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ABSTRACT

We study the inverse problems in the derivative-free setting, where the forward
model only permits black-box access. Traditional derivative-free methods, such
as Markov chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC), have
limited applicability in this problem due to their reliance on the prior density ac-
cess (up to a normalizing constant), which is intractable in many applications. Re-
cent works leveraging diffusion models (DMs) as flexible priors show promise for
high-dimensional inverse problems, but we find they often deviate from the true
posterior, even in linear Gaussian case. To address these limitations, we propose
SG-EKDP (Split Gibbs with Ensemble Kalman sampling and Diffusion Prior),
a novel algorithm that integrates ensemble Kalman sampling and diffusion prior
within a split Gibbs sampling framework. Our method provably converges to the
posterior in the mean-field limit for general linear inverse problems and remains
effective in nonlinear settings via local linearization. We evaluate the effective-
ness of SG-EKDP across various inverse problems. Numerical experiments on
linear Gaussian and Gaussian mixture show that SG-EKDP can accurately approx-
imate the true posterior. It also achieves strong empirical performance on high-
dimensional image restoration tasks including both linear and nonlinear problems.

1 INTRODUCTION

We consider inverse problems of the following form:

y = G(x∗) + ϵ, (1)

where y ∈ Rm is the observed data, x∗ ∈ Rn is the unknown signal, and ϵ ∈ Rm is the measure-
ment noise, typically modeled as GaussianN (0, σ2

yI). The goal of Bayesian inversion is to estimate
a posterior distribution over the unknown x0 given the noisy measurement y. In this work, we
study the derivative-free scenario where only black-box access to the forward model G is assumed,
and derivative or adjoint information is either unavailable or computationally infeasible to com-
pute. Such a setting arises in many scientific and engineering applications (Bougeault et al., 2010;
Schneider et al., 2017). For example, it occurs when the forward model is the numerical solver
of partial differential equations (PDEs) and the numerical methods are not differentiable (e.g. em-
bedded boundary method (Peskin, 1977; Huang et al., 2020) and adaptive mesh refinement (Borker
et al., 2019)) or differentiating through the iterative solver’s large computation graph is impracti-
cal (Kochkov et al., 2021).

Traditional methods for derivative-free Bayesian inverse problems include Markov chain Monte
Carlo (MCMC) methods (Geyer, 1992; Gelman et al., 1997; Cotter et al., 2013) and Sequential
Monte Carlo (SMC) (Del Moral et al., 2006). These methods enjoy theoretical convergence guaran-
tees but face significant scalability and flexibility challenges in real-world applications, especially
in high dimensions. A key limitation is their reliance on knowledge of the prior density (up to a
normalizing constant), which may be unavailable or computationally intractable for complex, high-
dimensional prior distributions. More recent ensemble methodology (Garbuno-Inigo et al., 2020;
Carrillo et al., 2022) are developed with improved efficiency but are restricted to linear Gaussian
case.
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To address these challenges, recent work has explored the use of diffusion models (Song et al.,
2020b; Ho et al., 2020) as plug-and-play priors for inverse problems. Diffusion priors can be easily
learned from a set of prior samples and are broadly applicable across different domains. Existing
derivative-free algorithms (Zheng et al., 2024; Tang et al., 2024; Huang et al., 2024) with diffusion
prior have demonstrated effectiveness in solving inverse problems where traditional methods strug-
gle, across applications such as image restoration, symbolic music generation, and fluid dynamics.
However, these approaches often fail to approximate the true posterior distribution, as we demon-
strate in simple settings like linear Gaussian and Gaussian mixture cases in Figure 1. Meanwhile,
other works (Cardoso et al., 2024; Dou & Song, 2024) have achieved asymptotic convergence to the
posterior by integrating diffusion priors into SMC methodologies, but these methods are restricted
to linear problems and do not generalize to nonlinear settings.

Our contributions In this work, we propose a new derivative-free algorithm for posterior estima-
tion, which we refer to as SG-EKDP (Split Gibbs with Ensemble Kalman sampling and Diffusion
Prior). Our method effectively handles complex prior distributions by leveraging expressive diffu-
sion priors while maintaining provable convergence to the true posterior in general linear inverse
problems. Furthermore, for nonlinear problems, SG-EKDP provides an effective approximation by
employing a local linearization strategy. Numerical experiments on linear Gaussian and Gaussian
mixture show that the proposed SG-EKDP can accurately capture the true posterior, outperforming
the competing algorithms. Additionally, we evaluate SG-EKDP on various image restoration tasks,
spanning both linear and nonlinear inverse problems, where it exhibits strong empirical performance.

2 BACKGROUND

2.1 DIFFUSION MODELS

We consider diffusion models in the unified EDM framework (Karras et al., 2022). Diffusion models
define a forward stochastic process to evolve the original data distribution p0(x) to an approximately
Gaussian distribution pT (x) = N (0, s2(T )σ(T )2I), where σ(t) is a pre-defined noise schedule
function and s(t) is the pre-defined scaling function. Without loss of generality, we set s(t) = 1
because every other schedule is equivalent to it up to a simple reparameterization as shown in Karras
et al. (2022). The corresponding reverse process sequentially denoises the noisy data into clean data
given by

dxt = −2σ̇(t)σ(t)∇xt log p (xt;σ(t)) dt+
√

2σ̇(t)σ(t)dw̄t. (2)

Generating new samples from p0(x) amounts to integrating Eq. (2) from a random noise sam-
ple from pT (xT ). Crucially, this requires computation of the time-dependent score function
∇ log p(xt;σ(t)). To this end, training a diffusion model amounts to learning the score function
with a neural network parameterized by θ, given by sθ(xt, t) ≈ ∇ log p(xt;σ(t)). In our work, we
assume that we have access to such a pre-trained score function, which we will simply refer to as
the diffusion model.

2.2 SPLIT GIBBS SAMPLING

The Split Gibbs Sampler (SGS) (Vono et al., 2019) is a Markov chain Monte Carlo (MCMC) method
that aims to sample the posterior distribution

p(x | y) ∝ p(y | x)p(x) = exp(−f(x;y)− g(x)), (3)

where f(x;y) = − log p(y | x) is the negative log-likelihood and g(x) = − log p(x) is the negative
log-prior. Instead of directly sampling Eq. (3), SGS aims to sample the auxiliary distribution

πXZ(x, z) ∝ exp

(
−f(z;y)− g(x)− 1

2ρ2
∥x− z∥22

)
, (4)

where z ∈ Rn is an auxiliary variable and ρ is a parameter that controls the distance between x
and z. As shown in Vono et al. (2019), as ρ → 0, the marginal distribution πX(x) =

∫
π(x, z)dz
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converges to the posterior distribution p(x | y) in total variation distance. This means that sampling
the posterior is equivalent to sampling Eq. (4) as ρ approaches 0. Sampling Eq. (4) can be done with
Gibbs sampling. Given an initial point x(0) and for iterations k ∈ {0, · · · ,K − 1}:

1. Likelihood step: sample z(k) ∼ πZ|X=x(k)

(z) ∝ exp (−f(z;y)− 1
2ρ2

∥∥x(k) − z
∥∥2
2
)

2. Prior step: sample x(k+1) ∼ πX|Z=z(k)

(x) ∝ exp (−g(x)− 1
2ρ2

∥∥x− z(k)
∥∥2
2
)

3 RELATED WORK

3.1 DIFFUSION-BASED SPLIT GIBBS SAMPLING

Recent works (Bouman & Buzzard, 2023; Coeurdoux et al., 2023; Xu & Chi, 2024; Wu et al., 2024)
have explored adapting generative model priors into the split Gibbs framework. These methods pri-
marily differ in how they implement the prior step. Bouman & Buzzard (2023) employs a proximal
Gaussian approximation by invoking first-order Taylor expansion and a diffusion model denoiser.
Coeurdoux et al. (2023) executes a diffusion denoising process with a starting time determined by
a wavelet-based estimator. Both Xu & Chi (2024) and Wu et al. (2024) also formulate the prior
step as a denoising diffusion process. However, Xu & Chi (2024) focuses on adapting the DDPM
and DDIM (Song et al., 2020a) samplers whereas Wu et al. (2024) connects the implementation to
the EDM framework Karras et al. (2022), enabling the use of any pre-trained diffusion model as
the generative prior (as opposed to relying specifically on DDPM). Our work closely follows the
prior step of Wu et al. (2024) but with a fundamental difference in the likelihood step. Instead of
the gradient-based Langevin Monte Carlo that Wu et al. (2024) uses, we introduce an interactive
particle system to approximate the distribution using only black-box access to the forward model.
This distinction allows our approach to be applicable in a wider range of settings where derivative
information is unavailable or impractical.

3.2 ENSEMBLE KALMAN METHODS

Ensemble Kalman methodology was first introduced by Evensen (1994) in the context of filtering
problems and has since gained popularity in applications such as reservoir modeling (Oliver & Chen,
2011) and weather forecasting (Houtekamer & Zhang, 2016) due to its derivative-free nature and ef-
fectiveness in high-dimensional settings. Iglesias et al. (2013) revisits this idea in the context of
the inverse problem, proposing Ensemble Kalman Inversion (EKI). Further developments include
momentum-based EKI for training neural networks (Kovachki & Stuart, 2018) and various regular-
ization techniques to improve stability and efficiency (Iglesias, 2016; Chada et al., 2020; Iglesias
& Yang, 2021). Zheng et al. (2024) extends this idea into the diffusion model guidance for the
first time, enabling the use of more flexible and complex priors in inverse problems. More recently,
Kim et al. (2024) explores a similar approach in explainable AI. Our method builds upon Ensemble
Kalman Sampling (EKS) (Garbuno-Inigo et al., 2020), which provides provable convergence to the
posterior in the mean-field limit for linear Gaussian problems. However, EKS is restricted to Gaus-
sian priors. In contrast, our approach extends to a broader class of prior distributions by leveraging
diffusion models and split Gibbs framework while retaining the convergence properties towards the
true posterior.

4 METHOD

Our method builds upon the split Gibbs sampling framework studied in the papers (Vono et al.,
2019; Yuan et al., 2023; Wu et al., 2024). The proposed algorithm, SG-EKDP, operates by evolving
an ensemble of interactive particles that alternate between a likelihood step and a prior step. The
likelihood step is built upon ensemble Kalman sampling (Garbuno-Inigo et al., 2020) and the prior
step is a denoising diffusion process (Karras et al., 2022). Subsection 4.1 details the likelihood step,
Subsection 4.2 describes the prior step, and Subsection 4.3 outlines the full algorithm along with a
convergence analysis for general linear inverse problems.
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Algorithm 1 Our Method

Require: initial ensemble X(0) = {x(j) ∈ Rn}Jj=1, number of iterations K, {ρk}Kk=0, observed
data y ∈ Rm, pre-trained diffusion model Dθ

1: for k ∈ {0, . . . ,K − 1} do
2: Z(k) ← LIKELIHOODSTEP(X(k), ρk) ▷ Algorithm 2

3: X(k+1) ← PRIORSTEP(Z(k+1), Dθ, ρk) ▷ Algorithm 3
4: end for
5: return X(K)

Algorithm 2 Likelihood Step

Require: forward model G,y, ρ, number of steps
N , step size scale λ, initial ensemble X

1: Z0 ← X

2: for i ∈ {0, . . . , N − 1} do
3: ϵi ∼ N (0, I)

4: d
(j)
1 ← − 1

J

∑J
g=1⟨G(z

(g)
i )−Ḡ,G(z(j)

i )−
y⟩Γ(z(g)

i − z̄i), j = 1, . . . , J

5: d
(j)
2 ← − 1

ρ2Ci(x
(j)−z(j)

i ), j = 1, . . . , J

6: η ← λ
∥d1+d2∥2

2

7: z
(j)
i+1 ← z

(j)
i + (d

(j)
1 + d

(j)
2 )η +√

2Ciηϵi, j = 1, . . . , J

8: end for
9: return ZN

Algorithm 3 Prior Step

Require: Denoiser network Dθ, ρ, number of
steps N , initial ensemble Z, σ(t) = t,
s(t) = 1, ti∈{0,··· ,N}

1: X0 ← Z

2: i∗ ← min {i ≥ 0 | σ(ti) ≤ ρ}
3: for i ∈ {i∗, . . . , N − 1} do
4: λ← 2 if SDE else 1

5: X̂0 ← Dθ(Xi, σ(ti))

6: di ← λXi−X̂0

ti

7: Xi+1 ← Xi + (ti+1 − ti)di
8: if i ̸= N − 1 and SDE then
9: ϵi ∼ N (0, I)

10: Xi+1 ← Xi+1+
√

2ti(ti − ti+1)ϵi
11: end if
12: end for
13: return XN

4.1 LIKELIHOOD STEP

Let X(k) = {x(j)}Jj=1 denote the ensemble of J particles at k-th alternating iteration of the SGS

framework. In the likelihood step, we aim to sample z(j) from πZ|X=x(j)

(z) ∝ exp(−f(z;y) −
1

2ρ2 ∥z − x(j)∥22) for each j ∈ {1, . . . , J}. Our starting point is the covariance-preconditioned
Langevin dynamics with the large particle limit:

dz
(j)
t = −Ct∇

(
f(z

(j)
t ;y) +

1

2ρ2
∥z(j)

t − x(j)∥22
)
dt+

√
2Ctdwt, (5)

where qt is the particle distribution and

z̄t := Eqt [zt], Ct := Eqt [(zt − z̄t)(zt − z̄t)
⊤].

As shown in Lemma 1, Eq. (5) admits πZ|X=x(j)

(z) as its stationary distribution, under the mild
assumption that the particle distribution does not collapse to a Dirac measure. For the inverse prob-
lem in Eq. (1), we have f(z

(j)
t ;y) = 1

2σ2
y
∥G(z(j)

t ) − y∥22. Therefore, running Eq. (5) relies on the
derivative of the forward model G, which may not be available. To circumvent this, we approximate
G with a linear surrogate model y = Âzt + b with the minimal least square error defined by

min
A,b

Eqt∥G(zt)− (Azt + b)∥22.

Setting the derivatives w.r.t. A and b to zero gives the closed-form solution:

Â = Eqt [(G(zt)− EqtG(zt))z⊤
t ]C−1

t , b = EqtG(zt)− EqtÂzt,
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where C−1
t is the pseudo-inverse of the covariance matrix. This statistical linearization, first intro-

duced in (Booton, 1954), is exact when G is linear. Let DG denote the Jacobian of G. Replacing DG
with DÂ = Â in ∇f(z(j)

t ;y) yields

∇f(z(j)
t ;y) =

1

σ2
y

D⊤G(G(z(j)
t )− y) ≈ 1

σ2
y

C−1
t Eqt [zt(G(zt)− EqtG(zt))⊤](G(z

(j)
t )− y). (6)

Substituting Eq. (6) into Eq. (5) gives

dz
(j)
t = −

[
1

σ2
y

Eqt [zt(G(zt)− EqtG(zt))⊤](G(z
(j)
t )− y) +

1

ρ2
Ct(z

(j)
t − x(j))

]
dt+

√
2Ctdwt.

(7)
Eq. (7) is equivalent to Eq. (5) when G is linear and serves as an effective approximation when G is
nonlinear. Crucially, it eliminates the need for derivatives of the forward model, allowing us to solve
inverse problems with black-box access to G.

Practical implementation For the numerical implementation of Eq. (7), we employ Euler-
Maruyama method with a finite ensemble of particles. Let z(j)

i denote the j-th particle at discrete
time ti, and Ci denote the empirical covariance at ti. To address several practical challenges in
high-dimensional settings, we employ the following strategies. First, computing the matrix square
root
√
2Ci can be computationally expensive. Therefore, when Cholesky decomposition becomes

inefficient, we use a diagonal approximation for Ci when computing the square root. Second, the
empirical covariance matrix Ci may be ill-conditioned in practice. To ensure numerical stability dur-
ing Cholesky decomposition, we add a small regularization term, replacing

√
2Ci with

√
2Ci + ϵI ,

where ϵ is a small positive constant. Third, the time step size for the discretization is chosen adap-
tively to balance accuracy and efficiency. The details are provided in 7.2.2. The resulting likelihood
step, summarized in Algorithm 2, is similar to Ensemble Kalman Sampling (EKS) (Garbuno-Inigo
et al., 2020). However, a key distinction is that each particle in our likelihood step has its own target
distribution, whereas EKS assumes a common target distribution for all particles.

4.2 PRIOR STEP

Let Z(k) = {z(j)}Jj=1 denote the ensemble of J particles at k-th alternating iteration of the SGS

framework. In the likelihood step, we aim to sample x(j) from πX|Z=z(j)

(x) ∝ exp(−g(x) −
1

2ρ2 ∥x − z(j)∥22) for each j ∈ {1, . . . , J}. As shown in Coeurdoux et al. (2023); Wu et al. (2024),
the prior step can be formulated as denoising diffusion process. Specifically, recall that the forward
process gives p(xt | x0) = N (xt;x0, σ(t)

2I) under the EDM (Karras et al., 2022) framework,
where s(t) = 1. By Bayes’ theorem, we have

p(x0 | xt) ∝ p(xt | x0)p(x0) ∝ exp

(
−g(x0)−

1

2σ2(t)
∥x0 − xt∥22

)
. (8)

By comparing Eq. (8) with the target distribution πX|Z=z(j)

(x), we can see that if ρ = σ(t) and
xt = z(j), sampling from πX|Z=z(j)

(x) is equivalent to sampling from p(x0|xt = z(j)) . There-
fore, the prior step of j-th particle can be implemented as the standard reverse process of the diffu-
sion model given by Eq. (2) starting from z(j) at time t∗ where t∗ is chosen so that σ(t∗) = ρ. While
many numerical solvers can be used in this setting, we use the Euler solver for the corresponding
probability flow (PF) ODE (or SDE). Detailed pseudocode for the prior step can be found in Algo-
rithm 3. Note that in Algorithm 3, Xi represents the ensemble of particles at ti step, and the updates
for all particles can be computed in parallel.

4.3 PUTTING IT TOGETHER

We provide pseudocode for the complete sampling algorithm in Algorithm 1. The method operates
by iteratively updating an ensemble of particles, alternating between the likelihood and prior steps
discussed above. At the same time, the parameter ρ follows an annealing schedule that gradually
decreases towards zero. This annealing schedule helps refine the approximation, allowing the sam-
ples to converge to the target posterior distribution as shown in Vono et al. (2019). We employ two
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strategies for initializing the ensemble in practice. The first samples from a Gaussian N (0, ρ20I),
drawing from the intuition that ρk acts as a noise level at each step of the algorithm. The second
strategy initializes the ensemble by sampling from the prior distribution, represented by the diffu-
sion model. In principle, any initialization distribution should allow for convergence as long as the
KL divergence between the target and initialization distributions is finite.

Theoretical analysis We analyze the convergence of the proposed algorithm through its
continuous-time and mean-field limits, leveraging the existing non-asymptotic convergence anal-
ysis from Wu et al. (2024) that builds upon the interpolation techniques developed in Vempala &
Wibisono (2019); Sun et al. (2024). In this work, we focus on the convergence analysis for linear
problems. Extending this analysis to nonlinear problems is theoretically possible, particularly for
smooth forward models, but accounting for the approximation error introduced by the linearization
remains an open question. We leave this for future work.
Theorem 1 (Informal). Consider the problems where G is linear. If the particle distribution is not
a Dirac measure, then πXZ is a stationary distribution of SG-EKDP for any given ρ > 0. Further-
more, if the particle covariance Ct is positive definite, πXZ is the unique stationary distribution.
Suppose ντ and πτ the distributions at time τ of the non-stationary and stationary process. We
assume DKL(π

X ||νX0 ) < +∞. For K iterations of Algorithm 1 or equivalently T := K(t∗ + 1),
we have the following convergence results:

1

T

∫ T

0

DFI(πτ ||ντ )dτ ≤
4DKL(π

X ||νX0 )

T min(ρ, δ)2
+

4ϵscore
(t∗ + 1)δ2

, (9)

where DFI is the Fisher divergence, DKL is the Kullback–Leibler (KL) divergence, ϵscore is the
score approximation error of the pre-trained diffusion model, t∗ is the starting time of the denoising
process defined in Eq. (2) such that σ(t∗) = ρ, and δ is the smallest diffusion coefficient used for the
prior step.

The formal version and complete proof are deferred to Appendix 7.1. Intuitively, Theorem 1 states
that πZ|X=x(j)

(z)is a stationary distribution of SG-EKDP for general linear inverse problems. If the
covariance matrix is positive definite, πZ|X=x(j)

(z) is the unique stationary distribution. Further, if
the initial distribution has a finite KL divergence from the stationary distribution, then the average
Fisher divergence from the target stationary process converges at an algebraic rate. This result is
similar to the result in Wu et al. (2024) but introduces additional conditions such as the linear forward
model and positive definite covariance matrix. Notably, the linearity condition can be relaxed by
smooth perturbations, though a detailed theoretical analysis of this extension is left for future work.

5 EXPERIMENTS

To evaluate how well our method estimates the posterior, we begin by comparing it against base-
lines on linear Gaussian and Gaussian mixture problems in Subsection 5.1, where the ground truth
posterior distributions are available in closed form. We then extend our evaluation to various im-
age restoration tasks in Subsection 5.2, including both linear and nonlinear inverse problems, to
study the effectiveness of our approach in high-dimensional settings with complex image priors. We
primarily focus on the comparison against other derivative-free diffusion-based baselines: ENKG
(Zheng et al., 2024), SCG (Huang et al., 2024), and DPG (Tang et al., 2024). We use the same
pre-trained diffusion model checkpoint for each method across all tasks for fair comparison. All the
experiments are conducted on a single A100 GPU.

5.1 COMPARE WITH GROUND TRUTH POSTERIOR

Problem Setting We first evaluate our method on a synthetic data inverse problem, given by the
following measurement model:

y = Hx∗ + ϵ, (10)

where ϵ ∼ N (0, σ2
yI) and H ∈ Rm×n is a linear forward model. We consider the linear Gaussian

setting, where x∗ follows the prior distribution N (mx, σ
2
xI), and the linear Gaussian mixture
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Figure 1: Linear Gaussian and Linear Gaussian mixture inverse problems, x ∈ R2. Top row: linear
Gaussian results; ground truth posterior samples, and generated samples depicted. Bottom row:
linear Gaussian mixture results; ground truth posterior samples and generated samples depicted.

setting, where x ∼
∑K

i=1 γiN (mi,Σi),
∑K

i=1 γi = 1. For evaluation, the prior mean, standard
deviation, and forward model H are pre-established. As this problem is linear and uses a known
prior, we have knowledge of the ground truth posterior distribution p(x∗ | y); the derivation of
the Gaussian mixture posterior can be found in Section 7.3. We then generate 512 samples from
SG-EKDP, ENKG, DPG, SCG, EKS, MCGDIFF and quantitatively compare against the posterior
distribution.

Metrics and Results For the linear Gaussian problem, we use the sliced Wasserstein distance
and KL Divergence metrics to measure the quality of posterior sampling. Wasserstein distance
is computed directly between generated samples and samples from the posterior distribution. For
computation of KL divergence, we use the known posterior mean and covariance, and the empirical
mean and covariance of the generated samples. Numerical results can be found in Table 1.

As seen, our method consistently outperforms other derivative-free diffusion-based algorithms in
both metrics. Notably, our method is the most robust against measurement noise σy , achieving
relatively low Wasserstein distance and KL divergence even as uncertainty increases. In the Gaussian
mixture case, our method accurately recovers the mean and covariance of each mode of the posterior,
whereas other diffusion-based methods fail to approximate the spread, and EKS cannot capture the
different modes.

5.2 IMAGE RESTORATION

Problem Setting We evaluate our algorithm on the standard FFHQ256 dataset. Of the three im-
age restoration problems we chose, inpainting and super-resolution are linear, while Fourier phase
retrieval is nonlinear. We use a random box mask for inpainting. Bicubic downsampling is used for
superresolution (×4). Finally, for phase retrieval, we compute the magnitude of the Fourier trans-
form of the input image. All problem settings use a measurement noise of σy = 0.05 and follow
the same configuration as that of DPS (Chung et al., 2023), unless otherwise stated. The pre-trained
model is taken from Chung et al. (2023) (FFHQ256) and converted into an EDM checkpoint with
their Variance-Preserving (VP) preconditioning (Karras et al., 2022).

Metrics and Results For image tasks, we measure the Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index Measure (SSIM) (Wang et al., 2004), and Learned Perceptual Image Patch
Similarity (LPIPS) (Zhang et al., 2018) between generated samples and the ground truth image. No-
tably, our method is able to achieve strong PSNR results, even when compared to gradient-based
methods, reflecting its ability to generate high-likelihood samples. Results on the phase retrieval
task demonstrate robustness to highly ill-posed, nonlinear forward models.
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Table 1: Experimental Results for Sliced Wasserstein Distance (SWD) and KL Divergence (DKL)
across different σy values and methods for various dx.

dx Method σy

0.5 1.5 2.5 3.5

SWD DKL SWD DKL SWD DKL SWD DKL

2

DPG 4.199 11.83 3.955 122.11 3.969 350.76 4.646 1219.96
SCG 2.826 85k 2.704 ≥ 100k 3.072 ≥ 100k 3.814 ≥ 100k

EnKG 1.832 ≥ 100k 1.752 ≥ 100k 1.972 ≥ 100k 3.020 ≥ 100k
EKS 1.651 0.374 2.072 0.493 2.061 0.502 2.204 0.549

MCGdiff 1.423 1.002 1.497 1.238 1.511 0.899 1.760 0.985
SG-EKDP (Ours) 1.915 0.556 1.725 0.348 1.763 0.423 1.678 0.381

80

DPG 6.786 69.66 7.005 67.32 6.905 66.11 7.289 67.13
SCG 6.022 1708. 6.059 15916. 6.033 37121. 6.013 91466.

EnKG 4.997 ≥ 100k 4.938 ≥ 100k 5.180 ≥ 100k 5.068 ≥ 100k
EKS 2.444 27.72 2.357 25.91 2.366 25.69 2.371 25.60

MCGdiff 33.03 177.3 32.90 177.2 32.87 177.2 32.93 177.5
SG-EKDP (Ours) 4.367 64.13 4.492 65.99 4.284 67.65 4.579 61.06

400

DPG 6.111 ≥ 100k 6.149 ≥ 100k 6.259 ≥ 100k 6.181 ≥ 100k
SCG 6.199 ≥ 100k 6.172 ≥ 100k 6.182 ≥ 100k 6.276 ≥ 100k

EnKG 8.636 ≥ 100k 7.432 ≥ 100k 11.513 ≥ 100k 11.825 ≥ 100k
EKS 1.047 1817. 1.092 1777. 1.114 2156. 1.130 2134.

MCGdiff 33.09 ≥ 100k 33.08 ≥ 100k 32.98 ≥ 100k 33.06 ≥ 100k
SG-EKDP (Ours) 4.414 2478. 4.527 1747. 4.074 1794. 4.340 1805.

Table 2: Qualitative evaluation on FFHQ 256x256 dataset. We report average metrics for image
quality and samples consistency on three tasks. Measurement noise level σ = 0.05 is used if not
otherwise stated. (†: PnP-DM results on phase retrieval are significantly worse than those originally
reported. Note that we use a different forward model configuration, larger measurement noise, and
full-color images, which differs from the original PnP-DM setup.)

Inpaint (box) SR (×4) Phase retrieval

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Gradient access
DiffPIR 22.87 0.653 0.268 26.48 0.744 0.220 25.86 0.824 0.199
DPS 21.77 0.767 0.213 24.90 0.710 0.265 16.79 0.589 0.448
PnP-DM† 22.17 0.832 0.136 25.86 0.808 0.193 18.98 0.650 0.409

Black-box access
Central-GSG 18.76 0.720 0.229 26.55 0.740 0.169 11.48 0.427 0.571
DPG 20.89 0.752 0.184 28.12 0.831 0.126 8.76 0.297 0.663
SCG 4.71 0.302 0.763 4.71 0.302 0.760 5.04 0.306 0.733
EnKG 21.70 0.727 0.286 27.17 0.773 0.237 24.02 0.796 0.232
SG-EKDP (Ours) 23.70 0.763 0.225 29.01 0.826 0.204 25.99 0.839 0.215

6 CONCLUSION

We propose a novel particle-based diffusion posterior sampling method for inverse problems. Our
method is based off of the split Gibbs sampler, alternating between an EKS step for data fitting and a
denoising step for sample quality. Notably, our method is derivative-free, allowing for applicability
to various inverse problems that only permit black-box access to the forward model. Experimental
results demonstrate that our method is comparable to or outperforms other existing diffusion-based
solvers, even those that rely on gradient information.
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7 APPENDIX / SUPPLEMENTAL MATERIAL

This section includes the theoretical analysis of our algorithm for general linear inverse problems.
We assume all the target distributions πXZ , πX|Z , πZ|X satisfy the standard regularity conditions
defined in Theorem 2.1 of Roberts & Tweedie (1996) throughout the analysis.

7.1 PROOFS

Lemma 1 (Stationary distribution of the likelihood step). Assume the particle distribution is not a
Dirac measure, the dynamics of Eq. (5) admits πZ|X=x(j)

(z) ∝ exp(−f(z;y)− 1
2ρ2 ∥z − x(j)∥22)

as a stationary distribution. Further, if the covariance matrix is positive definite, the stationary
distribution is unique.

Proof. This result has been proved in various forms in the literature (Ma et al., 2015; Garbuno-Inigo
et al., 2020), we provide a simple proof of our use case for ease of understanding. Suppose ν(t, z)
is the probability density of z at time t. For the ease of notation, we ignore the particle index j in
zt. Let Φ(z) = f(z;y) + 1

2ρ2 ∥z − x(j)∥22. The corresponding Fokker-Planck equation for Eq. (5)
reads

∂ν

∂t
= ∇ · (νCt∇Φ(z)) +∇ · (Ct∇ν) ,

which can be rewritten as
∂ν

∂t
= ∇ · (νCt(∇Φ(z) +∇ log ν)) . (11)

Let ν∞ denote the stationary distribution of Eq. (11). We have

0 = ∇ · (νCt(∇Φ(z) +∇ log ν∞)) .

If the particle distribution is not Dirac, Ct ̸= 0 due to Lemma 2.1 in Garbuno-Inigo et al. (2020).
Therefore,

∇Φ(z) +∇ log ν∞ = c,

where c is a constant. Integrating both sides gives

ν∞ ∝ exp(−Φ(z)) = exp(−f(z;y)− 1

2ρ2
∥z − x(j)∥22),

showing that πZ|X=x(j)

(z) is a stationary distribution of the dynamics of Eq. (5). Further, if Ct

is positive definite, it ensures the irreducibility and strong Feller, and the stationary distribution is
unique (Roberts & Tweedie, 1996).

Proposition 1. For the k-th alternating iteration and j-th particle, the likelihood step of SG-EKDP
is equivalent to running the following SDE from t = 0 to t = 1:

dxt = ρ2∇ log ϕt(xt)dt+ ρdwt, (12)

where x0 = x(j) and ϕt(x) =
∫
exp(−f(z;y)− 1

2ρ2(1−t)∥x− z∥22)dz.

Proof. By Lemma 1, the stationary distribution of the likelihood step of SG-EKDP is πZ|X=x(j) ∝
exp(−f(z;y) − 1

2ρ2 ∥z − x(j)∥22). On the other hand, due to Proposition A.2 of Wu et al. (2024)
and Lemma 3.4 of Yuan et al. (2023), the distribution p(x1|x0) of the dynamics of Eq. (12) is
proportional to exp(−f(x1;y) − 1

2ρ2 ∥x1 − x0∥22). Comparing the two distributions, we conclude
that running the SDE (12) from 0 to 1 with the same initialization is equivalent to performing a
likelihood step.

Theorem 2 (Full version of Theorem 1). Suppose G is linear. If the particle distribution is not a
Dirac measure. Then πXZ is a stationary distribution of Algorithm 1. Furthermore, if the parti-
cle covariance Ct is positive definite, πXZ is the unique stationary distribution. Suppose ντ and
πτ the distributions at time τ of the non-stationary and stationary process initialized at ν0 with
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DKL(π
X ||νX0 ) < +∞ and π0 = πX , respectively. For K iterations of Algorithm 1 or equivalently

T := K(t∗ + 1), we have the following convergence results:

1

T

∫ T

0

DFI(πτ ||ντ )dτ ≤
4DKL(π

X ||νX0 )

T min(ρ, δ)2
+

4ϵscore
(t∗ + 1)δ2

, (13)

where DFI is the Fisher divergence, DKL is the Kullback–Leibler (KL) divergence, t∗ is the starting
time of the denoising process defined in Eq. (2) such that σ(t∗) = ρ, δ is the smallest diffusion
coefficient used for the prior step, and ϵscore is the score approximation error of the pre-trained
diffusion model defined as

ϵscore :=

∫ t∗

0

2σ̇(τ)σ(τ)Ex∼pτ
∥sθ(x, τ)−∇ log pτ (x)∥22dτ.

Proof. For the first part, we prove that πXZ defined in Eq.(4) is a stationary distribution of SG-
EKDP. We prove this by directly verifying the invariance property, i.e., if the samples (x, z) are
from the joint distribution πXZ , then after one iteration of the algorithm, the new samples (x′, z′)
stay in the same distribution πXZ . To begin with, we note that when G is linear, the dynamics of
Eq. (7) is equivalent to that of Eq. (5). By Lemma 1, πZ|X=x is a stationary distribution of the
likelihood step defined in Eq. (7). Therefore, after the likelihood step, the joint density of (x, z′)
becomes

p(x, z′) =

∫
πXZ(x, z)πZ|X=x(z′)dz = πX(x)πZ|X=x(z′),

where πX is the marginal distribution. As shown in Eq. (8), after sampling x′ given z′ according to
the prior step, the joint density of (x′, z′) becomes

p(x′, z′) =

∫
p(x, z′)πX|Z=z′

(x′)dx

=

∫
πX(x)πZ|X=x(z′)πX|Z=z′

(x′)dx

= πZ(z′)πX|Z=z′
(x′)

= πXZ(x′, z′),

showing that the distribution of (x′, z′) remains πXZ after one round of updates. Therefore, πXZ

is a stationary distribution. Furthermore, by Lemma 1, if the particle covariance remains positive
definite, the stationary distribution of the likelihood step is unique. Consequently, it follows that
πXZ is the unique stationary distribution of SG-EKDP.

For the second part, we prove the convergence results in Eq.(13) following the same arguments in
the Theorem 3.1 of Wu et al. (2024). Firstly, due to Proposition 1, we can equivalently define the
dynamics of the likelihood step as that of Eq. (12). Then the total time of K alternating iterations is
T := K(1+ t∗) where each likelihood step takes one unit of time and each prior step takes t∗ units.
Note that the stationary process πτ alternates between πX and πZ as follows:

πτ =

{
πX τ = k(1 + t∗), k ∈ {0, . . . ,K}
πZ τ = k(1 + t∗) + 1, k ∈ {0, . . . ,K − 1}

Applying Lemma 2 in Yuan et al. (2023) to the likelihood dynamics defined in Eq. (12) for the
non-stationary and stationary processes, we have

∂τDKL(πτ∥ντ ) = −
ρ2

2
DFI(πτ ||ντ ) ≤ −

ρ2

4
DFI(πτ ||ντ ),

where τ ∈ [k(1 + t∗), k(1 + t∗) + 1], k = 0, . . . ,K − 1. Integrating over [k(1 + t∗), k(1 + t∗) + 1]
gives ∫ k(1+t∗)+1

k(1+t∗)

DFI(πτ ||ντ )dτ ≤
4

ρ2
(
DKL(π

X ||νk(1+t∗))−DKL(π
Z ||νk(1+t∗)+1)

)
, (14)
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where k = 0, . . . ,K − 1. Further, we apply Lemma A.4 in Wu et al. (2024) to the dynamics of the
prior step defined in Eq. (2) with

b(xt, t) := −2σ̇(t)σ(t)∇xt log p(xt;σ(t))

(xt, t) := −2σ̇(t)σ(t)sθ(xt, t)

c(t) :=
√
2σ̇(t)σ(t)

δ := inf
t∈[0,t∗]

c(t),

and have that

∂tDKL(πτ∥ντ ) ≤ −
2σ̇(t)σ(t)

4
DFI(πτ ||ντ ) + 2σ̇(t)σ(t)Eπτ

∥∇xt
log p(xt;σ(t))− sθ(xt, t)∥22

≤ −δ2

4
DFI(πτ ||ντ ) + 2σ̇(t)σ(t)Eπτ

∥∇xt
log p(xt;σ(t))− sθ(xt, t)∥22,

where τ ∈ [k(1+ t∗)+ 1, (k+1)(1+ t∗)], k = 0, . . . ,K − 1. Integrating over [k(1+ t∗)+ 1, (k+
1)(1 + t∗)] gives∫ (k+1)(1+t∗)

k(1+t∗)+1

DFI(πτ ||ντ )dτ ≤
4

δ2
(
DKL(π

Z ||νk(1+t∗)+1)−DKL(π
X ||ν(k+1)(1+t∗)

)
+

4ϵscore
δ2

.

(15)
Adding the both sides of Eq. (14) and Eq. (15) and dividing the both sides by T = k(1 + t∗) gives

1

T

∫ T

0

DFI(πτ ||ντ ) ≤
4

T min(ρ2, δ2)

(
DKL(π

X ||ν0)−DKL(π
X ||νT )

)
+

4K

δ2T
ϵscore

≤ 4

T min(ρ2, δ2)
DKL(π

X ||ν0) +
4

δ2(1 + t∗)
ϵscore,

concluding the proof.

7.2 IMPLEMENTATION DETAILS

7.2.1 COVARIANCE MATRIX

The preconditioned Langevin dynamic requires computation of the matrix square root of the empiri-
cal covariance Ct. For experiments on lower dimension data (linear Gaussian, linear Gaussian mix-
ture), we use a built-in PyTorch solver. However, for higher dimension datasets such as FFHQ256,
direct computation is too expensive, necessitating approximation of the matrix. Following simi-
lar practice as in Li et al. (2016); Yao et al. (2021), we approximate Ct with the diagonal matrix
Diag(Ct).

7.2.2 LANGEVIN STEP SIZE

The likelihood step involves discretizing a SDE. The step size determines the discretization scheme.
We simply choose the adaptive step size below following the practice in Kovachki & Stuart (2018)

ηt =
λ∥∥∥−Ct∇

(
f(z

(j)
t ;y) + 1

2ρ2 ∥z(j)
t − x(j)∥22

)∥∥∥2
2

, (16)

where λ is a tunable hyperparameter. Empirically, our adaptive step size ensures numerical stability
during sampling.

7.2.3 HYPERPARAMETERS

Following Wu et al. (2024), we define our ρ annealing schedule as exponential decay:

ρk = max(αkρmax, ρmin) (17)
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Table 3: Hyperparameter choices for FFHQ256

Hyperparameter Inpaint (box) SR Phase retrieval
N (total steps) 30 30 30
J (ensemble size) 2048 2048 2048
ρmin 0.2 0.2 0.2
ρmax 10 10 10
α 0.9 0.9 0.9
λ 300 300 300
Nlikelihood (likelihood iterations) 500 500 500
Nprior (prior iterations) 25 25 32

7.3 EXPERIMENTAL DETAILS

Linear-Gaussian As previously discussed, the Linear-Gaussian experiments use a linear forward
model with Gaussian measurement noise z ∼ N (0, σ2

yI) and Gaussian prior x0 ∼ N (mx, σx2I).
For all experiments, we randomly generate mx and choose σx = 5. We also randomly generate the
linear operator H. For each dx ∈ {2, 40, 80, 400}, we set dy = 1.

Linear Gaussian mixture We consider the general linear inverse problem given by
y = Hx+ ϵ, (18)

where x ∈ Rn,y ∈ Rm, H ∈ Rm×n, ϵ ∼ N (0,Σϵ). Given the measurement y, we aim to sample
from the posterior distribution p(x|y). We consider and analyze the case where the prior distribution
of x is a mixture of Gaussians given by

p(x) =

K∑
i=1

γiN (mi,Σi),

K∑
i=1

γi = 1, (19)

where the mean mi ∈ Rn and the covariance matrix Σi ∈ Rn×n. By linearity, the distribution of y
is also a Gaussian mixture given by

p(y) =

K∑
i=1

γiN (Hmi, HΣiH
⊤ +Σϵ),

K∑
i=1

γi = 1. (20)

Using Bayes theorem, the posterior distribution is given by

p(x|y) = p(y|x)p(x)
p(y)

. (21)

The likelihood p(y|x) reads
p(y|x) = N (y;Hx,Σϵ). (22)

Therefore,

p(x|y) =
∑K

i=1 γiN (x;mi,Σi)N (y;Hx,Σϵ)∑K
i=1 γiN (y;mi, HΣiH⊤ +Σϵ)

, (23)

which can be written as the exponential of a quadratic in x. Therefore, the posterior distribution is
also a mixture of Gaussians,

p(x|y) =
K∑
i=1

ωiN (x; m̂i, Ci), (24)

where the posterior mean m̂i and covariance Ci are given by

m̂i =
(
H⊤Σ−1

ϵ H +Σ−1
i

)−1 (
H⊤Σ−1

ϵ y +Σ−1
i mi

)
, (25)

Ci =
(
H⊤Σ−1

ϵ H +Σ−1
i

)−1
, (26)

and the weight of each mode is given by

ωj =
γjN (y;Hmj , HΣjH

⊤ +Σϵ)∑K
i=1 γiN (y;Hmi, HΣiH⊤ +Σϵ)

, j = 1, . . . ,K. (27)

In our experiments, we set the prior to be a mixture of four Gaussians where the variance of each
Gaussian is 2I and the means are (16i, 16j) for (i, j) ∈ {0, 1}2. We set Σϵ = 1.5I. The linear
forward model H and observed data y are both randomly generated from Gaussian.
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Figure 2: Generated samples on the FFHQ256 inverse problems.

Image Restoration We measure metrics on a small validation subset of FFHQ256, which consists
of ten images. The forward model implementations for box inpainting and super-resolution are
taken from Chung et al. (2023), and the implementation of phase retrieval is taken from Wu et al.
(2024). While the setup remains the same as that of Chung et al. (2023) for inpainting and super-
resolution, our phase retrieval setup differs slightly from Wu et al. (2024), as we choose σy = 0.05,
use full-color images (as opposed to grayscale), and set the oversampling parameter to 2.0.
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