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Abstract

Planning is a powerful approach to control problems with known environment dynamics. In un-
known environments the agent needs to learn a model of the system dynamics to make planning
applicable. This is particularly challenging when the underlying states are only indirectly observ-
able through images. We propose to learn a deep latent Gaussian process dynamics (DLGPD)
model that learns low-dimensional system dynamics from environment interactions with visual ob-
servations. The method infers latent state representations from observations using neural networks
and models the system dynamics in the learned latent space with Gaussian processes. All parts of
the model can be trained jointly by optimizing a lower bound on the likelihood of transitions in
image space. We evaluate the proposed approach on the pendulum swing-up task while using the
learned dynamics model for planning in latent space in order to solve the control problem. We also
demonstrate that our method can quickly adapt a trained agent to changes in the system dynamics
from just a few rollouts. We compare our approach to a state-of-the-art purely deep learning based
method and demonstrate the advantages of combining Gaussian processes with deep learning for
data efficiency and transfer learning.

Keywords: model-based reinforcement learning, learning-based control, representation learning,
dynamics model learning, transfer learning

1. Introduction

Reinforcement learning (RL) has shown success for a number of applications, including Atari games
(Mnih et al., 2015), robotic manipulation (Gu et al., 2017), navigation and reasoning tasks (Oh et al.,
2016), and machine translation (II et al., 2014). Many such results were obtained with model-free
deep RL in which the agent directly learns a policy function in the form of a neural network by
interacting with the environment. However, such approaches commonly require a large number of
interactions, which often hinders their application to real-world tasks: Performing actions in real
environments, such as driving a vehicle or moving a robot, can be orders of magnitude slower than
performing an update of the policy model, and mistakes can carry real-world costs.
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Model-based RL is a promising direction to reduce this sample complexity. In model-based RL,
the agent acquires a predictive model of the world and uses the model to make decisions. This offers
several potential benefits over model-free approaches. First, learning a transition model enables the
agent to leverage a richer training signal by using the observed transition instead of just propagating
a scalar reward. Further, the learned dynamics can be independent of the specified task and could
therefore potentially be transferred to other tasks in the same environment. Finally, instead of
learning a policy function the agent can use the learned environment for planning to choose its
actions. For environments with only a few state variables, PILCO (Deisenroth and Rasmussen,
2011) achieves remarkable sample efficiency. A crucial component is its use of Gaussian processes
to model the system dynamics, which allows PILCO to include the uncertainty of the transition
model into its policy search. However, in many problems of interest the underlying state of the world
is only indirectly observable through images. In order to enable fast planning, the agent can learn
low-dimensional state representations and model the system dynamics in the learned latent space.
Models of this type have been successfully applied to simple tasks such as balancing cartpoles and
controlling 2-link arms (Watter et al., 2015; Banijamali et al., 2018). However, model-based RL
approaches are generally known to lag behind model-free methods in asymptotic performance for
problems of this type. Recently, PlaNet (Hafner et al., 2019) was able to match top model-free
algorithms in complex image-based domains. PlaNet learns environment dynamics from pixels and
chooses actions through online planning in latent space. Notably, all components in PlaNet are
modeled through neural networks.

1.1. Contributions

e We combine Gaussian processes (GPs) with neural networks to learn latent dynamics models
from visual observations. All parts of the proposed deep latent Gaussian process dynamics
(DLGPD) model' can be trained jointly by optimizing a lower bound on the likelihood of
transitions in image space.

e We integrate the learned system dynamics with learning a reward function and use the models
for model-predictive control. In our experiments, the predictions of the learned dynamics
model enable the agent to successfully solve an inverted pendulum swing-up task.

e We demonstrate that the latent Gaussian process dynamics model allows the agent to quickly
adapt to environments with modified system dynamics from only few rollouts. Our approach
compares favorably to the purely deep-learning based baseline PlaNet (Hafner et al., 2019) in
this transfer learning experiment.

1.2. Related Work

Bayesian nonparametric Gaussian process models (Rasmussen and Williams, 2006) are a popular
choice for dynamics models in reinforcement learning (RL) (Wang et al., 2005; Rasmussen and
Kuss, 2003; Ko et al., 2007; Deisenroth et al., 2009). When the low-dimensional states of the envi-
ronment are available to the agent, PILCO (Deisenroth and Rasmussen, 2011) achieves remarkable
sample efficiency and is able to solve a swing-up task in a real cart-pole system with only 17.5
seconds of interaction. Deep PILCO (Gal et al., 2016) replace GPs in PILCO with Bayesian neural
networks to learn the dynamics model. The method is not demonstrated to learn an embedding of
high dimensional image observations but directly operates on low-dimensional state representations.

1. Project page with supplementary material available at https://dlgpd.is.tue.mpg.de/.
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Model-free deep RL algorithms have shown good performance in image-based domains (Mnih
et al., 2015; Lillicrap et al., 2016), but they commonly require a large number of interactions. On
the other hand, model-based RL can often be more data-efficient. Many such algorithms learn low-
dimensional abstract state representations (Lesort et al., 2018) and model the system dynamics in the
learned latent space (Fraccaro et al., 2017; Karl et al., 2017). Some approaches such as E2C (Watter
etal., 2015), RCE (Banijamali et al., 2018) or SOLAR (Zhang et al., 2019) learn locally-linear latent
transitions and plan for actions based on the linear quadratic regulator (LQR). In comparison, we
learn a non-local, non-linear dynamics model to select actions by planning in latent space. PlaNet
(Hafner et al., 2019) learns a recurrent encoder and a latent neural transition model to efficiently
plan in latent space. All components of PlaNet are modeled through deep neural networks. We
propose to model state transitions with GPs to reduce the number of model parameters, provide
better uncertainty estimates, and generally increase the data-efficiency.

Our formulation provides a data-efficient way to transfer a learned dynamics model to different
system dynamics. Closely related are meta-learning approaches that also learn to transfer between
different properties for the same task (e.g. (Al-Shedivat et al., 2018; Killian et al., 2017; Saemunds-
son et al., 2018)). While our models are not specifically trained for transferability, it is an inherent
property of our formulation.

2. Learning Deep Latent Gaussian Process Dynamics for Control

We propose a novel approach for learning system dynamics from high-dimensional image obser-
vations. We combine the advantages of deep representation learning with Gaussian processes for
data-efficient Bayesian modeling of the latent system dynamics. For control, the agent requires a
model of the dynamical system as well as a reward model and an encoder to infer its belief over
latent states from observations. In the following, we formulate our learning framework which learns
all these components jointly from image observations and environment interactions. We also pro-
pose our approach for model-predictive control and transfer learning based on our learned models.

2.1. Deep Gaussian Process State Space Models

We consider dynamical systems with latent states s € R, actions a € R, and observations
o€ RM, We call p(sii1 | st,a¢) = N(sep1 | f(st,a), % #) the state-transition model with state-
transition function f for discrete time steps ¢ € N. The observation model p(o; | s¢) is associated
with the observation function g, where g(s;) is the expected measurement. In addition, we consider
a control task specified by a reward model p(ry11 | s, ar) = N (re41 | h(sy, ar), Xr) with reward
function h(s¢, a;) and noise X,.. Figure 1(b) illustrates the generative process.

A possible approach to learn the above models would be to restrict f, g, and h to families of
parametric functions such as deep neural networks. However, these usually require large training
datasets in order to avoid overfitting. On the other hand, Bayesian nonparametric methods such as
GPs often perform well with smaller datasets. We combine their respective properties and choose
different types of methods for the different model components. First, we model the transition func-
tion through a GP f ~ GP(uy(-),ks(-,-)), with mean function pif : (s¢,as) — s; and radial basis
function (RBF) kernel % . For state dimensionality D > 1 we model each output dimension of the
transition function with a conditionally independent GP. Similarly, we chose a GP reward model
h ~ GP(Tmin, kn(+,+)) where rmi, is the minimal reward observed in the collected training data
and kj, the RBF kernel. Convolutional neural networks are currently the state-of-the-art method for
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learning and extracting low-dimensional latent encodings from images. We model the observation
function g with a transposed-convolutional network. For the observation likelihood p(o; | s¢) we
use an approximate Bernoulli likelihood of o; € [0,1]™ under the expected measurement g(s;).
Finally, to infer approximate state posteriors from observations we learn a probabilistic encoder of
the form q(s; | o¢) ~ N (s¢ | (o), o(o¢)? - I) with vector-valued y(+) and o(-) parametrized by a
convolutional neural network.

To enable state inference from a single observation, we consider observations o; to consist of
two subsequent frames [i;_1, ;] (see fig. 1(a)). This allows for approximate inference of positions
and velocities, which is sufficient to fully describe the state of the pendulum task considered in
our experiments. Note that for different environments with more complex states or with long-term
dependencies it might not be possible to infer a state from two subsequent frames and hence be
necessary to choose a more general encoder ¢(s; | 0<¢, a<t), e.g. by filtering through a recurrent
encoder (Hafner et al., 2019).

2.2. Training Objective

We jointly learn all parameters of the model, which include the weights of the neural networks
and the hyperparameters of the GP, from interactions with the environment. Consider transitions
(0t, ag, 0441, 1141) collected by interacting with the environment. To model the covariances of indi-
vidual data points we group the observed transitions into a joint training dataset D = {O, A, O’, R'},
with O = {017 e 7OT_l}, A= {al, ceey aT_l}, O = {02, ey OT}, and R’ = {7’2, e ,T‘T}. We
further define latent states S = {s1,...,s7_1} and S’ = {s2,..., s7}.

With the encoder ¢(s; | 0;) we can express the likelihood over latent states as ¢(S | O) =
HtT;f q(st | o) and ¢(S" | O') = HtT:2 q(s¢ | o¢). Similarly, with our observation model we can
write p(O | S) = HZ;I p(ot | s¢) and p(O' | §) = H?:z p(o¢ | s¢). Finally, since we model the
state transitions and the rewards through GPs, the densities p(S’ | S, A) and p(R’ | S, A) are from
multivariate Gaussian distributions which we do not factorize over individual transitions.

We marginalize the data likelihood p(O’, R’ | O, A) in the following way:

p(O', R0, 4) = / / p(O |8 p(S'| S, A)p(R'| 5, A) ¢(S | 0)dS ' ()

1
p(O"|S)p(S"| S, A)p(R' | 5,A) ———~|. (2

= Bq(s10a(s10) «(S 10

With Jensen’s inequality we obtain our training objective as a lower bound on the log-likelihood:

logp(O', R'| 0, A) > Eysr| 0y [logp(O' | S')] + Ey(sr |0y [~ logq(S" | O)]

(I): Reconstruction (II): Encoder regularization ( 3)
+Eqs'|09q(s | 0) [logp(S" | S, A)] + Eg(s| 0y [logp(R' | S, A)] .
(II): State transitions (IV): Reward

We refer to the supplementary material for a more detailed derivation. The four terms of the
derived lower bound have readily interpretable roles: The first term (I) describes a (negative) recon-
struction loss. Since the decoder parametrizes a Bernoulli distribution over pixel values, it is equiv-
alent to the negative binary cross-entropy loss. The second term (II) corresponds to the differential
entropy of the encoder q(s; | o;) and can be interpreted as a regularization term on the encoder.
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Figure 1: Graphical models depicting relationships between random variables in DLGPD, showing
(a) the relation between image frames and observations, (b) the generative model we
assume, (c) predicting states and rewards.

For multivariate Gaussian distribution with diagonal covariance matrix ¥ = diag([o?,...,0%]),
the differential entropy is proportional to ), log (c;). Thus, the term prevents vanishing variances.
Term (III) describes the likelihood of transitions in latent state space in expectation over the encoder.
Since the state transitions are modeled with a GP, the inner likelihood corresponds to the so-called
marginal log-likelihood (MLL), which is a common training objective for hyperparameter selection
in Gaussian process regressions (Rasmussen and Williams, 2006). Similarly, (IV) shows the MLL
for the reward-GP, again in expectation over the encoder. For the loss terms (I), (II), and (IV) we
estimate the outer expectations using a single reparametrized sample (Kingma and Welling, 2014;
Rezende et al., 2014). The differential entropy (II) can be computed analytically, since the encoder
provides a multivariate Gaussian distribution.

For computational tractability, we maximize the lower bound in eq. 3 over batched subsamples
of our training dataset, which for Gaussian processes can be theoretically justified by the subset-
of-data-approximation (Liu et al., 2018; Hayashi et al., 2019). To improve training stability we
normalize the encoded states (.S, S”) batch-wise to zero mean and unit variance before passing them
to the transition- and reward GPs. For testing we compute fixed normalization parameters from the
full training dataset. Before decoding predicted states the normalization is reversed. Furthermore,
we limit the signal-to-noise ratio of the RBF kernels of transition and reward GPs by minimizing an
additional penalty term (see supplementary material).

2.3. Posterior Inference with Latent Gaussian Processes

To compute the predictive distributions of the transition model and reward model, the GPs need to
be conditioned on evidence. With the training data D = {O, A, O’, R’} and the encoder ¢(s | 0)
we compute latent states (.S,.5”), using reparametrized samples (Rezende et al., 2014; Kingma
and Welling, 2014) of the predicted distribution as the state representations. For an arbitrary
but known state s; and action aj we then obtain the posteriors p (sj,, | 57, af, ((S, A), ")) and
p(rii | st a5, ((S,A), R')) through standard posterior GP inference (Rasmussen and Williams,
2006).
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2.4. Model-Predictive Control

We employ our learned system dynamics for model-predictive control (MPC) (Garcia et al., 1989).
Key ingredients for MPC are our learned transition and reward models as well as the encoder which
infers latent states from image observations. The observation model is not required for planning.
Fig. 1(c) illustrates prediction with our probabilistic model. We use the cross entropy method (CEM)
(Rubinstein, 1996; de Boer et al., 2005) to search for the action sequence that maximizes the ex-

pected sum of rewards E [Zle rt}. Starting from the mean state encoding of the most recent

observation, we compute a state trajectory by forward-propagating the predicted mean. We then ap-
proximate the expected reward by averaging the mean prediction of the reward model for 5 samples
of the marginal state distribution for every timestep.

3. Experiments

We demonstrate our learning-based control approach on the inverted pendulum (OpenAl Gym
Pendulum-v0 (Brockman et al., 2016)), a classical problem of optimal control and continuous re-
inforcement learning. The goal of this task is to swing-up an inverted pendulum from its resting
(hanging-down) position. Due to bounds on the motor torques, a straight upswing of the pendulum
is not possible, and the agent has to plan multiple swings to reach and balance the pendulum around
the upward equilibrium.

For data collection we excite the system with uniformly sampled random actions a; ~ U([—2, 2]).
We initialize the system’s state with angles 6y ~ U ([—, 71]) and angular velocities 6y ~ U ([—8, 8]).
We collect 500 rollouts for training and 3 pools of evidence rollouts, containing 200 rollouts each.
Each rollout contains 28 transitions.

We represent latent states as 3-dimensional real vectors s; € R3. The observations consist
of two subsequent images stacked channel-wise, with image size 64 x 64 pixels and RGB color
channels. We model the probabilistic encoder ¢(s; | o;) by a convolutional neural network with two
output heads for mean and standard deviation. The decoder p(o; | s;) mapping from the latent space
to the observation space is implemented by a transposed-convolutional neural network. For more
details on the architecture, see the supplementary material.

For implementation, we use PyTorch (Paszke et al., 2019) and GPyTorch (Gardner et al., 2018).

3.1. Training

The lengthscales of the RBF kernel are initialized as | = softplus(0) =~ 0.693. The outputscales
of the transition GPs are initialized to o> = 1, the output noise variances to o> = 0.2. We pose
Gamma/(1, 5) priors on the outputscales and lower bound the outputscales to 10~2. For the reward
GP, the outputscale afeward is initialized to the variance of the rewards in the first batch, the output
noise variance to 0.2 - afeward. All output noise variances are lower bounded by a? - 1073, The
prior mean function for the reward GP is set constant as the minimum of all collected rewards, to
predict a minimal reward for unseen regions of the state space. All parameters of our model are
jointly optimized with Adam (Kingma and Ba, 2014), with a learning rate of 10~ and a batch-size
of 1024. To encourage the encoder to learn an embedding for the forward modelling task, we stop
gradients from the reward model to the encoder. We train all models for 2000 epochs. To observe
the effect of neural network initialization and training data shuffling, we report control performance
on three separately trained models.
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We train PlaNet on the same training data like our model (500 pendulum rollouts with random
initialization and random actions), plus additionally 200 rollouts which is the maximum number of
evidence rollouts we use, which gives 700 rollouts in total. Based on the best average performance
on 5 validation rollouts, we choose a model after 3.8 million steps of training. This model serves as
the base model for fine-tuning on data from modified environments. For fine-tuning, we evaluate all
models every 20k steps for the first 100k steps and every 100k steps for up to 1 million steps, and
report results for models where the mean performance is best.

3.2. Model-Based Control

Performance on the swingup task is evaluated on a system randomly initialized with angle 6y ~
U([r — 0.05, 7 + 0.05]) (pole hanging downwards) and angular velocity 6y ~ ([—0.05,0.05]),
based on the achieved cumulative reward over 150 steps. In order to apply the DLGPD model
on prediction and control tasks, the transition and reward GPs have to be conditioned on encoded
observations, actions and rewards collected from previous environment interactions. For this we
use subsets of rollouts (between 10 and 200 rollouts) from the evidence pools. We use CEM for
planning (see section 2.4) with a planning horizon of 20 steps. We report results for 3 control
trials on 3 trained models conditioned on a subset of each of the 3 evidence pools (i.e. 27 runs
per subset size). The control performance results in terms of cumulative reward are depicted in
fig. 2(a). We observe that our approach achieves higher average cumulative reward than PlaNet in
this environment already for a small set of evidence rollouts (> 20). Fig. 3 shows a learned latent
embedding and a trajectory followed by the CEM planner.

3.3. Transfer Learning

By modeling the state transitions through a GP, we can learn new state-transition functions of sys-
tems with different dynamical properties in a very data-efficient way, as long as the other model
components (observation model, reward model, encoder) can be re-used. In particular, we observed
that the agent does not require additional training and that it is sufficient to replace the evidence
in the transition GP (see section 2.3) with new data of the modified environment, e.g. collected
by following a random policy. In the following, we investigate the sample efficiency of our model
for adapting to environments with changed physical parameters using new random rollouts. We
compare our approach with PlaNet (Hafner et al., 2019) which needs to be fine-tuned on the same
rollouts.

To evaluate adaptation capabilities to environments with changed intrinsic properties, we derive
three variants of the Pendulum-v0 environment. For the inverted action environment, we flip the
sign of the action before passing it to the original environment. Second, we make the pole lighter
by reducing its mass from m = 1 to m = 0.2; we also increase the pole’s weight to m = 1.5.
Results of PlaNet variants and DLGPD conditioned on evidence from the modified and the original
environments (matching/mismatching) are shown in fig. 2(b-d). For inverted actions, our approach
achieves significantly higher cumulative reward even for a small number of rollouts in the evidence.
PlaNet clearly performs less well with the same amount of training data. With a lower mass than the
original pendulum, MPC with both modelling approaches still achieves the swing-up without addi-
tional data. For increased mass, our approach achieves higher cumulative reward than PlaNet with
only a few extra rollouts. In addition to the cumulative reward, we also evaluated our experiments
with respect to the ratio of successful rollouts (see supplementary material).



PLANNING FROM IMAGES WITH DEEP LATENT GAUSSIAN PROCESS DYNAMICS

a) Standard pendulum, m = 1 b) Inverted actions c)m=0.2 d)m=15

.
——t————t sz
500 @ /

Return (sum of rewards)

@ DLGPD, matching evidence ¢
—1000 @ DLGPD, mismatching evidence
@ PlaNet ¢
@ PlaNet, fully retrained
—1500 = 4 PlaNet, RNN retrained
0 10 20 30 50 70 100200 O 10 20 30 50 70 100200 0 10 20 30 50 70 100200 0 10 20 30 50 70 100200

Rollouts in evidence / re-training set
Figure 2: Cumulative rewards for PlaNet and our DLGPD model for swing-up of the inverted pen-
dulum in different settings. For the detailed discussion see section 3.2 for (a) and sec-
tion 3.3 for (b-d).
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Figure 3: Visualizing the 3-dimensional latent space of the learnt embedding. States are colored
according to true physical states of the pendulum (angle and angular velocity). On the
two rightmost panels, an MPC-planned trajectory for swingup is shown, with X marking
the final state.

4. Conclusions

We propose DLGPD, a dynamics model learning approach which combines deep neural networks
for representation learning from images with Gaussian processes for modelling dynamics and re-
wards in the latent state representation. We jointly train all model parameters from example rollouts
in the environment and demonstrate model-predictive control on the inverted pendulum swing-up
task. Our latent GP transition model allows for data-efficient transfer to tasks with modified pen-
dulum dynamics without additional training, by conditioning the transition GP on rollouts from
the modified environment. In comparison to a state-of-the-art purely deep learning based approach
(PlaNet) our method demonstrates superior performance in data-efficiency for transfer learning.
Scaling and evaluating our approach on more complex tasks, environments and eventually
robotic systems is an interesting topic for future research. To this end, we see large potential in col-
lecting additional training data intermittently during model training, as in PILCO (Deisenroth and
Rasmussen, 2011) and PlaNet (Hafner et al., 2019). Further potential is in the use of more complex
or recurrent encoder architectures. Moreover, a probabilistic treatment of the forward prediction,
e.g. through moment-matching or Monte-Carlo sampling, might further improve data-efficiency.
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