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Abstract

Recent studies have revealed various manifestations of position bias in transformer architectures, from the “lost-in-
the-middle” phenomenon to attention sinks, yet a comprehensive theoretical understanding of how attention masks
and positional encodings shape these biases remains elusive. This paper presents a graph-theoretic framework for
analyzing position bias in multi-layer attention. Modeling attention masks as directed graphs, we quantify how tokens
interact with contextual information based on their sequential positions. We uncover two key insights: First, causal
masking inherently biases attention toward earlier positions, as tokens in deeper layers attend to increasingly more
contextualized representations of earlier tokens. Second, we characterize the competing effects of the causal mask and
relative positional encodings, such as the decay mask and rotary positional encoding (RoPE): while both mechanisms
introduce distance-based decay within individual attention maps, their aggregate effect across multiple attention
layers—coupled with the causal mask—Ieads to a trade-off between the long-term decay effects and the cumulative
importance of early sequence positions. Through controlled numerical experiments, we not only validate our theoretical
findings but also reproduce position biases observed in real-world LLMs. Our framework offers a principled foundation
for understanding positional biases in transformers, shedding light on the complex interplay of attention mechanism
components and guiding more informed architectural design.

1. Introduction

The attention mechanism is central to transformer architectures (Vaswani et al., 2017), which form the backbone of state-of-
the-art foundation models, including large language models (LLMs). Its success lies in its ability to dynamically weigh input
elements based on their relevance, enabling efficient handling of complex dependencies (Kim et al., 2017; Bahdanau et al.,
2015). However, despite this widespread success, many questions remain unanswered regarding how these mechanisms
process information and the artifacts they may introduce.

One particularly intriguing aspect that demands such a theoretical investigation is position bias, i.e., the bias of the model
to focus on certain regions of the input, which significantly impacts the performance and reliability of transformers and
LLMs (Zheng et al., 2023; Wang et al., 2024; Hou et al., 2024). For instance, these models often suffer from the “lost-
in-the-middle” problem, where retrieval accuracy significantly degrades for information positioned in the middle of the
input sequence compared to information at the beginning or end (Liu et al., 2024; Zhang et al., 2024; Guo & Vosoughi,
2024). Similarly, in-context learning is highly sensitive to the order of illustrative examples: simply shuffling independently
and identically distributed (i.i.d.) examples can lead to significant performance degradation (Min et al., 2022; Lu et al.,
2022; Zhao et al., 2021). Moreover, recent research has also revealed that attention sinks (Xiao et al., 2024; Gu et al., 2025;
Guo et al., 2024) — positions that attract disproportionately high attention weights — arise at certain positions regardless of
semantic relevance, suggesting an inherent positional bias.

These empirical findings suggest that while transformers effectively encode and process positional information through the
combined use of attention masks and positional encodings (PEs) (Wang et al., 2024; Fang et al., 2025), these design elements
also appear to introduce systematic positional biases, often independent of semantic content. This raises a fundamental and
intriguing question about the role of positional information in attention mechanisms:

How do attention masks and positional encodings shape position bias in transformers?
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To address the question, we propose a novel graph-theoretic framework for analyzing attention score distributions in
multi-layer attention settings. Building upon Wu et al. (2024), we model attention masks as directed graphs, enabling
rigorous mathematical analysis of attention patterns. This approach proves particularly powerful for studying multi-layer
attention mechanisms, as it allows us to precisely quantify how each token’s contextual representation is composed from
information at different positions in the sequence. By tracking the information flow through the attention layers, we can
systematically examine how positional biases emerge and propagate across layers, providing insights into the complex
interplay between attention masks, PEs, and the network’s depth.

2. Problem Setup

Notation We use the shorthand [n] := {1,...,n}. For a matrix M, we denote its i-th row by M; . and its j-th column by
M. ;. Throughout the analysis in the paper, we formalize the attention mask to be a directed graph G. Formally, we represent
a directed graph with N nodes by G and let E(G) be the set of directed edges of G. A directed edge (j,47) € E(G) from
node j to ¢ in G means that in the attention mechanism, token j serves as a direct context for token ¢ or token ¢ attends to
token j. The set AV; of all neighbors of node i is then {k : (k,i) € E(G)}.

(Masked) attention mechanism Given the representation X € RN %4 of N tokens, the raw attention score matrix is
computed as Z = XWq(XWk) " /\/dgx, where W, Wi € R9*d" are the query and the key matrix, respectively, and
v/dgk is a temperature term to control the scale of raw attention scores. Without loss of generality, we assume dgx = 1in
our analysis. To enforce a masked attention, we create a sparse attention matrix A € RY*" based on Z whose sparsity
pattern is specified by a directed graph G: we normalize Z;; among all allowed token interactions (k,i) € E(G) such that if

(4,1) € E(G), Ai; = softmaxg(Z;;) = %, and A;; = 0 otherwise.
' - ke i k2 b

For our analysis, we consider single-head (masked) self-attention networks (SANs). The layerwise update rule can be
written as X (1) = AOXOW ) where A® = softmaxge (XOWS (XOW)T /\/dox) and W € R is the
value matrix. For simplicity, throughout the paper, we assume that d = d’ and G*) = G.

Relative Positional Encoding The decay mask represents the relative distance between two tokens by introducing an

explicit bias favoring more recent tokens. Formally, it can be written as D;; = —(¢ — j)m if j < ¢ and 0 otherwise. Then
applying the decay mask is essentially Aé?cay = softmaxg (X (t)Wg J(XOWD)T 4 D). Note that while the decay mask

formulation follows ALiBi (Press et al., 2022), it can be generalized to more complex variants such as KERPLE (Chi et al.,
2022).

3. Main Results

In the transformer model, the attention mechanism is the sole module that allows tokens to interact with one another and
incorporate contextual information from the sequence. It iteratively refines the contextual representation of each token across
layers, allowing information to flow and accumulate based on relevance. This concept of contextualization through attention
has its origins in the development of attention mechanisms, which predate transformers (Kim et al., 2017; Bahdanau et al.,
2015). From the perspective of contextualization, the attention mechanism can be expressed in the following form (Kim
et al., 2017):

N
XD =37 (A0 A0 xOw O )
j=1 PO (2;=35] X @) FO(X©)
where z; is a categorical latent variable with a sample space {1, ..., N} that selects the input X . to provide context for

token 7. In this formulation, A(®) represents the attention matrix at layer ¢, P® (z =7 | X (0)) denotes the cumulative
probability of selecting input token j as the context for token i at depth ¢ , and f(*)(-) is a learned transformation function.

This probabilistic formulation reveals two key aspects of the attention mechanism: it acts as both a context selector and
a feature aggregator. As a selector, it assigns probabilities P(*) that quantify the relevance of each token j to target token
i at depth t. As an aggregator, it combines these selected contexts weighted by their respective probabilities P(*) to form
the contextualized representation X (¥). Since position bias fundamentally manifests as systematic preferences in how
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Figure 1. Causal graph and its corresponding directed graph used in the analysis (self-loops are omitted for clarity). A directed edge from
token j to ¢ indicates that ¢ attends to j.

tokens select and incorporate context from different positions, analyzing the attention mechanism’s behavior is crucial for
understanding these biases. By examining how attention masks and PEs affect the probability distribution P(*), we can
investigate how position-dependent patterns emerge and propagate through multi-layer attention in transformers.

Finally, we adopt the following assumptions in our analysis: A1 There exists C' € R such that maR)I({ ng) 2, ||WI((’5) ”2} <
te

C. A2 The sequence { || Hf:o W‘(,f ) Il }:io is bounded. In particular, A1 assumes that the key and query weight matrices
are bounded, which is crucial for efficient attention computation in practice (Alman & Song, 2023), whereas A2 is to ensure
boundedness of the node representations’ trajectories X ® forallt >0 (Wu et al., 2024).

3.1. Attention Masks: A Graph-Theoretic View

We first analyze the case without PEs, focusing on the effect of attention masks. A graph-theoretic perspective offers a
powerful framework for analyze multi-layer attention: the flow of attention across tokens can be represented as paths in a
directed graph defined by the mask, where each path captures how information is transmitted between tokens (see Figure 1
for an illustration). The number of steps in a path corresponds to the number of layers. By accounting for all such paths, we
can quantify the cumulative influence of each token in the context computation of other tokens. Our first result states that for
a causal mask G, as tokens in deeper layers attend to increasingly more contextualized representations of earlier tokens, the
context of each token converges exponentially toward the first token in the sequence.

Theorem 3.1. Let G be the causal mask. Under A1-A2, given X0 g RNxd for every token i € [N], lim;_, o P® (zi =
11X ©)) = 1. Moreover; there exist 0 < C,e < 1 where Ne < 1 such that P (z; = j|X(©) < C(1 — (j — 1)e)?, for all
1<j<iandt > 0.

3.2. Relative PEs: A Competing Decay Effect

Having analyzed how attention masks bias the model toward the beginning of the sequence, we now shift our focus to
studying PEs, the other key mechanism for representing positional information in transformers. As the name suggests,
relative PEs incorporate positional information by modifying the original attention scores in a way that reflects the relative
positions of tokens. Among these, the decay mask (Press et al., 2022) explicitly introduces a distance-based decay effect
into the attention mechanism. We begin by examining the effect of the decay mask on individual attention layers.

Lemma 3.2. Consider the decay mask in Section 2 where G is causal. Under A1-A2, given X () € RN*A there exists
Crmax, Cmin > 0 such that Cppine~ =)™ < (A(t) )ij < Crmaxe” D™ forall j <ie [N]andt > 0.

decay

Lemma 3.2 demonstrates that the decay mask introduces an exponential decay effect into each attention map, with the strength
of the effect determined by the token distances. However, while this result characterizes the behavior of individual attention
layers, the interaction between layers in a multi-layer setting leads to more intricate behaviors. Building on Lemma 3.2 ,
Theorem 3.3 examines the cumulative effect of the decay mask across multiple layers when combined with the causal mask.

Theorem 3.3. Consider the decay mask in Section 2 where G is causal. Fix T' > 0. Under A1-A2, given X 0) ¢ RN*d
holds forall j <i € [N]andt < T, P (2 =jX©) =0 ((tﬁ;j)e_(i_j)m).

decay

Notably, if we denote L(z) = log((*1%)e~*™), then L(x) is not a monotone function of the distance = between two
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tokens. More precisely, under Stirling’s approximation, the critical point, where the highest attention score occurs, is at
x* =t/(e™ — 1) . This means that increasing the decay strength m decreases x*, making the model more biased towards
recent tokens, whereas increasing the number of attention layers increases z*, making the model more biased towards initial
tokens. This trade-off between layer-wise decay and cross-layer accumulation transforms the initially monotonic decay
pattern within each attention map into a more intricate, non-monotonic behavior when aggregated throughout the network.

4. Experiments

In this section, we validate our theoretical findings via carefully designed numerical experiments. To ensure a controlled
setup that enables precise manipulation of positional biases in the data, we adopt the synthetic data-generating process and
simplified self-attention network framework proposed in Reddy (2024).

Task structure Following Reddy (2024), we adopt the following information retrieval task: The model is trained to
predict the label yquery Of a target xquery using the cross-entropy loss, given an alternating sequence of n items and n labels:
T1,Y1, -+ Tns Yn, Tquery- The sequence is embedded in d dimensions. Each z; is sampled from a Gaussian mixture model
with K classes, and y; is the corresponding class label assigned prior to training from the total L labels (L < K). The
burstiness B is the number of occurrences of x; from a particular class in an input sequence. Importantly, at least one item in
the context belongs to the same class as the query. To control position bias in the training data, Tquery can either be explicitly
assigned to the class of a specific x;, introducing position-dependent bias in the data, or randomly assigned to the class of
any x;, simulating a scenario without position bias in the data. Following Reddy (2024), we set n = 8 and d = 64.

Tracking position bias To quantify position bias, we evaluate model performance using sequences containing novel
classes not seen during training. Specifically, by generating new class centers for the Gaussian mixture and randomly
assigning one of the L existing labels to these novel classes, we ensure that the model relies on contextual information rather
than memorized class features. Crucially, we can systematically vary the position of the correct answer within test sequences
to measure retrieval accuracy changes, thereby isolating and quantifying position-dependent biases in the model’s behavior.

Network architecture The input sequences are passed through an attention-only network followed by a classifier. Each
attention layer has one attention head. The classifier is then a three-layer MLP with ReLU activations and a softmax layer
which predicts the probabilities of the L labels.

4.1. The Effects of Depth and Relative PEs

To investigate the position bias arising solely from the architectural design of the attention mechanism, we use training
sequences without positional bias, where the position of x; sharing the same class as Zquery is uniformly random in
{1,2,...,n}. To evaluate the position bias in the trained model, we construct test sequences of the form [a, b]. Here, the
bolded term a explicitly marks the correct position, ensuring 7/, matches yquery, While position b serves as a baseline. In
these sequences, x, and x; are identical vectors, allowing us to control for the influence of semantic information on the
model’s retrieval accuracy. We then measure the retrieval accuracy gap between pairs of sequences where the content at
positions a and b is identical, but the correct position varies. This gap, defined as [a, b] — [b, a], quantifies the model’s
positional preference independent of semantic information. To perform this evaluation, we construct three pairs of test sets,
each containing 10, 000 sequences: [first, middle] vs. [middle, first], [first, last] vs. [last, first], and [middle, last] vs. [last,
middle]. Here “first” (position 1), “middle” (position n/2), and “last” (position n) denote fixed positions within a sequence.

Figure 2 shows the average results over five runs, where a vs. b denotes the gap [a, b] — [b, a]. The magnitude of each bar
represents the size of the performance gap, and the sign of each bar reflects the direction of the bias: a positive sign indicates
a bias toward earlier positions, while a negative sign indicates a bias toward later positions. We highlight several key
observations. First, increasing model depth consistently amplifies the bias toward earlier parts of the sequence, regardless of
the PE used. Furthermore, the decay mask indeed reduces the bias toward the beginning induced by the causal mask and
increases the focus on recent tokens.

5. Conclusion

In this paper, we study position bias in transformers through a probabilistic and graph-theoretic lens, developing a theoretical
framework that quantifies how positional information influences context construction across multi-layer attention. By
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Figure 2. Position bias arising solely from the architectural design of the attention mechanism, with no positional bias in the training
data. a vs. b denotes the gap for the case [a, b] — [b, a], where bar magnitude indicates gap size, positive indicates bias toward earlier
position, and negative indicates bias toward later position.

deepening our understanding of how architectural choices in transformers shape positional dependencies, our work provides
a foundation for designing attention mechanisms with predictable and task-aligned positional properties.
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6. Proof of Theorem 3.1

6.1. Auxiliary results
Lemma 6.1. Under A1-A2, there exists € > 0 such that Al(;-) >eforallt >0, (j,i) € E.
Proof. WritingX (‘+1) = A1) X (t)W‘(,t ) recursively, we get that the token trajectories
XD = A® 4O x OOy )

stay uniformly bounded for all ¢ > 0 by A2. Then it follows from A1 that there exists C' € R such that for all ¢ > 0,

W(” - HX@W(“ <C
|Ceowg), |, = zwg], <.
3
X(t)W(”) HX“ wd| <c.
, S
Hence for all 4, j € [N,
~C? < (XOWH(xOWIHT,; < ¢
This implies that there exists e > 0 such that A,E;?) > eforall (5,i) € E. O
6.2. Proof of Theorem 3.1
We denote P®) := A® ... A©) 1t suffices to show that there exists 0 < C' < 1 and 0 < e < 1 such that
P <CL—(j—1)e) )

foralll < j <diandt > 0.

The proof will go by induction:



On the Emergence of Position Bias in Transformers

Base case By Lemma 6.1, it follows that
(0)
P’ < (1—¢)
forall1 < j <i.ThenletC :=1—¢.

Induction step Assume that (4) holds, it follows that for all 1 < j < 4.

1) . )
Pt ZAZk k] <A-(G-DeCA—-(G -1 =C1—(j—1e)tt.
From above, we conclude the theorem.

7. Proof of Lemma 3.2

Fixt > 0. Let
t t ¢
29 = (KO, KO,

Following from Lemma 6.1, there exists Iimin, Imax € R such that for all j < i € [N],
ZL(;) S [Imin7-[max}~

Consider the denominator in the softmax(-) operation in the calculation of (A(t)

dec‘Ly)
(t) _ (s
Eez >enun§ e~ (i—k)m

1—e —(i+1)m

— elmin
1—em
—2m
> plmin l—e
e - -
- l—em™m
_ nnn( +e ™)

and

[ ® 00
t )
§ eZik —(i—k)m < eImax E efkm
k=1

1,

e’ max

1—em™
It follows that

e lmax—(i=g)m

A(t) i
( decay) ) = elmin(1+e*m)

— Cmaxe—(i—j)m
and

(A9 elmn—(i=9)m

decay)ij = W = Cpine” 79

where Cpay := e{max—Imin) /(1 4 e=™) and Chyip, 1= (1 — e~ ™) eFmin—Imax),

8. Proof of Theorem 3.3

Note that in the causal graph G, there are (’tJrZ 9) paths of length ¢ + 1 from token j to token <.

Since going from token j to token ¢ in the causal graph, the connectivity patterns ensure that the token indices along the path
are non-decreasing, i.e. if we denote the directed path as (j,11), (I1,l2), ..., (It,4), itholds that j < I3 <y < .. < <.
Together with Lemma 3.2, we conclude the theorem statement.
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9. Experiments

Here we provide more details on the numerical experiments presented in Section 4. All models were implemented with
PyTorch (Paszke et al., 2019).

Parameterizing the data distribution As defined in Section 4, the input data distribution is modulated by tuning various
parameters. In addition to the parameters described in the main text, for the Gaussian mixture with K classes, each class k
is defined by a d-dimensional vector uj; whose components are sampled ¢.¢.d. from a normal distribution with mean zero

and variance 1/d. Then the value of z; is given by %, where 7); is drawn from the same distribution as the px’s and
gl

sets the within-class variability. Each class is assigned to one of L labels (L < K). The contents of the labels are drawn
prior to training from the same distribution as the p’s.

In Reddy (2024), the author found that different configurations of the data generating process give rise to different learning
regimes. To enable better information retrieval ability of the model, we choose the configuration suggested by Reddy (2024)
that corresponds to the difficult in-weight learning and easy in-context-learning regime to ensure the information retrieval
ability of the model. Specifically, we set v = 0.75, K = 2048, L = 32, and B = 4.

Relative PE hyperparameters For the decay mask, we set m = —log(0.8).
Compute We trained all of our models on a Tesla V100 GPU.

Training details In all experiments, we used the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of
1073, a weight decay of 109, a batch size of 128, and trained for 100, 000 iterations.



