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Abstract

Linear message-passing models have emerged as compelling alternatives to non-linear graph
neural networks for unsupervised node embedding learning, due to their scalability and
competitive performance on downstream tasks. However, we identify a fundamental flaw in
recently proposed linear models that combine embedding aggregation with concatenation
during each message-passing iteration: rank deficiency. A rank-deficient embedding matrix
contains column vectors which take arbitrary values, leading to ill-conditioning that degrades
downstream task accuracy, particularly in unsupervised tasks such as graph alignment. We
deduce that repeated embedding aggregation and concatenation introduces linearly depen-
dent features, causing rank deficiency. To address this, we propose ACC (Aggregate, Com-
press, Concatenate), a novel model that avoids redundant feature computation by applying
aggregation to the messages from the previous iteration, rather than the embeddings. Con-
sequently, ACC generates full-rank embeddings, significantly improving graph alignment
accuracy from 10% to 60% compared to rank-deficient embeddings, while also being faster
to compute. Additionally, ACC employs directed message-passing and achieves node classi-
fication accuracies comparable to state-of-the-art self-supervised graph neural networks on
directed graph benchmarks, while also being over 70 times faster on graphs with over 1
million edges.

1 Introduction

Node embeddings, which represent nodes in a graph as vectors, have proven highly effective for various
graph-related tasks, including node classification (Veličković et al., 2018; Rossi et al., 2023), node clustering
(Henderson et al., 2012; Donnat et al., 2018), and graph alignment (Heimann et al., 2018; Skitsas et al., 2023).
Consequently, there has been substantial research focused on developing algorithms to compute these em-
beddings, resulting in a wide array of models (Kipf & Welling, 2017; Wu et al., 2019; 2021; Rossi et al., 2023).

Given the scarcity of labelled data in real-world graphs (Veličković et al., 2019), our work focuses on unsuper-
vised embedding models. Unlike supervised models, which are designed for specific downstream tasks, unsu-
pervised models aim to extract and compress the information inherent in the graph structure into individual
embedding vectors. The dominant approach for this extraction is message-passing (Gilmer et al., 2017).

In a message-passing algorithm, each node is initially assigned a feature vector, serving as its initial em-
bedding. These embeddings are iteratively refined by incorporating information from increasingly larger
neighbourhoods. Conceptually, each iteration consists of two steps: the aggregation step, where information
from a node’s neighbourhood is summarized into a message, and the update step, where these messages are
integrated into the existing embeddings.

When the aggregation and update steps consist of parameterized and non-linear functions, the message-
passing model is referred to as a Graph Neural Network (GNN) (Wu et al., 2021). While the parameterization
and non-linearity of GNNs make them highly expressive, these features also limit their scalability. Training
GNNs requires non-convex optimization, typically through gradient descent, to minimize a self-supervised
loss function. This training process involves hundreds or even thousands of training epochs, each consisting
of multiple message-passing iterations (Zhang et al., 2021; Thakoor et al., 2022; Hou et al., 2022; 2023).
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Figure 1: Overview of directed message-passing in PCAPass (Sadowski et al., 2022) and our model, ACC.
Each vertically stacked rectangle represents a matrix row corresponding to a node in the graph (bottom-
left). The representations are colour-coded: blue for node embeddings, and orange and purple for messages.
Orange denotes aggregation following edge directions, while purple indicates reverse-direction aggregation.
Node 1, highlighted in green in the graph, is used to illustrate these aggregations. In PCAPass, messages
are concatenated with the embeddings from the previous iteration, creating a feedback loop that leads to
feature duplication and rank deficiency over multiple iterations. ACC avoids this issue through message
aggregation, where only the message matrices are propagated between iterations. The embedding matrix is
constructed by concatenating the messages outside the feedback loop.

In their seminal work, Wu et al. (2019) addressed the scalability challenge of GNNs by introducing a linear
message-passing model called SGCN. They demonstrated that SGCN could achieve accuracies comparable
to GNNs on popular node classification benchmarks while being significantly more scalable, requiring only a
single execution of the message-passing procedure. However, despite these advancements, SGCN encounters
a common issue in message-passing models: over-smoothing (Li et al., 2018; Chen et al., 2020), where the
repeated summation of embeddings across iterations leads to a gradual loss of information.

To mitigate over-smoothing, Sadowski et al. (2022) proposed a new linear model called PCAPass. As visual-
ized on the left in Figure 1, PCAPass aggregates node embeddings in each message-passing iteration to com-
pute new features, referred to as messages, which are then incorporated into the existing embeddings through
horizontal concatenation. To prevent the embedding dimensionality from doubling with each iteration, the
concatenated matrix is compressed using Principal Component Analysis (PCA) (Murphy, 2012, Ch. 12.2).

While PCAPass addresses over-smoothing through its concatenation approach, it introduces a new issue:
rank deficiency (Hansen, 1998, Ch. 1). A rank-deficient matrix is characterized by a cluster of singular values
close to zero, each corresponding to an arbitrary and non-informative feature column. This phenomenon
affects the PCAPass embedding matrix and degrades the quality of the embeddings. Unsupervised down-
stream tasks, which rely on distances between embeddings, are particularly sensitive to this issue, raising
concerns since such tasks are well-suited for unsupervised node embedding models.

We identify that the repeated embedding aggregation and concatenation in PCAPass leads to the creation of
linearly dependent features, which results in rank deficiency. To address this, we propose ACC1 (Aggregate,
Compress, Concatenate), a linear message-passing model designed to prevent rank deficiency while main-
taining scalability by generating embeddings in a single forward pass. As shown in Figure 1, ACC applies
aggregation and PCA compression to the message matrices from the previous iteration, rather than the em-
beddings, and constructs the embeddings via concatenation separately. This message aggregation approach
breaks the feedback loop present in PCAPass, and thereby avoids computing the redundant features that
cause rank deficiency.

1Anonymized code for ACC and our experiments is available here https://github.com/an9058806/acc-mp-anonymous and
here https://github.com/an9058806/acc-experiments-tmlr2024-anonymous.

2

https://github.com/an9058806/acc-mp-anonymous
https://github.com/an9058806/acc-experiments-tmlr2024-anonymous


Under review as submission to TMLR

In support of ACC, we demonstrate the rank deficiency issue present in PCAPass, focusing particularly on
its negative impact on unsupervised embedding-based graph alignment (Heimann et al., 2018). Although it
is technically possible to address the rank deficiency in PCAPass through singular value thresholding, this
approach is not only difficult due to numerical inaccuracies but also inefficient, as computation is used to
generate the redundant features in the first place. Consequently, ACC consistently achieves higher graph
alignment accuracies and computes embeddings faster than PCAPass.

We also demonstrate ACC’s effectiveness in learning node embeddings on directed graphs, an underexplored
challenge for unsupervised message-passing models that has only recently been addressed in the supervised
learning context (Rossi et al., 2023). Using standard directed graph node classification benchmarks, we show
that ACC achieves accuracies comparable to or better than state-of-the-art self-supervised graph neural
networks. Notably, ACC is significantly faster — at least 70 times faster on the Arxiv Year dataset (Lim
et al., 2021) with GPU computations and 270 times faster on Snap Patents (Leskovec et al., 2005) with CPU.

2 Background: Node embeddings via message-passing and embedding aggregation

The message-passing framework (Gilmer et al., 2017) forms the basis for a wide range of graph models (Kipf &
Welling, 2017; Hamilton et al., 2017; Wu et al., 2019), including our model, ACC. In this section, we introduce
the principles and mathematical notation for node embedding learning through message-passing, followed
by a description of the embedding aggregation and concatenation approach used by Sadowski et al. (2022)
for PCAPass. Additionally, we outline directed message-passing for PCAPass, following Rossi et al. (2023).

Node embedding message-passing models take as input a graph G = (N,M) and a matrix X ∈ Rn×d, and
output an embedding matrix Z ∈ Rn×p. The graph G consists of n nodes N, with n = |N|, connected by
m edges M, where m = |M|. The matrix X contains initial feature vectors of length d for each node, and
the embedding matrix Z holds the resulting p-dimensional node embeddings. In this work, we assume a
transductive setting where G is fully observed during the computation of Z, which is common in unsupervised
node embedding models (Zhang et al., 2021; Thakoor et al., 2022; Hou et al., 2022; Sadowski et al., 2022).

The goal of message-passing is to gather graph structure information into the embeddings of each node. This
is achieved by iteratively updating each node embedding by incorporating information from the nodes’ respec-
tive neighbourhood, resulting in a sequence of progressively refined embedding matrices. We denote the em-
bedding matrix after k message-passing iterations as H(k) ∈ Rn×pk , where the embedding dimensionality pk

may vary across iterations. The final embeddings are obtained after K iterations, represented as Z = H(K).

Each message-passing iteration consists of two key steps: aggregation and update. In the aggregation step,
each node collects information from its immediate neighbours, aggregating these inputs into a new vector
called a message. We denote the matrix of all messages at iteration k as M (k). In the update step, each
node integrates the new information by combining its received message with its current embeddings. This
iterative process allows information to propagate through the graph, enabling each node to gather data from
increasingly distant nodes, effectively expanding its receptive field with each iteration.

We now describe the aggregation and update operations used by PCAPass in detail. Let A ∈ Rn×n represent
the graph’s adjacency matrix, where the element Ai,j indicates the presence of an edge from node j to node
i. The out-degree and in-degree of node i are denoted as degO(i) and degI(i), respectively:

Ai,j =
{

1 if (j, i) ∈M,

0 otherwise,
degO(i) =

n∑
k=1

Ak,i, degI(i) =
n∑

k=1
Ai,k. (1)

Additionally, let DO be a diagonal matrix containing the out-degrees, with DOi,i = degO(i), and similarly, let
DI be a diagonal matrix of in-degrees. The matrices D−1

O and D−1
I represent their respective inverses, with

elements corresponding to nodes with zero out-degree or in-degree set to 0.

For undirected graphs, the adjacency matrix is symmetric, A = A⊺, and each node has a single degree,
so D = DO = DI. The normalized adjacency matrix is then defined as AN = D−1A. Using the above
definitions, the embedding aggregation step used by PCAPass can be formulated as M (k) = ANH(k−1),
where the message for node i, M

(k)
i,: , is the average of its neighbours’ embeddings.
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PCAPass updates its embeddings in each iteration using a concatenation and compression approach. This
update can be expressed as H(k) =

[
H(k−1) M (k)] V (k), where the brackets indicate horizontal concate-

nation. The matrix V (k) ∈ R2pk−1×pk is derived through PCA (Murphy, 2012, Ch. 12.2) and serves to
compress the embeddings. Compression is essential because, without it, the dimensionality of the embed-
ding space would double with each message-passing iteration, resulting in a final dimension of 2Kd. This
exponential growth would impose considerable memory and computational overhead, and could negatively
impact downstream tasks due to the curse of dimensionality.

Although Sadowski et al. (2022) originally formulated PCAPass for undirected graphs, it can be straight-
forwardly extended to directed graphs by following the approach of Rossi et al. (2023). In directed graphs,
each node has two distinct sets of neighbours: those connected by incoming edges and those connected by
outgoing edges. To capture the information from these distinct neighbourhoods, two separate aggregation
operators are employed: AF = D−1

I A and AB = D−1
O A⊺. Here, AF uses the adjacency matrix A, while AB

uses its transpose A⊺, corresponding to a graph where all edge directions are reversed. The forward operator
AF aggregates messages based on a node’s incoming edges and normalizes by in-degree, while the backward
operator AB aggregates based on outgoing edges and normalizes by out-degree.

With these operators, the directed aggregation step for PCAPass is defined as M
(k)
F = AFH(k−1) and

M
(k)
B = ABH(k−1). In the update step, both forward and backward messages are concatenated with the

previous embeddings and compressed: H(k) =
[
H(k−1) M

(k)
F M

(k)
B

]
V (k), with V (k) ∈ R3pk−1×pk .

3 Embedding aggregation and concatenation results in rank deficiency

As outlined above, PCAPass (Sadowski et al., 2022) leverages embedding aggregation, concatenation, and
compression to generate node embeddings. This approach aims to address the over-smoothing issue that
often plagues message-passing models (Li et al., 2018; Chen et al., 2020). However, the repeated process
of embedding aggregation and concatenation introduces and retains redundant features in the embeddings.
This not only leads to inefficient computation but also results in rank deficiency, a condition where the
embedding matrix becomes ill-conditioned, adversely affecting the quality and usefulness of the embeddings.

3.1 Origin of rank deficiency

A matrix Z ∈ Rn×p is considered rank-deficient if it exhibits a cluster of small singular values, with a clear
gap between the large and small singular values (Hansen, 1998, Ch. 1.). This situation arises when the
columns of Z are not linearly independent, indicating the presence of redundant features.

To illustrate the relationship between redundant features and small singular values, consider a simple ex-
ample. Let X ∈ Rn×d be a full-rank matrix with the singular value decomposition (SVD) X = UΣV ⊺.
Here, U ∈ Rn×d and V ∈ Rd×d have orthogonal columns with unit norms, and Σ is a non-negative diagonal
matrix containing the singular values in descending order (Golub & Van Loan, 2013, Ch. 2.4).

Now, define a matrix Z =
[
X X

]
∈ Rn×2d, where each column of X is duplicated, making the last d

columns in Z redundant. The SVD of Z can then be expressed as Z = UZΣZV ⊺
Z , where

UZ =
[
U ΥU

]
, ΣZ =

[√
2Σ 0
0 0

]
, V ⊺

Z = 1√
2

[
V ⊺ V ⊺

Υ⊺
V1

Υ⊺
V2

]
. (2)

Here, the block matrices ΥU ∈ Rn×d, ΥV1 ∈ Rd×d, and ΥV2 ∈ Rd×d are orthonormal and satisfy Υ⊺
U U = 0

and Υ⊺
V1

V = Υ⊺
V2

V = 0. We can verify this decomposition through matrix multiplication:

UZΣZV ⊺
Z =

[
U ΥU

] [√
2Σ 0
0 0

]
1√
2

[
V ⊺ V ⊺

Υ⊺
V1

Υ⊺
V2

]
=

[
UΣ 0

] [
V ⊺ V ⊺

Υ⊺
V1

Υ⊺
V2

]
=

[
UΣV ⊺ UΣV ⊺

]
. (3)

(See Appendix A for verification of the orthonormality of UZ and VZ .)

The expression for ΣZ in Equation 2 reveals two clusters of singular values: the d values contained in Σ
and d singular values equal to zero. Each of the zero singular values corresponds to a column in ΥU , which
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we refer to as singular dimensions. These singular dimensions span the left null space of Z and do not
contain any information about X. All information about X is already encapsulated in U , Σ, and V , as
demonstrated by Equation 3. The columns of ΥU are only constrained by their orthogonality to the columns
in U , and their elements can otherwise be chosen arbitrarily. Similarly, ΥV1 and ΥV2 are only constrained
by their orthogonality to V .

Although the values of ΥU , ΥV1 , and ΥV2 are not uniquely defined, in practical applications, they are
determined by a combination of numerical inaccuracies and the arbitrary implementation choices of the
specific algorithm used to compute the SVD. Since they do not carry any meaningful information about X,
they can effectively be considered noise. Furthermore, numerical implementations of SVD will not produce
singular values that are exactly zero due to rounding errors, as reflected in the definition of rank deficiency.

3.2 Rank deficiency in PCAPass

Having established the connection between redundant features and rank deficiency, we now perform an
analysis of the PCAPass message-passing described in Section 2 to demonstrate how redundant features are
introduced into its embeddings. For simplicity, we analyse undirected message-passing, although the results
can be straightforwardly extended to directed graphs. Initially, we assume a message-passing update step
without compression, H(k) =

[
H(k−1) ANH(k−1)], and discuss the effect of PCA compression subsequently.

Under these assumptions, the first three message-passing iterations result in:

H(1) =
[
X ANX

]
,

H(2) =
[
H(1) ANH(1)] =

[
X ANX ANX A2

NX
]

,

H(3) =
[
H(2) ANH(2)] =

[
X ANX ANX A2

NX ANX A2
NX A2

NX A3
NX

]
.

(4)

Notice that the submatrix ANX is repeated twice in H(2), and three times in H(3), where A2
NX also

appears three times. These redundant submatrices are responsible for the rank deficiency of the PCAPass
embeddings. In fact, if ρk represents the number of singular values close to zero for H(k), we can derive that
ρk ≥ (2k − k − 1)d. This formula provides a lower bound on ρk, acknowledging that additional sources of
singular dimensions may exist, such as the potential rank deficiency of X itself.

Now we consider the effect of PCA. Remember that PCA is commonly and efficiently implemented via cen-
tring and SVD (Murphy, 2012, Ch. 12.2.3). Thus, if all singular dimensions are kept, the final PCAPass em-
beddings will be on the form Z =

[
UΣ ΥΣ≈0

]
. Here UΣ ∈ Rn×2kd−ρK is the informative part of the em-

beddings, while ΥΣ≈0 ∈ Rn×ρK constitute the singular dimensions, with elements in Σ≈0 being close to zero.

Applying compression in each iteration has the potential to resolve the rank deficiency by removing the
singular dimensions Υ. However, whether this happens depends on the details of the PCA compression.
Let pk denote the embedding dimension after k iterations. Without compression, pk = 2kd for undirected
message-passing. Suppose compression is applied in each iteration to ensure that pk is smaller than some
desired maximum, pk ≤ pmax. In that case, singular dimensions are only removed once the number of
non-singular dimensions equals or exceeds the number of retained dimensions, i.e., when 2kd − ρk ≥ pmax.
Consequently, using a fixed value for pmax, as done by Sadowski et al. (2022), is not sufficient to guarantee
the removal of singular dimensions. Instead, the number of retained dimensions would need to vary with
each iteration k to ensure that all singular dimensions are removed, thus introducing additional complexity.

Another approach is to apply a threshold on the singular values during compression, removing any dimensions
where Σi,i ≤ θΣ1,1, with Σ1,1 being the largest singular value and θ ∈ [0, 1] a relative tolerance. However,
setting θ either too small or too large results in a loss of accuracy in downstream tasks, see Section 5.1.

Moreover, even if one successfully eliminates the singular dimensions, computational resources have still been
spent unnecessarily in computing the redundant features in the first place. Given that the number of singular
dimensions can grow rapidly, as indicated by the bound ρk ≥ (2k − k − 1)d, and that PCA compression has
quadratic time complexity in the number of features (Golub & Van Loan, 2013, Ch. 2.4), the amount of
unnecessary computation is significant.
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Figure 2: The effect of increasing rank deficiency on cluster structures. Figure 2a shows UMAP projection of
X, comprising 200 data points from 6 classes originally sampled on the surface of a 6D sphere. Figures 2a to
2d illustrate the cluster structure deterioration as X is horizontally concatenated with itself and whitened.
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Figure 3: Visualization explaining the need for whitening in embedding-based graph alignment. In Figure 3a,
the goal is to match the blue plus with the blue circle. However, the Euclidean distance fails to account for
the data’s shape, causing the erroneous orange squares to appear closer. Whitening corrects this issue, as
shown in Figure 3b. The assumption in Figure 3a is that the direction of displacement aligns with the data’s
variation. Figures 3c and 3d provide empirical evidence of a strong correlation between the displacement
along axis i and the corresponding singular value, Σi,i, based on PCAPass embeddings.

3.3 The negative effects of rank-deficient embeddings on clustering

Rank-deficient or otherwise ill-conditioned embedding matrices can violate fundamental assumptions made
by downstream machine learning models, like the linear independence of features, and contribute to the
instability of numerical computations (Trefethen & Bau, 1997, Pt. 3). In supervised learning, the adverse
effects of rank deficiency are often mitigated through regularization techniques. For example, ridge regression
(Hoerl & Kennard, 1970) effectively addresses this issue. However, regularization and model selection become
much more challenging in unsupervised settings, where the absence of a guiding supervision signal complicates
the process (Ma et al., 2023). As a result, unsupervised tasks that rely on embedding distances, such as
clustering and graph alignment, are particularly vulnerable to the negative impacts of rank deficiency.

The rank-deficient embedding matrices produced by PCAPass are especially problematic when subjected to
common preprocessing operations like standardization (Aggarwal, 2015, Ch. 2.3.3) and whitening (Hyvärinen
et al., 2009). We illustrate this with a simple clustering example. We generate a matrix X ∈ R200×6,
consisting of 200 six-dimensional samples. The data is divided into six classes, each corresponding to a normal
distribution centred at one of six equidistant points. This setup ensures that samples from each Gaussian
blob are well-separated. We visualize this in Figure 2a using 2D UMAP projections (McInnes et al., 2018).

To simulate the introduction of redundant features, we concatenate X with itself, forming X̃ =
[
X X

]
.

Applying PCA-based whitening to X̃ yields the simulated embedding matrix Z =
√

n− 1
[
U Υ

]
. This

expression highlights the connection to PCAPass embeddings that have been standardized to unit variance.
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Figure 2 visually demonstrates how cluster separability diminishes as the number of duplicate features
increases. This degradation in separability can also be quantified by running k-means clustering (Arthur &
Vassilvitskii, 2007). The average normalized mutual information (NMI) (Danon et al., 2005) over 10 seeds is
1.0 for the original data, indicating perfect separation of the classes. However, as X is duplicated, the NMI
decreases to 0.78, and then to 0.71 with two duplicates, and down to 0.47 with four duplicates.

Note that the information required to distinguish the clusters remains present in Z, and a regularized
supervised classifier could still achieve high classification accuracy. However, the relevant information has
been diluted by the singular dimensions, Υ, which significantly impairs the class’s clustering separability.

In this toy example, the negative effects of the singular dimensions can be mitigated by using
Z =

[
UΣ ΥΣ≈0

]
as input for clustering, which simulates not preprocessing the PCAPass embeddings.

However, in practice, preprocessing is often necessary for achieving high task accuracy. Embedding-based
graph alignment using structural input features is one such example.

3.4 The negative effects of rank-deficient embeddings on graph alignment

Graph alignment is the task of finding node correspondences between two graphs, G1 = (N,M1) and
G2 = (N,M2). We assume, for simplicity, that while the node set N is shared, while the edge sets differ.
When M2 is a subset or superset of M1, we refer to the missing or added edges as noise edges.

Embedding-based graph alignment (Heimann et al., 2018) is a greedy approach where node embeddings are
used to match the nodes. Specifically, the nodes in G2 are matched to the nodes in G1 with the most similar
embeddings in terms of Euclidean distance, which can be computed efficiently using KD-trees (Bentley,
1975). When the graphs lack node attributes, structural node embeddings are used (Jin et al., 2021). These
embeddings can be generated by message-passing models where X consists of structural features such as
node degrees and local clustering coefficients (Fagiolo, 2007).

For this approach to be effective, the embeddings need to be whitened before matching. This is detrimental to
the alignment accuracy of PCAPass embeddings, since applying whitening removes the scaling of Σ≈0 from
the singular dimensions, allowing Υ to introduce noise into the distance computation. Consequently, the
PCAPass embeddings struggle to produce high graph alignment accuracies, as we demonstrate in Section 5.

Figure 3 provides a visual explanation for why whitening is necessary. The gray scatter points in Figure 3a
represent the embeddings for each node in G1, and the ellipse highlights variations along the principal axes
of the embedding matrix. The coloured points show a magnified version of the alignment process. The blue
circle represents an embedding vector in G1, and the blue plus represents the corresponding node in G2. The
orange squares represent embeddings for other nodes in G1.

As shown, both orange points are closer to the blue plus than the blue circle in terms of Euclidean distance.
Thus, this node would be incorrectly matched. However, if the covariance of the data is considered in the
distance calculation, the blue plus is closer to the blue circle, as indicated by the green ellipse. Whitening
spheres the data, equalizing the variance along each principal axis. Therefore, Euclidean distance provides
the correct matching in the whitened space, as shown in Figure 3b.

This explanation assumes that the direction of the embedding displacement, indicated by the black arrow
in Figure 3a, correlates with the data variation. Figures 3c and 3d provide empirical support for this
assumption. These figures show the singular values of the PCAPass embeddings for G1, denoted Z(1), on the
x-axes. The y-axes show the average embedding displacement along the corresponding principal axis, defined
as δi = 1

n∥(Z
(1) − Z(2))V:,i∥2, where V is a basis for the principal axes of Z(1). As seen, the correlation

between the directions of variation and displacement is strong, supporting our assumption.

In summary, the rank-deficient embeddings produced by PCAPass contain arbitrary column vectors that act
as noise for unsupervised downstream tasks such as clustering and graph alignment. This issue is particularly
problematic when normalizing preprocessing steps are required for optimal performance, as is the case with
whitening for graph alignment. Therefore, it is crucial to avoid rank-deficient node embeddings.
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4 The ACC model and message aggregation

To address the issues of rank-deficient embeddings, we introduce the ACC, which stands for Aggregate,
Compress, and Concatenate. Performed in this order, these operations result in a message-passing approach
where the message matrices, rather than the embeddings, are passed between message-passing iterations.
We refer to this as message aggregation, and as we will demonstrate, it avoids computing the redundant
features that cause the rank deficiency observed in PCAPass. Furthermore, ACC is designed to work with
directed graphs, expanding its applicability and versatility.

The complete ACC algorithm is detailed in pseudocode in Algorithm 1. Initially, the feature matrix X is
compressed into a c-dimensional message matrix, M (0) ∈ Rn×c, using Principal Component Analysis (PCA)
(Murphy, 2012, Ch. 12.2). Once this initial compression is complete, the message-passing procedure begins.
The main distinguishing feature of ACC, as shown on Line 6 of Algorithm 1, is message aggregation. This
means that ACC applies aggregation operators directly to the message matrices from the previous iteration,
M (k) =

[
AFM (k−1) ABM (k−1)]. This approach is crucial for avoiding the creation of redundant features,

as seen in PCAPass when aggregating and concatenating embedding matrices in Equation 4.

The new message matrix M (k) is then compressed to c dimensions using PCA and concatenated with the em-
bedding matrix, H(k) =

[
H(k−1) M (k)]. Consequently, the final embedding matrix is a concatenation of

all message matrices, H(K) =
[
M (0) M (1) . . . M (K)], with a total embedding dimension of p = (K +1)c.

Typically, the value of c is chosen as the largest integer such that the total embedding dimension p does not
exceed a desired limit, (K + 1)c ≤ pmax. However, this condition would result in c = 0 if (K + 1) > pmax.
To prevent this, ACC enforces a minimal value for c, denoted as cmin, as specified on Line 2 of Algorithm 1.
By default, we set cmin = 2 to account for the two message-passing directions in directed graphs.

For undirected graphs, ACC is slightly modified on Line 6, as message-passing is conducted using only the
undirected matrix AN, M (k) = ANM (k−1). In this scenario, the compression steps on Line 7 is technically
unnecessary since M (k) is already c-dimensional. Nonetheless, for consistency across our experiments, we
always perform PCA.

To demonstrate that ACC avoids computing the redundant features seen for PCAPass in Equation 4, we
write out the expression for the ACC embeddings after K iterations: H(K) =

[
X ANX . . . AK

N X
]
.

We observe that the ACC embeddings do not include the duplicate submatrices present in Equation 4. In
fact, H(K) for ACC contains precisely the final submatrices from each of the expressions in Equation 4,
representing the non-redundant information generated in each iteration.

Algorithm 1: The ACC algorithm for a directed graph G
with node features X using K message-passing iterations,
desired dimensionality pmax, minimal message size cmin and
relative tolerance θ ∈ [0, 1].

1 def ACC(G, X, K, pmax, cmin = 2, θ = 10−8):
2 c = max (⌊pmax/(K + 1)⌋, cmin)
3 M (0) = PCA(X, c, θ)
4 H(0) = M (0)

5 for k in range(1, K + 1):
# Compute aggregations in both direction.

6 M (k) =
[
AFM (k−1) ABM (k−1)]

7 M (k) ← PCA(M (k), c, θ)
# Concatenate with existing embeddings.

8 H(k) =
[
H(k−1) M (k)]

9 return H(K)

Algorithm 2: PCA compression computed
via SVD as used for ACC. Here X ∈ Rn×p is
a real-valued matrix, c an integer s.t. c ≤ p,
and θ ∈ [0, 1] a relative tolerance.

1 def PCA(X, c, θ):
2 X ← centre_columns(X)
3 U , Σ, V ⊺ = SVD(X)

# Find the index of the smallest
singular value which exceeds the
given tolerance relative to the
largest singular value Σ1,1.

4 kθ = max{j | Σj,j ≥ θΣ1,1}
# Keep at most kθ dimensions.

5 k = min(c, kθ)
6 Xc = XV:,:k
7 return Xc
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Figure 4: Figures 4a and 4c show the number of small singular values, ρK , as a function of the number of
message-passing iterations, K, for two graphs: Arenas and Enron. The dashed line in 4a represents the the-
oretical prediction for ρK discussed in Section 3.2. Figures 4b and 4d display the embedding dimensionality
pK . Both ACC and PCAPass use the maximum dimensionality pmax = 512, resulting in the curve cut-off.

We can further verify that the ACC embeddings are not rank-deficient by examining the number of singular
values close to zero, denoted as ρK , where K represents the number of message-passing iterations. To
compute ρK , we count the number of singular values for which Σii ≤ 10−6Σ11. Figure 4 illustrates ρK for
both the ACC and PCAPass embeddings, along with the corresponding embedding dimensions pK , for two
graphs: Arenas, an undirected graph, and Enron, a directed graph. The initial number of features is d = 2 for
Arenas and d = 6 for Enron. In both cases, the maximum embedding dimensionality pmax = 512 is applied.

We observe that the number of small singular values remains at zero for all values of K for ACC, indicating
that its embeddings are full rank. In contrast, for PCAPass, ρK grows rapidly for both graphs until the
embedding dimensionality pK reaches the maximum value pmax. For Arenas, the growth of ρK closely follows
our predicted lower bound (2k− k− 1)d, as depicted by the dashed black curve in Figure 4a. For Enron, ρK

initially increases more rapidly than for Arenas, consistent with the fact that the dimensionality pK expands
more quickly for directed graphs due to the concatenation of forward and backward aggregations. This also
results in pmax being reached sooner, and as a consequence, the singular dimensions are replaced by non-
redundant features after K = 4, causing ρK to drop to zero. This analysis highlights the interaction between
the PCAPass rank deficiency, the number of message-passing iterations, and the maximum dimensionality
used for PCA compression.

While message aggregation effectively avoids computing the redundant features highlighted for PCAPass
in Equation 4, other sources of singular dimensions can still arise. For instance, singular dimensions can
be introduced if X itself is not full rank, or if the adjacency matrix contains eigenvalues close to zero. To
mitigate these issues, ACC employs a small threshold θ during the PCA compression to discard embedding
dimensions with small singular values, as outlined in Lines 4 to 6 of Algorithm 2.

However, singular dimensions can also emerge due to correlations across message-passing iterations. For
example, if X contains an eigenvector of AN, this would introduce a singular dimension in

[
X ANX

]
.

ACC cannot remove these correlations during message-passing because the messages from each iteration are
compressed independently. This further implies that the dimensions of the final ACC embeddings, Z, may
exhibit correlations, which could impact certain downstream tasks.

To address these concerns, decorrelation and removal of singular dimensions from H(K) after message-passing
could be beneficial. However, in our experiments, we have not incorporated these steps by default, treating
them instead as potential preprocessing steps for specific downstream tasks.

5 Experiments

In this section, we empirically demonstrate the superior graph alignment accuracy of the ACC model com-
pared to PCAPass, highlighting the negative impact of rank deficiency. Additionally, we compare ACC
to state-of-the-art self-supervised graph neural networks (SSGNNs) across five standard node classification
benchmarks for directed graphs (Rossi et al., 2023). Our results show that ACC is over 70 times faster on the
largest datasets while achieving better accuracy with default hyperparameters compared to the SSGNNs.
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Figure 5: ACC and PCAPass for graph alignment with 15% noise edges. The x-axis shows the number of
message-passing iterations K. Markers and shaded areas represent the average and standard deviation over
5 seeds. Without whitening, both algorithms perform poorly. Whitening benefits ACC across all datasets,
with its accuracy reaching 60% on Arenas compared to 10% for PCAPass. Whitening only benefits PCAPass
when embeddings are not rank-deficient, as shown in figure 4.

5.1 Graph alignment: ACC vs. PCAPass

For evaluating alignment accuracy, we use established protocols from Heimann et al. (2018). Specifically,
we create a second graph G2 from a reference graph G1 by permuting node indices and removing 15% of
the edges. We use four graphs with this setup: Arenas, PPI, Enron, and Polblogs. Arenas and PPI are
well-known benchmark graphs Heimann et al. (2018); Jin et al. (2021); Skitsas et al. (2023), while Enron
and Polblogs provide examples of directed graphs.

In addition, we assess performance on the real-world Magna dataset (Saraph & Milenković, 2014). In
Magna, the noisy graph G2 includes 15% more edges than G1. Therse noise edges were selected by Saraph
& Milenković (2014) based on observed node interaction probabilities. Real-world datasets like Magna are
rare due to the inherent complexity of the graph alignment problem. Detailed statistics about the datasets
are provided in Appendix C.1.

For both ACC and PCAPass, we set the maximum embedding dimension to pmax = 512 and use node
structural features as input, X ∈ Rn×d. For undirected graphs, the input features are the node’s degree
and local clustering coefficient, resulting in d = 2. For directed graphs, the feature set is expanded to
include the in-degree, out-degree, and four local clustering coefficients, as defined by Fagiolo (2007). These
coefficients—out, in, cycle, and middleman—correspond to the four unique ways to orient the edges of a
directed triangle, giving d = 6.

We first compare ACC and PCAPass across varying numbers of message-passing iterations K, both with and
without whitening, as shown in Figure 5. Without whitening, ACC and PCAPass show similar accuracies,
which is expected given the need for whitening in embedding-based graph alignment, as discussed in Sec-
tion 3.4. With whitening, ACC’s accuracy improves markedly on all datasets, reaching 60% on Arenas and
75% on Enron. In contrast, PCAPass accuracy remains low for undirected graphs, peaking at only 10% on
Arenas. For directed graphs, accuracy initially improves, then deteriorates, and eventually increases again.
This fluctuation is closely linked to the number of singular dimensions in PCAPass embeddings. As shown
in Figure 4c, accuracy drops during periods when the number of small singular values is high, particularly
for K ∈ {2, 3, 4}. These results highlight the detrimental effect of rank deficiency on alignment accuracy.

We next examine how singular value thresholding can address the rank deficiency in PCAPass. Specifically,
we apply a threshold θ such that dimensions with singular values Σi,i ≤ θΣ1,1 are removed, where Σ1,1 is
the largest singular value. For this experiment, we use K = 10 for undirected graphs and K = 4 for directed
graphs, as these settings exhibit the maximum rank deficiency for PCAPass.

The results are presented in Figure 6, with the threshold θ varying along the x-axis. We see that selecting an
appropriate θ can resolve the rank deficiency, allowing PCAPass to achieve accuracies comparable to ACC.
However, θ must be carefully chosen: it needs to be high enough to remove singular dimensions effectively,
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Figure 6: ACC and PCAPass for graph alignment with 15% noise edges, K = 10 for Magna, and K = 4
for Enron. The x-axes show the relative tolerance θ used to remove dimensions with small singular values.
Figures 6a and 6b show accuracy on the y-axis, while 6c and 6d show run time. Markers and shaded areas in-
dicate the average and standard deviation over 5 seeds. ACC achieves equal or superior accuracy for all θ, and
retains its accuracy for θ = 0, as its embeddings are full rank. ACC is also consistently faster than PCAPass.

but not so high that it eliminates necessary dimensions. The favourable θ range depends on numerical
precision and dataset characteristics; for Magna, only θ ∈ [10−6, 10−5] yields accuracies matching ACC.

Additionally, ACC consistently outperforms PCAPass in terms of speed by avoiding computation of redun-
dant features. As illustrated in Figure 6c and 6d, the relative reduction in run time can be substantial. For
instance, on the Magna dataset, ACC is 80% faster than PCAPass, with a run time around 55 ms compared
to 100 ms for PCAPass.

5.2 Node classification: ACC vs self-supervised graph neural networks

To compare ACC with self-supervised graph neural networks (SSGNNs), we evaluate node classification accu-
racy on five standard directed graph datasets from the literature (Pei et al., 2020; Lim et al., 2021; Platonov
et al., 2023; Rossi et al., 2023). Dataset details are provided in Appendix C.1. For initial node features X,
we use both the dataset-provided node features and the structural features used for graph alignment.

We train a gradient boosting classifier on top of the embeddings, following the setup of Sadowski et al.
(2022). Specifically, we employ Scikit-learn’s implementation of LightGBM (Ke et al., 2017) with default
hyperparameters. To ensure robustness, we perform three repeats of 5-fold cross-validation with five different
random seeds, reporting mean and standard deviation statistics for the classification accuracy.

All models are executed in a Google Cloud g2-standard-32 environment with one Nvidia L4 24GB GPU, 32
vCPUs @ 2.20GHz, and 128 GB of memory. Reported run times are averages over the five random seeds.

We adapt all baseline models to use directed message-passing following the approach outlined by Rossi et al.
(2023), except for MVGRL (Hassani & Khasahmadi, 2020) and GREET (Liu et al., 2023), which feature
non-standard architectures. Additionally, we introduce BGRL-GS and GraphMAEv2-GS by replacing the
default GNNs in BGRL (Thakoor et al., 2022) and GraphMAEv2 (Hou et al., 2023) with the GraphSAGE
model (Hamilton et al., 2017). SGCN and PCAPass are also included in our comparisons. All models
are evaluated with K = 2 message-passing iterations and embedding dimensions of p = 512, with other
hyperparameters set to their default values.

We do not perform hyperparameter tuning, as it is well-established that SSGNNs can surpass linear models
like ACC in accuracy with sufficient tuning. This is due to the greater expressiveness of SSGNNs, allowing
them to theoretically produce embeddings comparable to those of ACC. However, tuning hyperparameters
in unsupervised settings is known to be difficult (Ma et al., 2023) due to the absence of validation data
with ground-truth labels. Such data is typically used for tasks like constructing early-stopping criteria
during GNN training. Without access to ground-truth information, identifying the optimal hyperparameter
configuration becomes highly challenging. As a result, evaluating models with default settings offers a more
practical and realistic assessment of their performance in real-world unsupervised embedding scenarios.
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Table 1: Gradient boosting node classification results. The top 3 accuracies are highlighted in bold. Snap
Patents results were gathered using CPU only due to GPU memory limits. OOM abbreviates out of memory.

Model Chameleon Squirrel Roman Empire Arxiv Year Snap-Patents
Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy Time

No model, X 64.6 ± 2.3 0ms 52.1 ± 1.4 0ms 70.4 ± 0.7 0ms 44.7 ± 0.2 0ms 56.1 ± 0.1 0ms

GAE1 62.2 ± 2.2 11s 44.8 ± 1.5 1m 4s 53.4 ± 3.1 16s 42.3 ± 0.3 7m 34s 51.9 ± 0.1 3h 15m
DGI2 61.5 ± 2.3 14s 44.2 ± 1.6 1m 40s 73.4 ± 0.9 4m 2s 47.1 ± 0.2 5h Timeout ≥24h
MVGRL3 66.3 ± 2.2 26m 44s 46.4 ± 1.5 26m 32s 64.3 ± 1.0 39m 13s OOM ≥128 GB OOM ≥128 GB
BGRL4 66.1 ± 2.2 7m 49s 46.7 ± 1.3 31m 45s 76.0 ± 0.8 25m 24s 46.6 ± 0.3 4h 52m Timeout ≥24h
BGRL-GS4 65.3 ± 2.2 8m 31s 44.8 ± 1.5 33m 21s 74.4 ± 0.7 21m 52s 43.7 ± 0.2 3h 8m Timeout ≥24h
CCA-SSG5 71.0 ± 2.1 4s 59.9 ± 1.2 7s 63.7 ± 0.7 10s 48.4 ± 0.2 1m 11s 56.1 ± 0.0 1h 40m
GraphMAE6 68.9 ± 2.0 27s 56.9 ± 1.8 59s 53.9 ± 1.0 1m 8s 44.2 ± 0.3 8m 55s 45.6 ± 0.1 16h
GraphMAEv27 69.6 ± 1.9 36s 51.2 ± 2.5 1m 14s 53.5 ± 0.9 1m 46s 44.3 ± 0.3 14m 53s 44.0 ± 0.0 23h
GraphMAEv2-GS7 74.1 ± 2.3 29s 57.0 ± 1.4 1m 6s 80.0 ± 0.7 1m 35s 46.3 ± 0.3 10m 46s 53.8 ± 0.1 18h
GREET8 61.4 ± 2.2 1m 25s 44.2 ± 1.6 6m 45s 80.1 ± 0.5 1h 56m OOM ≥128 GB OOM ≥128 GB
SPGCL9 66.3 ± 2.2 16s 45.8 ± 1.5 1m 23s 73.6 ± 0.8 55s 46.4 ± 0.2 52m 6s OOM ≥128 GB

SGCN10 74.7 ± 1.8 374ms 68.3 ± 1.4 723ms 45.4 ± 0.8 393ms 45.0 ± 0.2 1s 50.2 ± 0.1 26s
PCAPass11 71.7 ± 2.2 2s 51.5 ± 1.3 22s 73.0 ± 0.7 852ms 46.3 ± 0.2 2s 61.2 ± 0.1 2m 20s

ACC 76.6 ± 1.9 1s 71.5 ± 1.3 1s 81.5 ± 0.6 432ms 49.4 ± 0.3 1s 62.6 ± 0.1 27s
1 Kipf & Welling (2017) 2 Veličković et al. (2019) 3 Hassani & Khasahmadi (2020) 4 Thakoor et al. (2022)
5 Zhang et al. (2021) 6 Hou et al. (2022) 7 Hou et al. (2023) 8 Liu et al. (2023) 9 Wang et al. (2023)
10 Wu et al. (2019) 11 Sadowski et al. (2022)

Table 1 displays the accuracies and run times for all models and datasets. ACC stands out with the highest
accuracy across all datasets. Moreover, these results demonstrate ACC’s superior scalability compared to
SSGNNs. On the Arxiv Year dataset, with 1 milion edges, ACC is over 70 times faster than CCA-SSG,
the fastest SSGNN. Moreover, whereas most SSGNNs take a full day or more to run on Snap Patents, the
largest dataset with 14 million edges, ACC requires only 27 seconds.

The linear model SGCN is the only baseline faster than ACC. However, SGCN suffers from over-smoothing,
leading to ACC’s substantial accuracy advantage on the Roman Empire dataset. This underscores how
ACC’s concatenation approach mitigates over-smoothing. Further results are available in the Appendix D.

Additionally, we observe a significant accuracy discrepancy between ACC and PCAPass on the Squirrel
dataset, which cannot be attributed to the PCAPass rank deficiency. Our detailed analysis, available in
Appendix E, highlights another benefit of ACC’s message aggregation. Unlike PCAPass, which compresses
its full embeddings in each iteration and may discard informative but low-variance features, ACC compresses
features separately at each iteration, preserving information more evenly. Consequently, the ACC embeddings
for Squirrel retains more information than PCAPass from the class-informative but low-variance features
provided by ABX, resulting in higher accuracy.

6 Conclusion and future work

In this paper, we addressed the issue of rank-deficient node embeddings generated by message-passing models,
which not only inefficient but also risk degrading downstream task performance. To overcome this, we
introduced ACC, a novel unsupervised node embedding model that leverages message aggregation to avoid
redundant feature computation, ensuring that the resulting embeddings are full rank.

A promising avenue for future research is to investigate whether ACC’s PCA-based compression can be
framed as the optimization of a model-wide loss function. Such a formulation could deepen our understanding
of ACC and provide insights that may benefit the broader field of unsupervised message-passing models.

Additionally, ACC’s message aggregation approach ensures that each embedding feature is tied to a specific
number of hops in the graph. Replacing PCA with a feature selection algorithm could further enhance
interpretability by associating each embedding feature with a single input feature. This extension could be
particularly valuable for applications requiring model transparency, such as anomaly detection.
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Figure 7: The singular values spectrum for ACC and PCAPass on all graph alignment datasets. Spectrums
using both K = 4 and K = 10 message-passing iterations are shown. The y-axes shows the singular values,
and the x-axes their index in descending order, normalized using the number of embedding dimensions pK .

A SVD of rank deficient matrix

In Section 3.1, we stated the SVD of the matrix Z =
[
X X

]
∈ Rn×2d, as Z = UZΣZV ⊺

Z , where

UZ =
[
U ΥU

]
, ΣZ =

[√
2Σ 0
0 0

]
, V ⊺

Z = 1√
2

[
V ⊺ V ⊺

Υ⊺
V1

Υ⊺
V2

]
, (5)

and the block matrices ΥU ∈ Rn×d, ΥV1 ∈ Rd×d, and ΥV2 ∈ Rd×d each have orthogonal columns and satisfy
the conditions Υ⊺

U U = 0, Υ⊺
U ΥU = I, Υ⊺

V1
V = Υ⊺

V2
V = 0, and Υ⊺

V1
ΥV1 = Υ⊺

V2
ΥV2 = I.

Here, we verify the orthonormality of UZ and VZ via matrix multiplication:

U⊺
ZUZ =

[
U⊺

Υ⊺
U

] [
U ΥU

]
=

[
U⊺U U⊺ΥU

Υ⊺
U U Υ⊺

U ΥU

]
=

[
I 0
0 I

]
V ⊺

Z VZ = 1
2

[
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Υ⊺
V1

Υ⊺
V2

] [
V ΥV1

V ΥV2

]
= 1

2

[
V ⊺V + V ⊺V V ⊺ΥV1 + V ⊺ΥV2

Υ⊺
V1

V + Υ⊺
V2

V Υ⊺
V1

ΥV1 + Υ⊺
V2

ΥV2

]
=

[
I 0
0 I

]
.

B Singular values of ACC and PCAPass

Figure 7 presents the singular value spectra for the ACC and PCAPass embedding matrices across all graph
alignment datasets. Both models use a maximum embedding dimension of pmax = 512. However, this does
not result in the same final embedding dimension, pK , for each model. To facilitate comparison, we normalize
the singular value index i (x-axis) by the embedding dimension.

For the undirected graphs (Arenas, PPI, and Magna), the singular value gap indicating rank deficiency is
clearly visible for PCAPass, with both K = 4 and K = 10 message-passing iterations. On the directed
graphs, this gap only appears for K = 4, consistent with the results in Figure 4c. In contrast, ACC shows
no such singular value gaps, further confirming that it produces full-rank embeddings.
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Table 2: Table 2a shows graph statistics for the graph alignment datasets. Specifically, it shows the number of
nodes and edges, the number of weakly and strongly connected components, the global clustering coefficient,
CG , and the average path length, ⟨lpath⟩. Table 2b shows basic information regarding the node classification
datasets: the number of nodes, edges and node features, and the number of node classes.

(a) Graph alignment datasets and statistics.

Dataset n m Dir. # CC # SCC CG ⟨lpath⟩
Arenas 1.1K 11K ✗ 1 – 0.17 3.6
PPI 3.9K 76K ✗ 35 – 0.09 3.1
PolBlogs 1.5K 19K ✓ 268 688 0.25 3.4
Enron 7.9K 142K ✓ 58 861 0.16 3.5
Magna 1K 17K ✗ 1 – 0.62 5.5

(b) Node classification datasets.

Dataset n m # Feat. # Cls.
Chameleon 2.3K 36K 2325 5
Squirrel 5.2K 217K 2089 5
Roman Empire 23K 33K 300 18
Arxiv Year 169K 1.2M 128 5
Snap patents 2.9M 14M 269 5

C Additional experiments information and results

C.1 Datasets

Table 2a provides statistics for the graph alignment datasets. Arenas (Guimera et al., 2003) is an undirected
email network, where each edge represents email communication between two students. Similar to Magna,
PPI (Breitkreutz et al., 2007) is a protein-protein interaction graph, with nodes representing proteins and
edges denoting interactions between them. Polblogs (Adamic & Glance, 2005) is a hyperlink graph of political
blogs, while Enron (Klimt & Yang, 2004) is an email communication network, where each node corresponds
to an email address. Specifically, we use a subgraph of the full Enron dataset for our experiments.

Table 2b summarizes the node classification datasets. These datasets were used in recent work by Rossi
et al. (2023) on directed message-passing for supervised graph neural networks.

The Chameleon and Squirrel datasets are both hyperlink networks, where each node represents a Wikipedia
article, and edges indicate hyperlinks between articles. Node features are binary variables indicating the
presence of specific nouns, while labels reflect the average monthly traffic for each webpage. Originally
proposed by Rozemberczki et al. (2021) for regression tasks, they were later adapted for node classification
by Pei et al. (2020).

The Roman Empire dataset, introduced by Platonov et al. (2023), is a word co-occurrence network based
on the Wikipedia page for the Roman Empire. Nodes correspond to words, and edges represent syntactic
dependencies between them, resulting in a graph that closely resembles a chain structure. The node labels
represent syntactic roles, while the features are word embeddings.

Arxiv Year and Snap Patents were introduced by Lim et al. (2021) to benchmark GNNs on large-scale
graphs. The Arxiv Year dataset is derived from the OGB Arxiv citation network (Hu et al., 2020), where
nodes represent papers and features are derived from their abstracts. Unlike OGB Arxiv, which uses subject
areas for labels, Arxiv Year assigns labels based on the publication year.

Snap Patents is a patent citation network, where nodes represent patents and edges indicate citations.
Originally studied by Leskovec et al. (2005) to investigate the evolution of citation networks over time, the
dataset used by Lim et al. (2021) assigns labels based on the year each patent was granted. Node features
are generated from patent metadata.

C.2 Additional graph alignment results

Figure 8 extends the results shown in Figure 6 from the main paper, now including the Arenas, PPI, and
Polblogs datasets. The figure presents graph alignment accuracies and run times across varying relative
tolerances θ for thresholding singular values.

The trends in accuracy and run time closely resemble those observed for Magna and Enron in Figure 6.
Specifically, PCAPass can match ACC’s accuracy within a certain range of θ values, but its accuracy sharply
drops to zero outside this range. In contrast, ACC maintains stable accuracy, only declining for very
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Figure 8: ACC and PCAPass for graph alignment with 15% noise edges, K = 10 for Arenas and PPI, and
K = 4 for Polblogs. The x-axes show the relative tolerance θ applied to remove dimensions with small
singular values. Figures 8a to 8c show accuracy on the y-axis, while 8d to 8f show run time. Markers and
shaded areas indicate the average and standard deviation over 5 seeds.

high values of θ, which leads to excessive removal of embedding features. Additionally, ACC consistently
outperforms PCAPass in terms of run time.

C.3 Node classification baselines

Below, we list the baselines used in our node classification experiment, including references to the respective
model implementations and their licences. For models licensed under the MIT or Apache 2.0 licences, we
also release our directed extensions as part of this paper’s code repository. Additionally, we specify the
default number of epochs used for training, as this directly influences the reported model run times. For
other hyperparameter defaults, please refer to our code.

GAE (Kipf & Welling, 2017): https://pytorch-geometric.readthedocs.io/en/latest/generated/
torch_geometric.nn.models.GAE.html, MIT Licence, 200 epochs.

DGI (Veličković et al., 2019): https://github.com/PetarV-/DGI, MIT licence, 100 epochs.

MVGRL (Hassani & Khasahmadi, 2020): https://github.com/kavehhassani/mvgrl, No licence, 3000
epochs.

BGRL (Thakoor et al., 2022): https://github.com/nerdslab/bgrl, Apache Licence 2.0, 10000 epochs.

CCA-SSG (Zhang et al., 2021): https://github.com/hengruizhang98/CCA-SSG, Apache Licence 2.0, 100
epochs.

GraphMAE (Hou et al., 2022): https://github.com/THUDM/GraphMAE, MIT licence, 1000 epochs.

GraphMAEv2 (Hou et al., 2023): https://github.com/THUDM/GraphMAE2, MIT licence, 1000 epochs.

GREET (Liu et al., 2023): https://github.com/yixinliu233/GREET, MIT licence, 400 epochs.

SPGCL (Wang et al., 2023): https://github.com/haonan3/SPGCL, No licence, 500 epochs.
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Table 3: Node classification results using a logistic regression classifier. OOM abbreviates out of memory. All
Snap Patents results were gathered using CPU only as the SSGNNs exceeded our GPU memory limit. The
top 3 accuracies for each dataset are highlighted in bold.

Model Chameleon Squirrel Roman Empire Arxiv Year Snap-Patents
Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy Time

No model, X 52.3 ± 2.2 0ms 35.3 ± 1.4 0ms 69.8 ± 0.7 0ms 43.4 ± 0.2 0ms 50.7 ± 0.1 0ms

GAE1 54.8 ± 2.6 11s 38.2 ± 1.9 1m 4s 66.1 ± 1.8 16s 43.2 ± 0.3 7m 34s 49.3 ± 0.1 3h 15m
DGI2 54.0 ± 2.8 14s 40.4 ± 1.7 1m 40s 76.5 ± 0.7 4m 2s 49.4 ± 0.3 5h Timeout ≥24h
MVGRL3 55.4 ± 3.0 26m 44s 40.0 ± 1.4 26m 32s 65.1 ± 0.9 39m 13s OOM ≥128 GB OOM ≥128 GB
BGRL4 55.9 ± 2.6 7m 49s 42.8 ± 1.5 31m 45s 79.0 ± 0.7 25m 24s 49.4 ± 0.3 4h 52m Timeout ≥24h
BGRL-GS4 58.6 ± 2.1 8m 31s 41.6 ± 1.7 33m 21s 78.9 ± 0.7 21m 52s 47.8 ± 0.3 3h 8m Timeout ≥24h
CCA-SSG5 59.5 ± 2.7 4s 41.6 ± 1.4 7s 70.0 ± 0.7 10s 50.9 ± 0.3 1m 11s 55.3 ± 0.1 1h 40m
GraphMAE6 65.3 ± 2.1 27s 43.5 ± 1.7 59s 55.7 ± 0.8 1m 8s 43.8 ± 0.3 8m 55s 44.1 ± 0.1 16h
GraphMAEv27 65.1 ± 2.2 36s 40.4 ± 2.1 1m 14s 55.0 ± 0.9 1m 46s 44.1 ± 0.3 14m 53s 42.7 ± 0.1 23h
GraphMAEv2-GS7 70.6 ± 2.3 29s 48.6 ± 1.6 1m 6s 80.2 ± 0.7 1m 35s 46.9 ± 0.3 10m 46s 54.7 ± 0.0 18h
GREET8 53.9 ± 2.3 1m 25s 37.1 ± 1.5 6m 45s 77.5 ± 0.6 1h 56m OOM ≥128 GB OOM ≥128 GB
SPGCL9 58.2 ± 2.3 16s 42.5 ± 1.5 1m 23s 76.2 ± 0.7 55s 48.2 ± 0.3 52m 6s OOM ≥128 GB

SGCN10 49.8 ± 2.7 374ms 35.3 ± 1.2 723ms 39.2 ± 0.7 393ms 43.2 ± 0.2 1s 42.3 ± 0.7 26s
PCAPass11 48.7 ± 2.1 2s 40.5 ± 1.3 22s 77.6 ± 0.7 852ms 49.3 ± 0.3 2s 54.5 ± 0.1 2m 20s

ACC 60.7 ± 2.5 1s 44.1 ± 1.4 1s 79.3 ± 0.6 432ms 49.4 ± 0.3 1s 56.6 ± 0.0 27s
1 Kipf & Welling (2017) 2 Veličković et al. (2019) 3 Hassani & Khasahmadi (2020) 4 Thakoor et al. (2022)
5 Zhang et al. (2021) 6 Hou et al. (2022) 7 Hou et al. (2023) 8 Liu et al. (2023) 9 Wang et al. (2023)
10 Wu et al. (2019) 11 Sadowski et al. (2022)

SGCN (Wu et al., 2019): https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_
geometric.nn.conv.SGConv.html, MIT licence.

PCAPass (Sadowski et al., 2022): The original PCAPass implementation is available at https://github.
com/krzysztof-daniell/PCAPass under the MIT License. However, we use our reimplementation for this
paper, available alongside ACC in our online code repository.

C.4 Node classification results using logistic regression

Table 3 presents the node classification test accuracies for each embedding model and dataset using a logistic
regression classifier. The experimental setup otherwise follows the description in Section 5.2. We observe that
the accuracies obtained with logistic regression are generally lower than those achieved using the gradient
boosting classifier in the main paper (Table 1). This is expected, as gradient boosting is a more expressive
and less biased model capable of capturing highly non-linear class boundaries.

Overall, ACC embeddings perform competitively against the SSGNNs also using the logistic regression
classifier, achieving the highest accuracy on Snap Patents, the second-highest on Arxiv Year and Roman
Empire, and ranking third on Squirrel and fourth on Chameleon.

On the Chameleon and Squirrel datasets, we observe a notable drop in ACC’s performance with logistic
regression compared to gradient boosting: from 76.6% to 60.7% on Chameleon, and from 71.5% to 44.1% on
Squirrel. A similar trend is seen for other linear embedding models like SGCN and PCAPass. This suggests
that a non-linear classification model is necessary to fully exploit the information in these embeddings.

In contrast, the performance gap is smaller for several SSGNNs. For instance, GraphMAEv2-GS sees only
a modest decline in accuracy from 74.1% to 70.6% on Chameleon. This indicates that the inherent non-
linearity of GNNs can compensate for the simplicity of logistic regression. However, the extent to which this
potential is realized depends on the specific GNN architecture and training, as many SSGNN models still
achieve lower accuracies than ACC with logistic regression.

19

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SGConv.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SGConv.html
https://github.com/krzysztof-daniell/PCAPass
https://github.com/krzysztof-daniell/PCAPass


Under review as submission to TMLR

4 8 16 32 64 128 256 512

0 5 10
K

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

(a) Arenas

0 5 10
K

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

(b) PPI

0 5 10
K

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

(c) Magna

0 5 10
K

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(d) Enron

0 5 10
K

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

(e) Polblogs

10−1 102

Σi,i – singular value

10−4

10−3

10−2

10−1

100

δ i
–

di
sp

la
ce

m
en

t K = 2

K = 6

K = 12

(f) Polblogs, ACC, pmax = 512

0 10−8 10−6 10−4 10−2 100

Relative tolerance, θ

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

K = 12

(g) Polblogs, ACC, pmax = 512

Figure 9: Figures 9a to 9e present the ACC graph alignment accuracy (y-axis) for varying numbers of
message-passing iterations K (x-axis) and embedding dimensions pmax (indicated by hue and line style).
Figures 9f and 9g provide deeper insights into the results for the Polblogs dataset. Similar to Figure 3c,
Figure 9f plots the singular values of the embedding matrix (x-axis) against the average displacement along
the corresponding principal axis, δi (y-axis). For K = 6 and K = 12, the correlation between singular value
and displacement observed at K = 2 is disrupted, with some features exhibiting larger displacements than
expected based on their singular values. These features cause the accuracy drop shown in Figure 9e. Finally,
Figure 9g confirms that by removing the dimensions corresponding to these high-displacement, low-singular-
value features, the alignment accuracy can be restored.

D Effect of the number of message-passing iterations and embedding dimensions

In this section, we investigate how the quality of ACC embeddings is influenced by the two primary hyperpa-
rameters: the number of message-passing iterations, K, and the maximum embedding dimensionality, pmax.
To assess their impact, we replicate the graph alignment and node classification experiments, measuring the
accuracy of ACC embeddings across a grid of K and pmax values.

D.1 Graph Alignment

Figures 9a to 9e present the grid evaluation results for graph alignment, where the x-axes denote the number
of message-passing iterations, K. The hue and line style differentiate the pmax values.

The first key observation is that accuracy increases steadily with K for each undirected graph, eventually
plateauing. This illustrates ACC’s ability to preserve information across multiple message-passing iterations.

Secondly, for the undirected graphs, the value of pmax appears to have no significant effect. This is because
the initial number of features, d = 2, matches the minimum compression dimensionality, cmin = 2, for these
datasets. Therefore, regardless of the value of pmax, the resulting ACC embeddings will have dimensionality
pK = 2 · (K + 1).
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On the directed graphs, we observe different behaviour. Starting with Enron in Figure 9d, when pmax is
sufficiently high, the accuracy follows a similar pattern to the undirected graphs, increasing steadily before
levelling off. However, for pmax ∈ 8, 16, 32, a different trend emerges: the accuracy initially increases, but
then decreases, eventually aligning with the curve for pmax = 4.

This seemingly unusual behaviour stems from the formula used to determine the number of compression
dimensions, c = max (⌊pmax/(K + 1)⌋, cmin), which in turn defines the final embedding dimensionality, pK =
c · (K + 1). As K increases, this formula can lead to a decrease in the final embedding dimensionality, p.
Consequently, more information must be compressed into fewer dimensions, resulting in a loss of information
and a corresponding drop in accuracy. However, once K + 1 becomes a factor of pmax, the value of pK

increases again, restoring some of the lost accuracy.

For example, with pmax = 8, we obtain p0 = 6 and p1 = 8 for K = 0 and K = 1, but then p2 = 6 for
K = 2, before increasing again to p3 = 8. Beyond K ≥ 4, the formula sets c = cmin = 2, which is why the
curve for pmax = 8 converges with the curve for pmax = 4. A similar explanation applies to the curves for
pmax ∈ 16, 32, as shown in Figure 9d.

In Figure 9e, we observe the same effect for pmax ∈ {8, 16, 32} on Polblogs as we did for Enron. However,
we also notice a distinctly different behaviour: as K increases, the accuracy begins to drop for pmax ≥ 64.

This decline in accuracy is neither due to information loss from compression nor rank deficiency. As seen
in Figure 7e, the singular value spectrum for ACC on Polblogs with K = 10 does not exhibit any singular
value gaps. Instead, the drop in accuracy occurs because increasing K generates embedding features that
are disproportionately noisy.

We demonstrate this effect in Figure 9f. Similar to Figures 3c and 3d in the main paper, Figure 9f plots the
singular values of the embedding matrix against the average displacement along the corresponding principal
axis due to noise from graph alignment. As a reminded from the main paper, let Z(1) represent the embedding
matrix for graph G1, and Z(2) the embedding matrix for the noisy graph G2. Using the singular value
decomposition U , Σ, V ⊺ = Z(1), where V contains the principal axes for Z(1), the x-axis shows the singular
values Σi,i, and the y-axis shows the displacement δi = 1

n∥(Z
(1) −Z(2))V:,i∥2 along the ith principal axis.

For K = 2, we observe that the displacement δi is proportional to the singular values Σi,i, consistent with
our observations across the other four graph alignment datasets. However, for K = 6 and K = 10, this linear
correlation breaks down, and features with disproportionately large displacements emerge. This is seen as
the curvature of the point clouds in Figure 9f.

We further verify that these high-displacement features cause the accuracy drop by applying singular value
thresholding. The results for K = 12 and pmax = 512 are shown in Figure 9g. As can be seen, the alignment
accuracy improves dramatically, from 30% to 60%, once the dimensions with small singular values and high
displacements are removed.

We do not yet fully understand why the high-displacement dimensions appear in the Polblogs embeddings.
Looking at the graph statistics in Table 2a, two potential causes stand out: the large number of weakly
connected components and the high global clustering coefficient for Polblogs. However, we can rule out the
former, as we observe the same behaviour when running the graph alignment experiment on the largest
connected component of Polblogs. This leaves the high global clustering coefficient as the most likely cause.
Further research is needed to verify this hypothesis and to explore the underlying mechanisms that might
lead to the emergence of these high-displacement dimensions.

D.2 Node classification

Figure 10 illustrates the effect of K and pmax on ACC node classification accuracies, measured using a logistic
regression classifier. Regarding pmax, we observe a consistent increase in accuracy across all values of K.
This is expected, as higher embedding dimensionality allows the embeddings to capture more information,
facilitating better classification performance.

The effect of increasing the number of message-passing iterations K depends on the embedding dimensionality
pmax. When pmax is sufficiently large, classification accuracy rises and eventually plateaus for all four datasets.
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Figure 10: These figures the ACC node classification accuracy (y-axis) for various number of message-passing
iterations K (x-axis), and embedding dimensions pmax (hue and style).
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Figure 11: These figures show the SGCN (Wu et al., 2019) node classification accuracy (Figures 11a and
11b) and graph alignment accuracy (Figures 11c and 11d) on the y-axis, plotted against the number of
message-passing iterations K (x-axis). The legends indicate the number of SGCN embedding dimensions,
which are always equal to the number of input features d.

However, when pmax is too small, accuracy can decline as K increases. This effect is particularly notable for
the Roman Empire dataset, as seen in Figure 10c.

The drop in accuracy is due to the increased need for compression as K grows, meaning that less information
from each scale of the graph is retained. Specifically, when K = 0, the initial d features are compressed
into pmax embedding dimensions, but when K = 12, these features are compressed into only ⌊pmax/13⌋
dimensions. The loss of information due to this increased compression results in an accuracy decline for
datasets where local features (i.e., small K) are especially important for classification. The Roman Empire
dataset exemplifies this behaviour, where the information contained in X, AFX, and ABX is critical for
achieving high accuracy.

D.3 Over-smoothing in SGCN

To highlight the advantage of the concatenation update used by ACC, we provide results using SGCN (Wu
et al., 2019) in Figure 11. SGCN employs summation rather than concatenation to update its embeddings.
This results in a loss of information with each message-passing iteration, leading to over-smoothing (Li et al.,
2018; Chen et al., 2020).

This issue is particularly noticeable on the Roman Empire dataset, where the accuracy of SGCN drops
from 70% to 10% as K increases. In contrast, ACC’s accuracy remains stable as long as a sufficiently high
embedding dimension is used, as shown in Figure 10c.

Additionally, SGCN embeddings maintain a fixed dimension for all message-passing iterations, pK = d. This
limitation hampers graph alignment accuracy, as it prevents the integration of information from different
scales to form more distinct embeddings. Consequently, the alignment accuracy for SGCN is lower, as
evidenced in Figures 11c and 11d.
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E Analysis of node classification accuracy on the Squirrel dataset

In our node classification benchmark results using the gradient boosting classifier, as shown in Table 1, ACC
achieves an accuracy of 72% on the Squirrel dataset, whereas PCAPass achieves only 52%. In this section, we
explore the source of this discrepancy by analysing the Squirrel dataset and comparing the features generated
by message aggregation and embedding aggregation.

To identify the key features contributing to high classification accuracy on Squirrel, we perform a single
message-passing iteration to obtain three feature matrices: X ∈ Rn×d, AFX ∈ Rn×d, and ABX ∈ Rn×d.
We refer to these as feature groups.

By training a gradient boosting classifier on each feature group with an 80-20 training-test split, we find
the following test accuracies: 51% for X, 33% for AFX, and 84% for ABX. These results indicate that the
features in ABX are particularly crucial for achieving high classification accuracy on the Squirrel dataset.

Next, we investigate how well each feature group is preserved in the PCAPass and ACC embeddings. Ignoring
the column centring step of PCA, we can express the PCAPass embeddings after one message-passing
iteration as

Z = H(1) = [X, AFX, ABX]W = XWX + AFXWF + ABXWB, W =

WX

WF
WB

 , (6)

where W ∈ R3d×p is the projection matrix learned via PCA. We divide this matrix vertically into three sub-
matrices: WX ∈ Rd×p, WF ∈ Rd×p, and WB ∈ Rd×p. These matrices compress X, AFX, and ABX respec-
tively. By analysing these matrices, we can assess how much information from each feature group is preserved.

Specifically, for each of the p = 512 features, we compute the proportion of each feature group that contributes
to the embedding. Since each column in W has unit norm, these proportions can be calculated as follows:

wX =
d∑

i=1
(WX)2

i,: , wF =
d∑

i=1
(WF)2

i,: , wB =
d∑

i=1
(WB)2

i,: , (7)

where wX , wF, and wB denote the proportions of each feature group represented in the embeddings. Note
that wX + wF + wB = 1p, where 1p is a length-p vector of ones.

We can perform a similar analysis for ACC. In this case, the embeddings are given by Z = [M (0), M (1)],
where M (0) = XVX and

M (1) = [AFM (0), ABM (0)]V = AFXVXVF + ABXVXVB, V =
[
VF
VB

]
. (8)

Here, the matrices VX ∈ Rd×c, VXVF ∈ Rd×c, and VXVB ∈ Rd×c are used to compress the three feature
groups.

An important difference from PCAPass is that VX is computed separately via PCA from VF and VB, meaning
that VX forms an orthogonal basis by itself, i.e., V ⊺

XVX = Ic. Consequently, the column norms of VXVF are
equal to the column norms in VF, and similarly for VXVB and VB. This can be demonstrated by considering
the norm of the ith column in VXVF:

∥VXVFi,:∥2
2 = VF

⊺
i,:V

⊺
XVXVFi,: = VF

⊺
i,:IcVFi,: = ∥VFi,:∥2

2. (9)

Therefore, the ACC proportion vectors are

vX =
d∑

i=1

(
VX i,:

)2 = 1c, vF =
c∑

i=1

(
VFi,:

)2
, vB =

c∑
i=1

(
VBi,:

)2
, (10)

where vF + vB = 1c.
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Figure 12: Visualization of the projection matrices used in the first
message-passing iteration for PCAPass and ACC. Each column represents
an embedding dimension, while each row corresponds to one of three fea-
ture groups: the input features X, the forward aggregation features AFX,
and the backward aggregation features ABX. The colour indicates the
proportion of each feature group represented in each embedding dimen-
sion. These proportions are calculated using Equations 7 and 10.

Model p
(eff)
X p

(eff)
F p

(eff)
B

PCAPass 309 140 63
ACC 256 160 96

Table 4: The effective number of
embedding dimensions used per
feature group after one message-
passing iteration using ACC and
PCAPass. The effective dimen-
sions are calculated using Equa-
tions 11 and 12.

In Figure 12, we visualize the proportion vectors as heat maps. The heat maps on the left show the PCAPass
vectors, wX , wF, and wB, while the heat maps on the right display the ACC vectors, vF and vB. The colours
in the heat maps represent the proportion of information derived from each feature group. The bright colours
in the first two rows for PCAPass indicate that most of the information is captured from the features in
X and AFX. In contrast, ACC captures more information from ABX, as evidenced by the more uniform
colour distribution in its heat map.

We can further quantify this difference by computing the effective number of features extracted from each
feature group. We denote this as p

(eff)
∗ , where the star is either X, F, or B for each respective feature group.

These quantities are computed as the sum of each proportion vector:

p
(eff)
X =

p∑
k=1

wX k, p
(eff)
F =

p∑
k=1

wFk, p
(eff)
B =

p∑
k=1

wBk, (11)

for PCAPass, and

p
(eff)
X =

c∑
k=1

vX = 256, p
(eff)
F =

c∑
k=1

vFk, p
(eff)
B =

c∑
k=1

vBk, (12)

for ACC. Note that p
(eff)
X = c = 256 since ACC always includes c features per message-passing iteration.

The effective number of embedding dimensions is shown in Table 4. Compared to PCAPass, ACC effectively
uses 53 fewer features from X and 33 more features from ABX, which represents more than a 50% increase
compared to 63 for PCAPass. The inclusion of these class-informative features explains the higher accuracy
achieved by message aggregation compared to embedding aggregation on the Squirrel dataset.
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