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ABSTRACT

Memorization in language models is typically treated as a homogenous phe-
nomenon, neglecting the specifics of the memorized data. We instead model
memorization as the effect of a set of complex factors that describe each sample
and relate it to the model and corpus. To build intuition around these factors,
we break memorization down into a taxonomy: recitation of highly duplicated
sequences, reconstruction of inherently predictable sequences, and recollection of
sequences that are neither. We demonstrate the usefulness of our taxonomy by us-
ing it to construct a predictive model for memorization. By analyzing dependencies
and inspecting the weights of the predictive model, we find that different factors
influence the likelihood of memorization differently depending on the taxonomic
category.

1 INTRODUCTION

The existing literature on Language Model (LM) memorization1—the tendency to generate exact
copies of training samples at test time—varies widely in stated motivation. Papers might focus on
copyright (Shi et al., 2023; Karamolegkou et al., 2023; Meeus et al., 2024), privacy (Carlini et al.,
2018; 2022b; Brown et al., 2022; Mireshghallah et al., 2022), or scientifically understanding how
interpolation (Mallinar et al., 2022) leads to generalization (Feldman, 2021; Tirumala et al., 2022;
Henighan et al., 2023a). Although these objectives share commonalities, they also drive distinct and
sometimes contradictory notions of memorization. To disentangle these motivations and to articulate
the factors that determine or signal memorization, we propose a taxonomy inspired by colloquial
distinctions of memorization behavior in humans.

Our taxonomy, illustrated in Fig. 1, defines three types of LM memorization based on colloquial
descriptions of human memorization. Humans recite direct quotes that they commit to memory
through repeated exposure, so LMs recite highly duplicated sequences. Humans reconstruct a
passage by remembering a general pattern and filling in the gaps, so LMs reconstruct inherently
predictable boilerplate templates. Humans sporadically recollect an episodic memory or fragment
after a single exposure, so LMs recollect other sequences seen rarely during training.

We use our taxonomy in a variety of experiments that highlight the multifaceted nature of memoriza-
tion. In summary:

• We introduce an intuitive taxonomy and heuristics for categorizing memorized data.
• By comparing memorized and unmemorized distributions, we assess how a variety of

corpus-wide statistics, datum-level metrics, and representational differences influence the
likelihood of a given sequence being memorized. Our dependency tests confirm existing
findings that low perplexity is strongly associated with memorization—though not equally
for all memorized examples. This fact guides our heuristic for partitioning memorized data
into a recitation category.

• We study scaling factors in memorization by monitoring each taxonomic category over the
course of training and across model sizes. The number of memorized sequences increases

1As defined by www.genlaw.org/glossary.html.
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Is the sequence 
32-extractable?

Not Memorized

Is the continuation 
duplicated > 5 
times?

Is the sequence continuation solely a 
boilerplate template: either incrementing 
numerals or substring repetition?

Recitation RecollectionReconstruction

Figure 1: Our intuitive memorization taxonomy has three categories determined by simple heuristics.

with training time and model size, regardless of taxonomic category. Recollection, however,
sees the fastest increase—and this outsize growth cannot be attributed solely to repeated
exposures to rare sequences or to random memorization.

• To demonstrate the value of our taxonomy, we train logistic regressions to predict the
likelihood of memorization for candidate sequences from each memorization category. This
predictive model outperforms both a simple baseline with no taxonomy and a model that uses
a taxonomy optimized by searching for the best set of mediating factors. These experiments
show that the intuitions behind our taxonomy can improve on more generic approaches.

• We highlight differences between categories by exploring statistical dependencies, finding
recitation is enabled by low-perplexity prompts and recollection is constrained by the
presence of rare tokens.

2 EXPERIMENTS

In this section, we detail the definitions and data we use to analyze varying factors in memorization.

Defining Memorization There are multiple competing definitions for memorization (Zhang
et al., 2021; Ippolito et al., 2022). Because our experiments employ memorization data released by
Biderman et al. (2023a), we use their preferred definition of k-extractable memorization (Carlini
et al., 2022a) with k = 32. A sample is k-extractable if the LM, when prompted with the first k
tokens, generates the following k tokens verbatim.

Language Models We study memorization across model scale and training timing using the dedu-
plicated Pythia models (Biderman et al., 2023b), which range in size from 70M to 12B parameters2

trained on a deduped version of The Pile (Gao et al., 2020). Data order is fixed across runs, enabling
causal claims about the effect of model scale on memorization.

Datasets Our memorized sample is a public list of sequences memorized by Pythia, released by
Biderman et al. (2023a). Unlike other works that estimate whether a generation is from a model’s
training set using predictive techniques (Carlini et al., 2020; Shi et al., 2023; Yang et al., 2024), this
dataset contains all 32-extractable samples from the Pile, verified by referencing the training data
(Gao et al., 2020). We also collect a representative sample by taking a random 3% subset of The
Pile, retaining the first 64 tokens of each sequence. Some analysis also considers an unmemorized
distribution estimated by subtracting the memorized data distribution from the entire Pile, as inferred
from the representative sample.

3 POTENTIAL FACTORS IN MEMORIZATION

We consider a number of possible factors in whether a given sequence is memorized. These factors
are based on corpus statistics, datum statistics intrinsic to that sample, or model perplexity. Features

2Excluding the 160M parameter model, as its memorization dataset exhibits outlier behavior that could be
either a buggy data artifact or a real phenomenon, but is regardless outside of the scope of our work.
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Figure 2: Histogram of various properties of interest (described in Section 3) for memorized and
unmemorized (estimated by assuming the representative dataset’s statistics hold for the Pile) samples.

may be computed over the first 32 tokens (the prompt); the last 32 tokens (the continuation); and the
full sequence of 64 tokens subsampled from the training data. Implementation details are provided
in Appendix A.

Many of these properties have different distributions for memorized and unmemorized data. Fig. 2
illustrates these differences, highlighting that for some properties, the memorized distribution is more
concentrated. Other properties—in particular perplexity and number of duplicates in the training
corpus—have memorized and unmemorized distributions with visibly different medians. Where the
distributions differ, the property in question is likely to influence memorization, an assumption which
we employ predictively in Section 6.

3.1 CORPUS STATISTICS

Some factors relate a given sequence to the entire training corpus. Overall, the following features
illustrate how memorization is influenced by various types of duplication.

Duplicates For each 32-token window in any 2049-token sequence seen during training, we count
the number of duplicates in the Pile.

Semantic Matches To assess the prevalence of semantically similar samples in training, we generate
document embeddings for each full sequence using SBERT and count the number of sequences with
cosine similarity ≥ 0.8, out of all 64-token sequences in The Pile. These sequences are semantically
similar but may not be exact token-level duplicates.

Textual Matches We filter the set of semantic matches for a given target sequence to identify those
with a low Levenshtein edit distance in their prompts (Levenshtein et al., 1966) from the target
sequence. These matches flag slight variations on boilerplate prompts. We compute edit distance at
the character level, thereby accounting for different tokenizations of identical sequences.

Token frequency We also compute summary statistics about the corpus-wide frequency of individual
tokens in the sequence: mean, median, maximum, minimum, and 25th / 75th percentile counts.

3.2 SEQUENCE PROPERTIES

Because some sequences are inherently easier to encode, we also consider factors determined by
intrinsic metrics on the sample itself.

Templating A sample is classified as templating if it follows a predictable pattern. We do not
comprehensively consider all possible templates, but focus on two common patterns defined by
handcrafted heuristics:

• Repeating: Consisting only of a short repeating sequence of tokens, e.g., “Go Go Go
...”. Zhang et al. (2021) previously discussed repetitive templates as a common feature of
apparently memorized data which was not classified as counterfactually memorized.

3
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• Incrementing: Consisting of incrementing numerical sequences. For example, consider the
sequence “23: 0xf1, 24: 0xf2, 25: 0xf3”, a set of interspersed numerical sequences with
repeating separators.

Compressibility We use Huffman Coding (Huffman, 1952) length to measure how easily a sequence
is compressed. Compressibility generalizes repeating templates to cases where minor variations
on repeating patterns must be memorized. The connection between learning, memorization, and
compression is drawn from the existing literature: Carlini et al. (2020) attempts to filter out sequences
that are “easy” to produce by comparing zlib compression with perplexity to identify memorized
training data.

3.3 PERPLEXITY

We compute average perplexity across tokens on the prompt, continuation, and full sequence. The
importance of perplexity is one of the most reproduced results in memorization research (Zhang et al.,
2021; Carlini et al., 2018) and we confirm that low perplexity sequences are far more likely to be
memorized than high perplexity sequences (Fig. 2). Perplexity is the only factor we consider that
relates to model behavior, rather than being intrinsic to the data.

4 MEMORIZATION TAXONOMY

100 101 102 103

Duplicates

0.0

0.1

0.2

K
L 

D
iv

er
ge

nc
e

Figure 3: KL divergence between generation per-
plexity of memorized and non-memorized exam-
ples for Pythia 12B with bootstrapped confidence
intervals. Non-memorized samples are treated as
the reference distribution. Divergence is highest
for sequences with 6 duplicates, while highly du-
plicated sequences have near-identical memorized
and unmemorized distributions.

To analyze the fundamental causes of k-
extracted memorization, we subdivide memo-
rized samples into three types. The following
rules categorize a sample as a candidate for
recitation, reconstruction, or recollection; candi-
dates memorized by the model are therefore re-
spectively recited, reconstructed, or recollected.

4.1 RECITATION

The existing memorization literature agrees that
the duplication of a sequence across the training
corpus is strongly correlated with its memoriza-
tion (Lee et al., 2021; Kandpal et al., 2022). For
example, LMs produce verbatim copies of bible
quotes or software licenses that are commonly
duplicated.

We consider a sample to be a recitation candidate
if it is highly duplicated in the training corpus.
Model perplexity is a good predictor of memorization on rare sequences because the perplexity
distributions are more different on memorized and unmemorized data with few duplicates (Fig. 3).
For highly duplicated sequences, however, perplexity is no longer a good predictor of whether the
sequence is memorized or not. We therefore define a recitation candidate as a sequence with at least
6 duplicates because the three-way relationship between perplexity, memorization, and duplicate
count differs before and after that maximum divergence point. We test this threshold against others in
Appendix G and find that it matches or beats examples of other small thresholds.

LMs memorize a wide variety of highly duplicated texts, as shown in the example of Appendix
F. Recited natural language text largely comprises webpage boilerplate text, liturgy, and software
licenses or other legalese. Table 3, which includes random samples of natural language recitation,
includes all of these common cases. Recited code text, as seen in Appendix 4, is largely web
development (HTML, CSS, JavaScript, etc.) boilerplate that describes common elements or derives
from popular webpage templates.

4
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4.2 RECONSTRUCTION

Are all perfectly reproduced sequences truly “memorized”? We consider cases that may be spuriously
classified by definitions like k-extraction. Rather than encoding the entire sequence, the model learns
templates and then reconstructs the sample based on these more broadly applicable patterns. A
sequence can thus be perfectly reproduced even if it never appeared during training.

We consider a few templates—stereotyped sequence patterns with a single logical continuation—to
define reconstruction candidates. These templates are not intended to be comprehensive, as any
stereotyped pattern may permit reconstruction. Our reconstruction candidates are sequences classified
as incrementing or repeating by the heuristics described in Section 3.2. As seen in Appendix E,
code is more likely to be reconstructed than natural language text. When natural language text is
reconstructed, as seen in Appendix F, it often takes the form of a chapter index and it is more likely
than code to contain cases of phrase repetition rather than arithmetic sequences.

4.3 RECOLLECTION

After excluding highly duplicated recitations and template-based reconstructions, what remains
memorized? Despite only seeing a sample a small number of time, the model might still be able to
recollect a given sample, although the factors that lead to instant memorization are poorly understood.
We consider a sample to be a recollection candidate if it is a candidate for neither recitation nor
reconstruction.

Recollected code, seen in Table 4, is largely made up of templating patterns that are not strictly the
combination of incrementing and repetition that we use to define templates. The examples of natural
language recollection in Table 3 might likewise at first appear to be misclassified recitation cases.
Natural language recollection frequently comprises legal or liturgical texts, which would be expected
to appear frequently throughout the corpus.

One might conjecture that these sequences are cases of retokenization, i.e., the particular token
sequence is rare but the same string is heavily duplicated in the corpus under different tokenizations.
However, the dependency tests in Appendix B contradict this hypothesis: the correlation between
textual match count and memorization is consistently neutral or negative for recollection candidates.
In other words, a rare token sequence is less likely to be memorized, not more, if it is a different
tokenization of a common string. We instead conjecture that the model appears to memorize slight
differences in translation (liturgical text) or indexing (legal) between each variation on a sequence.
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Figure 4: The quantity of memorized data categorized by taxonomy across parameter size and
training time. For fully trained models of varying parameter sizes, we give (a) total counts and
(b) proportion of memorized samples by category. For the 12B parameter model, we consider
intermediate checkpoints during training, also providing for each checkpoint the (c) total memorized
counts and (d) proportion of memorized samples by category. Note that the proportional plots are
truncated at 80%, as recitation is consistently a majority of the overall memorized data.

5 DISTRIBUTION ACROSS SCALE AND TIME

Larger models memorize more data (Biderman et al., 2023a; Carlini et al., 2023; Tirumala et al.,
2022), likely because they have more parameters with which to recreate those sequences. Recent
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work on deduplication (Sorscher et al., 2022) has argued that larger models are more distorted by
duplication, potentially because heavily duplicated sequences are more likely to be memorized (Lee
et al., 2021).

Likewise, models memorize more data as training progresses (Tirumala et al., 2022), but it is not
known whether the accumulation of memorized examples is caused solely by increased exposure to
heavily duplicated samples or whether other factors eventually cause memorization of rare sequences.
In this section, we study the impact of training time and model size on each category of memorization.

5.1 MODEL SIZE

Fig. 4(a) reports the number of examples memorized by each fully trained model, confirming that
memorization increases with parameter count. While all types of memorization increase with model
size, some increase faster than others. Recollection grows the most (Fig. 4(b)) from 4.49% of
the examples memorized in the 70M model, to 11.34% in the 12B model. This disproportionate
growth suggests larger models tend to memorize rarer sequences that cannot be trivially reconstructed.
Meanwhile, reconstruction barely increases, indicating the smallest models have learned to extrapolate
repeating and incrementing templates almost as effectively as the largest.

5.2 TIME

Over the course of training, LMs are known to memorize an increasing pool of the training data (Tiru-
mala et al., 2022). However, is the cumulative effect due solely to exposure to more memorizable
sequences? Due to repeated exposure to the same heavily duplicated data? Or is some structural
property of the later model more amenable to exact memorization? To understand why memorization
accumulates throughout training, we measure each taxonomic category in intermediate checkpoints
for the 12B parameter Pythia model. We find that accumulated memorization cannot be ascribed
solely to the number of available samples to memorize or to repeated exposure to highly duplicated
samples.

First, in Figure 4(c), we see that models do not simply accumulate memorized samples with a uniform
probability through training since memorization increases sub-linearly. Second, if memorization
accumulates solely due to repeated exposure to each duplicated sample, recitation of these highly
duplicated samples would be the main source of increasing memorization. Instead, the proportion of
recitation decreases relative to the amount of memorization (Fig. 4(d)). Therefore, the additional
memorization cannot be due to repeated exposure to recitation candidates. Instead, again the largest
proportional increase among all categories is in the recollection category. This trend holds until
approximately 86% of total training time, which sees a sudden increase in reconstruction. We
conjecture that this increase represents a breakthrough in generalizing more complex templates but
leave further investigation to future work.

Having considered and rejected both exclusive explanations, we must presume that memorization
continues to occur late in training through a combination of repeated exposure, opportunities for
memorizing new sequences, and other unexplored factors that may be the focus of future work.

6 PREDICTING MEMORIZATION

What makes a taxonomy useful, or a reflection of natural kinds? Our position is that categories
should differ in the dependencies between features of interest. The most obvious example of validated
natural kinds is the case of Simpson’s Paradox (Simpson, 1951), a statistical phenomenon in which a
pair of variables are correlated across a population, but the direction of correlation reverses when
considering each subpopulation category separately. Simpson’s Paradox is only the most obvious
evidence for natural kinds, but large changes in correlation may support categorical differences even
if that correlation does not change direction.

We measure a number of categorical differences in dependencies, including sign and significance
differences, in Appendix B. If our intuitive taxonomy did not reflect meaningful differences with
respect to the factors in Section 6.3, their dependencies would not differ significantly. We instead
find significant differences through statistical tests, suggesting the taxonomy expresses some natural
kinds.
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Figure 5: Performance of baseline, proposed taxonomy and optimally partitioned models against
various metrics on subsets of test dataset. Confidence interval is standard deviation computed by
bootstrapping.

Not only do these differences support our taxonomy as an ontology, but they suggest our taxonomy
can help predict memorization from dependent factors. We therefore test the applicability of our
taxonomy by creating a predictive model based on the intuitive taxonomic model. Our predictive
model divides sequences according to which memorization category they are candidate sequences
for, and then uses that category information when predicting the likelihood that the given sequence is
memorized. We compare it with a generic baseline model lacking a taxonomy and with a model that
uses an automatically selected optimal partition, finding that our taxonomic model supports more
accurate predictions.

6.1 MODELS

Each model is a logistic regression trained with L2 regularization, a bias parameter, and balanced
class weights. We split the representative sample into test and train sets. We then combine the train
set with the full memorized sample, reserving a portion as a validation set. For each set, continuous
features are normalized to zero mean and unit variance.

Generic baseline model The generic baseline is a logistic regression model trained to predict
whether a sample is memorized given the features from section 3. It is trained on the training split of
the entire memorized dataset and the entire representative Pile sample.

Intuitive taxonomic model (Ours) The predictive model based on our intuitive taxonomy is made
up of a set of three binary logistic regression models. We divide samples into taxonomic groups
before training a separate regression on each taxonomic category.

Optimally partitioned model To demonstrate that our intuitive taxonomic model is not simply
benefiting from having more degrees of freedom, we devise an equally complex—that is, with the
same architecture of three binary logistic regressions—alternative taxonomic model. To provide a
strong baseline, we search for a partition based on a set of possible feature-threshold combinations.
We train predictive models with the same three-regression architecture as our intuitive taxonomic
model, but partitioning based on each feature-threshold combination. The optimal partition is that
which supports the best predictive model, which we find categorizes samples based on Huffman
coding length followed by sequence duplicate count.

For a given feature, we consider the 25th, 50th and 75th percentiles of the value distribution distri-
bution as potential thresholds. Each feature-threshold pair provides a possible partition split; we
select the optimal three-category partition based on F1 score on the aggregate representative test
set. Note that our “optimal” partition may not explore our intuitive taxonomy as an option because
the threshold search is limited to each feature’s quartile values. Our intuitive taxonomy may—and
does—therefore outperform the optimal partition.

7
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6.2 HOW GOOD IS OUR TAXONOMY?

To test our intuitions, we compare our proposed taxonomy to the homogeneous baseline and to our
optimal partition. As seen in Fig. 5, the greedy-optimal partition outperforms the aggregate baseline
slightly on most metrics, but our intuitive taxonomy is better calibrated and more accurate except on
the recollection set, where it has low precision. We conclude that our intuition has guided us to a
better taxonomy than searching possible data partitions.

6.3 CATEGORICAL DIFFERENCES

Figure 6: Feature weights from predictive models
trained on the homogeneous aggregate baseline
and the intuitive taxonomy categories.

Having confirmed the benefits of separately con-
sidering these three taxonomic categories, Fig.
6 shows how they differ through the feature
weights from our regression models.

Recollection candidates—that is, rare
sequences—are more likely to be memo-
rized if they have no rare tokens. We posit
that there is more resistance to memorizing
rare tokens within a sequence, as their prior
probability is low.

Meanwhile, the more duplicates a recollec-
tion candidate has, the more likely it is to be
memorized, whereas recitation candidates are
hardly affected by duplicate count. These results
suggest that beyond the 5-duplicate threshold,
greater exposure hardly leads to memorization.

Another notable difference is in the effect of
perplexity: while predictable continuations are
strongly associated with memorization across all
categories, unpredictable prompts are strongly
associated with memorization except for cases
of reconstruction. The clear explanation is that
high-perplexity prompts often only occur as
prelude to the same continuation, providing a
unique index for the memorized sequence, but
that a low-perplexity prompt may also initiate a
common template, enabling reconstruction.

7 DISCUSSION AND FUTURE WORK

We have established that an intuitive taxonomy
can be used to improve understanding of mem-
orization. We now relate our methods to the
existing literature on memorization and to possi-
ble future directions.

7.1 ONTOLOGIES OF MEMORIZATION

Our work is strongly related to several recent efforts to develop an ontology of memorization. Dankers
et al. (2023), studying machine translation, focus primarily on the influence of a sequence during
training rather than on the semantics or properties of an individual sequence. They investigate
the factors that influence counterfactual memorization, a type of memorization likely to dominate
“recollection” cases. They find that rare tokens, long sequence lengths, and high BPE segmentation
rate are correlated with counterfactual memorization (Zhang et al., 2021); of these, we only consider
rare tokens, which we confirm to predict recollection in particular.

8
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Hartmann et al. (2023) consider what facets of memorization are likely to be relevant to different
targets, just as we discuss the differences between motivations grounded in copyright infringement and
privacy. Bansal et al. (2023) consider two different kinds of memorization: heuristic memorization,
i.e., shortcut learning, and example memorization. Our work focuses on what they call example
memorization, further decomposing that category. We do not test their result that high-entropy
features can indicate example memorization, but like us, they use this factor to differentiate between
their memorization categories.

7.2 MEMORIZATION AND TRAINING TIME

Our work fits into an existing literature on how time and scale affect memorization. Biderman
et al. (2023b) find that the position of a sequence in training does not affect its likelihood of
being memorized, and that smaller models fail to memorize even when repeatedly exposed to a
term. Tirumala et al. (2022) find that larger models memorize more training data and forget less
during training. They also observe that models memorize nouns and numbers first, using these
entities as unique identifiers for individual samples. Our work further expands our understanding of
scale in memorization by highlighting that rare sequences compose the fastest-growing category of
memorization.

7.3 WHICH CATEGORIES DO WE CARE ABOUT?

The relevance of each category depends on our motivation for studying memorization.

1. Intellectual property violations: The content most relevant to concerns about intellectual
property may be highly duplicated data, such as frequently excerpted passages from a
popular book. However, some rare sequences may also be memorized, making recollection
potentially relevant to issues of copyright infringement.

2. Privacy: If the primary motivation is preventing the memorization of personally identifying
information, we may focus on recollection, as issues may arise if a model generates such
information even after even a small number of exposures.

3. Scientific understanding of generalization: Work like Henighan et al. (2023b) and Bartlett
et al. (2020) points to eventual generalization as a result of memorization dynamics. A
deeper understanding of these phenomena might focus on reconstruction, which exposes a
direct link between apparent overfitting and general pattern recognition.

7.4 ONTOLOGIES AND STATISTICS

This taxonomy may serve as an example for future methods of interpreting complex phenomena,
in deep learning and elsewhere. We have, in particular, quantified the validity and usefulness of
such a taxonomy by comparing predictive models which treat memorization in aggregate to models
which treat memorization as a multifaceted phenomenon with our taxonomy. We provide evidence
for the taxonomic model by measuring the improvement in predictive judgments when reflecting
the dependent and nonlinear thresholded relationship between memorization and the properties that
define each taxonomic category.

In future work, we hope that interpretable and useful ontologies can be validated by a similar approach.
Our proposal for what makes a good taxonomic model is not only applicable to memorization or even
to deep learning phenomena. Instead, by studying interactions and nonlinearities in arbitrary settings,
researchers may find complex dependencies and artifacts like Simpson’s paradox.

LIMITATIONS

Our primary goal is to intuitively describe the memorization behavior with a taxonomy and con-
sequently use that taxonomy to investigate how several dominant factors in memorization interact
with each other. A secondary goal is to provide an example of how an ontology can be constructed
and tested in general, as tested with our predictive models. However, these predictive models are
not measurements of statistical dependency in general, instead only focusing on linear dependence.
Although more general statistical dependencies are studied in the supplementary experiments of
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Appendix B, the experiments in the main body of the paper assume linear dependence and so the
interacting factors should be evaluated in the context of our supplementary dependency experiments.
We believe ontological work inspired by our approach could improve on our work by incorporating
more general dependencies.

Another limitation is our definition of memorization. The choice of 32-elicitation has a number of
disadvantages, one of them being that we lose a notion of fuzzy or partial memorization, which is
considered important in some contexts. Arguably, under a counterfactual memorization definition,
we may not see substantial patterns of either recitation or reconstruction. The measurement of
memorization is a large area of research with many possible definitions to choose from (Carlini et al.,
2022a; Tirumala et al., 2022; Kandpal et al., 2022; Zhang et al., 2021; Zhao et al., 2022; Stock et al.,
2022; Schwarzschild et al., 2024).3
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A IMPLEMENTATION OF METRICS

We now provide details of the implementation for metrics considered as potential factors for memo-
rization.

A.1 NUMBER OF EXACT DUPLICATE SAMPLES

We compute the number of exact duplicates as a 3-step process:

1. For every 32-gram window in the data point S (comprised of 2049 tokens) we compute a
rolling hash and store it, along with the window’s index and offset in a parallelized set of
data frames.

2. For every index position, we compute the same hash for all S[32: 64] (sequence continua-
tions) and store all (index, offset, hash) tuples if their hash is one of the computed sequences
continuation hashes.

3. Now, for every sequence continuation, we look at all 32-gram windows with the same hash
and compute their number of duplicates as the number of equivalent (same set of tokens in
the same order) samples.

The hash function used is similar to Rabin-Karp’s rolling hash algorithm. Specifically, consider a
token sequence of 32 tokens.

S = [c1, c2, c3, ...c32]

Let us define two primes P = 60013 and MOD = 1018 + 3. We define their hash function to be

H(S) = (c1 + c2 ∗ P + c3 ∗ P 2 + ...+ c32 ∗ P 31)%MOD
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A.2 TOKEN FREQUENCY

Token frequencies are calculated across the Pile. For every sequence continuation, we consider the
maximum, minimum, median and quartile frequencies of tokens.

A.3 COMPRESSIBILITY

We use Huffman Coding length to measure how easily a sequence can be compressed. Compressibility
provides a rough generalization of internal repetition, where only a few exceptions to some simple
repetition pattern might need to be memorized. However, unlike straightforward repetition templates,
compressible sequences may not be considered to be reconstructed by the model. Instead, we include
compressibility as a filter to evaluate whether LLMs memorize samples that are easier to compress
into their parameters.

A.4 INCREMENTING AND REPEATING TEMPLATES

A.4.1 INCREMENTING TEMPLATES

To check for an incrementing sequence, we perform the following steps:

• Split the text by whitespace and convert any splits which are numerals in non-decimal bases
(e.g., hexadecimal) into base 10.

• Remove escape sequences.
• Within each string, separate contiguous numeric characters from anything else. If two

contiguous numeric characters are separated by a period, combine them into their floating
point representations.

• Discard if there are fewer than 3 potential numerals in the sequence.
• Check if the sequences are incrementing or repeating.

A.4.2 REPEATING TEMPLATES

We perform the following steps to check for repeating sequences:

• Obtain a sequence by splitting the text by character.
• Check if the sequences are incrementing or repeating.

We perform the following steps to determine if a sequence generated from either of the above steps is
incrementing or repeating.

• For every templating length, defined to be less than half length of splits, and for every
position less than templating length, we iterate through splits with start position as position
and step size set to templating length. We then determine if the current iteration is repeating
or incrementing.

• For example, if position is 1 and templating length is 5, we iterate through positions
[1, 6, 11, 16...]. if our input splits length is 10, we iterate for all templating lengths 1 through
5 and for all positions less than current templating length

• Within each iteration, we check:
– If the current iteration has both texts and numerals, it is neither incrementing nor

repeating.
– If the current iteration has only texts, we consider the current iteration to be repeating

if all elements in the iteration are the same.
– If the current iteration has only numerals, we consider current iteration to be increment-

ing if all the numerals are in an arithmetic progression. If the difference in AP is 0, we
consider it to be repeating instead.

• Input splits are considered as repeating if all iterations for a given templating length are
repeating.
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Figure 7: Dependency measurements between influence factors and memorization.

• Input splits are considered as incrementing if atleast one of the iterations for a given
templating length are incrementing and others, for the same templating length, are either
incrementing (or) repeating.

• For all templating lengths, if any length of them has been found to be incrementing or
repeating, we return True (corresponding to the fact that the text is indeed a template) and
diff.

• Note that, in the case of sequences generated while checking for a repeating template, we do
not have any numerals.

B DEPENDENCY TESTS FOR INFLUENCE OF FEATURES ON MEMORIZATION

This section contains visualizations of various dependency tests between memorization likelihood
and our target features. We look at dependencies on code (Fig. 9), natural language (Fig. 8), and both
(Fig. 7). These tests are more general and have stronger guarantees than simply looking at regression
weights, which have a number of flaws. For example, we see in Fig. 6 that regression can reallocate
bias terms to features that take on a consistent value, giving them spurious weight.

C TABLES FOR SCALING EXPERIMENTS

Figure 4 visualizes the count and proportion of memorized samples by category across time and scale.
We present the raw statistics for each taxonomic category across model size in Table 1 and training
time in Table 2.

D CLASSIFYING EXAMPLES AS NATURAL LANGUAGE OR CODE

To train a Natural Language vs Code classifier, we fine-tune DistilBert (Sanh et al., 2020) on uniformly
random sampled Bookcorpus (Zhu et al., 2015) and github-code datasets. We train it with learning
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Figure 8: Dependency measurements between influence factors and memorization for natural lan-
guage samples.

Figure 9: Dependency measurements between influence factors and memorization for code samples.
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Recitation Reconstruction Recollection

Model Count Percent Count Percent Count Percent

70m 362,550.0 88.12% 30,430.0 7.40% 18,468.0 4.49%
410m 690,726.0 85.17% 46,076.0 5.68% 74,238.0 9.15%

1b 878,456.0 85.05% 49,253.0 4.77% 105,163.0 10.18%
1.4b 887,549.0 84.68% 49,435.0 4.72% 111,120.0 10.60%
2.8b 1,141,180.0 84.21% 52,416.0 3.87% 161,620.0 11.93%
6.9b 1,416,014.0 84.27% 53,968.0 3.21% 210,314.0 12.52%
12b 1,566,369.0 84.56% 55,114.0 4.10% 249,733.0 11.34%

Table 1: The number of memorized samples for each taxonomic category across model size. These
results are visualized in Figure 4(a) and 4(b).

Recitation Reconstruction Recollection

Checkpoint Count Percent Count Percent Count Percent

16% 137,681.0 84.25% 7,960.0 4.87% 17,777.0 10.88%
30% 301,146.0 83.92% 15,379.0 4.29% 42,338.0 11.80%
44% 489,629.0 83.69% 23,333.0 3.99% 72,105.0 12.32%
58% 710,823.0 83.42% 31,260.0 3.67% 109,985.0 12.91%
72% 999,867.0 83.63% 38,999.0 3.26% 156,712.0 13.11%
86% 1,308,538.0 83.66% 47,145.0 3.01% 208,372.0 13.32%

100% 1,566,369.0 84.56% 55,114.0 4.10% 249,733.0 11.34%

Table 2: The number of memorized samples for each taxonomic category across training time for
Pythia 12b. 14,000 is the final checkpoint. These results are visualized in Figure 4(c) and 4(d).

rate of 10−7 and batch size of 256 for a total of 1000 steps and observe validation f1 score of 0.9950
on a held of evaluation set.

To select an optimal threshold for this classifier on memories dataset, we randomly sample 500
sequences and manually label them. To make sure that precision is high for our models, we choose
≤ 0.4 as threshold for determining code samples and a threshold of ≥ 0.525 for determining natural
language samples, based on the points marked in Figure 10, which mark points of near 100% precision
for classifying each category.

E LIKELIHOOD OF MEMORIZATION FOR CODE AND NATURAL LANGUAGE

We study the likelihood that a sample that has been confidently classifier as code or NL (Appendix
D) is memorized across time and scale. For example, for all samples confidently classified as code
Figure, what is the proportion of samples which are memorized?

Figure 11 shows that code samples are more likely to be memorized than NL across categories. This
trend suggests that certain intrinsic factors about code make it more susceptible to memorization,
even for recollection samples where memorization cannot be attributed to obvious patterns and
high duplication. Both code and NL become more likely to be memorized across scale, except for
reconstruction samples, which remain comparatively unchanged.

F EXAMPLES OF MEMORIZED CONTINUATION SEQUENCES

Table 3 provides examples of memorized natural language text in each memorization category and
Table 4 provides examples of memorized code. Samples are classified using the methodology in
Appendix D.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 10: False positive rates across various thresholds on randomly sampled sequences of Pile. We
choose ≤ 0.4 as threshold for determining code samples and a threshold of ≥ 0.525 for determining
natural language
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Figure 11: We study how likely models are to memorize samples confidently classified as code or NL.
We calculate the likelihood for each distribution (code vs. NL) separately. Figures include probability
across a model scale and training time. Models memorize a greater proportion of code samples than
NL across all categories, model scale, and training time.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Category Text Count

Recitation

-11 NASB
Or do you not know that the unrighteous will not inherit the kingdom of God? Do
not be deceived; neither fornicators, nor idolaters, nor adulterers, nor effeminate, nor
homosexuals, nor thieves, nor the covetous, nor drunk

175

Recitation

2d 1234, 1238 (8th Cir.1990). On the other hand, the Federal Rules of Civil Pro-
cedure have authorized for nearly 60 years "motions for summary judgment upon
proper showings of the lack of a genuine, triable issue of material fact." Celotex
Corp. v. Catrett

86

Recitation

view of life, food, cocktails, fitness, and fun.
This blog is just a regular guy’s view of life, food, cocktails, fitness, and fun. My
opinions, musings, observations, rantings, ravings, foodie adventures, and overall
humorous pontification of

52

Recitation

000,
from the tribe of Simeon 12,000,
from the tribe of Levi 12,000,
from the tribe of Issachar 12,000,
from the tribe of Zebulun 12,000,
from the tribe of Joseph 12,000,

7

Reconstruction
THEIR EAGLE ONAND THE DIRTY BIRDS READY AS WELL DOWN AND
GET THEIR EAGLE ONAND THE DIRTY BIRDS READY AS WELL DOWN
AND GET THEIR EAGLE ONAND THE DIRTY B

4

Reconstruction 181 |182 |183 |184 |185 |186 |187 |188 |189 |190 |191 |192 |193 |194 |195 |196 |197
|198 |199 |200 |201 |202 2

Reconstruction

1970–71 Turkish Third Football League season
Promotion and relegation:
1971–72 Turkish Third Football League season
Promotion and relegation:
1972–73 Turkish Third Football League season
Promotion and relegation:
1973–74 Turkish Third Football

1

Reconstruction , 28-63, 28-64, 28-65, 28-66, 28-67, 28-68, 28-69, 28-70, 28-71, 28-72, 28-73,
28-74, 28-75, 28-76, 28-77, 28-78 3

Recollection

affect the child;
¶70 (b) The wishes of the child, as expressed directly by the child or through the
child’s guardian ad litem, with due regard for the maturity of the child;
¶71 (c) The custodial history of the child,

2

Recollection

will be too late!
” 24 “Strive to enter through the narrow door. For many, I tell you, will seek to enter
and will not be able. 25 When once the master of the house has risen and shut the
door, and you begin to stand outside and to knock at the door,

4

Recollection

, and freedom.Revava
Revava (), is an Orthodox Jewish Israeli settlement in the West Bank. Located
between Barkan and Karnei Shomron, it falls under the jurisdiction of Shomron
Regional Council. In it had a population of.
The international community considers Israeli settlements in

2

Recollection

§ 2254(d)).
A state-court decision is considered “contrary to... clearly established Federal law”
if the two are “diametrically different, opposite in character or nature, or mutually
opposed.” Williams v. Taylor, 529 U.S. 362, 405 (

5

Table 3: Examples of natural language (classified per Appendix D) from each memorization category.
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Category Text Count

Recitation >-task"> <a class="nav-group-task-link" href="../Extensions/Int.html">Int</a> </li>
<li class="nav-group-task"> <a class="nav-group-task-link" href="../Extensions/ 5310

Recitation
> <widget class="GtkButton" id="entCleanBut"> <property name="label" translat-
able="yes">... :</strong></p> <ul> <li> <p>Must be one of: <code>true</code>,
<code>false</code>, <code>1</code>, <code>0</code>.</p> </li> </ul>

3689

Recitation
= null, CancellationToken cancellationToken = default(CancellationToken))
{ if (Client.SubscriptionId == null) { throw new ValidationExcep-
tion(ValidationRules.CannotBeNull, "this.Client.SubscriptionId"); } if

227

Recitation .Object</h3> <code>equals, getClass, hashCode, notify, notifyAll, wait, wait,
wait</code></li> </ul> </li> </ul> </li> </ul> </div> <div class="details"> 18963

Reconstruction FileEntry("/base1/dir1/",fe, age); fe.name = "file3"; fi -> updateFileEn-
try("/base1/dir1/",fe, age); fe.name = "file4"; fi -> updateFileEntry("/base1/ 2

Reconstruction ="time2[]" value="5" ></td> <td><input type="checkbox" name="time2[]"
value="6" ></td> <td><input type="checkbox" name="time2[]" value="7" ></td> < 2

Reconstruction XMM3 (1ULL « 28) #define DBG_CTX_EX_PART_FLAG_XMM4 (1ULL « 29)
#define DBG_CTX_EX_PART_FLAG_XMM5 (1ULL « 30) #define DBG_ 2

Reconstruction
" /> <Compile Include="Message\MFN_M06.cs" /> <Compile In-
clude="Message\MFN_M07.cs" /> <Compile Include="Message\_M08.cs"
/> <Compile Include="Message\MFN_

3

Recollection
OFFSET + (2 * FPREG_SIZE)) #define PROBE_CPU_Q3_OFFSET
(PROBE_FIRST_FPREG_OFFSET + (3 * FPREG_SIZE)) #define
PROBE_CPU_Q4_OFFSET (PROBE_FIRST_FPREG_OFFSET +

2

Recollection ); } uint16_t WS2812FX::mode_custom_5() { return customModes[5](); } uint16_t
WS2812FX::mode_custom_6() { return customModes[6](); } uint16 2

Recollection
XMMM128, __) /* 0xDC */ NORMAL("paddusb", MM_XMM,
MMM64_XMMM128, __) /* 0xDD */ NORMAL("paddusw", MM_XMM,
MMM64_X

2

Recollection DBF3B /* icon1.png */; }; 651A5A7E177AE2D8003DBF3B /* icon2.png in Re-
sources */ = {isa = PBXBuildFile; fileRef = 651A5A7C177AE2D8003DBF 2

Table 4: Random examples of code (as classified per Appendix D) from each memorization category.

G ALTERNATIVE RECITATION THRESHOLDS

We have selected > 5 as our duplication threshold for categorizing a sequence as a recitation candidate,
based on the analysis in Fig. 3. While we have shown that our resulting taxonomy outperforms those
based on possible quartile cutoffs, we have not compared it to other small thresholds. In Fig. 12, we
perform this comparison and find that the threshold we selected based on intuitions is at least as good
as a similar but smaller (>1) or larger (>10) threshold.
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Figure 12: Comparison of memorization predictor performance, similar to those trained in Section 6.
Thresholds at 1 or 10 do not generally outperform our selected threshold of 5.
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