal distribu-
tion. As per the setting in Singhal et al. [71], we perform the resampling step at fixed intervals during
denoising (given in Table[2)) and use adaptive resampling to increase diversity of generated samples.
Our sampling experiments (two-dimensional and class-conditional image generation) use the ‘diff’
potential with A = 1.0, whereas the search experiments (text-to-image and text generation) use the
‘max’ potential with A = 10.0. The weights for resampling are given by Equation where the
proposal is equal to the pre-trained diffusion transition and the value estimates are equal to:

B (Re—1) =1 (Ro(Ke—1)) — 7 (Ro(x0)), 93" (x7) =7 (Ro(x7)) -

0P (%1-1) = max {r(%o(&-1)), mi b, mf® = maxr (%o(x())

We adapted the official implementation provided here!

TDS. Twisted Diffusion Sampler [84]] comprises of a “twisted” proposal which is used along with
SMC to sample from the target posterior distribution. For general reward functions, the twisted
proposal is the same as the one used in Equation (I3) and the final weights are obtained using
Equation (TT)) after plugging in the twisted proposal and the value estimates:

@K1 | x¢) =N (Kem1s po(xe,t) + Aoj Vi, r(Xo(xt)), 07 1) .

b1 (Xe—1) = 1 (Ro(Xe-1)) =7 (Xo(xt)),  Or(x7) =7 (Xo(x7))-
The official implementation is provided herel

DAS. Diffusion Alignment as Sampling [39] re-uses the twisted proposal of TDS but multiplies the
reward term by a monotone tempering schedule 0 = v <~y7_; <... <~y = 1 to reduce the bias
from inaccurate value estimates at high noise levels. The weights are given by Equation after
plugging in the tempered proposal and value estimates:

G (Xe—1 | x¢) = N (itfl s e (Xest) + Ay Ut2 thr(ko(xt))aaf I) :

Dp—1(Xe—1) = Y17 (Xo(X¢-1)) = e 7 (Xo(x¢)),  Or(xr) =77 (Xo(x1)).

The official implementation is provided here.

H Memory and wall-clock time comparison

Below, we provide peak memory usage for each method in the text-to-image generation experiment
using Stable Diffusion 1.5 and ImageReward. We perform this experiment with 40 different prompts
and average the results. The numbers are reported for a single NVIDIA A100 GPU with 40GB of
memory using the PyTorch profiler.
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Figure 10: Comparison of methods using SD-v1.5 and ImageReward. Left: Peak memory usage
(MB) for different NFEs. DTS™ is comparable to best-of-N, whereas SMC/FK requires much more
memory. Center: Wall-clock time (seconds) for different NFEs. Right: Reward vs. wall-clock time,
showing that DTS™ scales more favorably in terms of runtime when accounting for its performance.
At higher levels of compute, DTS™ can match the performance of best-of-N with roughly 2x less
wall-clock time. The wall-clock time for DTS™ can be greatly reduced by using larger batch sizes, at
the expense of slightly more memory and possibly a slight degradation in performance. We used a
batch size of 1 here to keep in line with the rest of the experiments.

Peak Memory Usage. We observe that the memory usage of DTS is much lower compared to
FK/SMC, and is more comparable to best-of-N. Initially, DTS* uses slightly more memory than
best-of-N, but with more compute, it tilts in favor of DTS*, showing that it actually scales better in
terms of memory.

The main memory usage of DTS is the tree as noted by the reviewer, which stores 64 x 64 x 4 latents.
Note that currently the entire tree is kept on the GPU, and we can save GPU memory by offloading
the tree to the CPU. For best-of-N, the memory usage peaks at the end when all N candidates need
to be decoded using the VAE into 512 x 512 x 3 images and evaluated using the reward function
to pick the best sample. This problem does not occur with DTS™, since the rewards are calculated
when traversal reaches the terminal state, and multiple high-resolution images do not need to be
kept in memory. For FK/SMC, this cost is very high since all N particles need to be decoded into
512 x 512 x 3 images, then evaluated using the reward function at each resampling step. In general,
for images and text, the reward function itself is a large pretrained model, and computing the reward
requires a non-trivial amount of compute.

Wall-clock time. In terms of wall clock time, DTS™ is approximately 2.5x slower than the other
methods for the same number of function evaluations (NFEs), since it is harder to parallelize. Note
that the runtime reflects tree building from scratch — once the tree is built, repeated sampling is
just pointer chasing and is near instantaneous (whereas for other methods repeated sampling would
require starting the entire procedure again).

We discuss two important considerations regarding the runtime:

» When taking into account their performance, DTS™ is still preferable in terms of wall clock
time since it outperforms the baselines and needs much fewer NFEs to reach the same level
of performance. As noted in the paper and the table below, for the text-to-image task, it needs
roughly 5x fewer NFEs to match the reward of the best performing baseline (best-of-N) at
100k NFEs. In other words, to match the performance of best-of-N at 100k NFEs, DTS™ is
approximately 2x faster in terms of wall clock time.

* We can significantly reduce the runtime of DTS/DTS™* by using multiple actors in parallel that
traverse and update a shared tree (similar to AlphaZero [[70] training). This will give a roughly
linear speedup in runtime at the cost of increased memory for copying the diffusion model
(the tree is not copied since it can be shared among all actors, hence increase in memory will
be sublinear in terms of the number of actors). This represents an inherent trade-off between
memory usage and runtime. We did not implement a distributed pipeline since it requires some
engineering effort, but it is a viable option.
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Figure 11: Mean square error (MSE) between generated images and reference image on 20 randomly
sampled images from CIFAR-10. Methods that do not use gradient information (SMC, DTS) during
inference struggle due to the very sharp posterior. Incorporating the gradient into DTS allows it to
outperform baselines and continue improving with more compute.

I Image inpainting experiments

As an added application, we test the feasibility of our method on solving inverse problems. We run
an inpainting experiment on CIFAR-10 images with a Gaussian forward channel as in Chung et al.
[L1]. We run this experiment on 20 images (two images sampled randomly from each class) and
average the results. For each 32 x 32 image, we mask the 10 x 10 patch from the center and use the
negative error between the generated sample and the unmasked pixels from the original image as the
reward. We report the final average mean squared error (MSE) between 16 generated images and the
reference image.

Figure |'1;1'| shows that methods that do not use gradient information, such as SMC [71] and DTS,
do not seem to perform well on this task. We hypothesize this is because the inpainting task has a
very sharp posterior where the sampled image must exactly match the unmasked pixels (compared to
class conditional sampling where the posterior represents a semantic concept and has a wider mode).
This is a very hard search problem, and without the forward channel gradient to guide the sampling
process, there is very little signal in most regions of the pretrained model distribution.

We then incorporate the gradient into DTS, where we use the gradient term in addition to the score
model to obtain the next state when constructing the tree. The backup and selection procedure
remains the same. With the gradient-guided proposal, DTS improves upon DPS [[11]] and even SMC
+ gradient (which is the same as TDS [84]]). We also observe that DTS allows the performance to
consistently improve with more compute, whereas vanilla DPS does not improve with more compute.
At 500k NFEs, DTS + gradient improves 32.96% compared to vanilla DPS.

J Additional experimental results

J.1 Comparison between DTS and DTS*

We compare DTS and DTS™ on the text-to-image setting using Stable Diffusion 1.5 with ImageRe-
ward on 40 prompts from DrawBench. We picked complex prompts where the base model struggles
to generate high reward images to demonstrate the difference more clearly. For DTS, we sample
16 images from the tree and pick the one with the highest reward. The results show that there is
a noticeable gap, since DTS spends more compute expanding suboptimal paths, whereas DTS*
aggressively searches only the highest reward regions except for the small exploration bonus.

Table 3: DTS and DTS with SDv-1.5 and ImageReward on 40 prompts from DrawBench.
Algorithm | NFEs — 1000 2500 5000 10000 25000 50000

DTS 0.774 1.025 1.064 1.112 1.214 1.238
DTS* 0.825 1.086 1.254 1.342 1459 1.552
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J.2 Class-conditional image experiments

We supplement Table [T|and Figure [7] with additional results and samples.

We plot all four metrics — FID, CMMD, average log rewards and average diversity — across different
number of function evaluations (NFEs) for the three settings considered in Section[5.1] The plots
show that across the three settings for most values of NFEs, DTS matches the target distribution more
accurately compared to other methods (lowest FID and CMMD).

We also present random samples for each method and setting in Figures[I3|to[I4] We observe the
same trend as noticed in Figure [7]— gradient-based guidance like DPS can be unstable leading to
unnatural images, while SMC-based methods show signs of mode collapse with low average diversity
and high average rewards. DTS balances both diversity and high rewards effectively by closely
matching the true posterior distribution.
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Figure 12: Distribution level metrics vs. number of function evaluations for different methods on
MNIST single digit generation averaged over all 10 digits (left), MNIST odd and even digit generation
(center), and CIFAR-10 single class generation averaged over all 10 digits (right). All methods were
evaluated with 5000 generated samples per class. Metrics reported: FID (lower is better), CMMD
(lower is better), Average log rewards (higher is better), and average diversity (higher is better).
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Figure 13: MNIST posterior samples generated using different methods for digits 0-9, even and odd.
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Figure 14: CIFAR-10 posterior samples generated using different methods for all classes.
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J.3 Text-to-image examples

We present more samples for qualitative analysis. Figure [I5] shows how samples change with
increasing amount of inference-time compute, providing visual evidence for the quantitative results
from Figure 8] Figures [T6]to[I8]shows text-image pairs testing different concepts such as artistic
style, spatial arrangement and object count.

An emoji of a baby A triangular purple
35mm macro shot a panda wearing a red flower pot. A purple
kitten lickingababy  Lego Arnold hat, blue gloves, green  flower pot in the shape A sign that says

shirt, blue pants of a triangle “Diffusion”

duck, studio lighting
I ]

Schwarzenegger

P Ditorl

DIFILSTION

Compute budget (NFEs)

Figure 15: Text-image pairs from Figure (1| with increasing amount of inference-time compute,
measured in number of function evaluations (NFEs) of the diffusion model.
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A tiger in a lab coat An ancient Egyptian
A painting by Grant An old photograph of a. An oil painting portrait with a 1980s Miami painting depicting an
Wood of an astronaut ~ 1920s airship shaped  of the regal Burger vibe, turning a well argument over whose
couple, American like a pig, floating over King posing with a oiled science content turn it is to take out
gothic style a wheat field ‘Whopper machine, digital art the trash

Stable
Diffusion 1.5

Stable
Diffusion 1.5 +
FK-Steering

Stable
Diffusion 1.5 +
DTS* (Ours)

Figure 16: Sample text-image pairs using Stable Diffusion v1.5 and ImageReward as the guiding
function for prompts requiring a specific artistic style. Samples are picked at random for each method
and prompt.

A car on the left of A laptop on top of A giraffe underneath An umbrella on top of A banana on the left of
abus a teddy bear a microwave a spoon an apple

Stable
Diffusion 1.5

Stable
Diffusion 1.5 +
FK-Steering

Stable

Diffusion 1.5 +
DTS* (Ours)

Figure 17: Sample text-image pairs using Stable Diffusion v1.5 and ImageReward as the guiding
function for prompts requiring specific spatial relationships between objects. Samples are picked at
random for each method and prompt.
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One cat and two dogs
sitting on the grass

Stable
Diffusion 1.5

Stable
Diffusion 1.5 +
FK-Steering

Three cars on the
street

Stable
Diffusion 1.5 +
DTS* (Ours)

Figure 18:

Sample text-image pairs using Stable Diffusion v1.5 and ImageReward as the guiding

function for prompts requiring specific object counts. Samples are picked at random for each method

and prompt.

J.4 Text completion examples

We present additional text completions for the base MDLM model, FK-Steering and DTS* in
Figure[T9] We also evaluate the text samples using ChatGPT-4o, since reward in this case does not
necessarily capture quality, and previous works [47] suggest that LLM evaluation aligns better with

human judgement.

ER] Reward = -1.827

Once upon a time, the Quantum constant
was an excellent dream and people
believed that All was magical. Light born
and some kind of magical systolized just
Kprior to the time of a magical being...

J

Base Reward = -0.721

The pizza was also shown to be some of
Alaska's Crust Filety, and later grilled at the
2012 Alaska Film Festival in fried eggplant.
In addition, the pizza restaurant was
Kmaking a cameo on Pizza Planet 3. This...

Base Reward = -1.709

The president of the country must navigate
through a thicket of job that they're getting
with them. Having the president have a
thicket a job that they have to work with
them. They don't get to deal with their... j

FK/SMC Reward = -0.075

Once upon a time women would commit
themselves into fleets, spawning “Stupid”,
STupid”, “Stupid”, “ST", “Stupid"”,
“Stupid”, “Stupid”, “St

~
&

FK/SMC Reward = -0.072

The pizza is described as follows:
B.298.50.57.16.99.1202.7.4601.8.069.5.11
05.15.1113.16.5916914513.352.28017.280
18.36.43

-

_/

|/

FK/SMC Reward = -0.059
The president of the country has not
commented. AAP/ABC News Topics:
federal-government, government-and-
politics, elections, united-states First Trump
Trump on Wednesday was in some way...

DTS* (Ours) Reward = -0.027

Once upon a time, | texted you and said, “It's
going really well.” I'd say, “| suppose you
would be surprised, wouldn't you?” Now, a
few days ago, you were texting me, and

\ 4

DTS* (Ours) Reward = -0.027

The pizza was topped with two teriyaki
balls. These huge, tomatoey balls looked
like they came from a pizza box. The
dough was kind of soft and they balanced

nicely. The vegetable sauce was...

_

DTS* (Ours) Reward = -0.035

The president of the country supposedly
spent some time debating what to do: “You
should stay armed,” he argued. “Your
military officers bring their heavy weapons
with you and you have to secure them.”

—

Figure 19: Sample text completions using MDLM and a CoL A classifier as reward. Samples are
picked at random for each method and prompt.



Table 4: Text samples generated for 2'7 NFEs with the CoL A reward (Section are scored by
ChatGPT-40 between 0 and 1 following a rubric. Results are reported as mean+sw by averaging over
3 completions for each of the 15 prompts. DTS* improves 13.7% over the best baseline.

Algorithm — Best-of-N FK/SMC DTS* (Ours)
ChatGPT-40 score  0.283 +£0.020 0.216 +0.019  0.322 +0.022

Prompt for LLLM evaluation

You are an expert language evaluator. Your task is to assess the overall quality of a text sample
based on the following criteria:

1. Fluency: Is the text generally grammatically correct and understandable?

2. Diversity: Does the text show some variety in vocabulary or sentence structure, even if
modest?

3. Plausibility: Is the content mostly coherent, logical, and believable in its context?

Please be constructive and fair in your evaluation — highlight the strengths of the sample as well
as areas that could be improved. Some minor errors or simplicity are acceptable if the overall
message is clear.

For each sample, provide a brief explanation touching on each criterion, followed by a quality
score between 0.0 (very poor) and 1.0 (excellent). Format the final score using \boxed{score}.

Example 1 (High Quality)

Sample: """The shimmering lake reflected the golden hues of the setting sun as birds glided
across the surface, their wings slicing through the calm evening air."""

Evaluation: - Fluency: The sentence flows smoothly with proper grammar and elegant phrasing. -

Diversity: The vocabulary is rich ("shimmering", "glided", "golden hues"), and sentence structure
is varied. - Plausibility: The description is vivid and realistic. \boxed{0.95}

Example 2 (Low Quality but Understandable)

Sample: """Lake is shiny. Birds is fly. The sky is color like orange. It is lake.
Evaluation: - Fluency: Some grammatical issues ("birds is fly", "it is lake"), but basic meaning
is understandable. - Diversity: Limited vocabulary and repetition. - Plausibility: The message is

simple but not nonsensical. \boxed{0.25}

Now evaluate the following sample:
Sample: nan { Sample } mmn
Evaluation:
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We make three main claims in the paper: (1) our tree-based method yields
asymptotically exact samples from the target distribution (supported by Proposition [I);
(2) DTS reduces bias and variance in value estimation compared to existing methods
(supported by experiments in Section Figure ; (3) DTS and DTS™ achieve improved
sample quality with more compute and scale more favorably compared to existing methods
(supported by experiments in Section 5] Figure[7] Figure 8] Figure ).

Guidelines:

» The answer NA means that the abstract and introduction do not include the claims made
in the paper.

» The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our method in Section[6|including the dependence
on a good pretrained model, limitations when dealing with sharp posteriors in inverse
problems, and the fact that it might be harder to parallelize compared to existing methods.
Our experiments cover different modalities and applications to empirically validate the
performance of our method.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and

how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address

problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We include one theoretical result (Proposition [I)). We make mild assumptions
that are clearly stated in the proposition. We provide a brief proof sketch in the main text
and a full proof in Section

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include full details of all experimental setups in the main text (Section [3).
We also provide a formal algorithm in Section [E| and implementation details, including
hyperparameters used for DTS, DTS™, and the baselines in Section[ﬂ and Section

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
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way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We have released the code publicly and provided the link in the abstract.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings/details are available in Section[5]and in Section [F]
For each set of experiments, we mention the datasets used, the metrics reported, and the
baselines for comparison.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars and information about staticical significance (eg.
repetitions etc.) wherever relevant. These can be found in most plots in the paper and the
main results table in Section

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide an estimate of the number of GPU hours to run all the experiments
in the paper and a description of the hardware in Section We also compare memory
usage and wall-clock time of different methods in Section

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper conforms with the Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consider-
ation due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: Our contribution is entirely methodological and application-agnostic: it pro-
vides a generic inference-time steering framework without targeting any particular domain
or use case, and thus raises no specific societal or ethical concerns that require highlighting
in this context.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not currently release new data or models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

» We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all works, datasets, and assets that are mentioned in the paper.
We also include links to the publicly available implementations of baselines that were used
in the paper in Section[G]

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

» If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are released in this paper.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: There was no crowdsourcing as a part of this study.

Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This study did not have any participants.

Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development does not involve LLMs.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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