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Figure 1: We present PiQPerfect, a diffusion-based identity preserving facial replacement approach.
Prior methods like FaceAdapter (Han et al.| 2024) tend to alter the facial identity and lose realism
on both in-distribution (ID) (left) and out-of-distribution (OOD) (right) face replacement tasks.

ABSTRACT

With the growing success of diffusion models in computer vision, we explore
their potential for same-identity facial replacement in photographs. Specifically,
we propose a diffusion-based method, built on top of a pre-trained text-to-image
model, that takes as input a portrait image of a person and a second reference im-
age of the same individual, potentially captured under different conditions. The
goal is to seamlessly replace the input face with the reference face, while keeping
the background intact. Surprisingly, despite the clear real-world utility of this task,
no recently published work has directly addressed face replacement in this specific
setting. To support this goal, we construct a large dataset of image pairs depicting
the same person under varying facial expressions and poses. Experimental results
demonstrate that our approach produces more realistic and identity-consistent re-
sults than existing face reenactment models.

1 INTRODUCTION

Pasting a person’s face onto another image and retouching it using traditional image editing soft-
ware is a challenging task, particularly when the two images differ in viewpoint, illumination, back-
ground, hairstyle, or clothing. In this paper, we propose a diffusion-based approach, built on top of
a pre-trained text-to-image model, that can effectively replace a subject’s face in a photograph with
one that matches the pose and expression from another image of the same individual—even in the
presence of substantial variation in lighting, pose, or facial expression. A practical application in-
volves replacing an unflattering facial appearance in a group photo with a more favorable one taken
from another image, where the person may be smiling or posing more naturally.

An effective solution to this task must preserve the individual’s identity, leave the background unal-
tered, and seamlessly incorporate the reference face into the original image. This is closely related
to face reenactment, where a “source” face is morphed to match the pose and expression of a “driv-
ing” face. However, most reenactment methods are designed to support cross-identity generation,
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where the source and driving images may come from different people. While recent reenactment ap-
proaches leveraging pre-trained diffusion models, such as Face-Adapter (Han et al., [2024), produce
impressive cross-identity results, we observe that these methods often struggle to produce realistic
and identity-preserving outputs that faithfully match the driving image. These methods typically
rely on the source image alone to retain identity, which becomes a serious limitation in cases with
expressions that deviate significantly from the driving image or extreme poses. As shown in Fig-
ure [T} our method outperforms such approaches by leveraging the reference image more directly
— since both images depict the same person, our model can effectively composite the driving face
directly into the original photo, rather than attempting to hallucinate it from limited cues.

Our approach shares similarities with early work on automated face swapping (Blanz et al., 2004;
Bitouk et al., 2008). Like our method, these classical approaches rely heavily on the reference image
by extracting and “pasting” the reference’s inner face into the original image after performing re-
alignment and relighting. However, these methods typically involve complex pipelines composed of
hand-engineered components whereas our approach relies on an end-to-end neural network trained
specifically for this task.

Our key contributions are as follows:

* We construct a large-scale dataset of image pairs featuring the same individual under vary-
ing facial expressions and poses. We intend to release this dataset publicly.

* We propose a simple yet effective training strategy for extending pretrained text-to-image
diffusion model to same-identity face replacement. Compared to prior works, our approach
yields realistic, higher-quality outputs with better identity preservation.

* We demonstrate that methods tailored to same-identity generation significantly outperform
existing techniques designed for general-purpose, cross-identity face reenactment.

2 RELATED WORK

Same-identity Face Replacement. Same-identity face replacement has recently garnered in-
creased attention, driven by the growing adoption of generative Al in computer vision applications.
Notably, several commercial solutions—including Google’s BestTake (Google, [2025), Oppo’s Al
Perfect Shot (Oppol 2025)), Huawei’s Al Best Expression (Huawei, 2025)), and OnePlus’s Al Best
Face (OnePlus, |2025)—incorporate variants of same-identity face replacement. These methods typ-
ically utilize a curated set of images of the same individual and perform face replacement. Despite
its clear real-world utility, to the best of our knowledge, no recently published work has specifically
focused on the challenge of producing high-quality, realistic face replacement where the source and
driving face are from the same individual. Instead, existing studies have primarily addressed related
tasks, such as face reenactment (Hong & Xul[2023}; Tao et al.| 2022} Yin et al.,|2022; Bounareli et al.,
2023)) and face swapping (Li et al.,[2019} |Chen et al.,|2020; Zhu et al., [2021} |Xu et al., [2022ab; Liu
et al.,[2023)).

Face swapping. Recent face swapping approaches (Li et al., |2019; |Chen et al., 2020} Zhu et al.,
2021; [ Xu et al., [2022azb; |Liu et al., [2023)) focus on identity swapping, where the identity is altered
while preserving pose, expression, and background. Since our work focuses on same-identity face
replacement, these methods are related but not directly applicable to our setup.

Face Reenactment. Face reenactment methods are more closely aligned with our task, as they
modify a source face to match the pose and expression of a driving image. Most methods are de-
signed for cross-identity generations and therefore rely on intermediate representations that discard
the identity of the driving image. Existing techniques can be broadly categorized into warping-based
and 3DMM-based approaches. Warping-based methods (Siarohin et al.,|2019ajb; [Hong et al.| 2022}
Hong & Xu, 2023; Wang et al., [2021} [Zhao & Zhang| 2022} Zakharov et al., 2019; Tao et al., [2022)
use facial landmarks to transfer motion by warping the source image. These approaches perform
well under small motions but degrade significantly with larger pose changes, often producing blurred
or distorted outputs due to imprecise motion fields. In contrast, 3DMM-based methods (Kim et al.,
2018; Ren et al.| 2021} [Doukas et al.l 2021} [Yin et al.| [2022)) use 3D facial representations (Deng
et al.l 2019) and are usually more robust to larger pose variations. However, 3DMMs typically lack
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Figure 2: PiQPerfect network overview: Given a source (s) and target (tg) image pair, we extract the
driving image (d) by segmenting the face from the target image. To simulate real-world variations,
we apply data augmentations such as scaling, rotation, translation, and relighting. The image triplet
is then encoded using the SDXL (Podell et al 2024) VAE to obtain latent representations and
concatenated spatially.

high-frequency details, such as hair, teeth, and eye motion. To address this, several works
[2022; [Bounareli et al.| [2023) integrate adversarial generators like StyleGAN2 (Karras et al., [2020).
More recently, diffusion-based face reenactment methods have emerged. FADM (Zeng et al.| 2023
combines warping-based facial animation approaches (Siarohin et all 2019b; [Wang et al., 2021
with diffusion-based refinement. Face-Adapter (Han et al., 2024), AniPortrait (Wei et al., 2024b
and DiffusionAct (Bounareli et all [2024) also leverage pre-trained diffusion models, but rely on
keypoints for motion control. A related subcategory includes portrait animation models that require
a driving video for motion control. Approaches such as FaceVid2Vid (Wang et al.,[2021)), X-Portrait
2024), MegActor and LivePortrait (Guo et al., fall into this
class. Like their image-driven counterparts, these methods are designed for cross-identity reenact-
ment and often struggle to preserve identity when the source image contains extreme expressions
or poses. In contrast, our approach focuses on same-identity face replacement and does not require
landmarks, 3DMMs, or auxiliary motion representation. Instead, we directly use a distorted version
of the driving image itself to control the transformation.

Subject-driven Image Generation. IP-Adapter-FaceID (Ye et al 2023) and Instant-ID (Wang
2024) extend diffusion-based text-to-image models for subject-driven generation by con-

ditioning on face identity embeddings extracted from external face encoders. Although effective
for tasks such as identity interpolation or novel view synthesis, these methods often fail to repro-
duce the precise pose or expression of a driving image and may introduce unwanted background
changes—Ilimiting their applicability to our use case.

3 METHOD

3.1 LEARNING TO REPLACE FACES IN PHOTOGRAPHS

Motivation. Our goal is to train a model that can replace a given source face with a driving face
of the same individual, potentially captured under different conditions, while preserving the original
background. Ideally, this task would require {source, driving, target} triplets, where the target image
reflects the desired output. However, to the best of our knowledge, no such dataset exists.

Instead, face reenactment models are typically trained on {source, target} pairs extracted from video
frames, where the target image also implicitly serves as the driving signal. Using the full target image
directly as input would amount to giving the model access to the ground truth, leading to trivial
solutions where the model simply reproduces the target image verbatim. To avoid this, existing
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Figure 3: PiQPerfect dataset samples. For each neutral face (top row), we generate 20 expressive

variants using a face animation model (Guo et al) [2024). For visualization purposes, we display
four randomly sampled expressive variants per neutral face.

methods rely on intermediate representations derived from the target, such as keypoints or learned
embeddings. These representations intentionally discard most of the low-level information present
in the driving image to prevent trivial copying and allow generalization to driving images depicting
different individuals or captured under different conditions.

While such representations are necessary for cross-identity reenactment, they are less suitable for
same-identity scenarios. As a result, current face reenactment models must rely heavily on the
source image to preserve identity and frequently fail to generate realistic, identity-consistent results
that faithfully match the driving image.

Proposed Representation for the Driving Image. To address this limitation, we propose using a
distorted version of the inner face region from the target image as the driving signal. This simple
yet effective strategy provides strong supervision for preserving the facial attributes of the driving
image while preventing the model from trivially copying the target.

We begin by segmenting the inner face to exclude the background, ensuring that the model does
not rely on the driving signal for this part. This is particularly important for enabling generaliza-
tion to driving images from external sources, which may contain entirely different backgrounds.
We then apply a series of augmentations to the segmented face, including color jittering, grayscale
conversion, horizontal flipping, and affine transformations (e.g., translation, rotation, and scaling).
Additionally, we leverage a relighting module to introduce artificial shadows and lighting variations.
These augmentations help the model generalize to driving images captured under diverse illumina-
tion conditions. We then feed our model the obtained distorted face alongside the source image.
The model is then trained to reconstruct the original target image from a degraded version of its
inner face (and the source image), effectively learning to reverse the applied augmentations. Further
details on the data augmentation pipeline are provided in Section 4]

Model Architecture. Our diffusion model, illustrated in Figure[2] is based on SDXL
[2024). To condition the model on both the source and driving images, we concatenate the source
image, the distorted driving image, and the noisy latent along the width axis before feeding them
into the model, taking inspiration from (Shi et al., 2023} [Mercier et al 2024). We experiment
with alternative conditioning strategies, including channel-wise concatenation and ControlNet-style
(Zhang et al,[2023Db) adapter modules, but found spatial concatenation to yield the best performance
for this task.
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Figure 4: Face Replacement (in-distribution). Our method produces high-quality, realistic recon-
structions with stronger identity preservation by leveraging both the source and masked driving
image (red inset), outperforming other approaches for diverse identities.

Source Ours DAM FADM

FaceAdapter

=1}

HyperReenact

IP-Adapter

Target

Figure 5: Face Replacement (out-of-distribution). Our method demonstrates strong generalization
for a wide range of facial poses, expressions, identities, and lighting conditions. Moreover, it effec-
tively generates reenacted source images that preserve the subject’s identity.

3.2 THE PIQPERFECT DATASET

Existing datasets. Most face reenactment models are trained using video-based face datasets,
where two frames are randomly sampled to serve as source and target images. A common choice
are the VoxCeleb datasets (VoxCeleb1 (Nagrani et al.l 2017) and VoxCeleb2 (Chung et al., 2018)),
which consist of interview videos crawled from YouTube. However, VoxCeleb was originally cre-
ated for speech-related tasks, where visual fidelity is not a priority. As a result, a significant portion
of the VoxCeleb videos are low-resolution, and most clips depict individuals talking, with minimal
variation in pose or expression throughout. Consequently, randomly sampling two frames often
results in pairs with similar facial attributes.

Although more recent datasets such as TalkingHead-1KH (Wang et al. [2021), VFHQ
[2022) and CelebV-HQ 2022) offer higher visual quality, they remain heavily biased
toward “talking heads” footage crawled from YouTube. Other datasets, such as MEAD (Wang et al.|

2020), FaceForensics (Rossler et al.,[2018)), and UvA-NEMO (Dibeklioglu et al., 2012), are typically

reserved for evaluation due to their smaller size or lack of identity diversity.

Proposed dataset. To address these limitations, we introduce the PiQPerfect dataset—a large-
scale collection comprising approximately 500,000 images spanning over 6,724 unique identities,
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Replacement in-distribution (ID) Replacement out-of-distribution (OOD)
Methods CSIM1 FID| AED| APD| AGD| LPIPS]| PSNR?T|CSIMT FID| AED]| APD| AGD |
DAM 0.500 24.86 290 02604 1245 0.0362  21.66 0.298 46.84 276 0.2347 1544
FADM 0.477 48.42 298 02643 1341 0.0455  20.09 0.281 68.37 2.83 02371 1648

IP-Adapter 0.282 19.28 3.07 0.2804 18.19  0.0886 15.40 0.244 31.42 2.80 02713 19.86
FaceAdapter 0369 131.52* 299 02636 11.64 0.1127 10.43 0282 116.62* 2.80 0.2590 12.96
HyperReenact | 0.405 116.62* 3.04 02914 1122 0.1038 13.69 0317 97.93* 280 0.2617 11.75
LivePortrait 0.558  89.31* 248 0.2740 849  0.0391  20.30 - - - - -

Ours 0.818 7.81 2.81 0.2592 595 0.0640 19.17 0.605 20.26 2.64 02314 11.33

Table 1: We quantitatively compare our method with prior approaches. We report cosine similarity
of ArcFace (Deng et al.,|[2022) identity embeddings (CSIM), FID, the average distance error for pose
(APD), expression (AED), and gaze coefficients (AGD), LPIPS (Zhang et al.|[2018)), and PSNR. The
best scores are highlighted in blue, while the second-best scores are underlined. Note: Baselines
that failed on a significant number of images leading to unreliable FID scores are indicated by ().
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Figure 6: User study: Replacement ID and OOD. Participants were asked to mark {source, output}
pairs as “real” or “fake” based on perceptual quality. We report the proportion of images marked as
“real” for each approach. The error bars represent the standard error of the mean (SEM).

and from which more than 10 million distinct source—target pairs can be sampled. Sample images
from our dataset are shown in Figure 3] Each face in our dataset is available under 21 distinct poses
and expressions, including a neutral image (1% row) and 20 expressive variants generated using a
face animation model (rows 2-5). To construct the dataset, we leverage an internal face video dataset
and LivePortrait (Guo et al., |2024), a model capable of animating a face based on a driving video.
We begin by extracting 25,000 neutral faces from our internal dataset, each depicting a person facing
the camera with a neutral expression and direct eye contact. We then manually select 200 neutral-
to-expressive driving videos, chosen to cover a wide range of facial expressions and head poses.
Each neutral face is animated 20 times, each time using a randomly selected driving video, and we
retain only the final frame of each animation. This yields 20 expressive images sharing the same
background and visual identity as the neutral source.

All images are standardized to high resolution (1024 x 1024). We further generate descriptive
captions for each image using LLaVA v1.5-7B (Liu et al., 2024). During training, we randomly
sample two images from these sets of 21 (1 neutral + 20 expressive) to form source—target pairs.
From each set of 21 images, up to 420 unique source—target combinations can be sampled (excluding
self-pairs). With 25,000 such sets, this results in over 10 million unique source—target pairs available
for training.

Our dataset captures broad diversity across gender identities, skin tones, and environmental con-
ditions—from dimly lit settings to brightly illuminated scenes, and from close-ups to wide shots.
Examples of driving videos used in animation are illustrated in Figure [20]in the appendix. These

include a variety of expressions (e.g., “make a funny face”, “smile with mouth opened”, “stick your

tongue out”, “make a sad face”) and head movements (e.g., “look left”, “tilt your head upward”).

Compared to sampling two random frames from the same video, our synthetic data generation
pipeline allows finer control over dataset composition. For instance, we deliberately oversample
driving videos featuring subtle variations of smiling, resulting in expressive faces that appear to be
“posing for the camera”—a scenario that is particularly useful for photographic applications such
as replacing an unflattering expression in a group photo with a more favorable one from another
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image. Such “posed” expressions are rare in existing video-based face datasets, which are typically
crawled from YouTube interviews and dominated by conversational or neutral expressions. Another
advantage is that, during training, source—target pairs can be selected from dissimilar driving videos
to increase task difficulty and model robustness.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Training Hyperparameters. We fine-tune the pre-trained SDXL model (Podell et al., [2024) for
25,000 iterations on our proposed dataset (Section[3.2)). Training is performed on 8 NVIDIA A100
GPUs with an effective batch size of 64. We use the Adam optimizer with a learning rate of 1 x 1075,
ﬁl = 09, and /62 = 0.999.

Data augmentation. Before fine-tuning, we extract segmentation masks for the target image using
SegFormer (Xie et al.,[2021). During training, these masks are used to isolate the inner face region
and exclude the background. To improve robustness, we randomly include optional regions such as
hair and neck in the mask. The resulting mask is further refined by applying morphological erosion
with a kernel size randomly sampled from the range [0, 30], helping to remove background spillover
near the face boundary. To make the model robust to varying lighting conditions, we relight the inner
face using NeuralGaffer (Jin et al.| [2024), with environment lighting sourced from the PolyHaven
dataset (PolyHaven, 2025)). The relit inner face is then subjected to a series of augmentations.
Finally, the source image, the augmented inner face, and the target image are resized to 576 x 576 and
encoded using the VAE module (Podell et al., [2024) associated with SDXL. These representations
are concatenated along the spatial axis and provided as input to the model. During training, captions
are randomly dropped for 10% of the samples to improve robustness to missing text conditioning.

Evaluation datasets. Following standard practices in face reenactment, we evaluate our model un-
der two settings: (1) in-distribution (D), where the driving and source images are captured moments
apart—for example, in burst-mode photo sequences— and (2) out-of-distribution (OOD), where the
driving image shows the same person under different conditions, for instance when pictures are taken
at different times under varying background and lighting conditions. For the replacement-ID setting,
we use 5,000 test images each from FFHQ and VoxCeleb2. For the replacement-OOD setting, we
use 5,000 test samples each from PiQPerfect (Section[3.2)) and VoxCeleb2.

Baselines. We compare our model against five face reenactment approaches: DAM (Tao et al.,
2022), FADM (Zeng et al., 2023), Face-Adapter (Han et al., [2024)), HyperReenact (Bounareli et al.,
2023)), and LivePortrait (Guo et al.}[2024), as well as one subject-driven image generation baseline,
based on IP-Adapter (Ye et al., |2023). LivePortrait is excluded from the OOD setting due to the
absence of driving videos compatible with this setup. In the ID setting, we simulate a two-frame
video by treating the source and driving images as sequential frames. For the IP-Adapter baseline,
we use a dual-adapter SDXL configuration, with each adapter conditioned on a CLIP embedding of
the source image and driving image respectively (more details are available in the appendix). For
the other baselines, we use the official implementations provided by the authors.

4.2 RESULTS

Replacement in-distribution (ID). Figure ] shows a qualitative comparison of replacement-ID
results across all methods. Our approach achieves higher reconstruction quality in most examples,
producing identity-consistent outputs. In contrast, methods such as DAM, FADM, Face-Adapter,
HyperReenact, and LivePortrait primarily rely on the source image for identity, resulting in poor
reconstruction quality when the source is in a non-frontal pose (e.g., rows 1 and 3). IP-Adapter,
meanwhile, struggles to produce realistic outputs that accurately match the driving image and often
fails to preserve the original background.

Table [T reports quantitative comparisons of replacement-ID performance. Our method outperforms
prior approaches on most metrics, with particularly strong results in CSIM, FID, and AGD. Although
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Figure 7: Ablation study. We evaluate replacing spatial to channel-wise concatenation, swapping
SDXL to SDv1.5, as well as disabling relighting, all data augmentations and inner face extraction.
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Figure 8: Ablation study: Effects of Relighting. Without relighting, lighting artifacts from the
driving image often leak into the output. Incorporating random relighting into the data augmentation
pipeline produces significantly more realistic and consistent illumination.

Replacement in-distribution (ID) Replacement out-of-distribution (OOD)
Methods CSIM1t FID| AED| APD| AGDJ] LPIPS| PSNRT |CSIMT FID| AED)| APDJ] AGD|
Ours 0.818 7.81 2.81 0.2592 5.95 0.0640 19.17 0.605 2026 2.64 0.2314 11.33

Channel-wise | 0.689 5519  3.67 0.3542 6.18 0.0831 16.11 0.583 7148 353 03265 10.14
SDv1.5 0.776 9.90 2.87 0.2620 658 0.0564 17.55 0.616 2197 2.67 0.2288 11.45

Table 2: Ablation study. We compare spatial versus channel-wise concatenation of the input images
and assess the performance with SDv1.5 as the backbone UNet architecture (Rombach et al.}[2022).

some baselines achieve better scores on LPIPS and PSNR, these metrics often favor overly smooth
or blurry reconstructions over perceptual fidelity (see Figure[T2]in the appendix).

Replacement out-of-distribution (OOD). A visual comparison of the replacement-OOD results
is provided in Figure 5] Compared to prior methods, our approach consistently achieves identity-
preserving outputs, even under challenging conditions such as exaggerated expressions in the driving
images. Generative baselines like FaceAdapter, IP-Adapter, and HyperReenact struggle with iden-
tity preservation and often introduce undesirable alterations to the background of the source image.
Landmark-based methods such as DAM and FADM are limited by the low identity information con-
tained in facial landmarks and also face difficulties handling large motion differences between the
source and driving images, resulting in blurry or low-quality outputs.

As shown in Table[T] our proposed method quantitatively outperforms all baseline approaches across
key evaluation metrics, demonstrating its effectiveness in leveraging facial features from the driving
image for accurate face replacement.

User Study. As part of our quantitative evaluation, we conducted a user study involving ten par-
ticipants. Each participant reviewed 25 outputs per model for both ID and OOD face replacement
tasks. For each example, participants were shown the source image alongside the model’s output
and asked to label the result as either “real” or “fake” based on perceptual quality. As shown in
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Figure 9: Real-world simulation of composite picture editing (“burst” mode reconstruction)

Figure[f] participants judged our model’s outputs to be realistic in 59% of replacement-ID cases and
44% of replacement-OOD cases—substantially outperforming other baselines.

4.3 ABLATION STUDY

We conduct a series of ablation studies to evaluate key components of our proposed pipeline. Fig-
ure [7] shows visual comparisons for different configurations, and quantitative results for a subset
of ablations are reported in Table 2] Our key findings are as follows: Using the target image di-
rectly as the driving input results in a degenerate solution in which the model simply reproduces
the driving image. Removing all data augmentations severely degrades performance, effectively
pasting the driving face onto the source with minimal adjustment in color or structure. Removing
relighting introduces “lighting leakage™ artifacts—i.e., the model fails to adjust illumination and
retains lighting effects from the driving image. Additional results for the no-relighting condition
are shown in Figure[8] Channel-wise concatenation leads to consistently poorer performance across
all metrics and produces visual artifacts, particularly around fine details such as the teeth. As ex-
pected, using SDv1.5 (Rombach et al.} [2022) results in slightly lower overall performance. While
the SDv1.5-based variant occasionally preserves the pose of the source image more accurately, it
tends to produce oversaturated color compositions and lower-quality facial details.

5 DISCUSSION AND CONCLUSION

We have introduced PiQPerfect, a diffusion-based method for realistic, same-identity facial replace-
ment in photographs. Our approach leverages a pre-trained text-to-image model and a simple but
effective training strategy: by feeding the model a distorted version of the target image as the driving
signal, we encourage it to rely on the driving image’s expression and pose. As a result, the model
learns to composite the driving face on the source image while preserving the subject’s identity and
background. Experimental results demonstrate that our method outperforms existing face reenact-
ment and subject-driven generation techniques on both in- and out-of-distribution face replacement
settings. A key part of this work is the PiQPerfect dataset, a large-scale collection of high-quality
same-identity image pairs that exhibit diverse facial expressions, poses, and illumination conditions.
To support further research, we will release this dataset publicly. A particularly compelling appli-
cation of our method, illustrated in Figure[9] lies in composite group photo editing, where users can
replace unflattering expressions in a group shot with better alternatives from other photos of the same
individual, allowing a level of post hoc control difficult to achieve with prior approaches. Although
our method produces high-quality and perceptually realistic results, it is not without limitations. Ar-
tifacts may appear in fine details such as hair or around the eyes, and performance degrades when
the driving face is extremely small or large, likely due to encoding challenges. An interesting future
research direction could explore better head pose control by conditioning the model on keypoints
or learned facial embeddings. Because our model is trained specifically for same-identity face re-
placement, it is not designed to handle cross-identity scenarios. Nonetheless, we include qualitative
results to illustrate how the model behaves in such cases: some outputs transfer identity, while oth-
ers transfer only expression (see Figures [I6]and [I7]in the appendix). These observations highlight
interesting directions for future work on disentangling identity and expression.
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A APPENDIX

A.1 ADDITIONAL IMPLEMENTATION DETAILS

Training. As part of our data augmentation pipeline, we extract the inner face from driving images
and apply relighting. To achieve this, we use SegFormer (Xie et al., [2021) to generate face masks
and NeuralGaffer (Jin et al.| |2024) to perform relighting, with background lighting sourced from
randomly selected images in the PolyHaven dataset (PolyHaven, 2025). To reduce training time
and GPU memory usage, both operations are performed offline prior to training. More specifically,
for each source image, we generate and save six driving images—five relighted variants and one
original—as well as a single face mask. During training, one of the six driving images is randomly
sampled for use in each iteration.

Inference. Our results are generated using 50 denoising steps and a guidance scale of 1.5, and
takes ~ 3 seconds per 576 x 576 image on a single NVIDIA A100. For classifier-free guidance, we
drop the text prompt and use a zeroed-out version of the driving image for the negative branch.

Baselines. For most baselines, we use the official implementations provided by the respective
authors: DA FAD HyperReenac Face-AdapterEf and LivePortraiﬂ

For the IP-Adapter baseline, we use the implementation and pre-trained weights available on Hug-
gingFace’s diffusers libraryﬁ in a dual-adapter SDXL conﬁguration[] One “style” adapter is condi-
tioned on a CLIP embedding of the source image, and the second “face” adapter—fine-tuned for
facial representation tasks—is conditioned on a CLIP embedding of the driving image. The “style”
and “face” adapters are assigned scale values of 0.5 and 0.6, respectively; these scale parameters
control the strength of the corresponding image conditioning. The guidance scale is set to 3.0 to
perform 27 denoising steps. In practice, we initialize the process with 30 denoising steps but skip
the first three, and initialize the noisy latents with a noisy version of the source image, with the noise
strength parameter set to 0.9. For classifier-free guidance, we drop the text prompt and use a noisy
version of the driving image as the negative branch.

A.2 ADDITIONAL RESULTS

Comparison against Text-driven Image Editing Approaches. Diffusion models have gained
significant attention for instruction-based image editing. SDEdit (Meng et al.l 2022)) proposes a
training-free method for global, text-driven modifications but often fails to preserve regions outside
the editing target. Subsequent approaches (Avrahami et al.,2023;|Nichol et al.,|2021)) introduce user-
defined masks to enable localized control. Other methods (Cao et al., 2023; [Mokady et al., 2023
Parmar et al., |2023) focus on manipulating attention maps, while LEDITS++ (Brack et al., [2024)
integrates both attention and noise-based masking to achieve more precise edits. Fully supervised
pipelines (Brooks et al.||2023;Zhang et al.,[2023a;/2024; Wei et al., 2024 a; [Zhao et al., [ 2024) support
end-to-end editing from textual instructions. However, these models are not explicitly optimized
for identity preservation in face-specific tasks. This limitation is evident in Figure [I0] where both
InstructPix2Pix and LEDITS++ produce suboptimal results in terms of visual fidelity and identity
consistency.

Quantitative Results. Tables [3and ] provide a per-dataset breakdown of metrics for all models
and each task. Please note that the FID scores for Face-Adapter (Han et al., 2024) and Hyper-
Reenact (Bounareli et al.,2023) may be unreliable due to face detection failures during evaluation.
Specifically, Face-Adapter fails on 4,325 (FFHQ), 4,813 (VoxCeleb ID), 68 (PiQPerfect), and 4,896
(VoxCeleb OOD) images out of 5,000. HyperReenact fails on 297 (FFHQ), 1,052 (VoxCeleb ID),

https://github.com/JialeTao/DAM
https://github.com/zengbohan0217/FADM
*https://github.com/StelaBou/HyperReenact
*nttps://github.com/FaceAdapter/Face-Adapter
Shttps://github.com/KwaiVGI/LivePortrait
®https://huggingface.co/docs/diffusers/using-diffusers/ip_adapter
"The adapter names are ip-adapter-plus_sdxl_vit-h” and ip-adapter-plus-face _sdxl_vit-h”
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Source Ours InstructPix2Pix LEDITS++

Figure 10: Comparing our facial replacement with instruction-based image editing approaches
(Brooks et al.| 2023} [Brack et all, 2024). Note that, our approach uses a masked driving image
(show in red inset), while the image editing approaches do not require a driving image. Our ap-
proach makes realistic edits following the driving image, while the image editing methods have no
control over the facial edits, leading to unrealistic changes to personal identity.

901 (PiQPerfect), and 1,264 (VoxCeleb OOD) images. These failures may significantly impact the
quality of FID estimation for these methods.

Issues of image quality metrics. In Figure [I2] we highlight the discrepancy between standard
image quality metrics and human judgment. Although our results exhibit superior visual quality
compared to baseline methods—as further supported by our user study—the quantitative metrics
tend to undervalue our approach.

Model robustness to various transformations. In Figure [I3] we assess our model’s robustness
to various augmentations applied to the face in the driving image, including color jittering, transla-
tion, rotation, and scaling. The results indicate that our model is generally consistent despite large
variations in facial color, position, orientation, and size. However, it exhibits difficulty in preserving
identity when the face in the driving image is either extremely small (first row of Scaling driving) or
excessively large (fourth row of Scaling driving). This limitation may stem from information loss
during the image-to-latent conversion process—where small faces lack sufficient detail.

Additional visual results. Figures [4] and [15] present additional visual results of our proposed
method for the face replacement task.
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Source Target Output

Figure 11: Although our proposed approach achieves more realistic facial replacement compared to
prior methods, it still exhibits limitations in certain areas, particularly around the eyes and hair.

Replacement in-distribution (ID)

Datasets Methods CSIM 1 FID|  AED/ APD | AGD | LPIPS | PSNR 1
DAM 0.557 & 0.0034 2528 2.91 & 0.0128 0.2796 & 0.0022 11.89 & 0.1247 0.0380 + 0.0003 21.37 + 0.0491
FADM 0.542 +0.0034 4324 2.97 +0.0138 0.2849 4 0.0022 13.28 = 0.1278 0.0453 + 0.0004 19.76 + 0.0464

IP-Adapter 0.312 £ 0.0018 17.22 3.01 £0.0116 0.2910 £ 0.0022 16.28 £ 0.1839 0.0835 4 0.0004 14.78 £ 0.0312
FFHQ FaceAdapter |0.429 & 0.0064 122.47 2.97 4 0.0327 0.2439 =+ 0.0049 10.37 £ 0.3383 0.1252 & 0.0009 10.32 + 0.0824
HyperReenact | 0.431 £ 0.0019 111.89 2.79 4+ 0.0118 0.2439 £ 0.0019 11.14 £ 0.0914 0.1152 & 0.0004 13.56 + 0.0245
LivePortrait | 0.676 + 0.0031 11.18 2.79 4 0.0113 0.2804 £ 0.0021 8.44 & 0.0903 0.0432 &+ 0.0003 20.23 =+ 0.0584

Ours 0.863 £ 0.0017 6.51 2.86 £ 0.0116 0.2797 £ 0.0021 5.35 4= 0.0647 0.0620 £ 0.0003 18.46 £ 0.0434
DAM 0.466 = 0.0031 24.43 2.89 £ 0.0138 0.2412 £ 0.0017 13.01 £ 0.1220 0.0345 4 0.0003 21.96 + 0.0433
FADM 0.413 £0.0032 53.60 2.99 £ 0.0163 0.2437 £ 0.0017 13.55 £ 0.1268 0.0457 £ 0.0003 20.43 £ 0.0436

IP-Adapter 0.253 +0.0018 21.33 3.12 £ 0.0133 0.2698 &£ 0.0019 20.10 = 0.2033 0.0938 4 0.0003 16.03 £ 0.0279
VoxCeleb FaceAdapter |0.309 4 0.0126 140.57 3.14 £ 0.0658 0.2833 &£ 0.0086 12.90 & 0.7425 0.1003 £ 0.0027 10.54 £ 0.1666
HyperReenact | 0.379 & 0.0022 100.97 3.29 = 0.0141 0.3147 £ 0.0018 11.29 £ 0.1034 0.0925 & 0.0004 13.82 £ 0.0254
LivePortrait | 0.486 & 0.0029 13.57 2.72 4 0.0116 0.2455 £ 0.0017 10.37 £ 0.1037 0.0290 + 0.0002 20.78 + 0.0517
Ours 0.772 £ 0.0027 9.12 2.76 £ 0.0122 0.2388 £ 0.0017 6.55 & 0.0762 0.0660 £ 0.0003 19.89 £ 0.0389

Table 3: We quantitatively compare our method with prior approaches (& Standard Error of Mean)
on replacement-ID testsets FFHQ (Karras et al} 2019) and VoxCeleb (Nagrani et al., 2017} [Chung
2018).

Failure cases. Figure [[T]illustrates representative failure cases in the same-identity face replace-
ment task. Most failures are caused by suboptimal generation of intricate details such as eyes and
hair, and this is caused by the limitations of the backbone diffusion (Podell et al.,[2024) architecture.
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Replacement out-of-distribution (OOD)

Datasets ~ Methods CSIM{  FID|  AED| APD | AGD | LPIPS | PSNR 1
DAM 0.350 & 0.0028 55.16 2.61 & 0.0096 0.2222 +0.0017 15.29 & 0.1400 0.1087 + 0.0008 14.39 -+ 0.0552
FADM 0.342 £ 0.0027 74.98 2.66 4 0.0102 0.2252 +0.0018 16.51 &= 0.1498 0.1112 & 0.0006 13.66 == 0.0499

IP-Adapter 0.275 +£0.0017 39.16 2.45 4 0.0075 0.2666 £ 0.0024 16.59 £ 0.1881 0.1375 4 0.0005 12.00 £ 0.0350
PiQPerfect FaceAdapter |0.343 4= 0.0023 75.37 2.53 4 0.0077 0.2076 £ 0.0016 11.31 & 0.1003 0.1251 4= 0.0008 10.99 £ 0.0361
HyperReenact | 0.359 4 0.0021 92.31 2.25 4 0.0071 0.1999 + 0.0018 11.52 + 0.0966 0.1617 4= 0.0007 11.47 £ 0.0328

Ours 0.631 4 0.0029 28.08 2.50 & 0.0079 0.2262 £ 0.0017 9.87 4= 0.1317 0.1151 4= 0.0007 12.27 £ 0.0396
DAM 0.246 4+ 0.0021 38.51 2.91 4 0.0135 0.2472 £ 0.0017 15.59 £ 0.1355 0.1248 4 0.0007 13.05 £ 0.0388
FADM 0.219 +0.0022 61.76 3.01 £ 0.0163 0.2490 £ 0.0018 16.45 £ 0.1473 0.1290 4 0.0005 12.54 £ 0.0353

IP-Adapter 0.214 +0.0016 23.68 3.14 4 0.0134 0.2761 £ 0.0020 23.13 £ 0.2305 0.1301 4 0.0004 11.92 £ 0.0286
VoxCeleb FaceAdapter |0.221 +0.0119 157.87 3.06 & 0.0814 0.3104 £ 0.0145 14.61 £ 1.1722 0.1221 4 0.0030 9.34 £ 0.1830
HyperReenact | 0.275 4= 0.0021 103.55 3.34 4= 0.0150 0.3235 £ 0.0019 11.99 =+ 0.1150 0.1358 4= 0.0008 11.54 4 0.0328
Ours 0.579 4+ 0.0030 12.44 2.78 £ 0.0122 0.2366 £ 0.0017 12.78 &£ 0.1606 0.1196 £ 0.0006 12.02 £ 0.0309

Table 4: We quantitatively compare our method with prior approaches (&= Standard Error of Mean)
on replacement-OOD testsets PiQPerfect and VoxCeleb (Nagrani et al.}[2017; (Chung et al., [2018).

PSNR:
22.13
LPIPS:
0.02

PSNR:
19.67
LPIPS:
0.05

° Metrics Preference

Figure 12: Metrics like PSNR and LPIPS often favor blurry, low-quality reconstructions due to
sensitivity to slight misalignments, failing to align with human judgment.
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Driving Output Driving Output Driving Output Driving Output

Source Target

Figure 13: Ablation: Robustness to data augmentations. Our solution demonstrates the ability to
mitigate the effects of different data augmentations, resulting in more stable and visually appealing
results.
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Figure 14: Additional face replacement (in-distribution) results
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Source Target Ours Source Target Ours

Figure 15: Additional face replacement (out-of-distribution) results

Source Target Driving Output

Figure 16: Experiment with cross-identity facial replacement where the identity along with the
expression from the driving image gets transferred to source.
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Source Target Driving Output

Figure 17: Experiment with cross-identity facial replacement where only the expression from the
driving image gets transferred to source while keeping the identity unaltered.
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B PIQPERFECT DATASET

Most existing reenactment datasets are biased toward interview-style YouTube videos, where sub-
jects are primarily talking with limited head movement and facial variation. In contrast, we introduce
the PiQPerfect dataset, a synthetic dataset featuring diverse head poses and expressions, generated
using a portrait animation pipeline. Our dataset comprises approximately 500,000 images spanning
over 6,724 unique identities, and from which more than 10 million distinct source—target pairs can
be sampled. Sample images from our dataset are shown in Figure [T8] Each face in our dataset
is available under 21 distinct poses and expressions, including a neutral image and 20 expressive

variants generated using LivePortrait (Guo et al.,2024), a face animation model.

Figure 18: PiQPerfect dataset samples. For each neutral face (top row), we generate 20 expressive

variants using a face animation model (Guo et al., [2024). For visualization purposes, we display
four randomly sampled expressive variants per neutral face.

To construct the dataset, we leverage an internal face video dataset and LivePortrait
[2024), a model capable of animating a face based on a driving video. An overview of the animation
pipeline is shown in Figure[T9]

B.1 VIDEO CROWDSOURCING

To collect videos, we used a custom platform in collaboration with crowdsourcing providers to
recruit participants from diverse gender, geographic, and ethnic backgrounds. Participants were in-
structed to record short videos while performing specific actions and expressions, such as “smiling
gently at the camera while sitting in front of a computer”, “pretending to be shocked while looking
at the screen”, “looking down with a sad expression while sitting at a desk” and so on. Each partic-
ipant was encouraged to submit multiple videos featuring varied backgrounds, outfits, and lighting

conditions.

21



Under review as a conference paper at ICLR 2026

Source video

Neutral face Animated face

— | Neutral face —
detection

Driving video

Figure 19: PiQPerfect Dataset generation process overview: Neutral looking faces are detected and
extracted from source videos, which are guided via driving videos to generate expressive animated

faces using LivePortrait 2024).
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Figure 20: Overview of some example driving videos used to animate the neutral faces with Live-

Portrait (Guo et al.,[2024).

B.2 DATA PRE-PROCESSING AND FILTERING

From the collected videos, we filter and retain only those that fall into the following predefined
categories of facial expressions and head gestures:

* making eye contact with the camera while sitting in front of a computer

* making eye contact with the camera while sitting at a distance

* making eye contact with the camera while standing

* no facial expression

* no gesture
From the filtered videos, we randomly sample pairs of frames from segments where the subject is
looking directly at the camera. To ensure the selection of truly neutral expressions, we extract facial
landmarks and bounding boxes using FaceNet (Esler). We then compute the angles between the left
and right eyes and the nose, as well as left and right corners of the mouth and the nose, ensuring the
head orientation is within an empirically determined threshold of 10°. To further eliminate head tilt,

we also check that the vertical angle between the nose and the mid-point of both the eyes is below
10°.

Images that pass both filters are standardized by cropping around the midpoint of the detected bound-
ing box, using a bounding box scaled by a factor of 2. This process yields approximately 25,000
neutral face images across 6,724 unique identities.

To enable neutral-to-any-expression animation, we manually select 200 diverse driving videos. In
Figure 20} we provide some example driving videos. For each neutral face, we randomly sample 20
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Figure 21: Random samples from the dataset. The PiQPerfect dataset features a wide diversity of
backgrounds, lighting conditions, ethnicities, clothing styles, poses, and facial expressions.

unique driving videos and animate the source using LivePortrait [2024). An overview
of the animation pipeline using LivePortrait is shown in Figure [I9 From each resulting video,
we extract the final frame as the animated output. This results in 20 animated images per source,
culminating in a dataset of approximately 500,000 images comprising both neutral and expressive
faces.

We provide an overview of the images in Figure [21| to demonstrate the data diversity for back-
grounds, lighting, gender, ethnicity, head poses, facial expression.

B.3 CAPTION GENERATION

To generate descriptive captions for the upscaled images, we use LLaVA-1.5-7B
with the instruction: “Describe this real-world image and its style as a long detailed caption. Include
details about the person’s facial expression and describe face attributes. Ignore the background and
clothing information for the caption.”

B.4 POTENTIAL SOCIAL IMPACT

We present a dataset for realistic, same-identity face replacement, aimed at positive applications
such as composite group photo editing. However, like other generative technologies, models trained
on our dataset carry risks of misuse, such as identity theft and misinformation. We strongly con-
demn and oppose any deceptive or harmful use of our system. Although our experiments show that
it is possible to obtain visually compelling results, the outputs still contain detectable artifacts, as
highlighted in the failure cases as shown in Figure [[T} To mitigate potential misuse, we propose
the embedding of digital watermarks to verify the authenticity and provenance of the image. Addi-
tionally, our dataset could be used to train forgery detection models capable of identifying tampered
content.

23



	Introduction
	Related Work
	Method
	Learning to Replace Faces in Photographs
	The PiQPerfect Dataset

	Experiments
	Implementation Details
	Results
	Ablation Study

	Discussion and Conclusion
	Appendix
	Additional Implementation Details
	Additional Results

	PiQPerfect Dataset
	Video Crowdsourcing
	Data Pre-processing and Filtering
	Caption Generation
	Potential Social Impact


