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ABSTRACT

Single-cell spatial transcriptomics (scST) is a groundbreaking technique that al-
lows for the exploration of gene expression patterns, cell-cell interactions, and
tissue organization at the single-cell level. Traditional approaches in scST recon-
struction mainly focus on assigning two-dimensional (2D) coordinates to individ-
ual cells within a pre-established region. This often requires a large amount of 2D
slice data, such as ssDNAs images, which escalates both costs and the complexity
involved in studying and reconstructing the tissue’s three-dimensional (3D) or-
ganization. Here, we introduce a novel method for scST reconstruction, which
is a Neural Radiance Fields (NeRF)-based 3D-aware generative model termed
STscan, that aims to reconstruct a 3D scST scene using a minimal amount from
2D images (fewer than 10). Additionally, STscan can identify cell types and their
expression levels within this 3D environment. To the best of our knowledge,
STscan is the first NeRF-based method specifically designed for single-cell ST
reconstruction, and it is the first end-to-end solution capable of directly recon-
structing in vitro cell-cell environments from ssDNA images. This approach has
the potential to significantly reduce both the complexity and cost associated with
scST studies.

1 INTRODUCTION

The growing scientific consensus posits that cellular spatial positioning has a profound influence
on gene transcriptional activity, ultimately affecting physiological processes. Situated within com-
plex three-dimensional microenvironments, cells occupy specific spatial coordinates and execute
specialized functions(Li et al., 2022; Palla et al., 2022). For example, in the human brain, neu-
rons in the hippocampus are spatially organized in a way that allows them to effectively process
and store memories. This unique arrangement ensures that incoming signals are relayed through a
specific network of neurons, optimizing the brain’s ability to encode, store, and retrieve informa-
tion(Piwecka et al., 2023). Advances in Single-Cell Spatial Transcriptomics (scST) technologies
have opened new avenues for cellular observation(Longo et al., 2021). These technologies, which
enable the simultaneous measurement of gene expression profiles at single-cell or even subcellular
resolutions while preserving spatial information, were recognized as Nature Methods’ Method of
the Year for 2020(Marx, 2021).

Within the scope of scST technologies, methods can be divided into two primary categories: In Situ
Hybridization (ISH) methods and Spatial Barcoding techniques. The raw data output of scST for
each respective methodology amalgamates both imaging data (including, Staining Images are often
referred to as ssDNA, Sequecial images) and localized sequencing information Figure 1, thereby
facilitating the identification of cell types and aiding in the understanding of their expression patterns
to gain insights into biological processes(Kleino et al., 2022; Dries et al., 2021; Tian et al., 2023).

While there have been rapid advances in technologies for handling standard dimensional reduction,
clustering, and differential expression tools in spatial transcriptomic data, methods that effectively
leverage the most crucial feature of profiling—space itself—have lagged far behind(Burgess, 2019;
Bressan et al., 2023). To enable more general spatial profiling, some researchers employ a particular
method: they produce serial thin sections from a biological sample, process each section through
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Figure 1: The scope of scST methods. After initial sample processing, both methods require the
integration of sequencing with microscopic imaging for cellular data spacial extraction. The ISH
approach often involves imaging sequencing results through fluorescent markers on the sequence.
In contrast, the spatial barcoding technique presents a staining image (i.e., ssDNA) in the RNAscope
procedures and decodes through 2D information. Ultimately, both methods aim to map cell types to
their respective spatial expression levels, laying the foundation for downstream analysis.

2D imaging, and then use computational methods to realign the data and produce a 3D cube(Qiu
et al., 2022; Xu et al., 2023). For example, Chen et al. (2023) used Stereo-Seq to reconstruct the
monkey brain. They utilized 86 continuous slides in the monkey brain and recognized 143 macaque
cortical regions. From this, they obtained a comprehensive atlas of 264 transcriptome-defined corti-
cal cell types and mapped their spatial distribution across the entire cortex. They also discovered a
relationship between the regional distribution of various cell types and the region’s hierarchical level
in the visual and somatosensory systems. However, this approach is very expensive and difficult to
reproduce. Meanwhile, the loss of spatial information during the experimental process is an issue
that stereo seq has yet to overcome.

With the goal of cost-effectively modeling the 3D structure of single-cell spatial transcriptomics
(scST), our study employs neural radiance fields (NeRFs) (Mildenhall et al., 2021) as the 3D rep-
resentation, termed the method STscan. NeRFs have recently made significant strides in view syn-
thesis, they represent a 3D scene as a continuous radiation field parameterized by a neural network
as inputs are coordinates and view directions. Despite showing promising results in common scenes
and macroscopic objects, the problem of reconstructing microenvironments with NeRF remains
largely unexplored. Therefore, we choose to apply them to the biomedical realms, specifically, we
introduce a NeRF-based generator that renders and synthesizes novel views for single-cell spatial
transcriptomics from a set of unposed ssDNA images.

Due to the data scarcity stemming from collecting ssDNA images through RNAscope procedures,
we contend with a constrained quantity of training samples. To resolve this, we choose to jointly
encode cell-type information and expression patterns along with appearance and geometry, which
yield a joint distribution of ssDNA and corresponding semantics. This joint distribution affords us
an enhanced understanding of the internal structure of scST and enables the modeling of the spatial
distribution of cell type and expression, thereby assisting subsequent analyses of biological signif-
icance. By incorporating two discriminators with a differentiable data augmentation technique, we
are able to synthesize high-resolution images while training our model solely on unposed 2D images.
We systematically analyze our approach using raw data from the Stereo-Seq experiment(Wei et al.,
2022). The experimental results demonstrate the efficacy of our model as a potent tool for scST im-
age synthesis. Our model not only facilitates the reconstruction and generation of single-cell spatial
transcriptomics (scST) from 2D images but also adds cell type and expression data simultaneously.
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2 RELATED WORKS

Application Insights in ISH and Barcoding Techniques, in Situ Hybridization (ISH) represents a
set of techniques specifically designed for tagging RNA molecules using fluorescent probes through
complementary hybridization, which is subsequently visualized via fluorescence microscopy(Moses
& Pachter, 2022). Among the available methodologies, three stand out based on their spatial res-
olution capabilities: MERFISH(Moffitt & Zhuang, 2016), seqFISH+(Eng et al., 2019), listed in
descending order of resolution. Notably, MERFISH, a pioneering technique in this domain, was
innovated by Professor Zhuang. Presently, it serves as a dominant technique in ISH applications,
facilitating intricate studies on neurological structures(Zhang et al., 2021), oncological develop-
ments(Chen & Teichmann, 2021), and other related biomedical realms(Fang et al., 2022). In con-
trast, the realm of Spatial Barcoding techniques is characterized by the presence of unique barcoded
DNA primers within each pixel, enabling the precise localization of a pixel in bidimensional repre-
sentations. Noteworthily, this technique witnesses a broader application spectrum compared to ISH.
Two of the paramount platforms in this field include 10x Visium(Galeano Niño et al., 2022) and BGI-
Genomics’s Stereo-Seq(Xia et al., 2022). However, given the limitation of 10x Visium in capturing
single-cell granularity(Dong & Zhang, 2022), Stereo-Seq can capture in the subcellular emerging
as a preferred choice, especially in contemporary research spanning genetics, oncology, and de-
velopmental biology(Koch, 2022). In light of these insights and the evolving research landscape,
our current experiment harnesses data generated from the Stereo-Seq platform for reconstruction
purposes.

Cell Type and Expression Profiler, in the realm of single-cell spatial transcriptomics, cell type
identification, and cellular expression level analysis are two pivotal applications, laying the foun-
dation for subsequent research and services(Cable et al., 2022). There are mainly two methods to
estimate the cellular type composition: firstly, by assessing the enrichment level of cell type-specific
markers in expressed genes, such as Leiden clustering(Traag et al., 2019); secondly, through de-
convolution techniques aimed at precisely estimating the proportion of different cell types at each
location, including SPOTlight(Elosua-Bayes et al., 2021) and DSTG(Song & Su, 2021). However,
with the rapid advancement of spatial transcriptomics technology, the challenge of effectively inte-
grating single-cell information with spatial transcriptome data has become increasingly prominent.
Several groups are working on modeling spatial patterns of gene expression based on predefined pro-
cesses(Bressan et al., 2023), like spatialDE(Svensson et al., 2018), whereas some methods mainly
focus on spatial continuity. Incorporating continuous spatial expression information into spatial
transcriptomic data also remains a challenge.

NeRF, short for Neural Radiance Field (Mildenhall et al., 2021), is a groundbreaking neural network
architecture for 3D scene representation and reconstruction from 2D images. Since the inception of
NeRF, many works have been proposed to enhance its quality and efficiency. For example, Yu et al.
(2021); Xu et al. (2022a); Deng et al. (2022) aimed at diminishing the number of training views and
enhancing generalization by utilizing image features or depth supervision. Barron et al. (2021; 2022)
employ an integrated positional encoding of conical frustums to achieve anti-aliasing. Besides, some
work combines NeRF with other tasks, such as Zhi et al. (2021); Fu et al. (2022) exploring incor-
porating semantic parsing with NeRF. Yariv et al. (2021); Oechsle et al. (2021); Wang et al. (2022);
Li et al. (2023) have integrated NeRF with signal distance function and achieve both surface recon-
struction and volume rendering using a single model. Furthermore, a series of studies have been
conducted with the aim of augmenting the representation capabilities of NeRF through grid-based
(Müller et al., 2022; Fridovich-Keil et al., 2022)and point-based (Xu et al., 2022b) architecture. Due
to NeRF’s generalizability, it has found applications across various domains, encompassing text-
guided generation (Poole et al., 2022; Lin et al., 2023), human body modeling (Xu et al., 2021;
Zhao et al., 2022), and even in the realm of medicine (Corona-Figueroa et al., 2022; Petkov, 2023).
In this paper, we employ NeRF within the domain of microscopic medicine, specifically focusing
on single-cell spatial transcriptomics. Our investigation is centered on the exploration of 3D recon-
struction of scST with semantic information.

Generative Modeling endeavors to generate novel samples that manifest similar statistical proper-
ties to the training samples through learning the underlying distribution. During the early stage of
deep learning, the variational autoencoder (VAE) (Kingma & Welling, 2013; Rezende et al., 2014;
Kusner et al., 2017; Vahdat & Kautz, 2020) emerged as a popular generative model, which comprises
an encoder network designed to map data into a latent space and a decoder network to reconstruct
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Figure 2: The illustration of the overall network architecture. Given a sampled camera pose ξ,
the NeRF generator which is conditioned on two latent codes zs, za synthesizes an ssDNA image and
corresponding cell type or expression segmentation. The synthesized results are first transformed
by a differentiable transformation T for data augmentation and then fed into two discriminators
Dp and Ds, and the gradients of loss LDp and LDs will be backpropagated into the generator for
optimization.

the data. Later, Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) have become
the predominant framework for generative modeling. It consists of a generator and a discriminator,
which are trained in a competitive manner and have been applied to various applications including
image synthesis (Brock et al., 2018; Qin et al., 2020), video generation (Tulyakov et al., 2018; Chu
et al., 2020), style transfer (Azadi et al., 2018; Karras et al., 2019). Recently, diffusion models
(Sohl-Dickstein et al., 2015; Rombach et al., 2022) have been proposed and achieved great success
in image synthesis, they generate new samples by gradually denoising a normally distributed vari-
able. However, there is a problem with all the above methods, they cannot generate 3D consistent
scenes due to the lack of 3D modeling. Since NeRF has become one of the most popular 3D rep-
resentations, many methods have been proposed to combine 2D generative models with NeRF and
generate 3D assets. For example, Poole et al. (2022); Lin et al. (2023) incorporate NeRF with dif-
fusion model and generate 3D objects using text prompt, while Graf (Schwarz et al., 2020) achieves
3d-aware image synthesis by integrating NeRF into GAN-based framework. In this paper, we adopt
a GAN-styled framework based on Graf (Schwarz et al., 2020) and aim to generate new single-cell
spatial transcriptomics under limited training data, to resolve which we introduce a joint distribution
of scST and semantic labels and a data augmentation technique.

3 METHOD

Conventional 3D reconstruction methods for single-cell spatial transcriptomics (scST) are not only
costly but also, due to their technical limitations, unable to recover lost information in the spatial
domain. In our study, we seek to address the challenges of scST reconstruction and generation by
employing computer vision algorithms, offering a cost-effective solution that can facilitate further
research in the field of scST. In particular, we introduce a NeRF-based generative model, STscan that
consists of three components: a conditional NeRF generator for synthesizing ssDNA images along
with their corresponding semantic information, two discriminators for gradient backpropagation,
and a data augmentation technique to address data scarcity. The overall network architecture is
illustrated in Figure 2.

3.1 DATASETS GENERATION

We conduct STscan experiments on the brain of Axolotl Telencephalon using Stereo-Seq(Wei et al.,
2022). During the utilization of this data, we preprocessed the cell types and their expression pat-
terns. Current alignment methods cannot directly deal with images, so we employed a novel ap-
proach for STscan.
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Cell Type Images Generation. For our study, processed Stereo-seq data was downloaded from
ARTISTA, which encompassed the segmented cell bin matrix, cell coordinates, and annotation
metadata. Key elements such as cell coordinates and annotations were extracted from this dataset.
Following extraction, the data was using the ggplot2(Wickham, 2011), which is a plotting library.
Finally, spatial maps for each section were crafted to depict the spatial distribution of cell types.

Expression Pattern Images Generation. Expression values for each gene were then stratified based
on peak expression values observed in each section, resulting in categorization into six distinct
levels: 0, Low, Below Average, Average, Above Average, and High. Following this stratification
process, the processed data utilize the ggplot2(Wickham, 2011), and spatial maps for each section
were generated, illustrating the spatial expression patterns of the selected genes.

Affine Image Alignment. To align ssDNA images and the images of cell types or expression
patterns, we employed an affine transformation based on the optimization of key point alignments.
A 2D affine transformation is represented as:[

x′

y′

1

]
=

[
a b c
d e f
0 0 1

][
x
y
1

]
(1)

Our goal was to determine the optimal transformation parameters a, b, c, d, e, f that minimize the
Euclidean distance between transformed source points and target points. This optimization was
achieved using the SGD gradient descent method(Qian et al., 2015), and the derived transformation
was subsequently applied to the images.

3.2 GENERATIVE MODEL

We employ a NeRF as the representation for capturing the 3D structure of single-cell spatial tran-
scriptomics inspired by Graf (Schwarz et al. (2020)). Besides, we leverage a discriminator Dϕ. to
provide feedback to the generator and improve the realism of the synthesized ssDNA images.

Conditional NeRF Generator. NeRF is a neural network-based approach that has shown great
success in 3D scene representation. It is designed to capture complex 3D scenes by learning a
continuous radiance field parameterized by a neural network function, denoted as Gθ, where θ rep-
resents the network’s parameters. Specifically, given a 3D coordinate x and a viewing direction
d:

Gθ(x,d) = (c, σ), (2)

where σ is a volume density and c is the corresponding RGB color value c. Let r(t) = o + td denote
a camera ray, the expected color C(r) of the ray with near and far bounds tn and tf is:

C(r) =

∫ tf

tn

T(t)σ(r(t))Gθ(r(t),d)dt, (3)

T(t) = exp(−
∫ tf

tn

σ(r(s))ds). (4)

With a sampled camera pose ξ ∼ pξ , Gθ can generate a corresponding image patch P. Subsequently,
the discriminator Dϕ is employed to evaluate the synthesized patch P in comparison to an authentic
patch P’ extracted from the training dataset. During the training process, a 2D sampling pattern is
applied to produce image patches at a resolution of K ×K for computational efficiency.

To achieve controllable generation, two latent codes are introduced, one of which is to model shape,
denoted as zs ∼ ps, and the other is to model appearance, denoted as za ∼ pa. Both zs and za are
sampled from Gaussian distributions. In particular, zs exerts control over shape by modulating the
density σ, while za operates on appearance. The formulation of the conditional NeRF is:

x, zs → σ, (5)
x,d,zs, za → c, (6)

Gθ(x,d,zs, za) = (c, σ) (7)

Semantic branch. In contrast to usual macroscopic objects, single-cell spatial transcriptomics is
a collection of microstructures, each falling into distinct cell types and different expressions. The

5



Under review as a conference paper at ICLR 2024

conventional NeRF formulation, primarily designed for capturing appearance and geometry, cannot
model the inherent property distribution of cells. To address this limitation, STscan model a joint
distribution of ssDNA and semantic labels by introducing a semantic branch that predicts cell type
or expression labels and the formulation can be expressed as:

fs(x, zs, za) = s, (8)

S(r) =

∫ tf

tn

T(t)σ(r(t))fs(r(t),zs, za)dt (9)

where s and S(r) are predicted semantic values, fs is the branch for cell type or expression. The
overall formulation for generative NeRF can be expressed as:

Gθ(x,d, zs , za) = (c, s, σ) (10)

The inclusion of semantic branches allows us to simultaneously acquire cell information during the
synthesis of ssDNA images. This dual objective not only contributes to the reconstruction of ssDNA
images but also improves the performance of generation by the acquisition of insights into cell type
and expression distributions, which will be presented in the next section.

3.3 DISCRIMINATIVE MODEL

Utilizing the NeRF-based generator G(za , zs) → (P,S), we achieve effective modeling of the joint
distribution of ssDNA image patch P and the associated semantic attributes S, which encompass
cell type or expression labels. These semantic labels inherently capture the intrinsic properties of
ssDNA, therefore the joint distribution definitely enhances the generator’s capacity to comprehend
the 3D structure of ssDNA. In this section, we delve into a detailed exploration of strategies for
leveraging the semantic attributes to provide feedback to the generator.

Data augmentation. As mentioned before, considering the difficulty of ssDNA data acquisition,
STscan use a small set of training samples and focus on few-shot generation. However, the effec-
tiveness of GAN is heavily dependent on the abundance of training data and the performance tends
to deteriorate given a paucity of data. To resolve this, we introduce a data augmentation module
following y DiffAugment (Zhao et al. (2020)). This module enhances data efficiency by applying a
variety of differentiable augmentations to both authentic and synthetic samples. Specifically, we ap-
ply a random differentiable transformation T on both synthetic patch and real patch before feeding
them into the discriminator, and T is a composition of three simple transformations including trans-
lation, cut out, and color adjustment. Building upon the data augmentation, we address the issue of
inadequate training data while simultaneously mitigating concerns about discriminator overfitting.

Discriminator. We introduce two discriminators denoted as DP : P → R and DS : concat(P,S) →
R respectively. Both discriminators are implemented with ResNet blocks. DP plays the same role
as the discriminator in most GAN models, it compares the predicted ssDNA patch P and the ground
truth patch P’, and the loss gradient is backpropagated to the generator thus facilitating the synthesis
of more realistic images. pp denotes distribution over image patches of trainset, fD means hinge loss
and the loss function for DP with data augmentation T is:

LDP
= E

P′∼pp

[fD(−DP(T(P
′)))] + E

P=G(za,zs,ξ),za∼pa,zs∼ps,ξ∼pξ

[fD(DP(T(P)))] (11)

To leverage the semantic information, we also implement a discriminator DS for identifying the
semantic labels. DS is dedicated to optimizing image-label pairs, whose input is the concatenation of
P and S. This naturally ensures alignment between synthesized images and corresponding semantic
labels, as the non-aligned image-label pairs can be easily classified into fake. The loss function for
DS is as follows:

LDS = E
P ′,S′∼pjoint

[fD(−DS(concat(T(P
′),T(S′))))] (12)

+ E
P,S=G(za,zs,ξ),za∼pa,zs∼ps,ξ∼pξ

[fD(DS(concat(T(P),T(S))))] (13)

where pjoint is the joint distribution of ssDNA and semantic labels. In addition, to generate better
semantic results, we compute the L1 loss with respect to feature maps produced by semantic labels
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Figure 3: Results of construct images. The results of the 3D image generation process produced
a set of images. These images were categorized into three distinct groups: ssDNA images, and two
different sets of semantic images.

P and generated semantic P’ in some hidden layers of DS, and the objective of the generator is
formulated as:

LG = E
P=G(za,zs,ξ),za∼pa,zs∼ps,ξ∼pξ

[fe(T(DP(P)))] (14)

+ E
P,S=G(za,zs,ξ),za∼pa,zs∼ps,ξ∼pξ

[fe(T(DS(concat(P,S))))] (15)

+
∑
i∈L

L1(DSi
(concat(P,S))−DSi

(concat(P′,S′))) (16)

Therefore, the total objective of the training procedure is defined as:

L = LG + LDS
+ LDP

(17)

During the inference process, we randomly sample zs, za and camera pose ξ, and predict value and
corresponding semantic information for all pixels in the image.

4 EXPERIMENT

4.1 RECONSTRUCTS THE BRAIN OF AXOLOTL TELENCEPHALON FROM SSDNA IMAGES

We embarked on our investigation by applying the STscan to axolotl telencephalon datasetsWei et al.
(2022), considering both paired cell type information and developmental expression patterns. Our
primary findings, as summarized in Table 1, the ssDNA reconstruction relied on two crucial metrics:
the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index Measure (SSIM), and the
annotation including cell type and expression use mIoU metric. The generative loss function we em-
ployed showcased a notable perception-distortion trade-off in the renderings. Consistent alignment
was observed between these renderings and both the cell type annotations and expression patterns,
especially when viewed from continuous perspectives in comparison to the benchmark ground truth
Figure3. For a more detailed evaluation, we noticed a consistency in the distance metrics associated
with cell annotations and expressions. This consistency was further validated by comparing the cel-
lular composition within pixels to their predecessor data. We specifically employed two metrics for
this comparison: The Jaccard similarity coefficient is used to assess the similarity between cell types
and their expression patterns in the original images compared to those in the reconstructed results,
with a calculated result of 88.1%, and the Pearson Correlation Coefficient (PCC) is used to measure
the similarity between cells in the reconstruction and their spatial distribution in the original im-
ages, with a calculated result of 90% Figure 6A. Both metrics manifested exemplary performance,
suggesting that our model adeptly captures additional spatial information.
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ssDNA Semantic
Semantic type PSNR SSIM mIoU

Expression 25.0294 0.6972 0.8456
Cell type 27.3329 0.6115 0.7792

Table 1: Quantitative results on reconstruction.

Method FID KID

w/ DiffAug 82.4411 0.0544
w/o DiffAug 224.1103 0.1944

w/o Semantic 188.0024 0.1722

w/Cell type 81.2233 0.0609
w/Expression 79.1333 0.0588

Table 2: Ablation study on the effectiveness of semantic branch and data augmentation.

4.2 ABLATION STUDY

To validate the effectiveness of our proposed model, we conducted two sets of ablation studies: one
focusing on the semantic branch and the other on data augmentation. The quantitative results are
presented in Table 2.

As depicted in the table, the absence of the semantic branch results in a noticeable increase in both
FID and KID scores for the generated samples (lower FID and KID values are indicative of better
performance). This observation underscores the significance of incorporating a joint distribution
encompassing both image and semantic information in enhancing the synthesis of ssDNA.

Additionally, we conducted an ablation study on data augmentation by simply removing the trans-
formation T. The omission of data augmentation led to a substantial increase in both FID and KID
metrics. This can be attributed to the limited size of our training dataset. In the absence of data aug-
mentation, there is an elevated risk of discriminator overfitting, which adversely affects the quality
of the synthesized samples. The introduction of diffAugmentation effectively mitigated this issue,
resulting in improved generation results. Furthermore, Figure4 provides qualitative results to further
support the above analysis.

Figure 4: The results of abla-
tion experiments. The con-
trol group consists of images
generated by jointly encoding
cell-type information and ex-
pression patterns, as well as
applying data augmentation.

Figure 5: Qualitative Results of Generative
Reconstruction. By leveraging the parame-
ters zs and za for inference control, STscan
can generate a series of results, including
both the ssDNA outcome and its correspond-
ing cell type information or cellular expres-
sion.
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Method FID KID

w/Expression 80.5758 0.0667
w/ Cell type 76.3329 0.0552

Table 3: Quantitative results on generation.

Figure 6: The results of investigating biology meaning. A represents PCC of cell distance be-
tween the reconstruction and 2D images. B and C summarize the UMAP results for cell type and
expression. These results demonstrate a class type corresponding to the original classes.

4.3 EVALUATING GENERATIVE RECONSTRUCTION RESULTS

Our approach learns to disentangle continuous volumetric scenes which can be controlled via of-
fering an inference control via parameters zs and za. Leveraging these adjustments, we engaged
in synthesizing novel views within the scST datasets, as elucidated in Table II. The evaluation,
grounded on the FID and KID metrics, and Figure5 provides qualitative results that support it.

Furthermore, to benchmark the consistency of our generative framework, especially in the biological
domain, we implemented a cellular clustering approach on the synthesized scene outputs. By using
UMAP for clustering the generated views, we found that our generated data maintained a high
consistency with previous data in terms of both cell type count and expression categories Figure
6B,C. This attests to the robustness and precision of our proposed model in the realm of generative
tasks.

5 CONCLUSION

In this study, we introduce a generative model based on Neural Radiance Fields (NeRF), STscan
aimed at learning a continuous 3D representation for ssDNA images. To obtain additional biologi-
cal information in a three-dimensional environment, such as cell types and expression profiles, we
incorporated a semantic component into the model. Experimental validation revealed that the model
achieves favorable results in both qualitative and quantitative reconstructions. Notably, we are the
first team to introduce NeRF in reconstructing biological environments from a limited number of
single-cell spatial transcriptomes, paving a new avenue in the field of biology and reducing the
complexity and cost associated with scST research.
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