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ABSTRACT

Neural networks that are equivariant to rotations, translations, reflections, and
permutations on n-dimensional geometric space have shown promise in physical
modeling—from modeling potential energy surfaces to forecasting the time evo-
lution of dynamical systems. Current state-of-the-art methods employ spherical
harmonics to encode higher-order interactions among particles, which are compu-
tationally expensive. In this paper, we propose a simple alternative functional form
that uses neurally parametrized linear combinations of edge vectors to achieve
equivariance while still universally approximating node environments. Incorporat-
ing this insight, we design spatial attention kinetic networks with E(n)-equivariance,
or SAKE, which are competitive in many-body system modeling tasks while being
significantly faster.

1 INTRODUCTION

Encoding the relevant symmetries of systems of interest into the inductive biases of deep learning
architectures has been shown to be crucial in physical modeling. Graph neural networks (GNNs) (Kipf
and Welling, 2016; Xu et al., 2018; Gilmer et al., 2017; Hamilton et al., 2017; Battaglia et al., 2018),
for instance, preserve permutation equivariance by applying indexing-invariant pooling functions
among nodes (particles) and edges (pair-wise interactions) and have emerged to become a powerful
workhorse in a wide range of modeling tasks for many-body system (Satorras et al., 2021).

When describing not only the topology of the system but also the geometry of the state, relevant
symmetry groups for three-dimensional systems are SO(3) (rotational equivariance), SE(3) (rotational
and translational equivariance), and E(3) (additionally with reflectional equivariance). A ubiquitous
and naturally invariant first attempt to encode the geometry of such systems is to employ only radial
information, i.e., interparticle distances. This alone has empirically shown utility in predicting
quantum chemical potential energies, and considerable effort has been made in the fine-tuning
of radial filters to achieve quantum chemical accuracy—1 kcal/mol, the empirical threshold to
qualitatively reliably predict the behavior of a quantum mechanical system—and beyond (Schütt
et al., 2017).

Nonetheless, radial information alone is not sufficient to fully describe node environments—the
spatial distribution of neighbors around individual particles. The relative locations of particles
around a central node could drastically change despite maintaining distances to these neighbors
unaltered. To describe node environments with completeness, one needs to address these remaining
degrees of freedom. Current state-of-the-art approaches encode angular distributions by employing
a truncated series of spherical harmonics to generate higher-order feature representations; while
these models have been shown to be data efficient for learning properties of physical systems, these
features are expensive to compute, with the expense growing rapidly with the order of harmonics
included (Thomas et al., 2018; Klicpera et al., 2021a; Fuchs et al., 2020; Batzner et al., 2021;
Anderson et al., 2019). The prohibitive cost would prevent this otherwise performant class of models
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from being employed in materials and drug design, where rapid simulations of large systems are
crucial to provide quantitative insights.

Here, we design a simple functional form, which we call spatial attention, that uses the norm of a
set of neurally parametrized linear combinations of edge vectors to describe the node environment.
Though simple in form, easy to engineer, and ultra-fast to compute, spatial attention is capable
of universally approximating any functions defined on local node environment while preserving
E(n)-invariance/equivariance in arbitrary n-dimensional space.

After demonstrating the approximation universality and invariance of spatial attention, we incorporate
it into a novel neural network architecture that uses spatial attention to parametrize fictitious velocity
and positions equivariantly, which we call a spatial attention kinetic network with E(n)-Equivariance,
or SAKE (pronounced saké (sah-keh), like the Japanese rice wine)1. To demonstrate the robustness
and versatility of SAKE, we benchmark its performance on potential energy approximation and
dynamical system forecasting and sampling tasks. For all popular benchmarks, compared to state-
of-the-art models, SAKE achieves competitive performance on a wide range of invariant (MD17:
Table 1, QM9: Table 3, ISO17: Table 2) and equivariant (N-body charged particle Table 4, walking
motion: Table 6) while requiring only a fraction of their training and inference time.

2 BACKGROUND

In this section, we provide some theoretical background on physical modeling, equivariance, and
graph neural networks to lay the groundwork for the exposition of spatial attention networks.

2.1 EQUIVARIANCE: PERMUTATIONAL, ROTATIONAL, TRANSLATIONAL, AND REFLECTIONAL

A function f : X → Y is said to be equivariant to a symmetry group G if

f(Tg(x)) = Sg(f(x)) (1)

∀ g ∈ G and some equivalent transformations on the two spaces respectively Tg : X → X and
Sg : Y → Y .

If on a n-dimensional space X = Y = Rn, we have permutation P and Tg(x) = Px, Sg(y) = Py
satisfying Equation 1, we say f is permutationally equivariant; if Tg(x) = xR where R ∈ Rn×n

is a rotation matrix RRT = I , and Sg(y) = yR we say f is rotationally equivariant; if Tg(x) =
x + ∆x and Sg(y) = y + ∆x, where x ∈ Rn we say f is translationally equivariant; finally, if
Tg(x) = Refθ(x) and Sg(y) = Refθ(y), and Refθ is a reflection on n-dimensional space, we say f
is reflectionally equivariant.

2.2 GRAPH NEURAL NETWORKS

Modern GNNs, which exchanges and summarizes information among nodes and edges, are better
analyzed through the spatial rather than spectral lens, according to Wu et al. (2019)’s classification.
Following the framework from Gilmer et al. (2017); Xu et al. (2018); Battaglia et al. (2018), for a
node v with neighbors u ∈ N (v), in a graph G, with h

(k)
v denoting the feature of node v at the k-th

layer (or k-th round of message-passing) and h0
v ∈ RC the initial node feature on the embedding

space, the k-th message-passing step of a GNN can be written as three steps:

First, an edge update,
h(k+1)
euv

= ϕe
(
h(k)
u , h(k)

v , h(k)
euv

)
, (2)

where the feature embeddings hu of two connected nodes u and v update their edge feature embedding
heuv

, followed by neighborhood aggregation,

a(k+1)
v = ρe→v({h(k)

euv
, u ∈ N (v)}), (3)

where edges incident to a node v pool their embeddings to form aggregated neighbor embedding av ,
and finally a node update,

h(k+1)
v = ϕv(a(k+1)

v , h(k)
v ) (4)

1Implementation: https://github.com/choderalab/sake
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where N (·) denotes the operation to return the multiset of neighbors of a node and ϕe and ϕv

are implemented as feedforward neural networks. Since the neighborhood aggregation functions
ρe→v are always chosen to be indexing-invariant functions, namely a SUM or a MEAN operator,
Equation 3, and thereby the entire scheme, is permutationally invariant.

Problem Statement. We are interested in designing a class of parametrized functions fθ : X×H →
X ×H that map from and to the joint spaces of (n-dimensional) geometry X ∈ Rn and semantic
embedding H ∈ RC such that it is permutationally, rotationally, translationally, and reflectionally
equivariant on X and invariant on H. That is, for a given coördinate x ∈ X , embedding h ∈ H and
any transformation mentioned in Section 2.1 T : X → X (rotation, translation, and reflection), we
have:

xf , hf = fθ(x, h) ⇐⇒ T (xf ), hf = fθ(T (x), h) (5)

3 RELATED WORK: INVARIANT AND EQUIVARIANT GNNS

Invariant GNN. Although the notion of graph might not appear in their original publications, a
plethora of neural architectures could be viewed as de facto graph neural networks with invariance
on geometric space (for a survey, see (Han et al., 2022)). SchNet (Schütt et al., 2017), for example,
approximates the potential energy of molecules by applying radially-symmetric convolutions that
only operate on the distances between atoms to ensure the model is E(3)-invariant, effectively using a
graph neural network architecture where nodes denote atoms and edges denote the distance separation
between pairs of atoms within a cutoff radius. In addition to interatomic distances, invariant models
could also incorporate information about the angular distribution of atom neighbors by computing
atomic features that incorporate angular information of neighbor-atom-neighbor triplets (Smith et al.,
2017; Behler, 2011; Klicpera et al., 2020a; Wang et al., 2022; 2023; Liu et al., 2022). Compared to
SAKE, these models are not capable of equivariant modeling; even in an invariant setting, they are
empirically less performant (See invariant tasks performance Section 6.1).

Equivariant GNN with spherical harmonics. Architectures achieving SE(3)-equivariance by
leveraging Bessel functions and spherical harmonics to encode higher-order interactions (Thomas
et al., 2018; Klicpera et al., 2021a; Fuchs et al., 2020; Anderson et al., 2019; Klicpera et al., 2021b;
Brandstetter et al., 2021; Liu et al., 2022) shows outstanding performance and data efficiency, some
of which is on par with SAKE (Table 1, 4). Villar et al. (2021) discusses that these higher-order
representation is not necessary to construct invariantly and equivariantly universal models. Meanwhile,
they tend to be difficult to engineer and expensive to train and run. (See runtime benchmarks in
aforementioned tables.)

Equivariant GNN with dot product scalarization. Recent efforts (Schütt et al., 2021; Thölke and
Fabritiis, 2022; Huang et al., 2022) relying on dot product of edge tensors as equivariant nonlinearity
have achieved competitive results on machine learning potential construction, among which none
has been validated to perform well on both equivariant and invariant tasks. Experimentally, they are
consistently outperformed by SAKE in invariant (Section 6.1: Table 1) and equivariant (Section 6.2:
Table 6) tasks.

Message passing between emebedding and geometric spaces. Satorras et al. (2021) has for-
malized the link between graph neural networks and and equivariance and provided a generalizing
framework encompassing iterative geometric-to-embedding and embedding-to-geometric type update.
Like our proposed architecture, E(N) Equivariant Graph Neural Networks (EGNN), proposed in
Satorras et al. (2021), also uniquely describes the geometry of a n-body system, although their argu-
ment was based on a global scale given sufficient steps of message passing, while we can sufficiently
describe the local geometric environment. This advantage is evidenced by extensive experiments
(invariant: Table 3; equivariant: Table 4 and 6). In ablation study (Section 6.3), we show that without
spatial attention, EGNN is not competitive in potential energy modeling, even when all other tricks
used in this paper were added. Similar to EGNN (Satorras et al., 2021), our model is equivariant
w.r.t. a general E(n) group and are not restricted to E(3). Also worth noting is that the Geometric
Vector Perceptrons algorithm proposed in Jing et al. (2021) could be regarded as a special case of our
framework where the attention weights are learned globally, whereas we learn them in an amortized
manner and thus can be transductively generalized across systems.
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4 THEORY: SPATIAL ATTENTION

Given a node v with embedding hv ∈ H = RC (where C denotes the embedding dimension) and
position xv ∈ X = Rn (where n denotes the geometry dimension) in a graph G, its neighbors
u ∈ N (v) with connecting edges {euv} , with displacement vector e⃗uv = xv − xu and embedding
heuv

= ρv→e(hv, hu) with some aggregation function ρv→e, we define spatial attention ϕ : X×H →
H as

ϕSA(v) = µ
( Nλ⊕

i=1

||
∑

u∈N (v)

λi(heuv )f (⃗euv)||
)
, (6)

where λi : H → R1, i = 1, ..., Nλ is a set of arbitrary attention weights-generating function that
operates on the edge embedding, f : X → X is an equivariant function that operate on the edge
vector, µ : Nλ → H is an arbitrary function that takes the norms of Nλ linear combinations, and ⊕
denotes concatenation. We drop the explicit dependence of ϕSA(v) on both geometric and embedding
properties of v and u for simplicity. We name this functional form attention because it characterizes
the alignment between edge vectors in various projections.

When implemented, λ and µ take the form of feed-forward neural networks. In other words, for
each node v, we first parametrize a Nλ = |{λi}| (is analogous to the number heads in multi-head
attention) sets of attention weights based on the edge embeddings λi(heuv

). At the same time, we
also equivariantly (on E(n) group) transform the edge vector into f (⃗euv). Next, we use those Nλ sets
of attention weights to linearly combine these vectors among edges and take the Euclidean norm of
each of these linear combinations, resulting in Nλ norms. Lastly, we concatenate these norms and put
them into a feed-forward neural network µ to compute the node embedding. It naturally follows that:
Remark 1. Spatial attention is permutationally, rotationally, transalationally, and reflectionally
invariant on E(n),

since heuv
is invariant w.r.t. indexing and the Euclidean norm function is invariant to rotation,

translation, and reflection.

With all local degrees of freedom incorporated in spatial attention, it is perhaps intuitive to see that
ϕSA(v) can uniquely define the local environment of nodes up to E(n) symmetry. We formalize this
finding (Proof in Appendix Section 8.1):
Theorem 1. For a node v in a graph G with neighbors u ∈ N (v) connected to u by edges with
positions xv and xu distinct embeddings hevui

̸= hevuj
,∀1 ≤ i, j ≤ |N (v)|, and any E(n)-invariant

continuous function g(xv,xui |hevui
) spatial attention ϕSA can approximate g with arbitrarily small

error ϵ with some {λ}, f , and µ.

It is worth noting here that we only consider the universal approximation power of a mapping from
the geometry space X to a scalar space, without considering that on the space of node (and edge)
embedding; regardless of geometry, GNNs that operate on neighborhood node embeddings are
generally not universal (Xu et al., 2018; Corso et al., 2020). This universal approximative power on
E(n)-invariant functions can lead to universally approximative parametrization of E(n)-equivariant
functions, which we show in Remark 2. Practically, the inequality condition is not difficult to satisfy:
we implement he as dependent upon edge length so even if the semantic embedding of edges are
identical, the inequality hevui

̸= hevuj
holds as long as the system is not strictly symemtrical at all

times (namely the mirror symmetry presented in hydrogen molecule) despite distortions resulted
from vibrations.

5 ARCHITECTURE: SPATIAL ATTENTION KINETIC NETWORK (SAKE)

Leveraging the simple functional form introduced in Section 4, we design a fast, efficient, and
easy-to-implement architecture termed a spatial attention kinetic network with E(n)-equivariance, or
SAKE. Here, we introduce the remaining components of SAKE before assembling them in a modular
way. The necessity of these designs are experimentally justified with ablation study in Section 6.3.

Edge embedding. To embed pairwise interactions, we combine the SchNet (Schütt et al., 2017)-
style continuous filter convolution and the simple concatenation of the scalar-valued distance as in
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Algorithm 1 Spatial Attention Kinetic Networks Layer

function SAKELAYER({h(k)
v }, {x(k)

v }, {v(k)
v },G) ▷ Input embedding, position, and velocity

for v ∈ V do
for u ∈ N (v) do

h
(k)
euv ← ϕe(hk

v , h
k
u, ||⃗euv||) ▷ Edge update, Sec 5 Eq 7

end for
h
(k+1)
euv ← h

(k)
euv ∗ αX×H

uv ▷ Semantic attention and distance cutoff, Sec 5 Eq 10
for u ∈ N (v) do

h
(k+1)
SAv

= ϕSA(h
(k)
euv , e⃗uv) ▷ Spatial attention, Sec 5 Eq 6

end for
a
(k)
v ←

∑
u∈N (v)

h
(k)
euv ▷ Neighborhood aggregation, Sec 2.2 Eq 3

v
(k+1)
v ← ϕv→V(h

(k)
v )v(k) +Wv

∑
i

∑
u∈N (v)

λi(h
(k)
euv )f (⃗e

k
uv) ▷ Vel. update, Sec 5 Eq 12

x
(K)
v ← x

(k)
v + v

(K)
v ▷ Position update, Sec 5 Eq 12

h
(k+1)
v ← ϕv(h

(k)
v , a

(k)
v , h

(k)
SAv

) ▷ Node update, Sec 2.2 Eq 4

return {h(k+1)
v }, {x(k+1)

v }, {v(k+1)
v }

end for
end function

Satorras et al. (2021) to achieve the balance between high radial resolution and large receptive field.
The resulting edge embedding is thus

h(k)
euv

= ϕe(h(k)
u ⊕ h(k)

v ⊕ ||⃗e(k)uv || ⊕ RBF(||⃗e(k)uv ||)⊙ fr(h(k)
u ⊕ h(k)

v )), (7)

where ⊙ denotes Hadamard product and fr is a (filter-generating) feed-forward network as in Schütt
et al. (2017).

Semantic attention and distance cutoff. To promote anisotropy (which Dwivedi et al. (2020) finds
useful in GNNs) in the pooling operation, apart from spatial attention introduced in Section 4, we
compute the attention score on semantic and geometry space to weight interactions among particles
based on embedding similarity and distances on n-dimensional space. The distance weights are
calculated using the cutoff function proposed in Unke and Meuwly (2019):

αX
uiv =

{
1
2 cos(

π||⃗euiv
||

d0
+ 1), ||⃗euiv|| ≤ d0;

0, ||⃗euiv|| > d0,
(8)

to filter out interactions outside a certain range (d0). And semantic attention weights αH
uiv are

calculated similar to Graph Attention Networks (Veličković et al., 2018),

αH
uiv =

exp(σ(aTheuiv
))∑

exp(σ(aTheuv
))
. (9)

To produce models for the purpose of molecular simulation by ensuring continuous forces and
gradients, one would need to choose as sigma σ as at least C2-continuous activation functions,
namely CeLU (Barron, 2017). These weights are combined and normalzied:

αX×H
uiv =

αX
uivα

H
uiv∑

αX
uvα

H
uv

. (10)

It is trivial to expand to multi-head attention with k sets of (aT1,...,k) and the resulting combined
attention weights concatenated.

Since the edge embedding after mixed Euclidean and semantic attention heuv ∗αX×H
uv already encodes

the desired inductive bias that nodes farther away from each other would have less impact on each
other’s embedding, we directly use this representation and simply set λi as a linear projection (with
weights Wλ) and f as identity in Equation 6:

λi(heuv ) = Wλheuv ; f (⃗euv) = e⃗uv/||⃗euv||. (11)

We leave more elaborate choices of λ and f functions for future study.
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Fictitious velocity integration. Similar to Satorras et al. (2021), we keep track of a fictitious
velocity variable vv for each node and linearly combine it (with weights Wλ) update it and positions
xv in turns like a Euler-discretized Hamiltonian integration.

v(k+1)
v = ϕv→V(h(k)

v )v(k) +Wv

∑
i

∑
u∈N (v)

λi(h
(k)
euv

)f (⃗ekuv) (12)

x(k+1)
v = x(k)

v + v(k)
v (13)

During velocity update, we scale the current velocity and, for the sake of parameter saving, reuse the
same set of linear combinations of edge vectors used in Equation 6 as the additive term.
Remark 2. If heuv

is distinct among edges, there exist sets of λi (even when f = I is the identity)
such that Equation 12 can approximate any vector on the subspace spanned by edge vectors and is
thus universal up to equivariance thereon.

Equivariance analysis. We inlay these modular components into the framework of graph neural
networks (described in Section 2.2) to produce the SAKE architecture, which we show in Algorithm 1.
(A SAKEModel is defined by applying SAKELayer iteratively from k = 0 to k = K − 1, the depth
of the network.) We have previously discussed that spatial attention is E(n)-invariant in Remark 4.
With the E(n) equivariance of velocity update and position update (Equation 12) being proved in
Satorras et al. (2021) and the rest of the model only takes the norm of edges and is E(n) invariant,
SAKE is E(n)-equivariant.

Runtime analysis. The runtime complexity of spatial attention (Equation 6), which is the bottleneck
of this algorithm, is O(|E|NλCD), i.e., linear in the number of graph edges |E|, number of attention
weights Nλ, embedding dimension C, and geometric dimension D. When implemented, the FOR
loops in Algorithm 1 can be packed into multi-dimensional tensors that could benefit from GPU
acceleration.

Relation to spherical harmonics-based models. Under the framework of TFN (Thomas et al.,
2018), the embedding and position input in Algorithm 1 {h(k)

v }, {x(k)
v } corresponds to the l = 0 and

l = 1 type tensors. The concatenation followed by neural network in Equation 6 is loosely analogous
to the direct sum operation in Clebsch-Gordon decomposition. While Smith et al. (2017); Schütt et al.
(2017); Satorras et al. (2021) operates on l = 0 tensors only, the spatial attention mechanism we
propose (Section 4 Equation 6) and velocity/position update (Section 5 Equation 12) corresponds to
1⊕ 1 → 0 and 1⊕ 0 → 1 type networks, respectively. Klicpera et al. (2021a); Villar et al. (2021)
have discovered that l = 0, 1 are the complete levels of tensor to universally describe geometry on
E(3), while higher-order tensors are not necessary to completely describe the node environment.
Kovács et al. (2021) also discusses the concept of density projection where body-order functional
forms can be recovered by lower-order terms.

6 EXPERIMENTS

As discussed in Section 2, SAKE provides a mapping from and to the joint space of geometry and
embedding X ×H, while being equivariant on geometric space and invariant on embedding space.
We are therefore interested to characterize the performance of SAKE on two types of tasks: invariant
modeling (Section 6.1), where we model some scalar property of a physical system, namely potential
energy; and equivariant modeling (Section 6.2), where we predict coördinates conditioned on initial
position, velocity, and embedding.

On both classes of tasks, SAKE displays competitive performance while requiring significantly less
inference time compared to current state-of-the-art models. See Appendix Section 9 for experimental
details and settings.

6.1 INVARIANT TASKS: MACHINE LEARNING POTENTIAL CONSTRUCTION

MD17 potential energy (Chmiela et al., 2017) tests the capacity of the model in the extreme small
data regime. Its training set contains merely 1000 configurations and quantum chemical energies and
forces of single small molecules in vacuum computed using density functional theory (DFT). As
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Table 1: Inference time (ms) and test set energy (E) and force (F) mean absolute error (MAE) (meV
and meV/Å) on the MD17 quantum chemical dataset.

SchNet
Schütt et al., 2017

DimeNet
Klicpera et al., 2020b

sGDML
Chmiela et al., 2019

PaiNN
Schütt et al., 2021

GemNet(T/Q)
Klicpera et al., 2021a

NequIP
Batzner et al., 2021

SAKE

Inference time batch of 32 65 88/376 206 12
batch of 4 31 38/99 197 4

Aspirin E 16.0 8.8 8.2 6.9 - 5.3 5.915.925.88

F 58.5 21.6 29.5 14.7 9.4 8.2 8.098.10
8.08

Ethanol E 3.5 2.8 3.0 2.7 - 2.2 2.202.20
2.20

F 16.9 10.0 14.3 9.7 3.7 3.8 2.752.75
2.75

Malonaldehyde E 5.6 4.5 4.3 3.9 - 3.3 3.223.23
3.21

F 28.6 16.6 17.8 13.8 6.7 5.8 4.324.32
4.31

Naphtalene E 6.9 5.3 5.2 5.0 - 4.9 4.914.92
4.91

F 25.2 9.3 4.8 3.3 2.2 1.6 2.252.252.25

Salicylic acid E 8.7 5.8 5.2 4.9 - 4.0 4.674.674.66

F 36.9 16.2 12.1 8.5 5.4 3.9 4.294.304.28

Toluene E 5.2 4.4 4.3 4.1 - 4.0 4.004.01
4.00

F 24.7 9.4 6.1 4.1 2.6 2.0 2.102.102.10

Uracil E 6.1 5.0 4.8 4.5 - 4.5 4.514.52
4.50

F 24.3 13.1 10.4 6.0 4.2 3.3 4.264.284.25

summarized in Table 1, SAKE consistently outperforms all benchmarked models with the exception
of NequIP (Batzner et al., 2021), which has comparable performance but is noticeably slower. (Note
that, to avoid inaccurate report on the suboptimal software configuration, we only report runtime data
directly quoted from their original publications and replicate the hardware environment by ourselves.
The same applies hereafter.) In terms of training cost, most state-of-the-art models requires days of
training, whereas the MD17 experiment was completed within 6 hours. This significant advantage in
speed would allow SAKE to be more rapidly trained and deployed on realistic applications involving
molecular dynamics simulations.

ISO17 (Schütt et al., 2017) goes beyond the single-molecule regime. It involves a slightly more
diverse chemical space containing 5000-step ab initio molecular dynamics simulation trajectories
(with energies and forces) of 129 molecules with the same formula C7H10O2. The test set of ISO17
is split into known (which Kovács et al. (2021) argues to be very close to training set) and unknown
molecules, based on the chemical identity (topology) at the beginning of the simulation, which
could be regarded as interpolative and extrapolative tasks, respectively. As shown in Table 2, SAKE
significantly outperforms other models on the unknown molecules in the test set, indicating that
SAKE is capable of extrapolating and generalizing onto unseen chemical spaces when trained on
limited data.

QM9 (Ramakrishnan et al., 2014) tests the transductive generalizability across distinct small
chemical graphs. It entails a very diverse chemical space of 134k molecules with annotated phsyical
properties calculated with B3LYP/6-31G(2df,p) level of quantum chemistry, albeit all with at-
equilibrium (low energy) conformations. In Table 3, SAKE achieves state-of-the-art performance at
predicting HOMO, LUMO, and ∆ϵ properties—a class of most crucial molecular properties closely
related to reactivity. Interestingly, SAKE performs competitively on predicting extensive physical
properties but not intensive ones (also see discussions in Pronobis et al. (2018)). We hypothesize that
this will be mitigated by choosing size-invariant pooling functions—we leave this for future study.

6.2 EQUIVARIANT TASKS

Charged N-body dynamical system forecasting (Kipf et al., 2018; Fuchs et al., 2020) tests if a
model can predict the evolution of a physical system sufficiently long after initial conditions. This
simple system consists of 5 charge-carrying particles with initial positions and velocities, and the
position at a given moment is predicted. As shown in Table 4, although the interactions (Coulomb
forces) are entirely pairwise, we see here that the additional expressiveness SAKE affords lead to
competitive performance on this demonstrative task.
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Table 2: Test set energy (E) and force (F) mean absolute error (MAE) (meV and meV/Å) on known
and unknown molecules in ISO17.

ACE
Kovács et al., 2021

SchNet
Schütt et al., 2017

PhysNet
Unke and Meuwly, 2019

SAKE

known E 16 16 4 12.1712.1812.12

F 43 43 5 12.3312.3412.31

unknown E 85 104 127 53.3753.62
53.15

F 85 95 60 39.4639.59
39.35

Table 3: QM9 test set performance (mean absolute error).
α

Bohr3
∆ϵ

meV
HOMO

meV
LUMO

meV
µ
D

Cv

cal/mol K
SchNet Schütt et al., 2017 0.235 63 41 34 0.033 0.033

DimeNet++ Klicpera et al., 2020a 0.044 33 25 20 0.030 0.023
SE(3)-TF Fuchs et al., 2020 0.142 53 35 33 0.051 0.054
EGNN Satorras et al., 2021 0.071 48 29 25 0.029 0.031
PaiNN Schütt et al., 2021 0.059 36 46 20 0.012 0.024

TorchMD-Net Thölke and Fabritiis, 2022 0.059 36 20 17 0.011 0.023
SphereNet Liu et al., 2022 0.030 31 19 23 0.025 0.022

SAKE 0.068 23 16 13 0.014 0.087

Table 4: Mean Squared Error (MSE) and inference
time (ms)for charged particle dynamic system fore-
casting.

Architecture MSE Inference time
SE(3)-TF (Fuchs et al., 2020) 0.244 0.1346

TFN (Thomas et al., 2018) 0.155 0.0343
GNN (Kipf and Welling, 2016) 0.0107 0.0032
EGNN (Satorras et al., 2021) 0.0071 0.0062

SAKE 0.0049 0.0079
SEGNN (Brandstetter et al., 2021) 0.0043 0.0260

MD17 forecast (Chmiela et al., 2017; Huang
et al., 2022) involves a simulation forecast task
with slightly more complicated systems com-
pared to Table 4. It uses the same dataset in
Table 1, but predicts the time evolution of the
molecular dynamics simulation directly, rather
than predicting the mapping from the geome-
try to potential energy. Following the proto-
col in Huang et al. (2022), we predict the atom
position based on the velocity and coördinate
3000 steps prior. As shown in Table 5, SAKE
achieves superior performance on 6 out of 8 sys-
tems, without leveraging spherical harmonics
(as in TFN (Thomas et al., 2018) or SE(3)-TF (Fuchs et al., 2020)) or hand-coded edges (as in
GMN (Huang et al., 2022)).

Table 5: Mean squarred error (MSE) (10−2 Å2) on MD17 trajectory forecast.
Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

TFN
Thomas et al., 2018 12.37±0.18 58.48±1.98 4.81±0.04 13.62±0.08 0.49±0.01 1.03±0.02 10.89±0.01 0.84±0.02

SE(3)-TF
Fuchs et al., 2020 11.12±0.06 68.11±0.67 4.74±0.13 13.89±0.02 0.52±0.01 1.13±0.02 10.88±0.06 0.79±0.02

EGNN
Satorras et al., 2022 14.41±0.15 62.40±0.53 4.64±0.01 13.64±0.01 0.47±0.02 1.02±0.02 11.78±0.07 0.64±0.01

GMN
Huang et al., 2022 9.76±0.11 48.12±0.40 4.63±0.01 12.82±0.03 0.40±0.01 0.88±0.01 10.22±0.08 0.59±0.01

SAKE 9.33±0.02 137.20±0.06 4.63±0.00 12.81±0.03 0.38±0.00 0.82±0.01 10.98±0.01 0.53±0.00

Walking motion capture (CMU, 2003) has a higher system complexity and noise and is adopted
to demonstrate SAKE’s general capacity to forecast dynamic systems beyond microscopic scale. In
this task, again closely following the experiment setting of Huang et al. (2022); Kipf et al. (2018), we
predict the position of a walking person (subject 35 in CMU motion capture database (CMU, 2003))
based on their initial position. Again, we observe that SAKE outperform other models by a large
margin (Table 6) and is significantly faster.
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6.3 ABALATION STUDY

Table 7: SAKE performance on MD17-Aspirin (also see Table 1) with various components included
(Y) or excluded (N).

Spatial
attention

Eq. 6

Semantic
attention
Eq. 10

Speed and
position update

Eq. 12
Energy RMSE

(meV)
Force RMSE

(meV/Å)
Y Y Y 5.915.925.88 8.098.108.08

N Y Y 8.088.098.05 17.4817.5117.47

Y Y N 6.216.236.20 10.3110.3310.31

N Y N 8.158.178.12 16.5816.6116.57

Y N Y 7.887.907.85 16.2116.2216.19

N N Y 10.7810.7910.75 17.9017.9717.81

Y N N 6.296.306.27 10.5210.5410.50

N N N 8.218.248.20 16.6216.6416.60

Table 6: Walking motion capture performance.
GNN EGNN

Satorras et al., 2021
GMN

Huang et al., 2022
SAKE

MAE 67.3±1.1 59.1±2.1 43.9±1.1 14.59 ±1.6
Epoch time 5.66 s 1.81 s

To elucidate each component’s contribution to-
wards the final performance, we perform an ab-
lation study on one of the most popular tasks
studied so far—MD17 potential energy model-
ing (Section 6.1, Table 1). More specifically, we
focus on the most complicated molecular system
in the dataset, aspirin. We inspect three compo-
nents proposed in the paper—spatial attention
(Equation 6), which we argue is the main novelty of the paper, as well as semantic attention (Equa-
tion 10) and velocity and position update (Equation 12). As is shown in Table 7, spatial attention
improves the performance regardless of the rest of the configuration. To clearly demonstrate the utility
of these auxiliary modules, we also add these components (except spatial attention) to the backbone
of EGNN (Satorras et al., 2022), and summarize the results in Appendix Table 10—qualitatively, with
these modules, EGNN achieves decent performance on par with SchNet (Schütt et al., 2017), with
the performance gap comes primarily from its inability to conceive the node angular environments.

7 DISCUSSION

Conclusions In this paper we have introduced an invariant/equivariant functional form termed
spatial attention that uses neurally parametrized linear combinations of edge vectors to equivariantly
yet universally characterize node environments at a fraction of the cost of state-of-the-art equivariant
approaches that makes use of spherical harmonics. Equipped with this spatial attention module,
we use it to build a spatial attention kinetic network (SAKE) architecture which is permutationally,
translationally, rotationally, and reflectionally equivariant. We have demonstrated the utility of this
model in n-body physical modeling tasks ranging from potential energy prediction to dynamical
system forecasting.

Limitations Theoretical: The universality condition is only discussed w.r.t. node geometry, without
considering node embeddings; moreoever, the inequality condition in Theorem 1, although rarely
violated in physical modeling (even when system is highly symmetrical), can be potentially over-
restricting. We plan to generalize this framework to consider the expressive power of functions on
the joint space of node embedding and geometry in future works. Experimental: Herein, apart from
the novel functional form spatial attention (Equation 6), the rest of the architecture has not been
thoroughly optimized and analyzed in the context of the growing design space of equivariant neural
networks.

Future directions We plan to conduct more thorough experiments on (bio)molecular systems to
explore the potential of SAKE in building general protein/small molecule force fields and enhanced
sampling methods that could facilitate large-scale simulations useful in therapeutics and material
discovery.
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8 PROOFS

8.1 PROOF FOR THEOREM 1

Proof. (Informal) An appropriate set of choices to satisfy the requirement is:

f = I , and λ takes the set of |N (v)|+ |N (v)|2 elements:{
λi(heujv

) = [i = j]
}
∪
{
λkl(heujv

) = [k = j]− [l = j]
}

(14)

where [·] is the Iverson bracket. The first |N (v)|-set of one-indexed functions give the node-to-
neighbor distances whereas the second |N (v)|2-set of two-indexed functions give the distances
among neighbors. This recovers the distance matrix AX (v) among the node and its neighbors
AX (v)ii = ||xv − xui || and AX (v)ij = ||xuj − xui ||, i ̸= j, 1 ≤ i, j ≤ |N (v)|. As such, the
relative positions of the node and its neighbors are uniquely defined up to E(n) symmetry (Havel,
1998). In other words, xv and xui

can be uniquely embedded on an arbitrary coördinate system on
which g is evaluated. Since {λ} is neural, by the universal approximation theorem (Hornik et al.,
1989), AX (v) can still be recovered, at least through recovering the set of {λ} discussed above.
Considering again the universal approximation of µ, any function of the geometric node environment
can be approximated by ϕSA.

9 DETAILED METHODS

9.1 CODE AVAILABILITY

The corresponding software package and all scripts used to conduct the experiments in this paper are
distributed open source under MIT license at: https://github.com/choderalab/sake
This package can be installed via: pip install sake-gnn.
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9.2 HARDWARE CONFIGURATION

All models are trained on NVIDIA Tesla V100 GPUs. Following the settings reported in the
publications of baseline models, the inference time benchmark experiments (Section 6.2, 6.1) are
done on NVIDIA GeForce GTX 1080 Ti GPU (For Table 1 and Table 6) and NVIDIA GeForce GTX
2080 Ti GPU (For Table 4).

9.3 ARCHITECTURE AND OPTIMIZATION DETAILS

One-layer feed-forward neural networks are used as fr in Equation 2 (edge update); two-layer
feed-forward neural networks are used as ϕe in Equation 2 (edge update), ϕv in Equation 4 (node
update), ϕv→V in Equation 12 (velocity update), and µ in Equation 6 (spatial attention). SiLU is used
everywhere as activation, except in Equation 12 (velocity update) where the last activation function is
chosen as y = 2∗Sigmoid(x) to constraint the velocity scaling to between 0 and 2 and in Equation 10
where CeLU is used before attention; additionally, tanh is applied on the additive part of Equation 12
to constraint it to between -1 and 1. 4 attention heads are used with γ in Equation 10 spaced evenly
between 0 and 5 Å. 50 RBF basis are used, spacedly evenly between 0 and 5 Å. All models are
optimized with Adam optimizer. We summarize the hyperparameters used in these experiments in
Table 8. All random seeds are fixed as 2666, as an homage to Bolaño (2004).

Experiment Depth Width Learning Rate Epochs Batch Size L2 Regularization Cutoff
MD17 (Table 1) Aspirin 8 32 10−3∗ 5000 4 10−5 5.0
MD17 (Table 1) Ethonal 8 32 10−3∗ 5000 4 10−5 10.0

MD17 (Table 1) Malonaldehyde 8 64 10−3∗ 5000 4 10−5 10.0
MD17 (Table 1) Naphthalene 4 64 10−3∗ 5000 4 10−5 5.0

MD17 (Table 1) Salicylic Acid 6 64 10−3∗ 5000 4 10−5 5.0
MD17 (Table 1) Toluene 8 32 10−3∗ 5000 4 10−5 5.0
MD17 (Table 1) Uracil 8 64 10−3∗ 5000 4 10−5 5.0

MD17 Trajectory Forcast (Table 5) 2 8 10−3 1000 4 10−5

ISO17 (Table 2) 6 64 10−3∗ 100 128 10−12

QM9 (Table 3) 6 32 10−4∗ 5000 32 10−10

N-Body Forecast (Table 4) 4 32 5 ∗ 10−4 1000 100 10−12

Table 8: Hyperparameters used in experiments (* A cosine warm up and annealing schedule is used,
where the learning rate is gradually increased from 10−6 to the peak value in the first 10% epochs
and decreased in the rest 90%.)

9.4 DATA AVAILABILITY

The source and details of benchmark datasets are summarized in Table.

Experiment License Size Split
MD17 http://quantum-machine.org/gdml/#datasets (Table 1) 8 Systems; 100K-1M snapshots Random: 1K Train

ISO17 http://quantum-machine.org/datasets/(Table 2) 129 Molecules; 5000 snapshots Fixed
QM9 http://quantum-machine.org/datasets/ 135k molecules Fixed
N-Body Forecast 2(Table 4) MIT 5 particles Fixed: 3K Train; 2K Valid; 2K Test

Table 9: Dataset details.

10 ABALTION STUDY ON EGNN

11 BRIEF INTRODUCTION OF EQUIVARIANT NORMALIZING FLOWS

Normalizing flows (Rezende and Mohamed, 2016; Papamakarios et al., 2021) are a family of learnable
bijections fzx : Z → X that transform a tractable distribution on latent space qz(z) to another on
the target space x = fzx(z; θ) (dropping dependency on parameter thereafter) whose density can be
analytically written as

log qx(x) = log qz(z) + log det |∂fxz(x)
∂x

| (15)
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Table 10: EGNN (Satorras et al., 2022) performance on MD17-Aspirin (also see Table 1) with various
components included (Y) or excluded (N).

Distance
smearing

Eq. 7

Semantic
attention
Eq. 10

Position update
Eq. 12

Energy RMSE
(meV)

Force RMSE
(meV/Å)

Y Y Y 25.9225.9925.89 42.8342.8642.78

Y Y N 16.0216.0615.97 29.5929.6229.55

Y N Y 31.5731.6431.52 36.9737.0136.94

Y N N 17.3417.3917.31 33.8533.9033.82

N Y Y 589.34590.44588.11 217.15217.69216.70

N Y N 588.95590.26587.55 218.73218.97218.64

N N Y 250.18251.17249.43 538.68539.14538.56

N N N 206.13206.71205.79 882.32882.81882.03

and conversely from a sample on the target space to the latent space z = fxz(x; θ) whose likelihood
is given by

log pz(z) = log px(x) + log det |∂fzx(z)
∂z

| (16)

where fzx = f−1
xz . To close the gap between the intractable px and the tractable qx, so that one can

sample on the target space efficiently, the flow is then trained by maximizing either Equation 15, if an
unnormalized target distribution is given, or Equation 16, if samples are given.

The concept of equivariant normalizing flow was first introduced in Köhler et al. (2020); Rezende
et al. (2019); Satorras et al. (2022), where they adopted the framework of continuous normalizing
flow (Chen et al., 2018) to define the bijection fzx as

x =

∫ 1

0

f ′
zx(z(t)) d t (17)

and restrict f ′
zx as E(n)-equivariant w.r.t. z. Integration, or the sum over infinitely many equivariant

functions, does not alter the equivariance. To numerically approximate this integration Chen et al.
(2019) involves evaluating f ′

zx multiple times and is therefore expensive.

12 EQUIVARIANT EXACT LIKELIHOOD SAMPLING WITH SAKE FLOW.

Current equivariant normalizing flow models (Satorras et al., 2022; Köhler et al., 2020) (brielfy
reviewed in Appendix Section 11), relies on ODE-based numerical integration(Chen et al., 2019), are
computationally expensive. We propose a much simpler invertible flow model that uses our SAKE
model, termed SAKE Flow. First, following a scheme introduced in Huang et al. (2020) (in which it
is argued that with flexible enough kernels Equation 17 could be approximated arbitrarily well), we
extend the space X with an auxiliary space A. Correspondingly, we extend the tractable distribution
to be q(z,a) = qz(z)qa(a) and the target distribution to be p(x,a) = px(z)qa(a). We then change
the problem statement of Equation 16 to: find a parametrized function fzx(z,a; θ) = f−1

xz (x,a; θ)
that is a bijection on the space A×X to maximize the joint likelihood:

θ̂ = argmaxEa∼qa [log p(x,a))] (18)

which is, up to a constant, an evidence lower bound for x:

log px(x) (19)
= Eqa [log p(x,a)] +DKL[q(a)||p(a|x)] +Ha (20)
≥ Eqa [log p(x,a)] +Ha, (21)

The equality holds when the (non-negative) Kullback–Leibler divergence between the tractable
distribution qa and the conditional distribution given samples p(a|x) is zero. As such, an unbiased
estimate of the marginal likelihood can be given by

log p̂(x) = log p(x,a)− log qa(a). (22)
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Similar to Huang et al. (2020); Dinh et al. (2017), we define fzx(z,a, θ) as a series of alternating
affine coupling:

gz→a/a→z(z,a) = z, exp(Sz→a/a→z(z))⊙ a+ T z→a/a→z), (23)

with analytic inverse. Composing these transformations gz→a ◦ ga→z ◦ ...gz→a ◦ ga→z , we get our
bijection fzx(z,a; θ).

Now, it only remains to define the structure of the translation functions {T} and scaling functions
{S}. As is outlined in Satorras et al. (2022), if fzx is translation-invariant, it is impossible to have∫
px(x) dx = 1, so we drop the translation invariance requirement and design fzx, as well as the

composing {T, S}, to be only rotation and reflection equivariant. Correspondingly, we require all
tractable distributions to be confined on a (|V| − 1)n-dimensional subspace with 0 gravity center.
(Note that this reduces the symmetry group we work on from E(n) to SO(n).) A valid choice both for
qz(z) and qa(a) with is a centered Gaussian distribution (Satorras et al., 2022):

p(z) =
1

(2π)|V−1|n/2 exp(−1

2
||z||2) (24)

with
∑
v∈V

xv = 0. Moreover, to keep the gravity center at 0, we require that {T, S} shall not change

the gravity center. A general recipe to construct such {T, S} is to use the equivariant and invariant
outputs of SAKE to parametrize T and S respectively.

h,x = SAKEModel(h,x);x = x−MEAN(x);h = exp(MEAN(h));

T (z) = z+ x;S(z) = h ∗ z (25)

To preserve the center of gravity, we center the translation to have zero center of gravity and enforce
the same scalar to be used across particles as the scaling factor.
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