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I. INTRODUCTION

The manipulator-mounted camera setup, where a camera
is rigidly attached onto the manipulator, enables the robot to
actively perceive its environment and is a common setup for
robot manipulation. The camera must be calibrated before
collecting data from the environment. Specifically, to obtain
representations that the robot can plan within, it is important
to transform them to the frame of the robot. Finding the
camera pose with respect to the end of the manipulator arm,
or end-effector, is known as hand-eye calibration [1]. This is
generally an elaborate procedure that requires the camera to
move to a set of poses while recording images of an external
marker, usually a checkerboard or an AprilTag [2].

Recent advances within the computer vision community
has been driven by deep learning approaches. This has led to
the emergence of large pre-trained models, which greatly out-
perform classical approaches at estimating correspondences
between a set of images of the scene, and can thereby be used
for many multi-view problems. These models are trained
on prohibitively large datasets, and intended as plug-and-
play modules to facilitate a wide variety of downstream
tasks. We therefore describe these models as 3D Foundation
Models [3], and advocate for their integration in robot camera
calibration and scene representation.

In this paper, we contribute the Joint Calibration and
Representation (JCR) method. JCR leverages 3D foundation
models to enable the construction of a scene representation in
the coordinate frame of the manipulator’s base, from a small
set of images, collected from a RGB camera mounted on the
manipulator. To the best of our knowledge, our approach
is the first to simultaneously calibrate the camera and
build a scene representation from the same set of images
captured by a manipulator-mounted camera. We obtain
a model of our environment in the robot’s coordinate frame,
while not requiring any a priori calibration, nor external
markers, nor depth measurements. The constructed scene
representation is an continuous model which can be used
for collision-checking in subsequent motion planning.

II. RELATED WORK

Scene Representation: Early work in representing envi-
ronments, notably Occupancy Grid Maps [4], recorded prop-
erties in discretized cells. Distance representations has also
been applied [5], [6] to check for collisions. Continuous rep-
resentations emerged thereafter: e.g. by Gaussian Processes
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[7], kernel regression [8], [9], Bayesian methods [10], [11],
and neural networks [12]. Deep learning methods have also
operated directly on point clouds [13], [14]. Concurrently,
there has been an effort to create photorealistic represen-
tations, including Neural Radiance Fields (NeRFs) [15] and
variants [16]. These rely on obtaining an initial solution from
the Structure-from-Motion method COLMAP [17]. Hand-
eye Calibration: Hand-eye calibration is a well-studied
problem with many solutions [1], [18], [19] developed,
when some external calibration marker is provided. A recent
learning approach for hand-eye calibration is presented in
[20], but requires the robot’s gripper to be partially visible in
the camera view. Additionally, methods in end-to-end policy
learning [21], [22] directly produce actions from the camera
images with no calibration. However, unlike our method,
these methods are unable to construct an environment which
can then be used for collision-checking and motion planning
[23], [24]. Pre-trained Models: Considerable effort has
been undertaken to create large models, for natural language
processing [25] and computer vision [26]. In particular, [27]
introduces a pre-trained model specifically for 3D tasks.
These large pre-trained models are known as foundation
models [3], and are typically treated as back-boxes whose
outputs are used in downstream tasks.

III. PRELMINARIES: FOUNDATION MODELS FOR 3D
VISION

Traditional methods for 3D vision tasks such as Structure-
from-Motion [17] or multi-view stereo [28] depend on iden-
tifying visual features over a set of images to infer the 3D
structure. On the other hand, pre-trained models, such as
Dense Unconstrained Stereo 3D Reconstruction (Dust3r),
have been trained on large datasets and that can identify
correspondences over a set of images without engineered
features. Throughout this work, we use Dust3r [27] as the
foundation model and follow its conventions.

Pairwise Pixel Correspondence: Suppose we have a pair
of RGB images with width W and height H , i.e. I1, I2 ∈
RW×H×3, our foundation model can produces pointmaps,
X1,1, X1,2 ∈ RW×H×3. These assign each pixel in the
2D image to its predicted 3D coordinates and are critically
in the same coordinate frame of I1. Confidence maps,
C1,1, C1,2 ∈ RW×H , for the pointmaps are also produced.
By finding the nearest predicted coordinates of each pixel in
the pointmap with those of the other pointmap, we can find
dense correspondences between pixels in the image pair.

Recovering Relative Camera Poses: We optimize to
globally align the pairwise pointmaps predicted by the
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foundation model to recover the relative camera poses cor-
responding to a set of images. For a set of N images,
we have the cameras n = 1, . . . , N and possible image
pairs with indices (n,m) ∈ ε, where m = 1, . . . , N and
m ̸= n. For each pair, the foundation model gives us: (1)
Pointmaps in Xn,n, Xn,m ∈ RW×H×3 in the frame of In;
(2) Corresponding confidence maps Cn,n, Cn,m ∈ RW×H .
With these, we seek to optimize to find: (1) For each of
the N images, a pointmap in global coordinates X̄n; (2)
A rigid transformation described Pn ∈ R3×4 and scale
factor σn > 0. Intuitively, the same transformation should
be able to align both images in each pair to their equivalents
in the global coordinate. We then minimize the distance
between the transformed and predicted pointmaps in global
coordinates:

min
X̂,P,σ

∑
(n,m)

∑
i∈(n,m)

∑
(w,h)

Cn,i
w,h||X̂i − σePeX

n,e
w,h||2. (1)

Here, (n,m) ∈ ε denotes the pairs, i iterates through the
two images in each pair, and (w, h) iterates through each
pixel in the image. After alignment, we extract the set of
camera poses as well as the aligned pointmaps over the set
of images. Next, we need to transform the outputs to be in
the robot’s frame and recover physically-accurate scales.

IV. JOINT CALIBRATION AND REPRESENTATION

We tackle the problem setup of a manipulator with an
uncalibrated inexpensive RGB camera rigidly mounted on
the manipulator. The pose of the camera relative to the end-
effector is unknown. We control the end-effector manipulator
to go to a small set of N poses, {E1, . . . , EN}, and capture
an image at each pose. This gives us a set of images N
of the environment, {I1, . . . , IN}, which can we inputted
into the foundation model to obtain a set of aligned relative
camera poses {P1, . . . , PN} and pointmaps {X1, . . . , XN}
with respect to an arbitrary coordinate system and scale.
Here, we seek: (1) The rigid transformation, T e

c , from the
frame of the mounted camera to that of the end-effector. (2)
An environment representation in the robot’s frame.

Calibration With Foundation Model Outputs: Here,
we seek to solve for T e

c with the end-effector poses
{E1, . . . , EN} the predicted unscaled relative camera poses
{P1, . . . , PN}. We shall consider transformations between
subsequent end-effector poses T

Ei+1

Ei
and transformations

between camera poses T
Pi+1

Pi
, where Ei+1 = T

Ei+1

Ei
Ei and

Pi+1 = T
Pi+1

Pi
Pi for i = 1, . . . , N − 1.

As the foundation model does not recover absolute
scale, we introduce a scale factor λ. The transformation
between scaled estimated camera poses as T

Pi+1

Pi
(λ) =[

R
Pi+1

Pi
λt

Pi+1

Pi

0 0 0 1

]
∈ SE3, where R

Pi+1

Pi
∈ SO3 denotes

the rotation component of T
Pi+1

Pi
and t

Pi+1

Pi
∈ R3 denotes

the translation. Scaling the distances between camera poses
does not affect the rotation, only the translation.

The relationship between T
Ei+1

Ei
, TPi+1

Pi
(λ) and the desired

T e
c follows the matrix equation from classical hand-eye

calibration [1]:
T

Ei+1

Ei
T e
c = T e

c T
Pi+1

Pi
(λ), (2)

and we shall solve for the best fit T e
c and λ. We begin

by solving for the rotational term Re
c by following [19],

and considering the log map of SO3 to its lie algebra
(so3) where for some R ∈ SO3, ω = arccos(Tr(R)−1

2 ),

LogMap(R) := ω
2 sin(ω)

R3,2 −R2,3

R1,3 −R3,1

R2,1 −R1,2

 Here, the subscripts

indicate the elements in R, and Tr(·) indicates the trace oper-
ator. Then, the best fit rotation Re

c
∗ can be found via: Re

c
∗ =

(M⊤M)−
1
2M⊤, where M =

∑N−1
i=1 LogMap(R

Ei+1

Ei
) ⊗

LogMap(R
Pi+1

Pi
), and where ⊗ denotes the outer product,

and the matrix inverse square root can be found via singular
value decomposition.

Next, we formulate a residual optimization problem to find
the best-fit translation tec

∗ and scale λ∗, known as the Scale
Recovery Problem (SRP):

SRP: argmin
tec,λ

N−1∑
i=1

||Cit
e
c − di||22, (3)

where Ci = I − R
Ei+1

Ei
, di = t

Ei+1

Ei
− Re

c
∗(λtec). After

solving the SRP, we can obtain the entire camera to end-
effector transformation T e

c
∗ along with λ∗.

Map Construction with Foundation Model Outputs:
Next, we seek to build representations of the environment
with the output of the foundation model: a set of aligned
pointmaps {X1, . . . , XN} with associated confidence maps
{C1, . . . , CN}. From these, we can set a confidence thresh-
old and filter out a 3D point cloud {xi}

Npc

i=1 . For the camera
pose P and at end-effector pose E, we transform the point
cloud to the frame of the robot and adjust the scale to match
the real-world via x̄i = E−1T e

c
∗(λ∗xi).

The occupancy is useful for planning tasks. Here, we use a
small neural network fθ to learn a continuous implicit model
of occupancy, which assigns a probability of being occupied
to each sptial coordinate. We take a Noise Contrastive
Estimate (NCE) [29] approach and minimize the binary
cross-entropy loss [30], with x̄i as positive examples and
uniformly drawing negative examples x̄neg

i . Similar to NeRF
models [15], we also apply position embedding ϕ on the
inputs. Our loss function is,
L(θ) = BCELoss({fθ(ϕ(x̄i))}

Npc

i=1 , {fθ(ϕ(x̄
neg
i ))}Npc

i=1 ),
where x̄neg

i ∼ U(x̄neg
min, x̄

neg
max) draws from a uniform distri-

bution between x̄neg
min, x̄neg

max. We can then train the neural
network by optimizing fθ with respect to parameters θ, and
query the trained neural network to predict the occupancy.

We can also regress a neural network fθ to assign multi-
dimensional continuous properties to spatial coordinates. For
example, we can assign colour values: The pointmaps from
the foundation model, {X1, . . . , XN}, correspond pixel-wise
to input images. We can therefore obtain an RGB colour label
for each point, giving us a dataset {x̄i,y

rgb
i }Npc

i=1 . Then, we
can apply a positional encoding ϕ and optimize:

L(θ) = MSELoss
(
{fθ(ϕ(x̄i))}

Npc

i=1 , {y
rgb
i }Npc

i=1

)
. (4)

After training, we can check for occupied regions and predict
the colour assigned to them via a forward pass of fθ.



Light Tabletop Light Tabletop Dark Tabletop
(8 items) (7 items)

Images Provided 10 images 12 images 15 images 10 images 12 images 15 images 10 images 12 images 15 images

Converged ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ours Residual δt 0.0420 0.0419 0.0396 0.0208 0.0317 0.0357 0.0310 0.0536 0.0414

Residual δR 0.0655 0.0657 0.0513 0.0519 0.0623 0.0701 0.0732 0.0742 0.0818
No. of Poses 10 12 15 10 12 15 10 12 15
Converged × × × ✓ ✓ ✓ × × ✓

COLMAP [17] Residual δt NA NA NA 0.0412 0.0412 0.0469 NA NA 0.0454
Residual δR NA NA NA 1.27 1.27 0.0662 NA NA 0.0503
No. of Poses 2 2 2 5 5 10 4 4 10

TABLE I: We evaluate our JCR against estimating camera poses with COLMAP and then run calibration. We observe that, especially
when the number of images is low, COLMAP can only estimate a very few number of camera poses, which results in divergence and
large residuals. Our method is able to accurately run hand-eye calibration even when a low number of images are provided.

(a) Light Tabletop 8 items (b) Light Tabletop 7 items (c) Dark Tabletop
Fig. 1: Top Row: Examples of images taken by our manipulated-mounted camera. Bottom Row: Environment representations built with
JCR. We visualize by sampling points at regions with predicted high occupancy and assign the colours predicted by the representation at
these points. The representation is in the coordinate frame of the robot with physically-accurate scales recovered.

V. EMPIRICAL EVALUATIONS

In this section, we evaluate the quality of the our Joint
calibration and Representation (JCR) method to both cali-
brate the camera with respect to the manipulator end-effector
as well as to build environment representations. We attach
an inexpensive USB webcam, which captures low-resolution
RGB images, onto a Unitree Z1 manipulator. Here, the ques-
tions we seek to answer are (1) Can JCR, with foundation
models, enable image efficient hand-eye calibration? (2) Can
high-quality representations be learned with JCR?

Hand-Eye Calibration with JFR: Hand-eye calibration
requires the determination of relative camera poses. Histori-
cally, this has been done via artificial external markers such
as checkerboards or Apriltags [2], which are highly feature-
rich and easy to identify. In the absence of such markers,
Structure-from-Motion (SfM) methods, such as COLMAP
[17], are typical alternative approaches to estimate relative
camera poses. We take images in 3 different environments,
two of these are table-top scenes on a light-coloured table
with 8 and 7 items respectively, along with a scene on
a dark table. We evaluate with an increasing number of
input images, then check the calibration convergence and
the residual values of eq. (2). We report the L2 norm of the
translation-term residuals δt and the Frobenius norm of the
rotation-term residuals δR.

We compare against running hand-eye calibration on cam-
era poses estimated from COLMAP, across three different
scene. We are interested to investigate the behaviour of both
methods when the number of images in low, and run the
methods on image sets of size 10, 12 and 15. We tabulate the
results in table I. As COLMAP relies on matching consistent
features, when the number of provided images is low many

camera poses cannot be found, resulting in divergence during
calibration. JCR leverages foundation models to predict the
correspondence and can consistently estimate all camera
poses. As a result JCR is more image-efficient, allowing for
calibration even with a small set of images.

Fig. 2: Point clouds
used to train JCR (in
colour), produced by
the upstream foundation
model, is much denser
than that by COLMAP,
even after densification
(overlaid in red).

Environment Representation:
We model the occupancy and
colour of each environment using
neural networks with one hidden
layer of size 256. Each represen-
tation can be trained to conver-
gence within 15 seconds on a lap-
top with NVIDIA RTX 3070 GPU.
We sampled points at where oc-
cupancy is high and visualize the
points with their predicted colours.
We observe that JCR can construct
accurate and dense representations
from small sets of RGB images, in
the absences of depth information.
Example images taken by the manipulator-mounted camera,
along with visualizations of our representations are in fig. 1.

JCR leverages foundation models to extract much denser
correspondences than traditional SfM methods, which rely
on visual feature-matching. In fig. 2, we overlay the point
clouds produced by COLMAP, after its built-in densification,
onto points produced by the foundation model. We observe
that COLMAP cannot produce dense points over smooth
surfaces such as the tabletop. It can only identify regions that
correspond to edges with contrast, such as the text in the open
book. The dense outputs of the foundation model enables us
to jointly calibrate the camera and map the environment.
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