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Abstract

We give the first efficient algorithm for learning halfspaces in the testable learning1

model recently defined by Rubinfeld and Vasilyan [RV23]. In this model, a learner2

certifies that the accuracy of its output hypothesis is near optimal whenever the3

training set passes an associated test, and training sets drawn from some target4

distribution must pass the test. This model is more challenging than distribution-5

specific agnostic or Massart noise models where the learner is allowed to fail6

arbitrarily if the distributional assumption does not hold. We consider the setting7

where the target distribution is the standard Gaussian in d dimensions and the8

label noise is either Massart or adversarial (agnostic). For Massart noise, our9

tester-learner runs in polynomial time and outputs a hypothesis with (information-10

theoretically optimal) error opt+ ϵ (and extends to any fixed strongly log-concave11

target distribution). For adversarial noise, our tester-learner obtains errorO(opt)+ϵ12

in polynomial time. Prior work on testable learning ignores the labels in the13

training set and checks that the empirical moments of the covariates are close to14

the moments of the base distribution. Here we develop new tests of independent15

interest that make critical use of the labels and combine them with the moment-16

matching approach of [GKK23]. This enables us to implement a testable variant17

of the algorithm of [DKTZ20a, DKTZ20b] for learning noisy halfspaces using18

nonconvex SGD.19

1 Introduction20

Learning halfspaces in the presence of noise is one of the most basic and well-studied problems in21

computational learning theory. A large body of work has obtained results for this problem under a22

variety of different noise models and distributional assumptions (see e.g. [BH21] for a survey). A23

major issue with common distributional assumptions such as Gaussianity, however, is that they can24

be hard or impossible to verify in the absence of any prior information.25

The recently defined model of testable learning [RV23] addresses this issue by replacing such26

assumptions with efficiently testable ones. In this model, the learner is required to work with an27

arbitrary input distribution DXY and verify any assumptions it needs to succeed. It may choose to28

reject a given training set, but if it accepts, it is required to output a hypothesis with error close to29

opt(C, DXY), the optimal error achievable over DXY by any function in a concept class C. Further,30

whenever the training set is drawn from a distribution DXY whose marginal is truly a well-behaved31

target distribution D∗ (such as the standard Gaussian), the algorithm is required to accept with high32

probability. Such an algorithm, or tester-learner, is then said to testably learn C with respect to target33

marginal D∗. (See Definition 2.1.) Note that unlike ordinary distribution-specific agnostic learners, a34

tester-learner must take some nontrivial action regardless of the input distribution.35

The work of [RV23, GKK23] established foundational algorithmic and statistical results for this36

model and showed that testable learning is in general provably harder than ordinary distribution-37

specific agnostic learning. As one of their main algorithmic results, they showed tester-learners for38
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the class of halfspaces over Rd that succeed whenever the target marginal is Gaussian (or one of a39

more general class of distributions), achieving error opt+ ϵ in time and sample complexity dÕ(1/ϵ2).40

This matches the running time of ordinary distribution-specific agnostic learning of halfspaces over41

the Gaussian using the standard approach of [KKMS08]. Their testers are simple and label-oblivious,42

and are based on checking whether the low-degree empirical moments of the unknown marginal43

match those of the target D∗.44

These works essentially resolve the question of designing tester-learners achieving error opt + ϵ45

for halfspaces, matching known hardness results for (ordinary) agnostic learning [GGK20, DKZ20,46

DKPZ21]. Their running time, however, necessarily scales exponentially in 1/ϵ.47

A long line of research has sought to obtain more efficient algorithms at the cost of relaxing the48

optimality guarantee [ABL17, DKS18, DKTZ20a, DKTZ20b]. These works give polynomial-time49

algorithms achieving bounds of the form opt+ ϵ and O(opt) + ϵ for the Massart and agnostic setting50

respectively under structured distributions (see Section 1.1 for more discussion). The main question51

we consider here is whether such guarantees can be obtained in the testable learning framework.52

Our contributions. In this work we design the first tester-learners for halfspaces that run in fully53

polynomial time in all parameters. We match the optimality guarantees of fully polynomial-time54

learning algorithms under Gaussian marginals for the Massart noise model (where the labels arise55

from a halfspace but are flipped by an adversary with probability at most η) as well as for the agnostic56

model (where the labels can be completely arbitrary). In fact, for the Massart setting our guarantee57

holds with respect to any chosen target marginal D∗ that is isotropic and strongly log-concave, and58

the same is true of the agnostic setting albeit with a slightly weaker guarantee.59

Theorem 1.1 (Formally stated as Theorem 4.1). Let C be the class of origin-centered halfspaces over60

Rd, and let D∗ be any isotropic strongly log-concave distribution. In the setting where the labels are61

corrupted with Massart noise at rate at most η < 1
2 , C can be testably learned w.r.t. D∗ up to error62

opt+ ϵ using poly(d, 1ϵ ,
1

1−2η ) time and sample complexity.63

Theorem 1.2 (Formally stated as Theorem 5.1). Let C be as above. In the adversarial noise or64

agnostic setting where the labels are completely arbitrary, C can be testably learned w.r.t. N (0, Id)65

up to error O(opt) + ϵ using poly(d, 1ϵ ) time and sample complexity.66

Our techniques. The tester-learners we develop are significantly more involved than prior work on67

testable learning. We build on the nonconvex optimization approach to learning noisy halfspaces68

due to [DKTZ20a, DKTZ20b] as well as the structural results on fooling functions of halfspaces69

using moment matching due to [GKK23]. Unlike the label-oblivious, global moment tests of70

[RV23, GKK23], our tests make crucial use of the labels and check local properties of the distribution71

in regions described by certain candidate vectors. These candidates are approximate stationary points72

of a natural nonconvex surrogate of the 0-1 loss, obtained by running gradient descent. When the73

distribution is known to be well-behaved, [DKTZ20a, DKTZ20b] showed that any such stationary74

point is in fact a good solution (for technical reasons we must use a slightly different surrogate75

loss). Their proof relies crucially on structural geometric properties that hold for these well-behaved76

distributions, an important one being that the probability mass of any region close to the origin is77

proportional to its geometric measure.78

In the testable learning setting, we must efficiently check this property for candidate solutions. Since79

these regions may be described as intersections of halfspaces, we may hope to apply the moment-80

matching framework of [GKK23]. Naïvely, however, they only allow us to check in polynomial time81

that the probability masses of such regions are within an additive constant of what they should be82

under the target marginal. But we can view these regions as sub-regions of a known band described83

by our candidate vector. By running moment tests on the distribution conditioned on this band and84

exploiting the full strength of the moment-matching framework, we are able to effectively convert our85

weak additive approximations to good multiplicative ones. This allows us to argue that our stationary86

points are indeed good solutions.87

Limitations and Future Work. In this paper we provide the first efficient tester-learners for88

halfspaces when the noise is either adversarial or Massart. An interesting direction for future work89

would be to design tester-learners for the agnostic setting whose target marginal distributions may90

lie within a large family (e.g., strongly log-concave distributions) but still achieve error of O(opt).91

Another interesting direction is providing tester-learners that are not tailored to a single target92

distribution, but are guaranteed to accept any member of a large family of distributions.93
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1.1 Related work94

We provide a partial summary of some of the most relevant prior and related work on efficient95

algorithms for learning halfspaces in the presence of adversarial label or Massart noise, and refer the96

reader to [BH21] for a survey.97

In the distribution-specific agnostic setting where the marginal is assumed to be isotropic and log-98

concave, [KLS09] showed an algorithm achieving error O(opt1/3)+ ϵ for the class of origin-centered99

halfspaces. [ABL17] later obtained O(opt) + ϵ using an approach that introduced the principle of100

iterative localization, where the learner focuses attention on a band around a candidate halfspace in101

order to produce an improved candidate. [Dan15] used this principle to obtain a PTAS for agnostically102

learning halfspaces under the uniform distribution on the sphere, and [BZ17] extended it to more103

general s-concave distributions. Further works in this line include [YZ17, Zha18, ZSA20, ZL21].104

[DKTZ20b] introduced the simplest approach yet, based entirely on nonconvex SGD, and showed105

that it achieves O(opt)+ ϵ for origin-centered halfspaces over a wide class of structured distributions.106

Other related works include [DKS18, DKTZ22].107

In the Massart noise setting with noise rate bounded by η, work of [DGT19] gave the first efficient108

distribution-free algorithm achieving error η + ϵ; further improvements and followups include109

[DKT21, DTK22]. However, the optimal error opt achievable by a halfspace may be much smaller110

than η, and it has been shown that there are distributions where achieving error competitive with opt111

as opposed to η is computationally hard [DK22, DKMR22]. As a result, the distribution-specific112

setting remains well-motivated for Massart noise. Early distribution-specific algorithms were given113

by [ABHU15, ABHZ16], but a key breakthrough was the nonconvex SGD approach introduced by114

[DKTZ20a], which achieved error opt+ ϵ for origin-centered halfspaces efficiently over a wide range115

of distributions. This was later generalized by [DKK+22].116

1.2 Technical overview117

Our starting point is the nonconvex optimization approach to learning noisy halfspaces due to118

[DKTZ20a, DKTZ20b]. The algorithms in these works consist of running SGD on a natural non-119

convex surrogate Lσ for the 0-1 loss, namely a smooth version of the ramp loss. The key structural120

property shown is that if the marginal distribution is structured (e.g. log-concave) and the slope of121

the ramp is picked appropriately, then any w that has large angle with an optimal w∗ cannot be an122

approximate stationary point of the surrogate loss Lσ, i.e. that ∥∇Lσ(w)∥ must be large. This is123

proven by carefully analyzing the contributions to the gradient norm from certain critical regions of124

span(w,w∗), and crucially using the distributional assumption that the probability masses of these125

regions are proportional to their geometric measures. (See Fig. 3.) In the testable learning setting,126

the main challenge we face in adapting this approach is checking such a property for the unknown127

distribution we have access to.128

A preliminary observation is that the critical regions of span(w,w∗) that we need to analyze are129

rectangles, and are hence functions of a small number of halfspaces. Encouragingly, one of the key130

structural results of the prior work of [GKK23] pertains to “fooling” such functions. Concretely, they131

show that whenever the true marginal DX matches moments of degree at most Õ(1/τ2) with a target132

D∗ that satisfies suitable concentration and anticoncentration properties, then |EDX [f ]−ED∗ [f ]| ≤ τ133

for any f that is a function of a small number of halfspaces. If we could run such a test and ensure134

that the probabilities of the critical regions over our empirical marginal are also related to their areas,135

then we would have a similar stationary point property.136

However, the difficulty is that since we wish to run in fully polynomial time, we can only hope to fool137

such functions up to τ that is a constant. Unfortunately, this is not sufficient to analyze the probability138

masses of the critical regions we care about as they may be very small.139

The chief insight that lets us get around this issue is that each critical region R is in fact of a very spe-140

cific form, namely a rectangle that is axis-aligned with w: R = {x : ⟨w,x⟩ ∈ [−σ, σ] and ⟨v,x⟩ ∈141

[α, β]} for some values α, β, σ and some v orthogonal to w. Moreover, we know w, meaning142

we can efficiently estimate the probability PDX [⟨w,x⟩ ∈ [−σ, σ]] up to constant multiplicative143

factors without needing moment tests. Denoting the band {x : ⟨w,x⟩ ∈ [−σ, σ]} by T and144

writing PDX [R] = PDX [⟨v,x⟩ ∈ [α, β] | x ∈ T ]PDX [T ], it turns out that we should expect145

PDX [⟨v,x⟩ ∈ [α, β] | x ∈ T ] = Θ(1), as this is what would occur under the structured target distri-146
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bution D∗. (Such a “localization” property is also at the heart of the algorithms for approximately147

learning halfspaces of, e.g., [ABL17, Dan15].) To check this, it suffices to run tests that ensure that148

PDX [⟨v,x⟩ ∈ [α, β] | x ∈ T ] is within an additive constant of this probability under D∗.149

We can now describe the core of our algorithm (omitting some details such as the selection of the150

slope of the ramp). First, we run SGD on the surrogate loss L to arrive at an approximate stationary151

point and candidate vector w (technically a list of such candidates). Then, we define the band T152

based on w, and run tests on the empirical distribution conditioned on T . Specifically, we check153

that the low-degree empirical moments conditioned on T match those of D∗ conditioned on T ,154

and then apply the structural result of [GKK23] to ensure conditional probabilities of the form155

PDX [⟨v,x⟩ ∈ [α, β] | x ∈ T ] match PD∗ [⟨v,x⟩ ∈ [α, β] | x ∈ T ] up to a suitable additive constant.156

This suffices to ensure that even over our empirical marginal, the particular stationary point w we157

have is indeed close in angular distance to an optimal w∗.158

A final hurdle that remains, often taken for granted under structured distributions, is that closeness159

in angular distance ∡(w,w∗) does not immediately translate to closeness in terms of agreement,160

P[sign(⟨w,x⟩) ̸= sign(⟨w∗,x⟩)], over our unknown marginal. Nevertheless, we show that when161

the target distribution is Gaussian, we can run polynomial-time tests that ensure that an angle of162

θ = ∡(w,w∗) translates to disagreement of at most O(θ). When the target distribution is a general163

strongly log-concave distribution, we show a slightly weaker relationship: for any k ∈ N, we can164

run tests requiring time dÕ(k) that ensure that an angle of θ translates to disagreement of at most165

O(
√
k · θ1−1/k). In the Massart noise setting, we can make ∡(w,w∗) arbitrarily small, and so obtain166

our opt + ϵ guarantee for any target strongly log-concave distribution in polynomial time. In the167

adversarial noise setting, we face a more delicate tradeoff and can only make ∡(w,w∗) as small168

as Θ(opt). When the target distribution is Gaussian, this is enough to obtain final error O(opt) + ϵ169

in polynomial time. When the target distribution is a general strongly log-concave distribution, we170

instead obtain Õ(opt) + ϵ in quasipolynomial time.171

2 Preliminaries172

Notation and setup Throughout, the domain will be X = Rd, and labels will lie in Y = {±1}.173

The unknown joint distribution over X × Y that we have access to will be denoted by DXY , and its174

marginal on X will be denoted by DX . The target marginal on X will be denoted by D∗. We use175

the following convention for monomials: for a multi-index α = (α1, . . . , αd) ∈ Zd
≥0, xα denotes176 ∏

i x
αi
i , and |α| =

∑
i αi denotes its total degree. We use C to denote a concept class mapping177

Rd to {±1}, which throughout this paper will be the class of halfspaces or functions of halfspaces178

over Rd. We use opt(C, DXY) to denote the optimal error inff∈C P(x,y)∼DXY [f(x) ̸= y], or just opt179

when C and DXY are clear from context. We recall the definitions of the noise models we consider.180

In the Massart noise model, the labels satisfy Py∼DXY |x[y ̸= sign(⟨w∗,x⟩) | x] = η(x), where181

η(x) ≤ η < 1
2 for all x. In the adversarial label noise or agnostic model, the labels may be completely182

arbitrary. In both cases, the learner’s goal is to produce a hypothesis with error competitive with opt.183

We now formally define testable learning. The following definition is an equivalent reframing184

of the original definition [RV23, Def 4], folding the (label-aware) tester and learner into a single185

tester-learner.186

Definition 2.1 (Testable learning, [RV23]). Let C be a concept class mapping Rd to {±1}. Let D∗187

be a certain target marginal on Rd. Let ϵ, δ > 0 be parameters, and let ψ : [0, 1] → [0, 1] be some188

function. We say C can be testably learned w.r.t. D∗ up to error ψ(opt) + ϵ with failure probability189

δ if there exists a tester-learner A meeting the following specification. For any distribution DXY190

on Rd × {±1}, A takes in a large sample S drawn from DXY , and either rejects S or accepts and191

produces a hypothesis h : Rd → {±1}. Further, the following conditions must be met:192

(a) (Soundness.) Whenever A accepts and produces a hypothesis h, with probability at least193

1 − δ (over the randomness of S and A), h must satisfy P(x,y)∼DXY [h(x) ̸= y] ≤194

ψ(opt(C, DXY)) + ϵ.195

(b) (Completeness.) Whenever DXY truly has marginal D∗, A must accept with probability at196

least 1− δ (over the randomness of S and A).197
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3 Testing properties of strongly log-concave distributions198

In this section we define the testers that we will need for our algorithm. All the proofs from this199

section can be found in Appendix B. We begin with a structural lemma that strengthens the key200

structural result of [GKK23], stated here as Proposition A.3. It states that even when we restrict an201

isotropic strongly log-concave D∗ to a band around the origin, moment matching suffices to fool202

functions of halfspaces whose weights are orthogonal to the normal of the band.203

Proposition 3.1. Let D∗ be an isotropic strongly log-concave distribution. Let w ∈ Sd−1 be any204

fixed direction. Let p be a constant. Let f : Rd → R be a function of p halfspaces of the form in205

Eq. (A.2), with the additional restriction that its weights vi ∈ Sd−1 satisfy ⟨vi,w⟩ = 0 for all i. For206

some σ ∈ [0, 1], let T denote the band {x : |⟨w,x⟩| ≤ σ}. Let D be any distribution such that D|T207

matches moments of degree at most k = Õ(1/τ2) with D∗
|T up to an additive slack of d−Õ(k). Then208

|ED∗ [f | T ]− ED[f | T ]| ≤ τ.209

We now describe some of the testers that we use. First, we need a tester that ensures that the210

distribution is concentrated in every single direction. More formally, the tester checks that the211

moments of the distribution along any direction are small.212

Proposition 3.2. For any isotropic strongly log-concave D∗, there exists some constants C1 and a213

tester T1 that takes a set S ⊆ Rd × {±1}, an even k ∈ N, a parameter δ ∈ (0, 1) and runs and in214

time poly
(
dk, |S|, log 1

δ

)
. Let D denote the uniform distribution over S. If T1 accepts, then for any215

v ∈ Sd−1216

E
(x,y)∼D

[(⟨v,x⟩)k] ≤ (C1k)
k/2. (3.1)

Moreover, if S is obtained by taking at least
(
dk,
(
log 1

δ

)k)C1

i.i.d. samples from a distribution217

whose Rd-marginal is D∗, the test T1 passes with probability at least 1− δ.218

Secondly, we will use a tester that makes sure the distribution is not concentrated too close to a specific219

hyperplane. This is one of the properties we will need to use in order to employ the localization220

technique of [ABL17].221

Proposition 3.3. For any isotropic strongly log-concave D∗, there exist some constants C2, C3 and222

a tester T2 that takes a set S ⊆ Rd ×{±1} a vector w ∈ Sd−1, parameters σ, δ ∈ (0, 1) and runs in223

time poly
(
d, |S|, log 1

δ

)
. Let D denote the uniform distribution over S. If T2 accepts, then224

P
(x,y)∼D

[|⟨w,x⟩| ≤ σ] ∈ (C2σ,C3σ). (3.2)

Moreover, if S is obtained by taking at least 100
K1σ2 log

(
1
δ

)
i.i.d. samples from a distribution whose225

Rd-marginal is D∗, the test T2 passes with probability at least 1− δ.226

Finally, in order to use the localization idea of [ABL17] in a manner similar to [DKTZ20b], we need227

to make sure that the distribution is well-behaved also within a band around to a certain hyperplane.228

The main property of the distribution that we establish is that functions of constantly many halfspaces229

have expectations very close to what they would be under our distributional assumption. As we show230

later in this work, having the aforementioned property allows us to derive many other properties231

that strongly log-concave distributions have, including many of the key properties that make the232

localization technique successful.233

Proposition 3.4. For any isotropic strongly log-concaveD∗ and a constantC4, there exists a constant234

C5 and a tester T3 that takes a set S ⊆ Rd × {±1} a vector w ∈ Sd−1, parameters σ, τ δ ∈ (0, 1)235

and runs in time poly
(
dÕ(

1
τ2 ), 1

σ , |S|, log
1
δ

)
. Let D denote the uniform distribution over S, let236

T denote the band {x : |⟨w,x⟩| ≤ σ} and let Fw denote the set {±1}-valued functions of C4237

halfspaces whose weight vectors are orthogonal to w. If T3 accepts, then238

max
f∈Fw

∣∣∣∣ E
x∼D∗

[f(x) | x ∈ T ]− E
(x,y)∼D

[f(x) | x ∈ T ]
∣∣∣∣ ≤ τ, (3.3)

239

max
v∈Sd−1: ⟨v,w⟩=0

∣∣∣∣ E
x∼D∗

[(⟨v,x⟩)2 | x ∈ T ]− E
(x,y)∼D

[(⟨v,x⟩)2 | x ∈ T ]
∣∣∣∣ ≤ τ. (3.4)
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Moreover, if S is obtained by taking at least
(

1
τ ·

1
σ · d

1
τ2 logC5( 1

τ ) ·
(
log 1

δ

) 1
τ2 logC5( 1

τ )
)C5

i.i.d.240

samples from a distribution whose Rd-marginal is D∗, the test T3 passes with probability at least241

1− δ.242

4 Testably learning halfspaces with Massart noise243

In this section we prove that we can testably learn halfspaces with Massart noise with respect to244

isotropic strongly log-concave distributions (see Definition A.1).245

Theorem 4.1 (Tester-Learner for Halfspaces with Massart Noise). Let DXY be a distribution over246

Rd × {±1} and let D∗ be an isotropic strongly log-concave distribution over Rd. Let C be the class247

of origin centered halfspaces in Rd. Then, for any η < 1/2, ϵ > 0 and δ ∈ (0, 1), there exists an248

algorithm (Algorithm 1) that testably learns C w.r.t. D∗ up to excess error ϵ and error probability249

at most δ in the Massart noise model with rate at most η, using time and a number of samples from250

DXY that are polynomial in d, 1/ϵ, 1
1−2η and log(1/δ).251

Algorithm 1: Tester-learner for halfspaces
Input: Training sets S1, S2, parameters σ, δ, α
Output: A near-optimal weight vector w, or rejection
Run PSGD on the empirical loss Lσ over S1 to get a list L of candidate vectors.
Test whether L contains an α-approximate stationary point w of the empirical loss Lσ over S2.

Reject if no such w exists.
for each candidate w′ in {w,−w} do

Let B′
w(σ) denote the band {x : |⟨w′,x⟩| ≤ σ}. Let F ′

w denote the class of functions of at
most two halfspaces with weights orthogonal to w′.

Let δ′ = Θ(δ).
Run T1(S2, k = 2, δ) to verify that the empirical marginal is approximately isotropic. Reject

if T1 rejects.
Run T2(S2,w

′, σ, δ′) to verify that PS [B
′
w] = Θ(σ). Reject if T2 rejects.

Run T3(S2,w
′, σ = σ/6, τ, δ′) and T3(S,w′, σ = σ/2, τ, δ′) for a suitable constant τ to

verify that the empirical distribution conditioned on B′
w(σ/6) and B′

w(σ/2) fools F ′
w up to

τ . Reject if T3 rejects.
Estimate the empirical error of w′ on S.

If all tests have accepted, output w′ ∈ {w,−w} with the best empirical error.

To show our result, we revisit the approach of [DKTZ20a] for learning halfspaces with Massart252

noise under well-behaved distributions. Their result is based on the idea of minimizing a surrogate253

loss that is non convex, but whose stationary points correspond to halfspaces with low error. They254

also require that their surrogate loss is sufficiently smooth, so that one can find a stationary point255

efficiently. While the distributional assumptions that are used to demonstrate that stationary points of256

the surrogate loss can be discovered efficiently are mild, the main technical lemma, which demostrates257

that any stationary point suffices, requires assumptions that are not necessarily testable. We establish258

a label-dependent approach for testing, making use of tests that are applied during the course of our259

algorithm.260

We consider a slightly different surrogate loss than the one used in [DKTZ20a]. In particular, for261

σ > 0, we let262

Lσ(w) = E
(x,y)∼DXY

[
ℓσ

(
− y ⟨w,x⟩
∥w∥2

)]
, (4.1)

where ℓσ : R→ [0, 1] is a smooth approximation to the ramp function with the properties described263

in Proposition C.1 (see Appendix C), obtained using a piecewise polynomial of degree 3. Unlike264

the standard logistic function, our loss function has derivative exactly 0 away from the origin (for265

|t| > σ/2). This makes the analysis of the gradient of Lσ easier, since the contribution from points266

lying outside a certain band is exactly 0.267

The smoothness allows us to run PSGD to obtain stationary points efficiently, and we now state the268

convergence lemma we need.269
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Proposition 4.2 (PSGD Convergence, Lemmas 4.2 and B.2 in [DKTZ20a]). Let Lσ be as in Equation270

(4.1) with σ ∈ (0, 1], ℓσ as described in Proposition C.1 and DXY such that the marginal DX on Rd271

satisfies Property (3.1) for k = 2. Then, for any ϵ > 0 and δ ∈ (0, 1), there is an algorithm whose272

time and sample complexity is O( d
σ4 +

log(1/δ)
ϵ4σ4 ), which, having access to samples from DXY , outputs273

a list L of vectors w ∈ Sd−1 with |L| = O( d
σ4 + log(1/δ)

ϵ4σ4 ) so that there exists w ∈ L with274

∥∇wLσ(w)∥2 ≤ ϵ , with probability at least 1− δ .

In particular, the algorithm performs Stochastic Gradient Descent on Lσ Projected on Sd−1 (PSGD).275

It now suffices to show that, upon performing PSGD on Lσ, for some appropriate choice of σ, we276

acquire a list of vectors that testably contain a vector which is approximately optimal. We first prove277

the following lemma, whose distributional assumptions are relaxed compared to the corresponding278

structural Lemma 3.2 of [DKTZ20a]. In particular, instead of requiring the marginal distribution to be279

“well-behaved", we assume that the quantities of interest (for the purposes of our proof) have expected280

values under the true marginal distribution that are close, up to multiplicative factors, to their expected281

values under some “well-behaved" (in fact, strongly log-concave) distribution. While some of the282

quantities of interest have values that are miniscule and estimating them up to multiplicative factors283

could be too costly, it turns out that the source of their vanishing scaling can be completely attributed284

to factors of the form P[|⟨w,x⟩| ≤ σ] (where σ is small), which, due to standard concentration285

arguments, can be approximated up to multiplicative factors, given w ∈ Sd−1 and σ > 0 (see286

Proposition 3.3). As a result, we may estimate the remaining factors up to sufficiently small additive287

constants (see Proposition 3.4) to get multiplicative overall closeness to the “well behaved" baseline.288

We defer the proof of the following Lemma to Appendix C.1.289

Lemma 4.3. Let Lσ be as in Equation (4.1) with σ ∈ (0, 1], ℓσ as described in Proposition C.1, let290

w ∈ Sd−1 and consider DXY such that the marginal DX on Rd satisfies Properties (3.2) and (3.3)291

for C4 = 2 and accuracy τ . Let w∗ ∈ Sd−1 define an optimum halfspace and let η < 1/2 be an292

upper bound on the rate of the Massart noise. Then, there are constants c1, c2, c3 > 0 such that if293

∥∇wLσ(w)∥2 < c1(1− 2η) and τ ≤ c2, then294

∡(w,w∗) ≤ c3
1− 2η

· σ or ∡(−w,w∗) ≤ c3
1− 2η

· σ

Combining Proposition 4.2 and Lemma 4.3, we get that for any choice of the parameter σ ∈ (0, 1], by295

running PSGD on Lσ , we can construct a list of vectors of polynomial size (in all relevant parameters)296

that testably contains a vector that is close to the optimum weight vector. In order to link the zero-one297

loss to the angular similarity between a weight vector and the optimum vector, we use the following298

Proposition (for the proof, see Appendix C.2).299

Proposition 4.4. Let DXY be a distribution over Rd × {±1}, w∗ ∈ argminw∈Sd−1 PDXY [y ̸=300

sign(⟨w,x⟩)] and w ∈ Sd−1. Then, for any θ ≥ ∡(w,w∗), θ ∈ [0, π/4], if the marginal DX301

on Rd satisfies Property (3.1) for C1 > 0 and some even k ∈ N and Property (3.2) with σ set to302

(C1k)
k

2(k+1) · (tan θ)
k

k+1 , then, there exists a constant c > 0 such that the following is true.303

P
DXY

[y ̸= sign(⟨w,x⟩)] ≤ opt+ c · k1/2 · θ1−
1

k+1 .

We are now ready to prove Theorem 4.1.304

Proof of Theorem 4.1. Throughout the proof we consider δ′ to be a sufficiently small polynomial305

in all the relevant parameters. Each of the failure events will have probability at least δ′ and their306

number will be polynomial in all the relevant parameters, so by the union bound, we may pick δ′ so307

that the probability of failure is at most δ.308

The algorithm we run is Algorithm 1, with appropriate selection of parameters and given samples309

S1, S2, each of which are sufficiently large sets of independent samples from the true unknown310

distribution DXY . For some σ ∈ (0, 1] to be defined later, we run PSGD on the empirical loss Lσ311

over S1 as described in Proposition 4.2 with ϵ = c1(1−2η)σ/4, where c1 is given by Lemma 4.3. By312

Proposition 4.2, we get a list L of vectors w ∈ Sd−1 with |L| = poly(d, 1/σ) such that there exists313

w ∈ L with ∥∇wLσ(w)∥2 < 1
2c1(1− 2η) under the true distribution, if the marginal is isotropic.314
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Figure 1: Critical regions in the proofs of main structural lemmas (Lemmas 4.3, 5.2). We analyze the
contributions of the regions labeled A1, A2 to the quantities A1, A2 in the proofs. Specifically, the
regions A1 (which have height σ/3 so that the value of ℓ′σ(xw) for any x in these regions is exactly
1/σ, by Proposition C.1) form a subset of the region G, and their probability mass under DX is (up to
a multiplicative factor) a lower bound on the quantity A1 (see Eq (C.3)). Similarly, the region A2 is a
subset of the intersection of Gc with the band of height σ, and has probability mass that is (up to a
multiplicative factor) an upper bound on the quantity A2 (see Eq (C.4)).

Having acquired the list L using sample S1, we use the independent samples in S2 to test whether315

L contains an approximately stationary point of the empirical loss on S2. If this is not the case,316

then we may safely reject: for large enough |S1|, if the distribution is indeed isotropic strongly317

logconcave, there is an approximate stationary of the population loss in L and if |S2| is large enough,318

the gradient of the empirical loss on S2 will be close to the gradient of the population loss on each of319

the elements of L, due to appropriate concentration bounds for log-concave distributions as well as320

the fact that the elements of L are independent from S2. For the following, let w be a point such that321

∥∇wLσ(w)∥2 < c1(1− 2η) under theempirical distribution over S2322

In Lemma 4.3 and Proposition 4.4 we have identified certain properties of the marginal distribution323

that are sufficient for our purposes, given that L contains an approximately stationary point of the324

empirical (surrogate) loss on S2. Our testers T1, T2, T3 verify that these properties hold for the325

empirical marginal over our sample S2, and it will be convenient to analyze the optimality of our326

algorithm purely over S2. In particular, we will need to require that |S2| is sufficiently large, so327

that when the true marginal is indeed the target D∗, our testers succeed with high probability (for328

the corresponding sample complexity, see Propositions 3.2, 3.3 and 3.4). Moreover, by standard329

generalization theory, since the VC dimension of halfspaces is only O(d) and for us |S2| is a large330

poly(d, 1/ϵ), both the error of our final output and the optimal error over S2 will be close to that over331

DXY . So in what follows, we will abuse notation and refer to the uniform distribution over S2 as332

DXY and the optimal error over S2 simply as opt.333

We proceed with some basic tests. Throughout the rest of the algorithm, whenever a tester fails,334

we reject, otherwise we proceed. First, we run testers T2 with inputs (w, σ/2, δ′) and (w, σ/6, δ′)335

(Proposition 3.3) and T3 with inputs (w, σ/2, c2, δ′) and with (w, σ/6, c2, δ
′) (Proposition 3.4, c2336

as defined in Lemma 4.3). This ensures that for the approximate stationary point w of the Lσ, the337

probability within the band Bw(σ/2) = {x : |⟨w,x⟩| ≤ σ/2} is Θ(σ) (and similarly for Bw(σ/6))338

and moreover that our marginal conditioned on each of the bands fools (up to an additive constant)339

functions of halfspaces with weights orthogonal to w. As a result, we may apply Lemma 4.3 to340

w and form a list of 2 vectors {w,−w} which contains some w′ with ∡(w′,w∗) ≤ c2σ/(1− 2η)341

(where c3 is as defined in Lemma 4.3).342
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We run T1 (Proposition 3.2) with k = 2 to verify that the marginals are approximately isotropic and343

we use T2 once again, with appropriate parameters for each w and its negation, to apply Proposition344

4.4 and get that {w,−w} contains a vector w′ with345

P
DXY

[y ̸= sign(⟨w′,x⟩)] ≤ opt+ c · θ2/3,

where ∡(w′,w∗) ≤ θ := c2σ/
√
1− 2η. By picking σ = Θ(ϵ3/2(1− 2η)), we get346

P
DXY

[y ̸= sign(⟨w′,x⟩)] ≤ opt+ ϵ .

However, we do not know which of the weight vectors in {w,−w} is the one guaranteed to achieve347

small error. In order to discover this vector, we estimate the probability of error of each of the348

corresponding halfspaces (which can be done efficiently, due to Hoeffding’s bound) and pick the one349

with the smallest error. This final step does not require any distributional assumptions and we do not350

need to perform any further tests.351

5 Testably learning halfspaces in the agnostic setting352

In this section, we provide our result on efficiently and testably learning halfspaces in the agnostic353

setting with respect to isotropic strongly log-concave target marginals. We defer the proofs to354

Appendix D. The algorithm we use is once more Algorithm 1, but we call it multiple times for355

different choices of the parameter σ, reject if any call rejects and output the vector that achieved356

the minimum empirical error overall, otherwise. Also, the tester T1 is called for a general k (not357

necessarily k = 2).358

Theorem 5.1 (Efficient Tester-Learner for Halfspaces in the Agnostic Setting). Let DXY be a359

distribution over Rd × {±1} and let D∗ be a strongly log-concave distribution over Rd (Definition360

A.1). Let C be the class of origin centered halfspaces in Rd. Then, for any even k ∈ N, any ϵ > 0361

and δ ∈ (0, 1), there exists an algorithm that agnostically testably learns C w.r.t. D∗ up to error362

O(k1/2 · opt1−
1

k+1 ) + ϵ, where opt = minw∈Sd−1 PDXY [y ̸= sign(⟨w,x⟩)], and error probability363

at most δ, using time and a number of samples from DXY that are polynomial in dÕ(k), (1/ϵ)Õ(k)364

and (log(1/δ))O(k).365

In particular, by picking some appropriate k ≤ log2 d, we obtain error Õ(opt)+ϵ in quasipolynomial366

time and sample complexity, i.e. poly(2polylog d, ( 1ϵ )
polylog d).367

To prove Theorem 5.1, we may follow a similar approach as the one we used for the case of Massart368

noise. However, in this case, the main structural lemma regarding the quality of the stationary points369

involves an additional requirement about the parameter σ. In particular, σ cannot be arbitrarily small370

with respect to the error of the optimum halfspace, because, in this case, there is no upper bound371

on the amount of noise that any specific point x might be associated with. As a result, picking σ372

to be arbitrarily small would imply that our algorithm only considers points that lie within a region373

that has arbitrarily small probability and can hence be completely corrupted with the adversarial374

opt budget. On the other hand, the polynomial slackness that the testability requirement introduces375

(through Proposition 4.4) between the error we achieve and the angular distance guarantee we can get376

via finding a stationary point of Lσ (which is now coupled with opt), appears to the exponent of the377

guarantee we achieve in Theorem 5.1.378

Lemma 5.2. Let Lσ be as in Equation (4.1) with σ ∈ (0, 1], ℓσ as described in Proposition C.1, let379

w ∈ Sd−1 and consider DXY such that the marginal DX on Rd satisfies Properties (3.2), (3.3) and380

(3.4) for w with C4 = 2 and accuracy parameter τ . Let opt be the minimum error achieved by some381

origin centered halfspace and let w∗ ∈ Sd−1 be a corresponding vector. Then, there are constants382

c1, c2, c3, c4 > 0 such that if opt ≤ c1σ, ∥∇wLσ(w)∥2 < c2, and τ ≤ c3 then383

∡(w,w∗) ≤ c4σ or ∡(−w,w∗) ≤ c4σ.

We obtain our main result for Gaussian target marginals by refining Proposition 4.4 for the specific384

case when the target marginal distribution D∗ is the standard multivariate Gaussian distribution. The385

algorithm for the Gaussian case is similar to the one of Theorem 5.1, but it runs different tests for the386

improved version (see Proposition D.1) of Proposition 4.4.387

Theorem 5.3. In Theorem 5.1, if D∗ is the standard Gaussian in d dimensions, we obtain error388

O(opt) + ϵ in polynomial time and sample complexity, i.e. poly(d, 1/ϵ, log(1/δ)).389
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