

000 SPATIAL STRUCTURE AND SELECTIVE TEXT JOINTLY 001 002 FACILITATE IMAGE CLUSTERING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Image clustering is a fundamental task in visual machine learning. A key research
011 direction in this field is the incorporation of prior knowledge. Recently, such prior
012 knowledge has evolved from internal compactness constraints to external textual
013 guidance. In particular, the introduction of textual modalities through CLIP has
014 demonstrated impressive performance. However, CLIP is designed primarily for
015 image–text alignment and may not be sufficient to capture clustering structures.
016 Moreover, existing approaches often assume that textual features are universally
017 beneficial, overlooking their varying suitability for different datasets. To address
018 these issues, we propose to use spatial structure and selective text to jointly facil-
019 itate image clustering (SATC). Specifically, we design a graph attention network
020 (GAT)-based encoder to capture relational dependencies among image patches,
021 thereby extracting spatial features to facilitate clustering. In addition, we intro-
022 duce a textual feature selector that uses the potential clustering compactness of
023 textual features as the selection criterion and adaptively integrates them into the
024 clustering process. Theoretical guidance is provided for this selector. Finally, the
025 cluster assignment is produced through Tri-modal mutual distillation. Extensive
026 experiments on 18 benchmark datasets demonstrate the effectiveness of SATC.
027 The experimental results further verify the rationality of the textual feature selec-
028 tor. The code will be published.

029 030 1 INTRODUCTION 031

032 Image clustering aims to group unlabeled images into semantically meaningful clusters, playing a
033 key role in various real-world applications, such as image retrieval and dataset organization (Huang
034 et al., 2024). A core aspect of image clustering lies in the incorporation and effective use of prior
035 knowledge to reveal the underlying data structure. In the absence of explicit labels, prior knowledge
036 provides essential guidance to the clustering process.

037 Most traditional and deep clustering methods rely on the prior of cluster compactness—assuming
038 that samples belonging to the same category naturally cluster together in the feature space. Clas-
039 sical methods, such as K-Means (Krishna & Murty, 1999), operate on handcrafted features. These
040 shallow features fail to capture complex visual differences. Deep clustering methods overcome this
041 limitation by jointly learning feature representation and cluster assignment in an end-to-end fashion.
042 For instance, DEC (Xie et al., 2016) optimizes a self-supervised objective to refine clusters while
043 optimizing feature representations. Subsequent works (Han et al., 2020; Yu et al., 2020) further en-
044 hance clustering performance by improving representation quality and cluster discrimination. De-
045 spite these advances, such methods remain constrained to internal supervision signals derived solely
046 from the data itself.

047 Recently, inspired by cross-modal foundation models such as CLIP (Radford et al., 2021), re-
048 searchers have begun to explore the use of additional textual guidance as prior knowledge for image
049 clustering. For instance, TAC (Li et al., 2023) proposes leveraging rich external textual knowledge
050 to guide the clustering process, introducing a new direction for image clustering. Built upon CLIP,
051 TAC exploits the natural semantic alignment between image–text pairs to enhance clustering qual-
052 ity. By enabling cross-modal learning, TAC introduces more informative prior knowledge into the
053 clustering framework, illustrating the potential of external textual priors to overcome the limitations
inherent in methods that rely solely on internal supervision signals.

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 However, CLIP is primarily trained to align images and text within a shared semantic space, which may result in compromised representation of spatial structures. The spatial structure, which encodes rich information such as an object’s shape, pose, and part layout, which affects the internal compactness of the image. This information plays a key role in downstream clustering performance. As illustrated in Figure 1, when clustering two Shiba Inu images and one Keeshond image, both visual and textual similarities mistakenly favor aligning a Shiba Inu with the Keeshond rather than correctly grouping the two Shiba Inu images. Compared to visual and textual modalities, spatial modalities more effectively capture intra-class similarity and better distinguish between categories.

Moreover, textual features are often assumed to be universally beneficial across different datasets, without assessing their suitability to specific data. In practice, textual features may not always be suitable for all datasets (Zhu et al., 2025a). As illustrated in Figure 1, textual similarities can sometimes fail to capture category-level distinctions, and indiscriminately incorporating them may introduce noise, ultimately degrading clustering performance. [We evaluated the TAC method across all 18 datasets listed in Table 4 in Appendix A and compared its performance against a text-free baseline. The results \(see Appendix Table 8\) demonstrate that textual feature do not universally improve clustering performance across all datasets.](#)

To address these challenges, we propose a novel image clustering framework, Spatial Structure and Selective Text Jointly Facilitate Image Clustering (SATC). SATC integrates three key components to improve clustering performance. First, it employs a GAT-based spatial encoder to capture spatial relationships among image patches, thereby overcoming the limitations of CLIP in capturing local structure. Second, it introduces a textual feature selector that evaluates the potential clustering compactness of textual features to selectively incorporate the textual feature into the clustering process, reducing the misleading of textual signals. Third, it adopts a Tri-modal mutual distillation strategy to improve cluster discrimination by jointly leveraging visual, spatial, and textual modalities.

The main contributions of the paper are as follows:

- We propose a textual feature selector that evaluates and adaptively incorporates textual information based on its potential clustering compactness, which is used to improve clustering robustness across diverse datasets. Theoretical guidance for this selector is provided.
- We introduce a spatial feature that explicitly encodes relational structure among image patches, and further integrate it with visual features and beneficial textual features through a Tri-modal mutual distillation framework, ultimately generating cluster assignments.
- We conduct extensive experiments on 18 benchmark datasets, demonstrating that our method outperforms state-of-the-art approaches and validating the effectiveness of combining spatial features and beneficial textual guidance for image clustering.

2 RELATED WORK

2.1 IMAGE CLUSTERING

Internal Supervision Signal Methods. Most of the existing methods rely on an internal compactness constraint to guide the learning of clustering-friendly representations. They typically assume that samples from the same category are naturally closer in the feature space and optimize the rep-

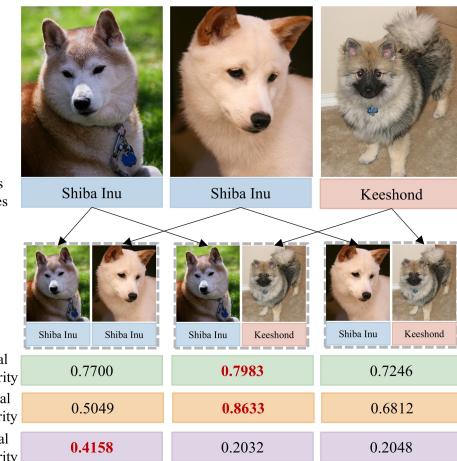


Figure 1: Pairwise cosine similarities among two Shiba Inu images and one Keeshond image from the OxfordPets dataset, evaluated across visual, textual, and spatial modalities. Visual features are extracted using CLIP, textual features are obtained following TAC (Li et al., 2023), and spatial features are derived from our proposed SATC.

108 representations accordingly. Early works such as DEC (Xie et al., 2016) refine cluster assignments
 109 by minimizing the KL divergence between current predictions and a sharpened target distribution.
 110 Methods like IIC (Ji et al., 2019), SCAN (Van Gansbeke et al., 2020), and CC (Li et al., 2021) lever-
 111 age prediction consistency under strong data augmentations to facilitate unsupervised clustering,
 112 whereas approaches such as DeepCluster (Caron et al., 2018) and SPICE (Niu et al., 2022) iter-
 113 atively assign pseudo-labels to supervise feature learning. Graph-based extensions like GATClus-
 114 ter (Niu et al., 2020) introduce graph attention mechanisms to model neighborhood dependencies
 115 and improve clustering quality.

116 **External Textual Guidance Methods.** Recently, some methods rely on external textual prior
 117 knowledge to guide the learning of clustering-friendly representations. They aim to overcome the
 118 limitations of internal supervision by introducing cross-modal supervision from the textual modalities.
 119 SIC (Cai et al., 2023) generates pseudo-labels in the textual feature space, while TAC (Li et al.,
 120 2023) utilizes textual features generated by CLIP as auxiliary supervision to enhance clustering per-
 121 formance. These methods highlight the potential of external textual guidance. However, they often
 122 rely on the assumption that the textual features are consistently reliable.

123 2.2 CLIP-BASED REPRESENTATION LEARNING

124 Contrastive Language-Image Pretraining (CLIP) (Radford et al., 2021) has emerged as a powerful
 125 foundation model by aligning visual and textual features through large-scale contrastive learning.
 126 An increasing number of studies have leveraged CLIP across various downstream tasks. For exam-
 127 ple, WeakCLIP (Zhu et al., 2025b) adapts CLIP to weakly supervised semantic segmentation. In the
 128 context of few-shot learning, MORN (Ni et al., 2024) utilizes CLIP to generate modality-specific
 129 prototypes and integrates them via a cross-modal enhancement module to improve action recog-
 130 nition. Similarly, CLIP-RPN (Guan & Yoshie, 2025) exploits CLIP’s semantic perception to adap-
 131 tively route features for image deraining based on rain-pattern awareness. These diverse applications
 132 demonstrate CLIP’s versatility in leveraging cross-modal representations. However, although CLIP
 133 excels at image-text alignment, it lacks explicit mechanisms for capturing relational dependencies
 134 among image patches—a limitation that constrains its effectiveness for image clustering tasks.

135 To address the limitation, we propose a GAT-based spatial encoder that explicitly captures relational
 136 dependencies among image patches, alongside a textual feature selector that assesses and adaptively
 137 integrates textual modality across different datasets. Building on these components, we develop
 138 SATC—a robust and adaptive image clustering framework that effectively leverages both spatial
 139 structures and textual priors.

141 3 THE PROPOSED METHOD

142 In this section, we describe the proposed SATC, illustrated in Fig. 2. SATC is designed to overcome
 143 the limitation of CLIP while mitigating the impact of unreliable textual feature guidance by incor-
 144 porating (a) visual and spatial feature extraction, (b) compactness-aware textual feature selection,
 145 and (c) Tri-modal mutual distillation.

146 3.1 VISUAL AND SPATIAL FEATURE EXTRACTION

147 For the raw image dataset $\mathcal{D} = \{x_n\}_{n=1}^N$, we leverage the pretrained CLIP model to extract visual
 148 features $z_{\text{visual}} \in \mathbb{R}^d$ for images in dataset \mathcal{D} , where d is the feature dimension predefined by the
 149 CLIP model.

150 Motivated by the work of (Qian et al., 2015), which introduces a space-structure-based repres-
 151 entation to improve clustering for categorical data, we explore extracting spatial structure features to
 152 facilitate improved image clustering performance. [To this end, we apply a Graph Attention Net-
 153 work \(GAT\) \(Veličković et al., 2017\) to patches within each individual image to capture spatial
 154 relationships among different regions of the same image.](#) GAT is a neural network designed for
 155 graph-structured data that updates each node by attending to its neighbors using learnable attention
 156 weights. The attention mechanism in GAT enables adaptive weighting of neighboring patches, al-
 157 lowing it to effectively capture relationships among image patches. [Specifically, for each image,](#)
 158 [we first divide it into patches and extract patch-level feature using a pretrained ResNet-50 \(Radford](#)

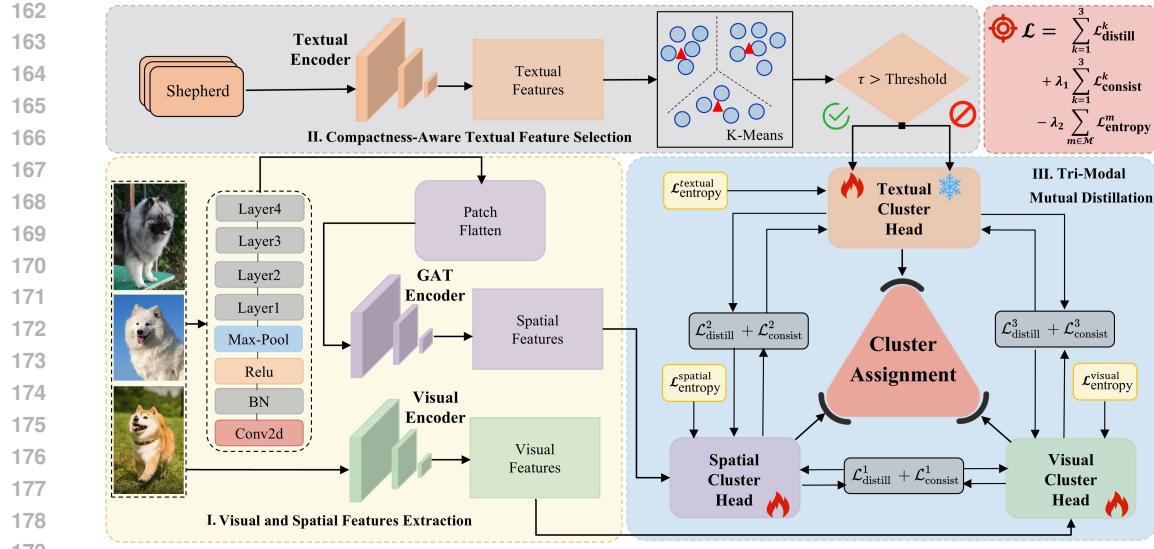


Figure 2: Overview of the proposed SATC framework. The framework consists of three main modules: (a) Visual and Spatial Feature Extraction; (b) Compactness-Aware Textual Feature Selection; (c) Tri-modal mutual distillation. The final output of the image cluster head is used as the clustering result. The pseudocode of SATC is presented in Appendix H Algorithm 1.

with the final pooling and fully connected layers removed. Each patch feature serves as a graph node, and edges are constructed by connecting semantically related patches within the same image. The resulting node features are denoted as $X = [x_1, \dots, x_M]^\top \in \mathbb{R}^{M \times d}$, where M is the number of patches in the image, and the edge set is $E = \{(i, j) \mid i \neq j, i, j \in \{1, \dots, M\}\}$ based on feature similarity.

Then, we feed the node features X along with the edge set E into GAT, which updates each node by aggregating information from its neighbors with attention. The updated representation x'_i for node i can be expressed as

$$x'_i = \sigma \left(\sum_{j \in \mathcal{N}(i)} \frac{\exp(f(x_i, x_j))}{\sum_{k \in \mathcal{N}(i)} \exp(f(x_i, x_k))} x_j \right), \quad (1)$$

where $\mathcal{N}(i)$ denotes the set of neighbors of node i , $\sigma(\cdot)$ is a nonlinear activation function, and $f(x_i, x_j)$ is a learnable function that computes the attention score between nodes i and j in GAT.

After obtaining the refined node features $X' = [x'_1, \dots, x'_M]^\top \in \mathbb{R}^{M \times d}$, we apply global average pooling over the M nodes, obtaining the spatial embeddings $z^{\text{spatial}} \in \mathbb{R}^d$.

The resulting spatial feature z^{spatial} captures relational dependencies among image patches and encodes structural information. This representation is then used as an additional input to the downstream clustering process.

3.2 COMPACTNESS-AWARE TEXTUAL FEATURE SELECTION

3.2.1 TEXTUAL FEATURE EXTRACTION

To generate textual features for clustering, we adopt the text counterpart construction process introduced in TAC (Li et al., 2023). Specifically, we first collect candidate nouns $T_j \in \mathbb{R}^d$ from WordNet (Miller, 1995) using CLIP.

To align textual features with the visual features, we first cluster the visual features z^{visual} into $K_1 = \lfloor N/300 \rfloor$ clusters by K-Means. The resulting cluster centers are denoted $\{\mu_l\}_{l=1}^{K_1}$. To ensure that each semantic center is represented by highly discriminative textual concepts, we identify the top-5 confident nouns $\{\bar{T}_m\}_{m=1}^5$ for each cluster. These are nouns that exhibit the highest posterior probabilities of belonging to the corresponding cluster center. Formally, the posterior probability of

216 assigning a noun T_j to cluster l is computed as:
 217

$$218 \quad p(y = l \mid T_j) = \frac{e^{(\text{sim}(T_j, \mu_l))}}{\sum_{i=1}^{K1} e^{(\text{sim}(T_j, \mu_i))}}, \quad (2)$$

221 where $\text{sim}(\cdot, \cdot)$ denotes the cosine similarity.
 222

223 The textual feature z_i^{textual} corresponding to the visual feature z_i^{visual} (for sample $i \in \{1, \dots, N\}$) is
 224 computed via a soft retrieval over \bar{T}_m :

$$225 \quad z_i^{\text{textual}} = \sum_{j=1}^5 \frac{e^{(\text{sim}(z_i^{\text{visual}}, \bar{T}_j)/\beta_1)}}{\sum_{h=1}^5 e^{(\text{sim}(z_i^{\text{visual}}, \bar{T}_h)/\beta_1)}} \cdot \bar{T}_j. \quad (3)$$

228 where $\beta_1 = 0.005$ is a temperature hyperparameter.
 229

230 3.2.2 TEXTUAL FEATURE SELECTOR

231 To leverage the textual modality that is beneficial for image clustering, we introduce a textual feature
 232 selector based on textual compactness. Inspired by the concept of intra-cluster compactness in
 233 internal supervision signal clustering methods. Theoretically, if features belonging to the same
 234 class are highly concentrated in the vector space, they are more discriminative and can effectively
 235 distinguish different categories. For the textual modality, a lower compactness score indicates that
 236 textual features are highly clustered and may be semantically redundant, whereas a higher score
 237 reflects greater semantic diversity, suggesting that the textual modality can provide more valuable
 238 guidance for clustering. This motivates the use of textual compactness τ as a criterion.
 239

240 We first generate the textual features and assess their compactness τ by clustering the pre-extracted
 241 textual embeddings z^{textual} into K clusters using K-Means, where K denotes the number of classes
 242 in the object dataset. For the j -th cluster, the assigned textual samples form the set D_j , and the
 243 cluster center C_j is computed as:
 244

$$245 \quad C_j = \frac{1}{|D_j|} \sum_{z_j^{\text{textual}} \in D_j} z_j^{\text{textual}}, \quad (4)$$

247 Based on the C_j , the textual compactness metric is defined as the average intra-cluster distance
 248 between the textual features and their corresponding cluster centers:
 249

$$250 \quad \tau = \frac{1}{K} \sum_{j=1}^K \frac{1}{|D_j|} \sum_{z_j^{\text{textual}} \in D_j} \|z_j^{\text{textual}} - C_j\|^2. \quad (5)$$

254 The textual compactness τ is used as a dataset-level prior. Before training the tri-modal distillation
 255 framework, we compute τ on the entire dataset’s textual feature. If τ is higher than a threshold,
 256 we consider the textual modality to be beneficial and include it in the mutual distillation process;
 257 otherwise, we exclude it. In Appendix L, a theoretical guidance for utilizing textual compactness
 258 is given. This adaptive selection ensures that the textual modality contributes positively only when
 259 it provides sufficiently diverse and discriminative information. The effectiveness of this textual
 260 compactness-based selection strategy is validated through extensive experiments in Section 4.3.1.
 261

262 3.3 TRI-MODAL MUTUAL DISTILLATION

263 To effectively integrate tri-modal information for image clustering, we propose a Tri-modal dis-
 264 tillation framework. This framework takes pre-trained visual (z^{visual}), spatial (z^{spatial}), and textual
 265 (z^{textual} ; used only when τ exceeds threshold) features as input. Each modality feature is projected
 266 into a cluster assignment distribution via a dedicated MLP cluster head. Following mutual distil-
 267 lation, spatial and textual feature serve as auxiliary information in the image clustering task, and
 268 therefore we take the cluster assignment distribution from the distilled visual modality cluster head
 269 as the final assignment. A detailed comparison of different modality cluster heads is provided in
 Appendix K.

270 The total training objective integrates all components with balancing hyperparameters λ_1 and λ_2 :
 271

$$272 \quad \mathcal{L} = \sum_{k=1}^3 \mathcal{L}_{\text{distill}}^k + \lambda_1 \sum_{k=1}^3 \mathcal{L}_{\text{consist}}^k - \lambda_2 \sum_{m \in \mathcal{M}} \mathcal{L}_{\text{entropy}}^m. \quad (6)$$

273
 274

275 where $\mathcal{M} = \{\text{visual, textual, spatial}\}$. There are two Cross-modal losses, which are distillation
 276 loss and consistency loss, and one internal loss that is evaluated by entropy loss. The three loss
 277 functions act synergistically, enabling the model to achieve better performance. A detailed analysis
 278 of each loss function, both individually and in combination, is provided in Appendix E. Specifically,
 279 the losses are:

- 280 • $\mathcal{L}_{\text{distill}}^1, \mathcal{L}_{\text{consist}}^1$: the distillation and consistency losses between visual and spatial modalities;
- 281 • $\mathcal{L}_{\text{distill}}^2, \mathcal{L}_{\text{consist}}^2$: the distillation consistency losses between textual and spatial modalities;
- 282 • $\mathcal{L}_{\text{distill}}^3, \mathcal{L}_{\text{consist}}^3$: the distillation and consistency losses between visual and textual modalities;
- 283 • $\mathcal{L}_{\text{entropy}}^{\text{visual}}, \mathcal{L}_{\text{entropy}}^{\text{textual}}, \mathcal{L}_{\text{entropy}}^{\text{spatial}}$: the entropy loss of the visual, textual, spatial modalities.

284
 285

286 To facilitate understanding, we detail the computation of $\mathcal{L}_{\text{distill}}^1, \mathcal{L}_{\text{consist}}^1$, and $\mathcal{L}_{\text{entropy}}^{\text{visual}}$ as representative
 287 examples, the remaining losses are computed analogously.
 288

289 **Mutual Distillation Loss.** Each loss encourages the cluster assignment distributions of two modalities to be aligned. Taking the visual and spatial modalities for example, c_i^{textual} and c_i^{spatial} denote the soft cluster assignments of the i -th sample from the two modalities, the distillation loss is:

$$292 \quad \mathcal{L}_{\text{distill}} = \frac{1}{N} \sum_{i=1}^N (\mathcal{L}_i^{S \rightarrow V} + \mathcal{L}_i^{V \rightarrow S}), \quad (7)$$

293
 294

$$295 \quad \mathcal{L}_i^{S \rightarrow V} = -\log \frac{\exp \left(\text{sim}(c_i^{\text{visual}}, c_i^{\text{spatial}})/T \right)}{\sum_{j=1}^N \exp \left(\text{sim}(c_i^{\text{visual}}, c_j^{\text{spatial}})/T \right)}, \quad (8)$$

296
 297
 298

$$299 \quad \mathcal{L}_i^{V \rightarrow S} = -\log \frac{\exp \left(\text{sim}(c_i^{\text{spatial}}, c_i^{\text{visual}})/T \right)}{\sum_{j=1}^N \exp \left(\text{sim}(c_i^{\text{spatial}}, c_j^{\text{visual}})/T \right)}. \quad (9)$$

300
 301

302 where T is a temperature hyperparameter.
 303

304 **Consistency Loss.** To further enhance alignment between modalities, we introduce a consistency
 305 loss that encourages similar cluster assignments between each anchor sample and its other modality.
 306 Taking the visual and spatial modalities for example, the loss is computed as:

$$307 \quad \mathcal{L}_{\text{consist}}^1 = -\frac{1}{N} \sum_{i=1}^N \log \left((c_i^{\text{visual}})^\top c_i^{\text{spatial}} \right) \quad (10)$$

308
 309

310 **Entropy Loss.** To prevent degenerate solutions and encourage confident cluster assignments, we
 311 compute the entropy of each sample’s cluster assignment distribution and take the average over all
 312 samples. The entropy loss for the visual modality is defined as:
 313

$$314 \quad \mathcal{L}_{\text{entropy}}^{\text{visual}} = -\frac{1}{N} \sum_{i=1}^N \frac{1}{K} \sum_{j=1}^K c_{i,j}^{\text{visual}} \log c_{i,j}^{\text{visual}}, \quad (11)$$

315
 316

317 where $c_{i,j}^{\text{visual}}$ denotes the soft assignment probability of the i -th sample to the j -th cluster in visual
 318 modality, and K is the number of clusters.
 319

320 4 EXPERIMENTAL ANALYSIS

321

322 In this section, we conduct comparative experiments and ablation studies to investigate the effectiveness
 323 and robustness of SATC.

324
325

4.1 EXPERIMENTAL SETTINGS

326 **Datasets and evaluation metric.** The experimental analyses are conducted on 18 diverse bench-
 327 mark datasets. Detailed descriptions about these datasets are provided in Appendix A. All experi-
 328 ments use the original train-test splits. To assess performance, we employ three standard metrics,
 329 which are Accuracy (ACC), Normalized Mutual Information (NMI) (Estévez et al., 2009), and Ad-
 330 justed Rand Index (ARI) (Steinley, 2004), where higher values indicate better clustering perfor-
 331 mance. To ensure statistical reliability, we report the mean results over ten independent runs with
 332 different random seeds.
 333

334 **Implementation Details.** We use CLIP ViT-B/32 model (Dosovitskiy et al., 2020) for visual and
 335 textual feature extraction. We process WordNet nouns (Miller, 1995) using CLIP to generate candi-
 336 date nouns. For clustering, we adopt three modality-specific MLP cluster heads (512-512- K). The
 337 model is trained for 200 epochs with a batch size of 512. We introduce an early stopping mecha-
 338 nism: if the ACC does not improve over 10 iterations, the distillation process is stopped. According
 339 to TAC (Li et al., 2023), we set the temperature for mutual distillation to $T = 0.5$. Based on ex-
 340 tensive experiments, we set the weights for the consistency and entropy losses to $\lambda_1 = 1.0$ and
 341 $\lambda_2 = 5.0$, respectively (Section 4.4), and the compactness threshold to 0.33 (Section 4.3.1).
 342

343 4.2 COMPARISON EXPERIMENT
 344

345 We select 5 of the most widely used benchmark datasets to evaluate SATC, including ImageNet-
 346 10, ImageNet-Dogs, STL-10, CIFAR-10, and CIFAR-100. To assess its effectiveness, we com-
 347 pare SATC with a wide range of classical and state-of-the-art clustering approaches, including K-
 348 Means (Krishna & Murty, 1999), DEC (Xie et al., 2016), DAC (Chang et al., 2017), DCCM (Wu
 349 et al., 2019), DSEC (Chang et al., 2018), GATCluster (Niu et al., 2020), PLCA (Huang et al., 2020),
 350 CC (Li et al., 2021), C3 (Sadeghi et al., 2022), MICE (Tsai et al., 2020), IDFD (Tao et al., 2021),
 351 TCL (Li et al., 2022), CONCUR (Deshmukh et al., 2022), SPICE (Niu et al., 2022), DPAC (Yan
 352 et al., 2024), TAC (Li et al., 2023), [DINOv2-VitB/14 \(Oquab et al., 2023\) + K-Means](#), [DINOv3-VitB/16 \(Siméoni et al., 2025\) + K-Means](#), [Turtle \(Gadetsky et al., 2024\)](#), [GradNorm \(Peng et al., 2025\)](#), and [LFSS \(Li et al., 2025\)](#).
 353

354 Table 1: Clustering performance of different approaches evaluated by Accuracy (ACC%), Normal-
 355 ized Mutual Information (NMI%), and Adjusted Rand Index (ARI%). “–” indicates unavailable
 356 results. The best and second-best results are highlighted in **bold** and underline, respectively.

357 358 359 Method	360 ImageNet-10			361 ImageNet-Dogs			362 STL-10			363 CIFAR-10			364 CIFAR-100		
	365 ACC	366 NMI	367 ARI	368 ACC	369 NMI	370 ARI	371 ACC	372 NMI	373 ARI	374 ACC	375 NMI	376 ARI	377 ACC	378 NMI	379 ARI
K-Means	24.1	11.9	5.7	10.5	5.5	2.0	19.2	12.5	6.1	22.9	8.7	4.9	13.0	8.4	2.8
DEC	38.1	28.2	20.3	19.5	12.2	7.9	35.9	27.6	18.6	30.1	25.0	16.1	18.5	13.6	12.5
DAC	52.7	39.4	30.2	27.5	21.9	11.1	47.0	36.6	25.7	52.2	40.0	30.1	23.8	18.5	8.8
DCCM	71.0	60.8	55.5	38.3	32.1	18.2	48.2	37.6	26.2	62.3	49.6	40.8	32.7	28.5	17.3
DSEC	67.4	58.3	52.2	26.4	23.6	12.4	48.2	40.3	28.6	47.8	43.8	34.0	25.5	21.2	11.0
GATCluster	76.2	60.9	57.2	33.3	32.2	20.0	58.3	44.6	36.3	61.0	47.5	40.2	28.1	21.5	11.6
PICA	87.0	80.2	76.1	35.2	35.2	20.1	71.3	61.1	53.1	69.6	59.1	51.2	33.7	31.0	17.1
CC	89.3	85.9	82.2	42.9	44.5	27.4	85.0	76.4	72.6	79.0	70.5	63.7	42.9	43.1	26.6
C3	94.2	90.5	86.1	43.4	44.8	28.0	–	–	–	83.8	74.8	70.7	45.1	43.4	27.5
MICE	–	–	–	43.9	42.3	28.6	75.2	63.5	57.5	83.5	73.7	69.8	44.0	43.6	28.0
IDFD	95.4	89.8	90.1	59.1	54.6	41.3	75.6	64.3	57.5	81.5	71.1	66.3	42.5	42.6	26.4
TCL	89.5	87.5	83.7	64.4	62.3	51.6	86.8	79.9	75.7	88.7	81.9	78.0	53.1	52.9	35.7
ConCUR	95.8	90.7	90.9	69.5	63.0	53.1	74.9	63.6	56.6	84.6	76.2	71.5	47.9	46.8	30.3
SPICE	96.9	92.7	93.3	67.5	62.7	52.6	92.9	86.0	86.5	91.8	85.0	83.6	58.4	58.3	42.2
DPAC	97.0	92.5	93.5	72.6	66.7	59.8	93.4	86.3	86.1	93.4	87.0	86.6	55.5	54.2	39.3
DINOv2	96.3	93.7	91.6	<u>87.5</u>	<u>88.1</u>	<u>80.4</u>	77.4	81.5	64.0	77.0	81.6	64.5	62.5	69.8	46.1
DINOv3	96.7	93.8	92.5	<u>48.3</u>	<u>48.2</u>	<u>27.3</u>	98.1	<u>96.0</u>	<u>96.0</u>	90.1	<u>85.0</u>	<u>81.1</u>	57.6	<u>70.3</u>	42.6
Turtle	99.3	98.3	98.6	49.6	44.6	32.4	<u>98.4</u>	<u>95.5</u>	<u>96.1</u>	86.6	78.8	75.4	<u>46.4</u>	<u>58.7</u>	34.5
GradNorm	99.4	<u>98.7</u>	<u>98.7</u>	81.2	81.0	70.9	98.3	<u>95.6</u>	<u>96.2</u>	91.1	82.6	81.5	–	–	–
LFSS	93.2	<u>85.6</u>	<u>85.7</u>	69.1	61.7	53.3	<u>86.1</u>	<u>77.1</u>	<u>74.0</u>	<u>93.4</u>	<u>87.2</u>	<u>86.6</u>	–	–	–
TAC	99.5	98.5	98.8	84.4	77.4	72.0	98.3	95.7	<u>96.3</u>	92.2	83.7	83.6	59.0	68.6	42.7
SATC	99.8	99.2	99.4	91.4	89.7	86.7	99.0	97.3	97.9	94.5	88.9	88.3	63.4	70.5	48.1

378 The results are summarized in Table 1. From the table, it is evident that SATC consistently out-
 379 performs other approaches across all datasets. Specifically, SATC achieves the highest accuracy,
 380 attaining an accuracy of 99.8% on ImageNet-10, with improvements over the second-best method
 381 (TAC) of 7.0% on ImageNet-Dogs, and 4.4% on CIFAR-100, among others. In terms of NMI and
 382 ARI, SATC also leads, with substantial gains over competing methods. These results highlight that
 383 the SATC effectively improves the clustering performance through integrating spatial structural in-
 384 formation and selectively incorporates textual features in a synergistic manner to facilitate image
 385 clustering. Moreover, the consistent gains across datasets demonstrate that SATC is robust and
 386 generalizable, effectively handling complex intra-class and inter-class variations while enhancing
 387 clustering accuracy and stabilizing the learning process.

388 4.3 ABLATION STUDIES

390 4.3.1 ANALYSIS ABOUT TEXTUAL FEATURE SELECTOR

392 To validate the effectiveness of our
 393 compactness-aware textual feature se-
 394 lector, we evaluate clustering performance
 395 with and without leveraging the textual
 396 modality across 18 benchmark datasets.

397 As described in Section 3.2.2, the compact-
 398 ness τ measures the intra-cluster concen-
 399 tration of textual features: lower τ indi-
 400 cates that textual features are highly clustered
 401 and potentially semantically redundant, while
 402 higher τ suggests greater semantic diversity,
 403 making the textual modality more informa-
 404 tive for clustering.

405 From Table 2, we observe a clear corre-
 406 lation between the compactness τ and the use-
 407 fulness of textual information: datasets with
 408 lower τ values ($\tau < 0.33$) generally show
 409 minimal or even negative benefits from incor-
 410 porating textual features, while datasets with
 411 higher τ values ($\tau > 0.33$) tend to benefit
 412 significantly. According the experimental re-
 413 sults, the selection of a textual compactness
 414 threshold 0.33 obtains the optimal results on
 415 the 18 datasets. We would like to clarify that
 416 0.33 could be understood as an empirically
 417 discovered rule derived from broad bench-
 418 marking, rather than a hyperparameter tuned on test performance. This value was identified based
 419 on aggregated trends observed across all 18 datasets in our study. Importantly, it was not iteratively
 420 optimized for any specific dataset’s test performance.

421 The results show that the proposed textual feature selector exactly matches the highest ACC values
 422 under both the “Use Text” and “No Text” settings for each dataset, demonstrating that by leverag-
 423 ing the textual compactness τ , SATC can adaptively select textual features that are beneficial for
 424 downstream clustering.

425 4.3.2 ANALYSIS OF SPATIAL MODELING ARCHITECTURES

426 In our framework, spatial feature extraction involves two key components: ResNet-50 and GAT.
 427 ResNet-50 first divides the input image into patches and generates node features for each patch,
 428 providing rich local spatial representations. The GAT then models relational dependencies among
 429 these patches. To evaluate their individual contributions, we conducted ablation studies comparing:
 430 (1) using only ResNet-50 features, (2) replacing GAT with GCN or Transformer.

391 Table 2: The results of the textual feature selector, including compactness τ , the clustering ACC with
 392 and without textual features, and the indicator of the
 393 textual feature selector. **Bold** indicates the best ACC
 394 under the Use text or No text. Gray shading de-
 395 notes the result with the proposed textual feature se-
 396 lector. Dataset indices refer to Appendix A.

Dataset	τ	No Text	Use Text	$\tau > 0.33$
1	0.1083	89.8	60.7	✗
2	0.1241	85.8	59.9	✗
3	0.1476	99.8	99.6	✗
4	0.1541	36.2	34.5	✗
5	0.1787	76.0	74.0	✗
6	0.1892	31.5	26.1	✗
7	0.2027	86.3	83.4	✗
8	0.2247	91.4	87.0	✗
9	0.3084	81.4	72.2	✗
10	0.3222	89.4	84.9	✗
11	0.3226	52.3	49.6	✗
12	0.3349	93.6	94.5	✓
13	0.3623	60.6	67.1	✓
14	0.3780	98.5	99.0	✓
15	0.3839	52.2	65.2	✓
16	0.4155	56.7	63.4	✓
17	0.4361	51.6	60.5	✓
18	0.4822	47.4	52.0	✓

425 The results show that the proposed textual feature selector exactly matches the highest ACC values
 426 under both the “Use Text” and “No Text” settings for each dataset, demonstrating that by leverag-
 427 ing the textual compactness τ , SATC can adaptively select textual features that are beneficial for
 428 downstream clustering.

Table 3 presents our ablation study on spatial components. The first column provides baseline results: the upper section shows K-Means applied to raw CLIP feature, while the lower section incorporates textual feature through mutual distillation. In the second column, we introduce the ResNet-50 node feature, with the lower section further including the textual feature. Columns 3–5 compare different spatial modeling choices.

Comparing the first two columns, we observe that ResNet-50 node features improve clustering accuracy over the raw CLIP feature. In addition, results show that spatial modeling consistently improves performance, with GAT achieving the highest accuracy versus GCN and Transformer. GAT’s advantage may come from its adaptive attention mechanism, which dynamically weights neighboring patches rather than using uniform aggregation (GCN) or fixed receptive fields (Transformer).

The detailed analysis of whether performance improvement comes from the method design or from the use of more powerful pre-trained features is given in the Appendix M.

4.3.3 ANALYSIS ABOUT THE SPATIAL FEATURE

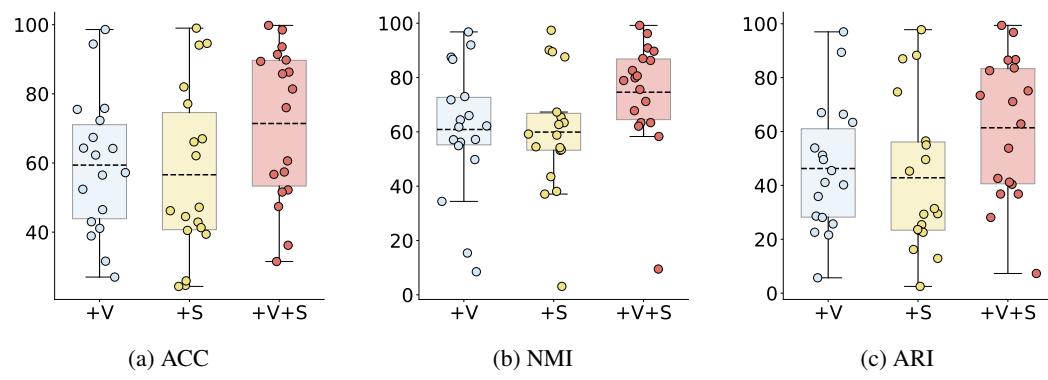


Figure 3: Average clustering performance across 18 datasets using visual features via K-Means (+V), spatial features via K-Means (+S), and their combination via mutual distillation (+V+S).

To verify the effectiveness of spatial features in visual representation, we applied K-Means clustering on two types of features: visual features extracted by CLIP (+V) and spatial features alone (+S). In addition, we performed clustering on a combination of visual and spatial features using mutual distillation (+V+S) as implemented in our SATC framework. Figure 3 shows the average performance across 18 datasets, with the detailed results for each dataset provided in Appendix G.

From the figure, it can be observed that clustering on visual features (+V) and spatial features alone (+S) achieves comparable overall performance across the 18 datasets, indicating that both modalities capture valuable but distinct information. When the two are combined through mutual distillation (+V+S), the average clustering results surpass those of using a single modality. This suggests that visual and spatial features provide complementary signals: the spatial modality offers structural cues that enhance the discriminative power of the visual modality, while the visual modality enriches the semantic meaning of the spatial patterns. These results show that combining visual and spatial features improves clustering quality and robustness.

Table 3: Comparison of spatial modeling (ACC%).

CLIP	✓	✓	✓	✓	✓
ResNet-50		✓	✓	✓	✓
Choice	NONE	NONE	GCN	TRANS	GAT
1	56.5	75.2	89.7	76.2	89.8
2	62.3	78.2	76.1	78.4	85.8
3	98.6	99.6	99.8	99.7	99.8
4	31.6	34.7	38.2	34.7	36.2
5	64.2	72.5	74.3	72.5	76.0
6	27.0	30.7	31.4	31.2	31.5
7	64.3	81.6	85.8	89.5	86.3
8	38.9	84.1	86.7	84.5	91.4
9	67.4	78.3	78.7	73.2	81.4
10	52.4	75.1	86.0	87.6	89.4
11	46.5	48.5	50.2	49.5	57.4
12	92.2	94.0	94.2	94.0	94.5
13	67.6	67.2	69.7	69.6	67.1
14	98.3	98.7	98.9	98.7	99.0
15	62.9	61.4	65.0	64.4	65.2
16	59.0	59.3	59.3	56.5	63.4
17	58.6	55.3	58.9	54.7	60.5
18	46.6	49.3	51.2	52.3	52.0
Avg.	60.8	69.1	71.9	70.4	73.7

486 4.4 PARAMETER ANALYSIS
487

488 To investigate the influence of the balancing hy-
489 perparameters λ_1 and λ_2 in our training ob-
490 jective (Eq. 6), we conduct parameter analy-
491 sis experiments on CIFAR-10 and ImageNet-
492 10. Here, λ_1 controls the weight of the con-
493 sistency loss, and λ_2 regulates the entropy loss.

494 Figures 4 show that SATC maintains stable
495 performance across a wide range of λ_1 and
496 λ_2 . Especially on ImageNet-10, the model
497 is not only highly robust but also consistently
498 achieves over 99.6% accuracy.

499 These results indicate that λ_1 and λ_2 play
500 complementary roles: λ_1 encourages agree-
501 ment across modalities, while λ_2 prevents over-
502 confident unimodal predictions.

503 4.5 TIME ANALYSIS
504

506 All experiments are conducted on a single
507 Nvidia RTX 4060 Ti GPU. Figure 5 presents
508 a detailed comparison of running time and
509 accuracy between SATC and TAC across 18
510 datasets. Overall, SATC achieves higher clus-
511 tering accuracy and lower computation time
512 compared with TAC on most of the datasets,
513 highlighting the efficiency and effectiveness of
514 SATC. The ACC and running time for each
515 dataset are provided in Appendix C.

516 4.6 TOP-30 DISCRIMINATIVE NOUNS
517 FOR FOUR REPRESENTATIVE DATASETS

519 In Appendix I, we list the top-30 discriminative
520 nouns and word cloud visualizations for
521 two datasets where textual feature is utilized
522 (CIFAR-10, STL-10) and two where they are
523 excluded (MNIST, FER2013). The nouns show
524 that for datasets where textual feature is har-
525 miful, the nouns are largely unrelated to the visual
526 content. In contrast, datasets where text is ben-
527 efitful exhibit semantically relevant terms. The word
528 cloud visualizations clearly demonstrate that higher τ datasets exhibit richer lexical diversity and
529 semantic relevance, while lower τ datasets display limited.

530 5 CONCLUSION
531

532 In this work, we propose an image clustering approach that utilizes spatial structure and selective
533 text jointly facilitate image clustering (SATC). SATC employs GAT to effectively model spatial
534 relationships among image patches while adaptively integrating textual features through a novel
535 textual feature selector. The framework further enhances performance through a Tri-modal mutual
536 distillation framework that optimally fuses visual, spatial, and textual modalities. Extensive experi-
537 mental results demonstrate the effectiveness of the proposed SATC and the rationality of the textual
538 feature selector. Future research directions include integrating more diverse prior knowledge and
539 developing advanced fusion strategies to enhance performance.

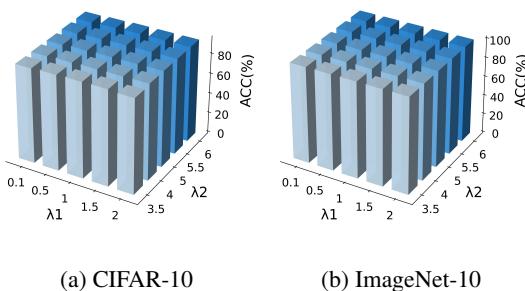


Figure 4: Parameter analysis of λ_1 and λ_2 on CIFAR-10 and ImageNet-10. The 3D bar charts show clustering ACC (%) under different hyper-parameter combinations.

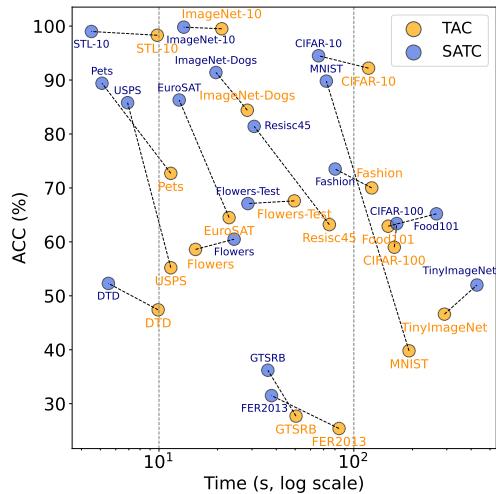


Figure 5: Comparison of ACC and Times for SATC and TAC across 18 datasets.

540 REFERENCES
541

542 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
543 nents with random forests. In *Computer vision–ECCV 2014: 13th European conference, zurich,*
544 *Switzerland, September 6–12, 2014, proceedings, part VI 13*, pp. 446–461. Springer, 2014.

545 Shaotian Cai, Liping Qiu, Xiaojun Chen, Qin Zhang, and Longteng Chen. Semantic-enhanced
546 image clustering. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
547 6869–6878, 2023.

548 Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for un-
549 supervised learning of visual features. In *Proceedings of the European conference on computer*
550 *vision (ECCV)*, pp. 132–149, 2018.

552 Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan. Deep adap-
553 tive image clustering. In *Proceedings of the IEEE international conference on computer vision*,
554 pp. 5879–5887, 2017.

556 Jianlong Chang, Gaofeng Meng, Lingfeng Wang, Shiming Xiang, and Chunhong Pan. Deep self-
557 evolution clustering. *IEEE transactions on pattern analysis and machine intelligence*, 42(4):
558 809–823, 2018.

559 Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
560 mark and state of the art. *Proceedings of the IEEE*, 105(10):1865–1883, 2017.

561

562 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
563 scribing textures in the wild. In *Proceedings of the IEEE conference on computer vision and*
564 *pattern recognition*, pp. 3606–3613, 2014.

565 Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
566 feature learning. In *Proceedings of the fourteenth international conference on artificial intelli-
567 gence and statistics*, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

568

569 Aniket Anand Deshmukh, Jayanth Reddy Regatti, Eren Manavoglu, and Urun Dogan. Represen-
570 tation learning for clustering via building consensus. *Machine Learning*, 111(12):4601–4638,
571 2022.

572 Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
573 with cutout. *arXiv preprint arXiv:1708.04552*, 2017.

574

575 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
576 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
577 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
578 *arXiv:2010.11929*, 2020.

579

580 Pablo A Estévez, Michel Tesmer, Claudio A Perez, and Jacek M Zurada. Normalized mutual infor-
581 mation feature selection. *IEEE Transactions on neural networks*, 20(2):189–201, 2009.

582

583 Artyom Gadetsky, Yulun Jiang, and Maria Brbić. Let go of your labels with unsupervised transfer.
584 In *International Conference on Machine Learning*, 2024.

585

586 Ian J Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron Courville, Mehdi Mirza, Ben Hamner,
587 Will Cukierski, Yichuan Tang, David Thaler, Dong-Hyun Lee, et al. Challenges in representation
588 learning: A report on three machine learning contests. In *International conference on neural*
589 *information processing*, pp. 117–124. Springer, 2013.

590

591 Cong Guan and Osamu Yoshie. Clip-driven rain perception: Adaptive deraining with pattern-aware
592 network routing and mask-guided cross-attention. *arXiv preprint arXiv:2506.01366*, 2025.

593

594 Sungwon Han, Sungwon Park, Sungkyu Park, Sundong Kim, and Meeyoung Cha. Mitigating em-
595 bedding and class assignment mismatch in unsupervised image classification. In *European Con-
596 ference on Computer Vision*, pp. 768–784. Springer, 2020.

594 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
 595 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected
 596 Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.

597

598 Huajuan Huang, Chen Wang, Xiuxi Wei, and Yongquan Zhou. Deep image clustering: A sur-
 599 vey. *Neurocomputing*, 599:128101, 2024. URL <https://api.semanticscholar.org/CorpusID:270692681>.

600

601 Jiabo Huang, Shaogang Gong, and Xiatian Zhu. Deep semantic clustering by partition confidence
 602 maximisation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
 603 nition*, pp. 8849–8858, 2020.

604

605 Xu Ji, Joao F. Henriques, and Andrea Vedaldi. Invariant information clustering for unsupervised
 606 image classification and segmentation. In *Proceedings of the IEEE/CVF International Conference
 607 on Computer Vision (ICCV)*, October 2019.

608

609 K Krishna and M Narasimha Murty. Genetic k-means algorithm. *IEEE Transactions on Systems,
 610 Man, and Cybernetics, Part B (Cybernetics)*, 29(3):433–439, 1999.

611

612 Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

613

614 Yunfan Li, Peng Hu, Zitao Liu, Dezhong Peng, Joey Tianyi Zhou, and Xi Peng. Contrastive cluster-
 615 ing. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp. 8547–8555,
 2021.

616

617 Yunfan Li, Mouxing Yang, Dezhong Peng, Taihao Li, Jiantao Huang, and Xi Peng. Twin contrastive
 618 learning for online clustering. *International Journal of Computer Vision*, 130(9):2205–2221,
 2022.

619

620 Yunfan Li, Peng Hu, Dezhong Peng, Jiancheng Lv, Jianping Fan, and Xi Peng. Image clustering
 621 with external guidance. *arXiv preprint arXiv:2310.11989*, 2023.

622

623 Zhixin Li, Yuheng Jia, Junhui Hou, et al. Learning from sample stability for deep clustering. In
 624 *Forty-second International Conference on Machine Learning*, 2025.

625

626 George A Miller. Wordnet: a lexical database for english. *Communications of the ACM*, 38(11):
 627 39–41, 1995.

628

629 Xinzhe Ni, Yong Liu, Hao Wen, Yatai Ji, Jing Xiao, and Yujiu Yang. Multimodal prototype-
 630 enhanced network for few-shot action recognition. In *Proceedings of the 2024 International
 631 Conference on Multimedia Retrieval*, pp. 1–10, 2024.

632

633 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 634 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*, pp.
 635 722–729. IEEE, 2008.

636

637 Chuang Niu, Jun Zhang, Ge Wang, and Jimin Liang. Gatcluster: Self-supervised gaussian-attention
 638 network for image clustering. In *Computer Vision–ECCV 2020: 16th European Conference,
 639 Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16*, pp. 735–751. Springer, 2020.

640

641 Chuang Niu, Hongming Shan, and Ge Wang. Spice: Semantic pseudo-labeling for image clustering.
 642 *IEEE Transactions on Image Processing*, 31:7264–7278, 2022.

643

644 Maxime Oquab, Timothée Darcret, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 645 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 646 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

647

648 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012
 649 IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012.

650

651 Bo Peng, Jie Lu, Guangquan Zhang, and Zhen Fang. On the provable importance of gradients for
 652 autonomous language-assisted image clustering. In *Proceedings of the IEEE/CVF International
 653 Conference on Computer Vision*, pp. 19805–19815, 2025.

648 Yuhua Qian, Feijiang Li, Jiye Liang, Bing Liu, and Chuangyin Dang. Space structure and clustering
 649 of categorical data. *IEEE transactions on neural networks and learning systems*, 27(10):2047–
 650 2059, 2015.

651

652 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 653 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 654 models from natural language supervision. In *International conference on machine learning*, pp.
 655 8748–8763. PMLR, 2021.

656

657 Mohammadreza Sadeghi, Hadi Hojjati, and Narges Armanfard. C3: Cross-instance guided con-
 658 trastive clustering. *arXiv preprint arXiv:2211.07136*, 2022.

659

660 Swami Sankaranarayanan, Yogesh Balaji, Carlos D Castillo, and Rama Chellappa. Generate to
 661 adapt: Aligning domains using generative adversarial networks. In *Proceedings of the IEEE
 conference on computer vision and pattern recognition*, pp. 8503–8512, 2018.

662

663 Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel. Towards the first adversarially
 664 robust neural network model on mnist. *arXiv preprint arXiv:1805.09190*, 2018.

665

666 Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
 667 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, Francisco Massa, Daniel
 668 Haziza, Luca Wehrstedt, Jianyuan Wang, Timothée Darctet, Théo Moutakanni, Lionel Sentana,
 669 Claire Roberts, Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie, Julien Mairal, Hervé
 670 Jégou, Patrick Labatut, and Piotr Bojanowski. DINoV3, 2025. URL <https://arxiv.org/abs/2508.10104>.

671

672 Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer: Bench-
 673 marking machine learning algorithms for traffic sign recognition. *Neural networks*, 32:323–332,
 674 2012.

675

676 Douglas Steinley. Properties of the hubert-arable adjusted rand index. *Psychological methods*, 9(3):
 386, 2004.

677

678 Yaling Tao, Kentaro Takagi, and Kouta Nakata. Clustering-friendly representation learning via
 679 instance discrimination and feature decorrelation. *arXiv preprint arXiv:2106.00131*, 2021.

680

681 Tsung Wei Tsai, Chongxuan Li, and Jun Zhu. Mice: Mixture of contrastive experts for unsupervised
 682 image clustering. In *International conference on learning representations*, 2020.

683

684 Wouter Van Gansbeke, Simon Vandenbende, Stamatios Georgoulis, Marc Proesmans, and Luc
 685 Van Gool. Scan: Learning to classify images without labels. In *European conference on computer
 vision*, pp. 268–285. Springer, 2020.

686

687 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 688 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

689

690 Jianlong Wu, Keyu Long, Fei Wang, Chen Qian, Cheng Li, Zhouchen Lin, and Hongbin Zha. Deep
 691 comprehensive correlation mining for image clustering. In *Proceedings of the IEEE/CVF inter-
 692 national conference on computer vision*, pp. 8150–8159, 2019.

693

694 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
 695 ing machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

696

697 Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
 698 In *International conference on machine learning*, pp. 478–487. PMLR, 2016.

699

700 Yuxuan Yan, Na Lu, and Ruofan Yan. Deep online probability aggregation clustering. In *European
 701 Conference on Computer Vision*, pp. 37–54. Springer, 2024.

702

703 Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma. Learning diverse and
 704 discriminative representations via the principle of maximal coding rate reduction. *Advances in
 705 neural information processing systems*, 33:9422–9434, 2020.

702 Jing Zhu, Yuhang Zhou, Shengyi Qian, Zhongmou He, Tong Zhao, Neil Shah, and Danai Koutra.
703 Mosaic of modalities: A comprehensive benchmark for multimodal graph learning. In *Proceed-
704 ings of the Computer Vision and Pattern Recognition Conference*, pp. 14215–14224, 2025a.
705
706 Lianghui Zhu, Xinggang Wang, Jiapei Feng, Tianheng Cheng, Yingyue Li, Bo Jiang, Dingwen
707 Zhang, and Junwei Han. Weakclip: Adapting clip for weakly-supervised semantic segmentation.
708 *International Journal of Computer Vision*, 133(3):1085–1105, 2025b.
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

APPENDIX

The appendix is organized as follows:

- A Datasets
- B Clustering Performance Comparison
- C Running Time Results
- D Visualization Analysis
- E Loss Function Analysis
- F Distillation Direction Analysis
- G Spatial Feature Analysis
- H SATC Algorithm Framework
- I [Top-30 Discriminative Nouns for Four Representative Datasets](#)
- J [Comparison of Visual and Visual+Textual Clustering Performance](#)
- K [Comparison of Different Modality Cluster Heads](#)
- L [Theoretical Guidance for Utilizing Textual Compactness](#)
- M [The Contribution of ResNet-50 to Model Performance](#)

A DATASETS

We evaluate our framework on 18 widely used benchmark datasets, covering a diverse range of vision tasks. These include general object classification datasets CIFAR-10 (DeVries & Taylor, 2017), CIFAR-100 (DeVries & Taylor, 2017), STL-10 (Coates et al., 2011), TinyImageNet (Le & Yang, 2015), and ImageNet-10 (Chang et al., 2017); fine-grained object classification datasets Food101 (Bossard et al., 2014), Flowers (Nilsback & Zisserman, 2008), Flowers(Test) (Nilsback & Zisserman, 2008), ImageNet-Dogs (Chang et al., 2017), and OxfordPets (Parkhi et al., 2012); handwritten digit datasets MNIST (Schott et al., 2018) and USPS (Sankaranarayanan et al., 2018); the fashion dataset Fashion-MNIST (Xiao et al., 2017); the texture dataset DTD (Cimpoi et al., 2014); the facial emotion recognition dataset FER2013 (Goodfellow et al., 2013); the satellite image classification datasets EuroSAT (Helber et al., 2019) and RESISC45 (Cheng et al., 2017); and the German Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp et al., 2012). The detailed statistics of each dataset are summarized in Table 4.

Table 4: Summary statistics of datasets, including number of classes, train size, and test size.

	Dataset	Num Classes	Train Size	Test Size
1	MNIST (Schott et al., 2018)	10	60,000	10,000
2	USPS (Sankaranarayanan et al., 2018)	10	7,291	2,007
3	ImageNet-10 (Chang et al., 2017)	10	10,500	2,630
4	GTSRB (Stallkamp et al., 2012)	43	26,640	12,630
5	Fashion (Xiao et al., 2017)	10	60,000	10,000
6	FER2013 (Goodfellow et al., 2013)	7	28,709	7,178
7	EuroSAT (Helber et al., 2019)	10	10,000	5,000
8	ImageNet-Dogs (Chang et al., 2017)	15	15,600	3,900
9	Resisc45 (Cheng et al., 2017)	45	25,200	6,300
10	OxfordPets (Parkhi et al., 2012)	37	3,680	3,669
11	DTD (Cimpoi et al., 2014)	47	3,760	1,880
12	CIFAR-10 (DeVries & Taylor, 2017)	10	50,000	10,000
13	Flowers(Test) (Nilsback & Zisserman, 2008)	102	6,149	2,040
14	STL-10 (Coates et al., 2011)	10	5,000	8,000
15	Food101 (Bossard et al., 2014)	101	75,750	25,250
16	CIFAR-100 (DeVries & Taylor, 2017)	100	50,000	10,000
17	Flowers (Nilsback & Zisserman, 2008)	102	2,040	6,149
18	TinyImageNet (Le & Yang, 2015)	200	100,000	10,000

810
811 B CLUSTERING PERFORMANCE COMPARISON

812 Table 6 presents a comprehensive comparison of clustering performance for ClipKmeans, TAC, and
 813 our proposed SATC across 18 widely used benchmark datasets, measured in terms of ACC (%), NMI
 814 (%), and ARI (%). Overall, SATC consistently achieves the highest performance on the majority
 815 of datasets, with average ACC, NMI, and ARI of 73.7%, 76.3%, and 63.8%, respectively. This
 816 demonstrates that SATC effectively exploits both rich spatial features and selectively incorporated
 817 textual information, producing clusters that are not only more accurate but also more robust and
 818 semantically meaningful, compared with the visual-only ClipKmeans baseline (59.4% / 60.9% /
 819 46.3%) and the text-enhanced TAC method (63.1% / 65.6% / 51.3%).

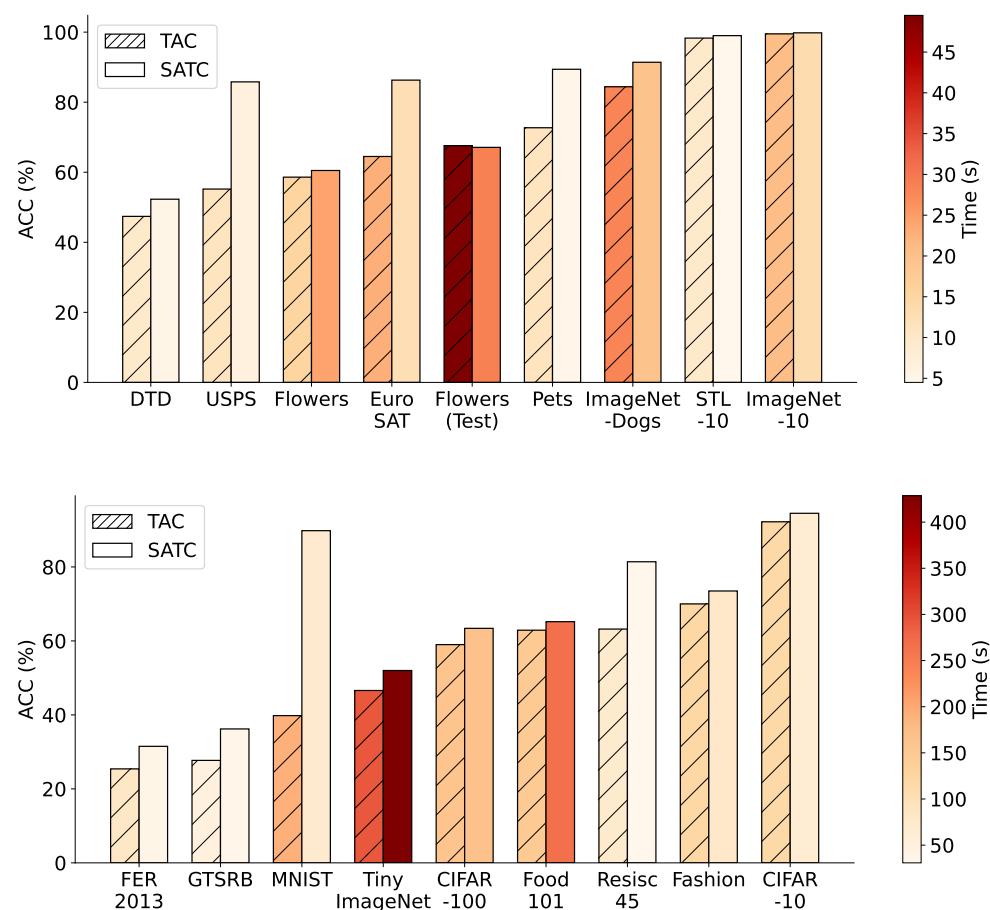
820 The performance gains of SATC are particularly prominent on datasets with complex visual struc-
 821 tures or high intra-class variability. For instance, on MNIST, ACC increases dramatically from
 822 56.5% (ClipKmeans) and 39.8% (TAC) to 89.8% with SATC, while EuroSAT, CIFAR-100, and GT-
 823 SRB also exhibit substantial improvements across all three metrics. These results indicate that the
 824 integration of selective textual cues with spatial and visual representations allows SATC to better
 825 capture underlying class distributions, thereby improving clustering quality in challenging scenarios
 826 where purely visual features may fall short.

827 Although a few datasets, such as Flowers(Test) and Flowers, show marginally higher ACC or NMI
 828 for Clip, SATC still demonstrates superior overall performance across nearly all datasets and met-
 829 rics. The aggregated average values reported in the last row as AVG further confirm the effectiveness
 830 and generalizability of SATC. Taken together, these results validate that SATC not only enhances
 831 clustering accuracy but also produces clusters that are more consistent with semantic labels, high-
 832 lighting its potential as a robust and versatile approach for large-scale image clustering tasks.

833
834 Table 5: Clustering performance (ACC% / NMI% / ARI%) on benchmark datasets.

835 836 Dataset	837 ACC%			838 NMI%			839 ARI%		
	840 Clip	841 TAC	842 SATC	843 Clip	844 TAC	845 SATC	846 Clip	847 TAC	848 SATC
MNIST	56.5	39.8	89.8	54.9	31.5	87.0	35.9	22.3	83.6
USPS	62.3	55.2	85.8	61.8	51.0	80.6	51.2	44.0	73.4
ImageNet-10	98.6	99.5	99.8	96.8	98.5	99.2	97.0	98.8	99.4
GTSRB	31.6	27.7	36.2	49.8	43.7	58.3	21.6	18.9	28.1
Fashion	64.2	70.0	76.0	62.2	66.2	71.2	49.6	56.7	62.8
FER2013	27.0	25.4	31.5	8.5	6.0	9.5	5.7	4.4	7.3
EuroSAT	64.3	64.5	86.3	15.4	53.3	78.9	45.5	50.0	75.1
ImageNet-Dogs	38.9	84.4	91.4	34.4	77.4	89.7	22.6	72.0	86.7
Resisc45	67.4	63.2	81.4	73.0	70.9	82.6	53.9	50.0	71.1
OxfordPets	52.4	72.7	89.4	66.0	79.1	90.9	40.2	61.2	82.6
DTD	46.5	47.4	57.4	56.2	57.3	63.4	28.6	32.1	40.4
CIFAR-10	75.8	92.2	94.5	71.8	83.7	88.9	63.4	83.6	88.3
Flowers(Test)	72.3	67.6	67.1	86.7	84.3	85.9	67.0	63.4	63.2
STL-10	94.4	98.3	99.0	92.0	95.7	97.3	89.4	96.3	97.9
Food101	57.2	62.9	65.2	64.4	69.0	71.1	41.1	47.4	50.7
CIFAR-100	43.0	59.0	63.4	57.1	68.6	70.5	28.1	42.7	48.1
Flowers	75.5	58.6	60.5	87.5	83.2	83.0	66.4	54.1	53.8
TinyImageNet	41.1	46.6	52.0	57.2	61.4	65.1	25.7	31.6	36.8
AVG.	59.4	63.1	73.7	60.9	65.6	76.3	46.3	51.3	63.8

855
856
857
858
859
860
861
862
863

864 C TIME ANALYSIS
865866 In this section, we present the running time and clustering accuracy comparisons between SATC and
867 the TAC baseline across 18 benchmark datasets. Figures 6 illustrate the results.
868869 It can be observed that SATC generally achieves higher ACC while maintaining competitive or even
870 lower running times compared to TAC, demonstrating both efficiency and effectiveness. In partic-
871 ular, SATC shows clear advantages on several challenging datasets such as CIFAR-100, Food101,
872 and TinyImageNet, where the improvements in clustering accuracy are substantial. Moreover, on
873 grayscale datasets such as USPS and MNIST, SATC also achieves remarkably high ACC while of-
874 fering shorter running times compared to TAC. These observations suggest that SATC is not only
875 effective in boosting clustering performance but also scalable to datasets of different sizes and com-
876 plexity levels.
877878 Overall, these results demonstrate that SATC consistently provides higher clustering performance
879 while remaining time-efficient across diverse datasets, highlighting its practical applicability for
large-scale image clustering tasks.
880910 Figure 6: Clustering accuracy (ACC%) and running time comparison across all 18 datasets. For
911 each dataset, the bars represent clustering accuracy (ACC%) for SATC and TAC, while the color
912 intensity corresponds to the running time in seconds.
913
914
915
916
917

918 D VISUALIZATION ANALYSIS

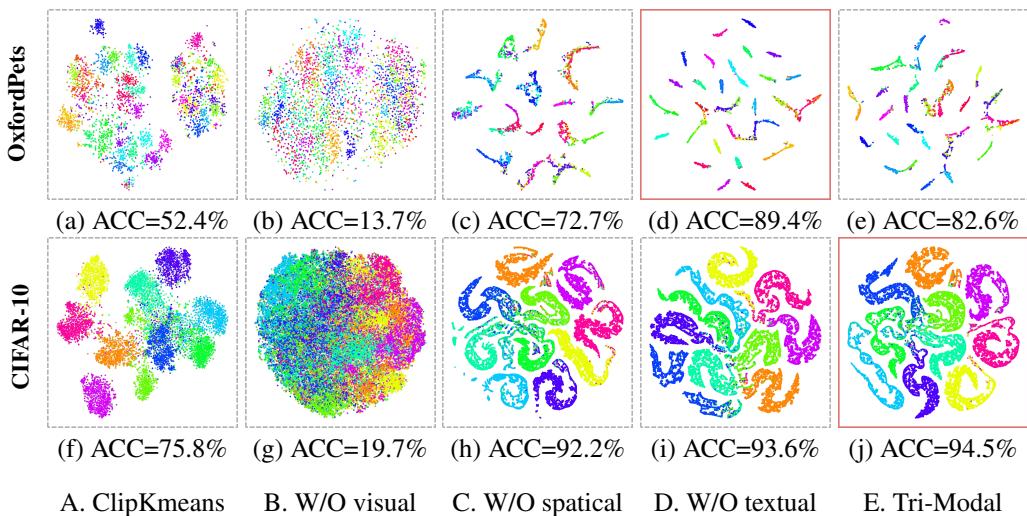
920 To better understand the impact of each modality on clustering performance, we conducted t-SNE
 921 visualizations on OxfordPets and CIFAR-10 datasets. First, we define five different modality
 922 configurations for analysis:

- 924 • ClipKmeans: This method applies K-Means clustering on the raw visual features extracted
 925 by CLIP.
- 926 • W/O Visual: This variant omits the visual modality.
- 927 • W/O Spatial: This variant omits the spatial modality.
- 928 • W/O Textual: This variant omits the textual modality.
- 929 • Tri-Modal: This variant includes all three modalities.

931 The t-SNE plots in Figure 7 provide an intuitive illustration of clustering behavior under different
 932 configurations.

934 Visual features are essential for clustering performance. As shown in the W/O Visual configuration,
 935 without visual features, relying solely on spatial and textual information fails to produce meaningful
 936 cluster assignments, and the data becomes completely inseparable. This clearly demonstrates that
 937 visual features are indispensable, while spatial and textual features serve only as auxiliary cues to
 938 enhance clustering performance. Spatial structure significantly enhances discriminability: comparing
 939 W/O Spatial with Tri-Modal shows that including spatial feature helps form more compact and
 940 well-separated clusters, especially for datasets like OxfordPets, where fine-grained object details
 941 and relative positions are important. Textual information plays a complementary role in refining
 942 clustering results. By comparing W/O Textual with Tri-Modal on the CIFAR-10 dataset, we observe
 943 that beneficial textual information can further enhance image clustering. However, treating all tex-
 944 tual information as equally useful without selective adaptation may harm clustering performance, as
 945 shown on the OxfordPets dataset.

946 SATC model (highlighted with red bounding boxes) achieving the highest ACC values on both
 947 datasets. SATC first demonstrates the ability to accurately discard textual information that may
 948 harm clustering performance. Furthermore, by combining visual, spatial, and beneficial textual
 949 modalities, the model can achieve better clustering performance. These visualizations qualitatively
 950 support our ablation study: each modality contributes uniquely to clustering performance.



972 Figure 7: t-SNE visualizations of clustering results on the OxfordPets (top) and CIFAR-10 (bottom)
 973 under different modality configurations. Red bounding boxes indicate the performance of our pro-
 974 posed method SATC.

972 E LOSS FUNCTION ANALYSIS 973

974 We investigate how individual loss functions ($\mathcal{L}_{\text{distill}}$, $\mathcal{L}_{\text{consist}}$, and $\mathcal{L}_{\text{entropy}}$) and their combinations
975 affect clustering performance across six benchmark datasets. These losses are designed to align
976 cluster assignment distributions across modalities, enforce consistency, and encourage confident
977 assignments, as described in Section 3.3. Their respective contributions and interactions are sum-
978 marized in Figures 9.

979 When applied individually, the three losses in-
980 fluence the clustering in complementary ways:
981 $\mathcal{L}_{\text{distill}}$, which aligns the cluster distributions
982 between modalities, plays a dominant role in
983 transferring spatial structure knowledge and
984 textual information. $\mathcal{L}_{\text{consist}}$ acts as a regular-
985 izer, enforcing local consistency across modal-
986 ties and stabilizing training; while it achieves
987 lower standalone ACC, it improves normal-
988 ized mutual information on datasets with high
989 intra-class variability. $\mathcal{L}_{\text{entropy}}$ prevents de-
990 generate solutions by promoting confident and
991 well-separated cluster assignments, but insuf-
992 ficient alone to capture cross-modal informa-
993 tion. Combining pairs of loss functions im-
994 proves ACC compared to using each loss in-
995 dividually. For example, the combination of
996 $\mathcal{L}_{\text{distill}}$ and $\mathcal{L}_{\text{entropy}}$ increases ACC on MNIST to
997 80.0%, indicating that multi-modal knowledge
998 alignment and entropy maximization work syn-
999 ergistically. Similarly, the pairs of $\mathcal{L}_{\text{consist}}$ with
1000 $\mathcal{L}_{\text{entropy}}$ outperform their respective individual losses, demon-
1001 strating that entropy maximization ef-
1002 ffectively complements consistency. Integrating all three loss functions ($\mathcal{L}_{\text{distill}} + \mathcal{L}_{\text{consist}} + \mathcal{L}_{\text{entropy}}$)
1003 achieves the best ACC across all evaluated datasets.

1004 The NMI and ARI metrics exhibit trends consistent with ACC, showing substantial improvements
1005 in clustering quality. Taken together, these results indicate that the three losses—distillation, con-
1006 sistency, and entropy—interact synergistically, indicating that these three losses interact positively and
1007 complement each other.

MNIST	66.14	26.30	24.83	58.41	80.00	69.63	89.80
USPS	68.59	47.58	33.27	75.44	74.86	75.27	85.80
ImageNet -10	87.13	69.85	43.85	79.85	99.61	99.73	99.80
Fashion	70.59	29.30	24.69	41.93	59.51	75.48	91.40
ImageNet -Dogs	69.01	32.46	14.36	64.84	89.64	80.60	94.50
CIFAR -10	85.02	23.82	24.63	61.81	93.08	85.72	99.00
$\mathcal{L}_{\text{distill}}$	✓			✓	✓		✓
$\mathcal{L}_{\text{consist}}$		✓		✓		✓	✓
$\mathcal{L}_{\text{entropy}}$			✓		✓	✓	✓

Figure 8: ACC with different loss combinations on 6 benchmark datasets.

MNIST	77.11	29.76	13.51	74.77	77.40	72.18	87.00
USPS	78.82	62.05	29.84	84.20	79.42	78.48	80.60
ImageNet -10	94.48	87.99	36.32	92.94	98.78	99.16	99.20
Fashion	70.07	50.80	15.12	61.68	61.59	71.33	89.70
ImageNet -Dogs	74.34	64.31	6.43	81.87	86.30	81.78	88.90
CIFAR -10	80.00	44.74	10.63	70.90	85.40	82.57	97.30
$\mathcal{L}_{\text{distill}}$	✓			✓	✓		✓
$\mathcal{L}_{\text{consist}}$		✓		✓		✓	✓
$\mathcal{L}_{\text{entropy}}$			✓		✓	✓	✓

(a) NMI

MNIST	53.28	14.60	7.13	43.53	69.03	60.45	83.60
USPS	64.86	35.63	19.38	66.65	70.41	68.28	73.40
ImageNet -10	86.74	66.80	25.77	80.73	99.13	99.36	99.40
Fashion	54.98	26.19	8.22	29.00	47.63	63.03	86.70
ImageNet -Dogs	43.33	31.52	2.74	58.39	83.05	72.97	88.30
CIFAR -10	72.50	18.14	5.95	44.04	85.44	78.37	97.90
$\mathcal{L}_{\text{distill}}$	✓			✓	✓		✓
$\mathcal{L}_{\text{consist}}$		✓		✓		✓	✓
$\mathcal{L}_{\text{entropy}}$			✓		✓	✓	✓

(b) ARI

Figure 9: NMI and ARI with different loss combinations on 6 benchmark datasets.

1026 F DISTILLATION DIRECTION ANALYSIS

1028 Table 6 reports the clustering performance of SATC under different distillation directions across
 1029 18 benchmark datasets. $S \rightarrow V$ denotes distillation from the spatial modality to the visual modality,
 1030 $V \rightarrow S$ represents distillation from the visual modality to the spatial modality, and $S \leftrightarrow V$ corresponds
 1031 to mutual distillation between the two.

1032 Overall, mutual distillation consistently achieves the best results, yielding the highest average scores
 1033 of 73.7% ACC, 76.3% NMI, and 63.8% ARI, and outperforming either single-direction alternative
 1034 on most datasets such as MNIST, USPS, Fashion, and CIFAR-100. This superiority can be attributed
 1035 to the fact that spatial and visual representations encode complementary forms of structural and
 1036 semantic information. The bidirectional exchange of supervisory signals enables both modalities
 1037 to refine their feature spaces in a coordinated manner, leading to clusters that are not only more
 1038 compact but also better aligned with semantic categories.

1039 When restricted to single-direction distillation, the performance becomes more dataset-dependent.
 1040 $S \rightarrow V$ often provides advantages on datasets such as CIFAR-10, Flowers, and TinyImageNet, where
 1041 the spatial clustering head captures low-level structural cues that help the visual modality avoid col-
 1042 lapsing into overly coarse groupings. In contrast, $V \rightarrow S$ achieves stronger results on more complex
 1043 and visually diverse datasets such as ImageNet-Dogs, EuroSAT, and OxfordPets, where the visual
 1044 modality offers richer semantic guidance that stabilizes the spatial clustering head. Despite these
 1045 complementary strengths, both single-direction strategies lack the reciprocal feedback that allows
 1046 each modality to iteratively correct the other's biases.

1047 The general trend across ACC, NMI, and ARI is therefore consistent: leveraging bidirectional dis-
 1048 tillation between spatial and visual modalities provides the most robust clustering performance. By
 1049 jointly exploiting the semantic richness of visual features and the structural discrimination of spatial
 1050 features, mutual distillation enables SATC to learn more discriminative and semantically consistent
 1051 clusters, especially in challenging datasets where single-direction supervision proves insufficient.

1052 Table 6: The Clustering performance (ACC% / NMI% / ARI%) of SATC with different distillation
 1053 directions on 18 benchmark datasets. \underline{S} :Use the spatial clustering head generate the final cluster
 1054 assignments.

1056 1057 1058 Dataset	1059 ACC%			1060 NMI%			1061 ARI%		
	1062 $S \rightarrow V$	1063 $V \rightarrow S$	1064 $S \leftrightarrow V$	1065 $S \rightarrow V$	1066 $V \rightarrow S$	1067 $S \leftrightarrow V$	1068 $S \rightarrow V$	1069 $V \rightarrow S$	1070 $S \leftrightarrow V$
MNIST	78.8	88.4	89.8	77.9	85.2	87.0	68.3	81.7	83.6
USPS	78.4	79.7	85.8	80.9	77.8	80.6	73.6	68.2	73.4
ImageNet-10	99.8	99.7	99.8	99.3	99.2	99.2	99.5	99.4	99.4
GTSRB	37.0	30.6	36.2	58.6	53.4	58.3	29.3	24.5	28.1
Fashion	72.0	68.8	76.0	70.9	66.5	71.2	61.5	56.4	62.8
Fre2013	29.2	28.7	31.5	8.6	7.5	9.5	6.1	5.6	7.3
EuroSAT	80.8	88.7	86.3	76.2	81.0	78.9	71.1	78.4	75.1
ImageNet-Dogs	83.3	91.8	91.4	82.4	90.4	89.7	74.7	87.5	86.7
Resisc45	79.7	71.6	81.4	81.7	77.0	82.6	73.6	60.3	71.1
OxfordPets	80.9	87.7	89.4	86.2	90.7	90.9	72.3	82.1	82.6
DTD	52.5	52.1	57.4	62.0	61.5	63.4	37.2	37.0	40.4
CIFAR-10	95.0	93.8	94.5	88.7	86.6	88.9	89.3	87.0	88.3
Flowers(test)	68.3	66.6	67.1	85.9	85.4	85.9	63.4	61.7	63.2
STL-10	98.9	98.8	99.0	97.1	96.9	97.3	97.5	97.3	97.9
food101	65.2	63.6	65.2	69.7	70.4	71.1	49.8	49.1	50.7
CIFAR-100	59.0	56.4	63.4	69.0	67.3	70.5	45.0	42.5	48.1
Flowers	73.2	72.3	60.5	87.2	87.0	83.0	64.7	64.4	53.8
TinyImageNet	53.5	51.8	52.0	65.9	64.9	65.1	38.4	36.9	36.8
AVG.	71.4	71.7	73.7	74.9	74.9	76.3	62.0	62.2	63.8

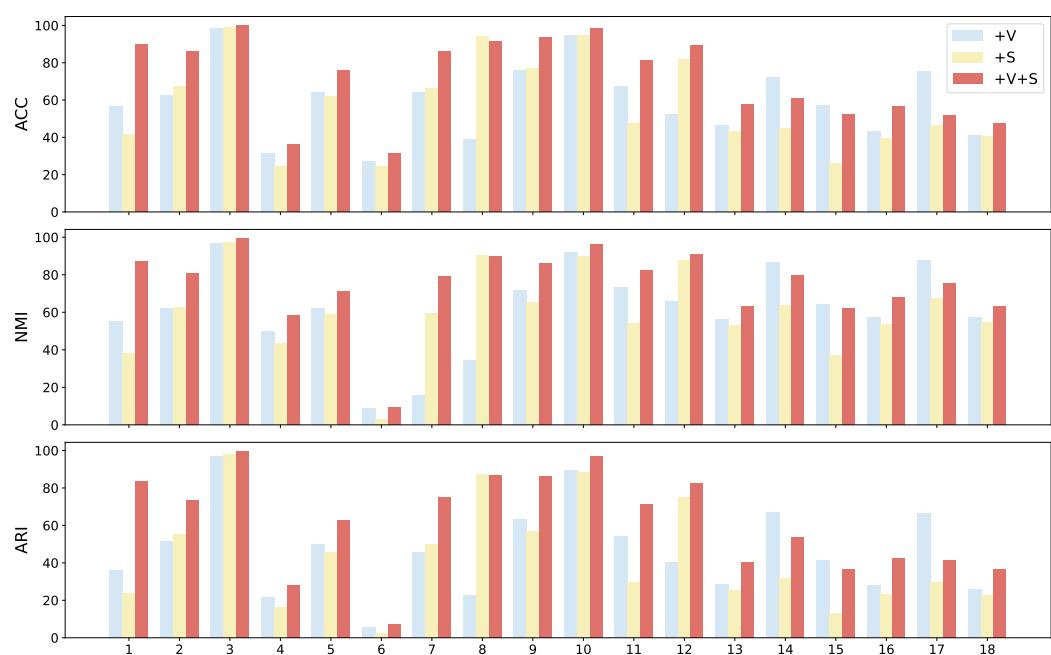
1076
 1077
 1078
 1079

1080 **G SPATIAL FEATURE ANALYSIS**
1081

1082 To better understand the role of spatial feature in image clustering, we present the detailed clustering
1083 performance on each dataset. From the figure 10, it can be observed that clustering using visual
1084 features (+V) and spatial features alone (+S) achieves comparable overall performance across the 18
1085 datasets, indicating that both modalities capture valuable but distinct information. Considering the
1086 seven representative datasets, they can be roughly grouped into three categories: handwritten digits
1087 (MNIST, USPS), natural object images (OxfordPets, CIFAR-10, TinyImageNet), and aerial/remote-
1088 sensing images (EuroSAT, Resisc45). For the handwritten digits, ACC is 56.5% (+V) vs 41.3% (+S)
1089 on MNIST and 62.3% vs. 67.0% on USPS, showing that spatial features already capture much of the
1090 structural information. For natural object images, ACC is 52.4% vs. 82.0% on OxfordPets, 75.8%
1091 vs. 77.1% on CIFAR-10, and 41.1% vs. 40.5% on TinyImageNet, indicating that visual features are
1092 generally stronger but spatial features remain complementary. For aerial/remote-sensing images,
1093 ACC is 64.3% vs. 66.1% on EuroSAT and 67.4% vs. 47.2% on Resisc45, suggesting that both
1094 modalities contribute meaningful structural and semantic cues.

1095 When the two modalities are combined through mutual distillation (+V+S), the clustering performance
1096 consistently surpasses that of using a single modality. For instance, ACC increases to 89.8%
1097 (+V+S) on MNIST, 85.8% on USPS, 89.4% on OxfordPets, 93.6% on CIFAR-10, 47.4% on Tiny-
1098 ImageNet, 86.3% on EuroSAT, and 81.4% on Resisc45. This demonstrates that visual and spatial
1099 features provide complementary signals: the spatial modality enhances structural discrimination,
1100 while the visual modality enriches semantic understanding of spatial patterns.

1101 Overall, these results empirically demonstrate that integrating visual and spatial modalities through
1102 mutual distillation significantly improves clustering quality across diverse datasets. The combined
1103 representation not only achieves higher accuracy but also enhances the robustness of the image
1104 modality in downstream clustering tasks, highlighting the benefits of leveraging both visual and
1105 spatial information.



1127 Figure 10: Comparison of clustering performance using three setting: raw visual features with K-
1128 Means (+V), spatial features with K-Means(+S), and a combination of visual and spatial features
1129 with mutual distillation (+V+S).
1130

1134 H SATC ALGORITHM FRAMEWORK
11351136 **Algorithm 1** SATC for Image Clustering
11371138 **Notations:**

1139 • N : number of samples
 1140 • d : feature dimension predefined by CLIP
 1141 • K : number of class in the object dataset
 1142 • τ : Textual compactness
 1143 • ACC: clustering accuracy
 1144 • p : patience counter for early stopping

1145 **Input:** Target raw image dataset $\mathcal{D} = \{x_n\}_{n=1}^N$.

1146 **Process:**

1147 1: Extract visual features z^{visual} from \mathcal{D} using CLIP.
 1148 2: Extract high-level features from \mathcal{D} using a pretrained ResNet-50.
 1149 3: Flatten high-level features to form node features $X \in \mathbb{R}^{N \times d}$.
 1150 4: Feed X and edge set E into GAT to obtain updated node features X' .
 1151 5: Apply global average pooling over X' to get spatial embedding $z^{\text{spatial}} \in \mathbb{R}^d$.
 1152 6: Extract textual features z^{textual} from \mathcal{D} using Eq. 3.
 1153 7: Compute textual compactness from z^{textual} using Eq. 5.
 1154 8: Freeze the pre-trained features(z^{visual} , z^{spatial} , z^{textual}).
 1155 9: **if** $\tau > 0.33$ (Computed in Table 2) **then**
 1156 10: Enable textual feature z^{textual} .
 1157 11: **else**
 1158 12: Do not use z^{textual} .
 1159 13: **end if**
 1160 14: **for** epoch = 1 to 200 **do**
 1161 15: Project z^{visual} , z^{spatial} (and z^{textual} if enabled) into cluster assignment distributions
 1162 c^{visual} , c^{spatial} , c^{textual} via MLP cluster heads.
 1163 16: Compute total loss \mathcal{L} using Eq. 6.
 1164 17: Update cluster heads via backpropagation.
 1165 18: Evaluate ACC.
 1166 19: **if** ACC improves **then**
 1167 20: Update best ACC and reset $p = 0$.
 1168 21: **else**
 1169 22: Increment $p \leftarrow p + 1$.
 1170 23: **end if**
 1171 24: **if** $p \geq 10$ **then**
 1172 25: **Break**
 1173 26: **end if**
 1174 27: **end for**
 1175 28: **Output:** Final visual cluster head cluster assignments C

1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

I TOP-30 DISCRIMINATIVE NOUNS FOR FOUR REPRESENTATIVE DATASETS

To better understand why textual feature help or hurt clustering performance across datasets, we analyze the discriminative nouns extracted from the textual feature. Specifically, for two datasets where textual feature is utilized (CIFAR-10, STL-10) and two where it is excluded (MNIST, FER2013), we compute image–noun softmax retrieval weights, rank nouns by their aggregated weights after deduplication, and take the top-30 nouns to form the discriminative noun set and corresponding word cloud.

Table 7 presents the top-30 discriminative nouns selected for different datasets. For datasets where text was beneficial, such as CIFAR-10 (a dataset of natural object images) and STL-10 (a dataset of natural object images designed for unsupervised learning), the selected nouns correspond closely to actual object categories, indicating high textual discriminability. The word cloud visualizations in Figure 11 further illustrate these patterns. In CIFAR-10 and STL-10, the nouns align well with object categories, and the word clouds are dense, reflecting high semantic diversity and strong textual discriminability. In contrast, for datasets where text was harmful, such as MNIST (handwritten digit images) and FER2013 (facial expression images), the nouns are mostly unrelated to the visual content, and the corresponding word clouds are sparse, indicating poor textual diversity and weak textual discriminability.

Notably, the four word clouds are arranged in order of increasing τ value; higher τ corresponds to more diverse and complementary textual clusters, which is visually reflected in the richer, denser word clouds of CIFAR-10 and STL-10. This supports our motivation: datasets with higher τ tend to have textual feature that contribute more meaningfully to clustering performance.

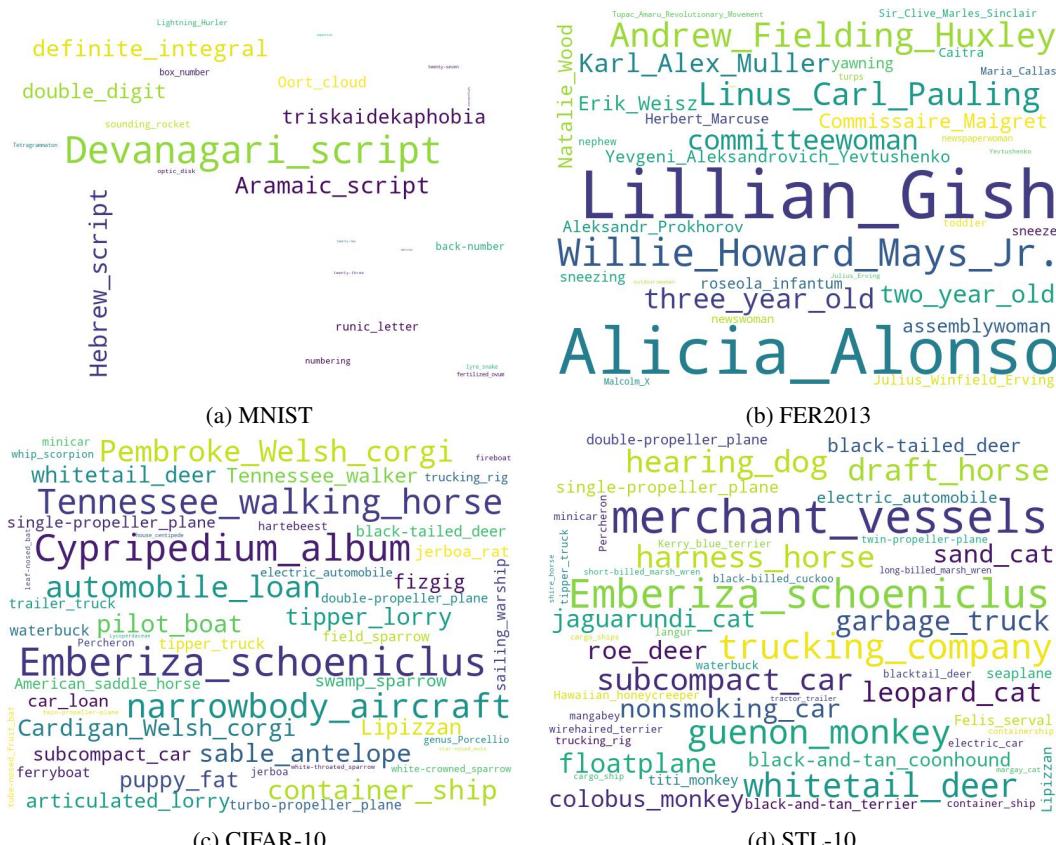


Figure 11: Word cloud visualizations of discriminative nouns for four datasets. The size of each word corresponds to its occurrence frequency in the textual features.

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254

1255 Table 7: Top-30 selected discriminative nouns for different datasets, categorized by the effect of text
 1256 information.

1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

Text Effect	Dataset	Selected Discriminative Nouns
Beneficial	CIFAR-10	Emberiza schoeniclus, Cypripedium album, Tennessee walking horse, narrowbody aircraft, automobile loan, Pembroke Welsh corgi, container ship, sable antelope, pilot boat, Cardigan Welsh corgi, tipper lorry, whitetail deer, puppy fat, Lipizzan, articulated lorry, Tennessee walker, fizgig, subcompact car, swamp sparrow, car loan, single-propeller plane, jerboa rat, American saddle horse, tipper truck, black-tailed deer, waterbuck, sailing warship, trailer truck, ferryboat, field sparrow
Beneficial	STL-10	merchant vessels, Emberiza schoeniclus, trucking company, guenon monkey, whitetail deer, harness horse, hearing dog, draft horse, subcompact car, garbage truck, leopard cat, floatplane, nonsmoking car, sand cat, roe deer, jaguarundi cat, colobus monkey, black-and-tan coonhound, black-tailed deer, single-propeller plane, electric automobile, double-propeller plane, black-and-tan terrier, seaplane, Felis serval, Lipizzan, titi monkey, Hawaiian honeycreeper, waterbuck, trucking rig
Harmful	MNIST	Devanagari script, Hebrew script, Aramaic script, definite integral, double digit, triskaidekaphobia, Oort cloud, runic letter, back-number, sounding rocket, box number, numbering, Lightning Hurler, optic disk, fertilized ovum, lyre snake, Tetragrammaton, twenty-seven, twenty-three, cornetfish, equation, twenty-two, operculum, Edward Lear, absorption spectrum, endodontia, needlefish, Hawaiian honeycreeper, retinoblastoma, pied-billed grebe, diamine
Harmful	FER2013	Lillian Gish, Alicia Alonso, Willie Howard Mays Jr., Andrew Fielding Huxley, Linus Carl Pauling, committeewoman, three year old, Karl Alex Muller, two year old, Commissaire Maigret, Natalie Wood, Erik Weisz, assemblywoman, Yevgeni Aleksandrovich Yevtushenko, Aleksandr Prokhorov, yawning, roseola infantum, sneezing, Herbert Marcuse, Julius Winfield Erving, sneeze, Caitra, newswoman, Maria Callas, nephew, toddler, Sir Clive Marles Sinclair, Malcolm X, newspaperwoman, turps, Tupac Amaru Revolutionary Movement

1296 **J COMPARISON OF VISUAL AND VISUAL+TEXTUAL CLUSTERING**
 1297 **PERFORMANCE**

1300 To investigate how textual features affect clustering, we compare K-Means performance on visual
 1301 features alone (+V) versus visual features distilled with textual features (+V+T). Visual feature is
 1302 extracted using CLIP ViT-B/32, and textual feature is obtained following TAC (Li et al., 2023). This
 1303 setup enables us to evaluate when textual information enhances or hinders clustering.

1304 Table 8 provides a detailed comparison of clustering performance using only visual features
 1305 (+V) versus combining visual and textual features (+V+T). The results are divided into two
 1306 groups: datasets where textual features degrade performance (top section) and datasets where
 1307 they provide significant improvements (bottom section).

1312 For datasets like MNIST, USPS, GTSRB,
 1313 FER2013, and Flowers, incorporating textual
 1314 features actually reduces clustering accuracy,
 1315 indicating that the textual descriptions either
 1316 lack discriminative power or introduce semantic
 1317 noise that misguides the clustering process.
 1318 Conversely, for datasets such as ImageNet-
 1319 Dogs, CIFAR-10, STL-10, and OxfordPets, the
 1320 addition of textual feature leads to substantial
 1321 performance gains, demonstrating the value of
 1322 multimodal integration when textual feature is
 1323 semantically meaningful and well-aligned with
 1324 visual content.

1325 Overall, while the average performance across
 1326 all 18 datasets shows a modest improvement
 1327 with the textual feature (59.4% to 63.1%), the
 1328 dataset-specific variations highlight the impor-
 1329 tance of selectively incorporating textual guid-
 1330 ance based on dataset characteristics.

1332 **K COMPARISON OF DIFFERENT MODALITY CLUSTER HEADS**

1334 To evaluate the impact of different modality-specific cluster heads on the final clustering assign-
 1335 ment. We compare three cluster heads: Visual Head (V-Head), Spatial Head (S-Head), and Textual
 1336 Head (T-Head). For datasets where the textual feature was not selected ($\tau \leq 0.33$), the T-Head is
 1337 unavailable (N/A). All cluster heads are trained via our mutual distillation framework.

1339 Table 9 compares the clustering performance when using different modality cluster heads for final
 1340 assignment: Visual Head (V-Head), Spatial Head (S-Head), and Textual Head (T-Head). The results
 1341 robustly validate our design decision to use the distilled visual cluster head as the primary output.
 1342 While the spatial and textual cluster heads can occasionally achieve comparable or even marginally
 1343 better results on certain individual datasets (e.g., S-Head on GTSRB and TinyImageNet, T-Head on
 1344 Flowers), the distilled visual cluster head demonstrates superior and more consistent performance on
 1345 average across all benchmark datasets. This outcome confirms that the rich semantic representations
 1346 from the CLIP visual encoder provide the most reliable foundation for final clustering. The spatial
 1347 features serve as a valuable complementary source of structural information during the mutual dis-
 1348 tillation process, and the textual features, when beneficial ($\tau > 0.33$), act effectively as a "semantic
 1349 teacher." However, the visual modality ultimately proves to be the most robust anchor for producing
 the final cluster assignments, achieving the highest average performance across all three evaluation
 metrics.

1304 Table 8: Clustering accuracy (ACC %) with visual
 1305 (+V) and visual+textual (+V+T) features.

Dataset	+V	+V+T
MNIST	56.5	39.8
USPS	62.3	55.2
GTSRB	31.6	27.7
FER2013	27.0	25.4
Resisc45	67.4	63.2
Flowers(Test)	72.3	67.6
Flowers	75.5	58.6
ImageNet-10	98.6	99.5
Fashion	64.2	70.0
EuroSAT	64.3	64.5
ImageNet-Dogs	38.9	84.4
CIFAR-10	75.8	92.2
OxfordPets	52.4	72.7
DTD	46.5	47.4
STL-10	94.4	98.3
Food101	57.2	62.9
CIFAR-100	43.0	59.0
TinyImageNet	41.1	46.6
AVG.	59.4	63.1

1350 Table 9: Clustering performance using different modality cluster heads (ACC% / NMI% / ARI%).
 1351 For datasets where textual feature were not selected ($\tau \leq 0.33$), the T-Head was not available (N/A).
 1352 The best results for each dataset are in **Bold**.

Dataset	V-Head			S-Head			T-Head		
	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI
MNIST	89.8	87.0	83.6	89.5	86.7	83.3	N/A	N/A	N/A
USPS	85.8	80.6	73.4	77.9	81.3	72.0	N/A	N/A	N/A
ImageNet-10	99.8	99.2	99.4	99.8	99.2	99.4	N/A	N/A	N/A
GTSRB	36.2	58.3	28.1	38.7	60.4	31.5	N/A	N/A	N/A
Fashion	76.0	71.2	62.8	72.4	70.4	61.3	N/A	N/A	N/A
FER2013	31.5	9.5	7.3	27.7	7.6	5.3	N/A	N/A	N/A
EuroSAT	86.3	78.9	75.1	77.2	73.4	66.9	N/A	N/A	N/A
ImageNet-Dogs	91.4	89.7	86.7	89.4	87.1	83.0	N/A	N/A	N/A
Resisc45	81.4	82.6	71.1	76.9	80.0	66.4	N/A	N/A	N/A
OxfordPets	89.4	90.9	82.6	82.9	86.2	73.4	N/A	N/A	N/A
DTD	57.4	63.4	40.4	50.3	61.0	35.9	N/A	N/A	N/A
CIFAR-10	94.5	88.9	88.3	94.4	87.6	88.1	90.2	83.2	82.9
Flowers(Test)	67.1	85.9	63.2	68.1	86.1	61.4	68.6	85.4	63.0
STL-10	99.0	97.3	97.9	98.9	97.1	97.6	97.6	94.3	94.8
Food101	65.2	71.1	50.7	60.9	65.7	45.1	62.6	68.2	46.7
CIFAR-100	63.4	70.5	48.1	56.4	68.8	43.3	54.1	64.9	39.1
Flowers	60.5	83.0	53.8	66.0	85.8	59.1	66.4	85.4	59.2
TinyImageNet	52.0	65.1	36.8	53.2	65.8	37.8	50.3	61.8	33.1
AVG.	73.7	76.3	63.8	71.1	75.0	61.7	-	-	-

L THEORETICAL GUIDANCE FOR UTILIZING TEXTUAL COMPACTNESS

Theorem 1 Let V (visual feature), T (textual feature), and $Y \in \{1, 2, \dots, K\}$ (classification label, $K \geq 2$) be random variables. Denote the Bayes classification error rate based on (V, T) as $R_{V,T}^* = \min_g \mathbb{P}(g(V, T) \neq Y)$, where the minimum is taken over all measurable functions g . Define the function

$$f(p) = H_{\text{bin}}(p) + p \log(K-1), \quad p \in [0, 1-1/K],$$

where $H_{\text{bin}}(p) = -p \log p - (1-p) \log(1-p)$ is the binary entropy (logarithms in base 2). Then,

$$R_{V,T}^* \geq f^{-1}(H(Y|V) - H(T|V) + H(T|V, Y)),$$

where f^{-1} is the inverse of f on $[0, 1-1/K]$, which is strictly increasing.

Proof 1 The K -class Fano inequality states that

$$H(Y|V, T) \leq H_{\text{bin}}(R_{V,T}^*) + R_{V,T}^* \log(K-1) = f(R_{V,T}^*).$$

From the definition of conditional mutual information,

$$I(T; Y|V) = H(Y|V) - H(Y|V, T),$$

and also

$$I(T; Y|V) = H(T|V) - H(T|V, Y).$$

Equating the two expressions yields

$$H(Y|V) - H(Y|V, T) = H(T|V) - H(T|V, Y),$$

which rearranges to

$$H(Y|V, T) = H(Y|V) - H(T|V) + H(T|V, Y).$$

Substituting into the Fano inequality gives

$$H(Y|V) - H(T|V) + H(T|V, Y) \leq f(R_{V,T}^*).$$

1404 The derivative of f is
 1405

$$1406 \quad f'(p) = \log \frac{1-p}{p} + \log(K-1) = \log \left((K-1) \cdot \frac{1-p}{p} \right).$$

1408 For $p \in (0, 1 - 1/K)$, we have $(1-p)/p > 1/(K-1)$, so $f'(p) > 0$. At the endpoints, f is
 1409 continuous and strictly increasing on $[0, 1 - 1/K]$. Since $R_{V,T}^* \in [0, 1 - 1/K]$, the inverse f^{-1}
 1410 exists and is strictly increasing on the range of f . Applying f^{-1} to both sides of the inequality
 1411 completes the proof.
 1412

1413 This theorem provides an information-theoretic lower bound on the Bayes error rate in multimodal
 1414 classification tasks. In particular, when the textual feature T exhibits higher uncertainty (high τ
 1415 value) given the visual feature V (i.e., a larger $H(T|V)$), the theoretical lower bound of the Bayes
 1416 error rate $R_{V,T}^*$ becomes smaller, indicating a higher potential upper bound for classification perfor-
 1417 mance.
 1418

1419 **M EVALUATING THE CONTRIBUTION OF RESNET-50 TO MODEL
 1420 PERFORMANCE**

1422 CLIP could extract both image-level and patch-level features. However, since it is primarily opti-
 1423 mized for image-text alignment in a shared semantic space, its representations tend to emphasize
 1424 global semantics at the potential cost of localized spatial details. To address this, we introduce spa-
 1425 tial features in which ResNet-50 extracts local spatial information from image patches, and GAT
 1426 further captures relational dependencies among these patches.
 1427

1428 In order to further analyze whether the performance improvement stems from the method design
 1429 or from leveraging more powerful pre-trained features, we conducted a comprehensive ablation
 1430 study comparing the following configurations: (1) ResNet-50 only: K-Means on features from the
 1431 ImageNet-pretrained ResNet-50. (2) CLIP only: K-Means on CLIP visual features (our baseline).
 1432 (3) Simple Fusion (CLIP + ResNet-50): K-Means on concatenated features from CLIP and the
 1433 ImageNet-pretrained ResNet-50. (4) CLIP + Spatial Features: K-Means on concatenated CLIP vi-
 1434 sual features and our proposed spatial features. (5) CLIP + ResNet-50 + Distillation: Our framework
 1435 using CLIP visual features and ResNet-50 features with mutual distillation. (6) Full SATC (Ours):
 1436 The complete pipeline.

1437 Table 10 reports the results of this ablation study. The results presented in Table 10 clearly demon-
 1438 strate that: (1) Using ResNet-50 features alone (Column 1) performs significantly worse than using
 1439 CLIP features alone (Column 2). The average accuracy drops from 60.8% to 51.3%. (2) Simply con-
 1440 catenating CLIP and ResNet-50 features (Column 3) provides negligible improvement over CLIP
 1441 alone (59.4% vs. 60.8%), and even degrades performance on several datasets. This indicates that
 1442 naively adding more pre-trained features is not beneficial. (3) In contrast, using our spatial features
 1443 with CLIP (Column 4) already yields a substantial gain (64.0%), confirming the value of the struc-
 1444 tural information captured by our encoder. (4) The full SATC pipeline (Column 6) achieves the best
 1445 performance (73.7%). The step-by-step improvement from Column 2 to Column 4 to Column 6
 1446 demonstrates that the performance gain is primarily attributable to our novel integration of spatial
 1447 structure and selective textual guidance, rather than the mere use of additional pre-trained features.
 1448 These results provide evidence that the improvement is indeed a consequence of our method’s de-
 1449 sign.
 1450

1451
 1452
 1453
 1454
 1455
 1456
 1457

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470

1471 Table 10: ACC Results of Ablation study on the Effects of integrating ResNet-50
 1472

	1	2	3	4	5	6
CLIP		✓	✓	✓	✓	✓
ResNet-50	✓		✓	✓	✓	✓
Distillation				✓	✓	
GAT			✓		✓	
1	50.1	56.5	56.8	57.5	75.2	89.8
2	61.4	62.3	61.5	62.7	78.2	85.8
3	97.0	98.6	98.8	99.4	99.6	99.8
4	26.7	31.6	32.2	33.6	34.7	36.2
5	58.8	64.2	64.3	64.4	72.5	76.0
6	26.4	27.0	27.2	27.8	30.7	31.5
7	56.8	64.3	64.6	64.7	81.6	86.3
8	33.3	38.9	40.0	74.5	84.1	91.4
9	54.3	67.4	67.7	64.3	78.3	81.4
10	47.8	52.4	55.0	72.7	75.1	89.4
11	39.7	46.5	44.5	48.3	48.5	57.4
12	55.3	92.2	76.2	86.3	94.0	94.5
13	66.9	67.6	70.9	72.6	67.2	69.7
14	88.9	98.3	94.5	98.1	98.7	99.0
15	42.8	62.9	56.5	56.8	61.4	65.2
16	25.0	59.0	42.2	47.0	59.3	63.4
17	67.5	58.6	74.7	74.9	55.3	60.5
18	25.2	46.6	41.1	45.5	49.3	52.0
Avg.	51.3	60.8	59.4	64.0	69.1	73.7

1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511