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Abstract
We consider lossy compression of an information
source when the decoder has lossless access to
a correlated one. This setup, also known as the
Wyner–Ziv problem in information theory, is a
special case of distributed source coding. To this
day, real-world applications of this problem have
neither been fully developed nor heavily inves-
tigated. We find that our neural network-based
compression scheme re-discovers some principles
of the optimum theoretical solution of the Wyner–
Ziv setup, such as binning in the source space as
well as linear decoder behavior within each quan-
tization index, for the quadratic-Gaussian case.
Binning is a widely used tool in information theo-
retic proofs and methods, and to our knowledge,
this is the first time it has been explicitly observed
to emerge from data-driven learning.

1. Introduction
Consider a distributed sensor network consisting of individ-
ual cameras that independently capture images at different
locations across the same city. Suppose that each sensor
node compresses and transmits its highly correlated image
to a joint central processing unit that reproduces a unified
visual map of the city, by fusing the information collected
by all of the nodes. If the sensors could directly commu-
nicate with each other in a cooperative manner, they could
avoid some degree of redundancy by transmitting less corre-
lated information. However, direct communication between
nodes is often infeasible.

Given that, what is the best strategy to exploit the correlation
between sensor data? Slepian & Wolf (1973) (SW) proved a
remarkable and well-known information theoretic result that
the distributed compression is asymptotically as efficient as
the joint one, if the joint distribution statistics are known
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Figure 1. The two lossy compression systems that we consider:
learned compressor using a classic entropy coder (top) and learned
quantizer and dequantizer, using an ideal Slepian–Wolf coder
(bottom).

and compression is lossless. Their proof invokes random
binning arguments and is non-constructive. Establishing
a practical framework building onto these concepts is a
challenging open problem to this day.

Here, we investigate the setup characterized by Wyner &
Ziv (1976) (WZ), which is both more general than SW as
it encompasses lossy compression, and a simpler special
case, as it assumes the decoder has access to a correlated
source, the side information, losslessly. For WZ coding,
there has been vast prior work considering synthetic setups
and specific correlation patterns. Zamir et al. (2002) out-
lined the asymptotically optimal constructive mechanisms
using nested linear and lattice codes for binary and Gaus-
sian sources, respectively. Since then, the constructive and
non-asymptotic research effort has been spearheaded by dis-
tributed source coding using syndromes (DISCUS) (Prad-
han & Ramchandran, 2003), which formulated the WZ setup
as a dual quantizer-channel coding problem. The complex
interaction between the quantization, channel coding and es-
timation parts was also highlighted in competitive practical
code design frameworks proposed in Liu et al. (2004); Yang
et al. (2003). These methods achieve performances close to
the theoretical bound, but are only applicable for Gaussian
sources.

We propose to leverage the universal function approxima-
tion capability of artificial neural networks (ANNs) (Leshno
et al., 1993; Hornik et al., 1989) to find constructive solu-
tions for the non-asymptotic regime. More specifically, we
consider the one-shot case, i.e., compressing each source



Neural Distributed Compressor Does Binning

realization one at a time, similarly to popular ANN-based
compressors (e.g., Ballé et al., 2017). We provide two dis-
tinct solutions to the WZ problem, where we either handle
the quantization and binning parts jointly or take a two-step
approach by having a learned quantizer that is coupled with
an ideal SW coder (see Fig. 1). We defer discussion of the
entropy coders to later sections.

In order to establish the training objectives for these solu-
tions, aiming for optimality, we minimize upper bounds on
mutual information. These are expressed through one of the
two probabilistic models utilizing ANNs (Section 2). Next,
we explain how each probabilistic model is interpretable as
one of the operational schemes shown in Fig. 1 (Sections
3 and 4, respectively). We discuss empirical results and
connections to related work in Section 5.

2. Estimating Neural Upper Bounds on
Wyner–Ziv

Since our choice of objective functions is inspired by the
rate–distortion function of the case where side information
is only available at the decoder, we briefly recap the WZ the-
orem and the accompanying information theoretic concepts.
For the complete proof, refer to the original paper (i.e.,
Wyner & Ziv, 1976) and to Gamal & Kim (2012).

Theorem. (Wyner–Ziv Theorem [1976]) Let (X,Y ) be cor-
related sources, drawn i.i.d. ∼ p(x, y), and let d(x, x̂) be a
single-letter distortion measure. The rate–distortion func-
tion for X with side information Y available at the decoder
side is as follows:

RWZ(D) = min(I(X;U)− I(Y ;U)), (1)

where the minimization operation is over all conditional
probability distribution functions p(u|x) and all functions
g(u, y) such that Ep(x,y)p(u|x)d(x, g(u, y)) ≤ D.

The achievability part of the WZ theorem invokes the cover-
ing lemma, resulting in the rate of I(X;U), followed by a
random binning argument based on joint typicality, which
yields the rate discount of I(Y ;U) in Eq. (1) (Cover &
Thomas, 2006). This achievability, which is shown to be
tight, assumes a Markov chain constraint U −X − Y .

Assuming further that the encoder in the achievability proof
is represented by a probability model pθ(u|x) with parame-
ters θ, the difference of mutual informations in Eq. (1) can
be written as:

I(X;U |Y ) = E p(x,y)
pθ(u|x)

log
pθ(u|x)
���p(u)

· ���p(u)

p(u|y)
. (2)

We will use the probabilistic model pθ(u|x) to facilitate the
learning procedure of an encoder, and we set our encoder
output as u = argmaxv pθ(v|x). To consider a practical

compression setting, we also have U as discrete. For our
objective functions, we choose one of two variational upper
bounds:

I(X;U |Y ) ≤ E p(x,y)
pθ(u|x)

log
pθ(u|x)
qξ(u)

, (3)

I(X;U |Y ) ≤ E p(x,y)
pθ(u|x)

log
pθ(u|x)
qζ(u|y)

. (4)

Here, qξ(u) and qζ(u|y) (with parameters ξ and ζ, respec-
tively), are two different models of the distribution p(u|y),
which is generally not known in closed form. We will dis-
cuss the operational meaning of these two variants in Sec-
tions 3 and 4. The upper bounds in Eqs. (3) and (4) follow
from cross-entropy being larger or equal to entropy (Cover
& Thomas, 2006).

We define all probabilistic models pθ(u|x), qξ(u) and
qζ(u|y), as discrete distributions with probabilities Pk =

expαk∑K
i=1 expαi

for k ∈ {1, . . . ,K}, where K is a model pa-
rameter. The unnormalized log-probabilities (logits) αk
are computed by ANNs as functions of the conditioning
variable (i.e., x for pθ(u|x) and y for qζ(u|y)), where the
parameters represent the ANN weights, or treated as learn-
able parameters directly (for qξ(u) ). This choice keeps
the parametric families as general as possible and does not
unnecessarily impose any structure. Specifically, this al-
lows the model pθ(u|x) to learn, if needed, quantization
schemes that involve discontiguous bins, akin to the ran-
dom binning operation in the achievability part of the WZ
theorem, and resembling the systematic partitioning of the
quantized source space with cosets in DISCUS, according
to the virtual channel arising between the side information
and the quantized source.

Next, we relax the constrained formulation of the WZ the-
orem to an unconstrained one using a Lagrange multiplier.
This yields either a marginal or a conditional loss function:

Lm(θ,φ, ξ) = E
[
log

pθ(u|x)
qξ(u)

+ λd(x, gφ(u, y))
]
, (5)

Lc(θ,φ, ζ) = E
[
log

pθ(u|x)
qζ(u|y)

+ λd(x, gφ(u, y))
]
, (6)

where {θ,φ, ξ, ζ} are optimization parameters, and
gφ(u, y) is the decoding function, also represented by an
ANN with parameters φ, which outputs the reconstruction
x̂ = gφ(u, y). The optimized pθ(u|x) and gφ(u, y) mod-
els yield the ANN-based encoder–decoder and quantizer–
dequantizer components, respectively, depicted in Fig. 1.

We use a well-known technique, that is Gumbel-max (Gum-
bel, 1954), to draw samples from the discrete distributions.
Moreover, we use Concrete distributions (Maddison et al.,
2016) to facilitate stochastic optimization. To match the
distribution of u samples, we also choose qξ(u) and qζ(u|y)
as Concrete during training.
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2.1. Evaluation and Experimental Setup

The WZ formula in Eq. (1) has a closed-form expression
only in a few special cases. To evaluate how close our
neural bounds get to the known rate–distortion function, we
consider the following correlation model: let X and Y be
correlated, zero mean and stationary Gaussian memoryless
sources, and let the distortion metric be mean-squared error.
Then, the WZ rate–distortion function is

RWZ(D) =
1

2
log

(
σ2
x|y

D

)
, 0 ≤ D ≤ σ2

x|y, (7)

where σ2
x|y denotes the conditional variance of X given

Y . For X = Y + N , where N ∼ N(0, σ2
n), which is

considered throughout the paper except Fig. 3, we have
σ2
x|y = σ2

n. The rate–distortion function for Y = X +N ,
considered in Fig. 3, can also be derived similarly. Note that
in spite of considering Gaussian sources, we do not make
any assumptions on the distribution of information sources
in our formulations of the models.

For the conditional probabilistic models and the decoding
function, we employ ANNs of three dense layers, with 100
units each, and leaky rectified linear units as activation func-
tions for each of the layers. We use Adam (Kingma & Ba,
2014) and conduct our experiments using the JAX (Brad-
bury et al., 2018) framework. For evaluation, we switch
from Concrete distributions back to their discrete counter-
parts, and use a deterministic encoding function that is equal
to the mode of pθ(u|x), rather than sampling from it.

3. Operational Meaning and Evaluation of Lm

We first consider the system model at the top of the Fig. 1.
Note that the upper bound in Eq. (3) corresponds to the rate
of a system employing a one-shot encoder and an entropy
code which asymptotically achieves a rate equal to the cross-
entropy Ex

[
Eu∼pθ(u|x)[− log qξ(u)]

]
.

In Figs. 2 and 4 (in the appendix), we visualize the learned
compressors obtained with this formulation. We remark that
the learned compressors exhibit periodic grouping, binning-
like behavior with respect to the source space, although no
explicit structure was imposed onto the model architecture.
Color coding of the bin indices reveals discontiguous quan-
tization bins. This demonstrates that ANN-based methods
are indeed capable of recovering very similar solutions to
some of the handcrafted frameworks proposed for the WZ
problem, such as DISCUS. Note that this behavior is also
analogous to the random binning procedure in the achiev-
ability part of the WZ theorem.

These figures also show that the learned compressors exhibit
optimal decoder behavior within each quantization index.
In the given setup, the optimal decoder disambiguates the
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Figure 2. Visualization (best viewed in color) of the learned de-
terministic encoder u = argmaxv pθ(v|x) and decoder x̂ =
gφ(u, y) of the marginal formulation (Eq. (5)), for the quadratic–
Gaussian WZ setup. Here, we consider the correlation structure
of X = Y + N with Y ∼ N(0, 1) and N ∼ N(0, 10−1). The
dashed horizontal lines are quantization boundaries, and the colors
between boundaries represent unique values of u. We depict the
decoding function as separate plots for each value of u, using the
same color assignment.

quantization index from the received bin index u, and recon-
structs the source as (Zamir et al., 2014),

x̂ = (1− β) · y + β ·M(u), where β ∝ σ2
n , (8)

where M(·) denotes the disambiguation procedure. The
slopes of the learned curves are also sensitive to σ2

n, as is
evident from comparing both Figs. 2 and 4 (in the appendix).

We explain the behavior of the learned encoder and de-
coder as follows. The encoder quantizes the source and
subsequently bins the quantization index using the learned
joint statistics of Q(X) and Y , where Q(·) refers to the
quantization, yielding u. Note that the encoder does not
explicitly have access to the realization Y = y. The decoder
then disambiguates the received bin index and deduces the
quantization index, with the help of the side information.
It subsequently estimates the source as x̂, yielding the lin-
ear decoding functions within each quantization index with
respect to the matching curve shown in Fig. 2.

As seen in Fig. 3 and in both panels of Fig. 5 (in the ap-
pendix), our learned compressors yield a better performance
compared to the point-to-point rate–distortion functions. We
argue that this is mainly due to the learned binning behavior,
resulting in rate reduction. However, the compressors do not
reach the asymptotic WZ rate–distortion bound provided
in Eq. (7). As the ANN model compresses and consec-
utively bins each scalar input one by one, it is subjected
both to the space-filling loss (Lookabaugh & Gray, 1989)
during the quantization step, as well as to the loss coming
from binning non-uniformly distributed quantization indices.



Neural Distributed Compressor Does Binning

0 0.5 1 1.5 2 2.5 3

−25

−20

−15

−10

rate [bits]

di
st

or
tio

n
[d

B
]

neural distributed source coding (Whang et al., 2021)
neural upper bound estimated with Lm

neural upper bound estimated with Lc

asymptotic R-D point-to-point
asymptotic R-D Wyner–Ziv + 1.53 dB
asymptotic R-D Wyner–Ziv

Figure 3. Rate–distortion (R-D) performances obtained with the
marginal and conditional formulation, Lm and Lc, as in Eqs. (5)
and (6) respectively. We consider quadratic-Gaussian WZ setup
with the correlation structure of Y = X+N , having X ∼ N(0, 1)
and N ∼ N(0, 10−2). The 1.53 dB distortion offset refers to
the space-filling loss that the entropy-constrained one-shot lattice
quantizer is subjected to in a high-rate regime (Gray & Neuhoff,
1998).

The achievability part of the WZ theorem, by comparison,
considers binning of long sequences. This type of compress–
bin (Gamal & Kim, 2012) is much more efficient than the
one-shot case we consider, as it exploits the correlated side
information in a better way.

4. Operational Meaning and Evaluation of Lc

We next consider the system model at the bottom of Fig. 1.
The upper bound in Eq. (4) corresponds to the rate of a
system employing a one-shot quantizer and an ideal SW en-
tropy coder which asymptotically achieves the cross-entropy
Ex
[
Eu∼pθ(u|x)[− log qζ(u|y)]

]
.

The experimental results are provided in Fig. 3 and in both
panels of Fig. 5 (in the appendix). We observe that unlike
the previous case, this model’s performance is closer to the
asymptotic WZ rate–distortion bound. We find no evidence
of binning occurring in these quantizers (not depicted). We
explain the improved rate–distortion performance of this
model as follows. When binning is left to the ideal SW code,
which may make use of a high dimensional channel code
(e.g., as in DISCUS), the performance loss of such a learned
Wyner–Ziv compressor only comes from the quantization
part alone. This line of reasoning was also followed by the
practical code design in (Yang et al., 2003). The authors
make use of a combination of a classic quantizer (without
binning) and a powerful SW coding scheme, implemented
with irregular low-density parity-check (LDPC) codes, in
order to achieve the theoretical limit of H(Q(X)|Y ), where
Q(X) refers to the quantized source. Hence, minimizing Lc

corresponds to learning one-shot quantizer and dequantizer

components, reducing the WZ problem to a SW problem in
a data-driven fashion.

5. Discussion
Our experiments yield interesting data-driven insights about
the nature of a classical source coding problem with side
information. Figs. 2 and 4 (in the appendix) provide the first
explicit evidence of ANN-based learned compressors recov-
ering some elements of the optimal theoretical WZ solution,
both through binning with respect to the source space, and
piecewise linear behavior of the decoding function.

We linked two neural upper bounds (Section 2) with two
corresponding operational schemes (Sections 3 and 4) by
picking a suitable entropy coding technique for each one. In
the case of the marginal formulation in Eq. (5), it is attain-
able with high-order classic entropy coding, operating on
discrete values (Rissanen & Langdon, 1981). Considering
the conditional formulation in Eq. (6), we make use of an
ideal SW coding scheme, which compresses sufficiently
large blocks of quantized source elements to the rate of
H(Q(X)|Y ). The role of SW coding is to additionally ex-
ploit the correlation between Q(X) and Y . This explains
our empirical finding that in this case, there is no binning ob-
served in the quantization (as SW coding takes care of this).
State-of-the-art channel coding schemes such as LDPC (e.g.,
Liu et al., 2004) and turbo codes (e.g., Aaron & Girod, 2002)
have been demonstrated to yield results coming close to the
theoretical SW bound. To be fair, in order to achieve opti-
mality, these schemes make certain assumptions about the
virtual channel, which might not be met in our case.

Previous work (Whang et al., 2021) investigated the con-
struction of neural WZ schemes using a loss function based
on VQ-VAE (van den Oord et al., 2017). We note that both
of our methods outperform this scheme (see Fig. 3). We
attribute the suboptimal performance of the scheme to the
lack of explicit accounting for entropy in the learning ob-
jective. Notable prior work on the machine learning side in-
clude Alemi et al. (2017); Fischer (2020), which are related
to the information bottleneck problem (Tishby et al., 2000).
The learning objectives are comparable to our marginal and
conditional formulation, respectively. However, both of
these are strictly concerned with probabilistic model fitting,
not with operational compression schemes.

Going forward, by actually implementing the two aforemen-
tioned entropy coding techniques, and reporting the actual
bit rates, we hope to demonstrate the feasibility of our neural
schemes as a complete constructive end-to-end solution to
the WZ problem. In the case of SW coding, learned channel
coding techniques (Kim et al., 2020; 2018) could be inves-
tigated, to relax the assumptions about the virtual channel
arising between the quantized source and side information.
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A. Appendix.

4 3 2 1 0 1 2 3 4
y

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

le
ar

ne
d 

qu
an

tiz
at

io
n 

bo
un

da
rie

s a
nd

 x

identity function

Figure 4. Visualization (best viewed in color) of the learned deterministic encoder u = argmaxv pθ(v|x) and decoder x̂ = gφ(u, y) of
the marginal formulation (Eq. (5)), for the quadratic–Gaussian WZ setup. Here, we consider the correlation structure of X = Y +N
with Y ∼ N(0, 1) and N ∼ N(0, 10−2).
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Figure 5. Rate–distortion (R-D) performances obtained with marginal and conditional formulations, as in Eqs. (5) and (6), respectively.
We consider the quadratic-Gaussian WZ setup, having correlation structure of X = Y +N , and plot the empirical results versus the
asymptotic bounds. On the left panel, we have Y ∼ N(0, 1) and N ∼ N(0, 10−1). On the right panel, we have Y ∼ N(0, 1) and
N ∼ N(0, 10−2). The 1.53 dB distortion offset refers to the space-filling loss that the entropy-constrained one-shot lattice quantizer is
subjected to in a high-rate regime (Gray & Neuhoff, 1998).


