
Published in Transactions on Machine Learning Research (05/2025)

Full-Rank Unsupervised Node Embeddings for Directed
Graphs via Message Aggregation

Ciwan Ceylan ciwan@kth.se
Division of Robotics, Perception and Learning
KTH Royal Institute of Technology

Kambiz Ghoorchian kambiz.ghoorchian@seb.com
SEB Group

Danica Kragic dani@kth.se
Division of Robotics, Perception and Learning
KTH Royal Institute of Technology

Reviewed on OpenReview: https: // openreview. net/ forum? id= 3ECbEZg2If

Abstract

Linear message-passing models have emerged as compelling alternatives to non-linear graph
neural networks for unsupervised node embedding learning, due to their scalability and
competitive performance on downstream tasks. However, we identify a fundamental flaw in
recently proposed linear models that combine embedding aggregation with concatenation
during each message-passing iteration: rank deficiency. A rank-deficient embedding matrix
contains column vectors which take arbitrary values, leading to ill-conditioning that degrades
downstream task accuracy, particularly in unsupervised tasks such as graph alignment. We
deduce that repeated embedding aggregation and concatenation introduces linearly depen-
dent features, causing rank deficiency. To address this, we propose ACC (Aggregate, Com-
press, Concatenate), a novel model that avoids redundant feature computation by applying
aggregation to the messages from the previous iteration, rather than the embeddings. Con-
sequently, ACC generates full-rank embeddings, significantly improving graph alignment
accuracy from 10% to 60% compared to rank-deficient embeddings, while also being faster
to compute. Additionally, ACC employs directed message-passing and achieves node clas-
sification accuracies comparable to state-of-the-art self-supervised graph neural networks
on directed graph benchmarks, while also being over 70 times faster on graphs with over
1 million edges.

1 Introduction

Node embeddings, which represent nodes in a graph as vectors, have proven highly effective for various
graph-related tasks, including node classification (Veličković et al., 2018; Rossi et al., 2023), node clustering
(Henderson et al., 2012; Donnat et al., 2018), and graph alignment (Heimann et al., 2018; Skitsas et al., 2023).
Consequently, there has been substantial research focused on developing algorithms to compute these em-
beddings, resulting in a wide array of models (Kipf & Welling, 2017; Wu et al., 2019; 2021; Rossi et al., 2023).

Given the scarcity of labelled data in real-world graphs (Veličković et al., 2019), our work focuses on
unsupervised embedding models. Unlike supervised models, which target specific downstream tasks, unsu-
pervised models aim to extract and compress the information inherent in the graph structure into individual
embedding vectors. The dominant approach for this extraction is message-passing (Gilmer et al., 2017).

In a message-passing algorithm, each node is initially assigned a feature vector, serving as its initial em-
bedding. These embeddings are iteratively refined by incorporating information from increasingly larger

1

https://openreview.net/forum?id=3ECbEZg2If

Published in Transactions on Machine Learning Research (05/2025)

PCAPass ACC

4

2

3

1
5

Graph

2

3

1

5

4

Initial
embeddings

Initial
messages

Messages

Compressed
messages

Embedding aggregation

2

3
 }5 }43

MessagesMessage aggregation

2

3
 }5 }43

2

3

1

5

4

EmbeddingsEmbeddings

Concatenate
embeddings

and messages

Concatenate
with previous

messages

PCA
compression

PCA
compression

Figure 1: Overview of directed message-passing in PCAPass (Sadowski et al., 2022) and our model, ACC.
Each vertically stacked rectangle represents a matrix row corresponding to a node in the graph (bottom-
left). The representations are colour-coded: blue for node embeddings, and orange and purple for messages.
Orange denotes aggregation following edge directions, while purple indicates reverse-direction aggregation.
Node 1, highlighted in green in the graph, is used to illustrate these aggregations. In PCAPass, messages
are concatenated with the embeddings from the previous iteration, creating a feedback loop that leads to
feature duplication and rank deficiency over multiple iterations. ACC avoids this issue through message
aggregation, where only the message matrices are propagated between iterations. The embedding matrix is
constructed by concatenating the messages outside the feedback loop.

neighbourhoods. Conceptually, each iteration consists of two steps: the aggregation step, where information
from a node’s neighbourhood is summarized into a message, and the update step, where these messages are
integrated into the existing embeddings.

When the aggregation and update steps consist of parameterized and non-linear functions, the message-
passing model is referred to as a Graph Neural Network (GNN) (Wu et al., 2021). While the parameterization
and non-linearity of GNNs make them highly expressive, these features also limit their scalability. Training
GNNs requires non-convex optimization, typically through gradient descent, to minimize a self-supervised
loss function. This training process involves hundreds or even thousands of training epochs, each consisting
of multiple message-passing iterations (Zhang et al., 2021; Thakoor et al., 2022; Hou et al., 2022; 2023).

In their seminal work, Wu et al. (2019) addressed the scalability challenge of GNNs by introducing a linear
message-passing model called SGCN. They demonstrated that SGCN could achieve accuracies comparable
to GNNs on popular node classification benchmarks while being significantly more scalable, requiring only a
single execution of the message-passing procedure. However, despite these advancements, SGCN encounters
a common issue in message-passing models: over-smoothing (Li et al., 2018; Chen et al., 2020a), where the
repeated summation of embeddings across iterations leads to a gradual loss of information.

Computing multi-scale embeddings, i.e., concatenating vectors that capture information from various neigh-
bourhood sizes, is a common method for mitigating information loss in unsupervised node embedding models
(Tang et al., 2015; Cao et al., 2015; Perozzi et al., 2017; Donnat et al., 2018; Rozemberczki et al., 2021). A re-
cent example of this approach is PCAPass (Sadowski et al., 2022). As shown on the left in Figure 1, PCAPass
aggregates node embeddings in each message-passing iteration to create new features, called messages, which
are then combined with the existing embeddings via horizontal concatenation. To prevent the embedding
dimensionality from doubling with each iteration, the concatenated matrix is compressed using PCA.

While the concatenation approach addresses over-smoothing, it introduces a new issue: rank deficiency
(Hansen, 1998, Ch. 1). A rank-deficient matrix is characterized by a cluster of singular values close to
zero, each corresponding to an arbitrary and non-informative feature column. This phenomenon affects the
PCAPass embedding matrix and degrades the quality of the embeddings. Unsupervised downstream tasks,
which rely on distances between embeddings, are particularly sensitive to this issue, raising concerns since
such tasks are well-suited for unsupervised node embedding models.

2

Published in Transactions on Machine Learning Research (05/2025)

We identify that the repeated embedding aggregation and concatenation in PCAPass leads to the creation of
linearly dependent features, which results in rank deficiency. To address this, we propose ACC1 (Aggregate,
Compress, Concatenate), a linear message-passing model designed to prevent rank deficiency while main-
taining scalability by generating embeddings in a single forward pass. As shown in Figure 1, ACC applies
aggregation and PCA compression to the message matrices from the previous iteration, rather than the em-
beddings, and constructs the embeddings via concatenation separately. This message aggregation approach
breaks the feedback loop present in PCAPass, and thereby avoids computing the redundant features that
cause rank deficiency.

In support of ACC, we demonstrate the rank deficiency issue present in PCAPass, focusing particularly on
its negative impact on unsupervised embedding-based graph alignment (Heimann et al., 2018). Although it
is technically possible to address the rank deficiency in PCAPass through singular value thresholding, this
approach is not only difficult due to numerical inaccuracies but also inefficient, as computation is used to
generate the redundant features in the first place. Consequently, ACC consistently achieves higher graph
alignment accuracies and computes embeddings faster than PCAPass.

We also demonstrate ACC’s effectiveness in learning node embeddings on directed graphs, an underexplored
challenge for unsupervised message-passing models that has only recently been addressed in the supervised
learning context (Rossi et al., 2023). Using standard directed graph node classification benchmarks without
hyperparameter tuning, we show that ACC achieves accuracies comparable to state-of-the-art self-supervised
GNNs. Notably, ACC is significantly faster, at least 70 times faster on the Arxiv Year dataset (Lim et al.,
2021) with GPU computations and 270 times faster on Snap Patents (Leskovec et al., 2005) with CPU.

2 Background: Node embeddings via message-passing and embedding aggregation

The message-passing framework (Gilmer et al., 2017) forms the basis for a wide range of graph models (Kipf &
Welling, 2017; Hamilton et al., 2017; Wu et al., 2019), including our model, ACC. In this section, we introduce
the principles and mathematical notation for node embedding learning through message-passing, followed
by a description of the embedding aggregation and concatenation approach used by Sadowski et al. (2022)
for PCAPass. Additionally, we outline directed message-passing for PCAPass, following Rossi et al. (2023).

Node embedding message-passing models take as input a graph G = (N,M) and a matrix X ∈ Rn×d, and
output an embedding matrix Z ∈ Rn×p. The graph G consists of n nodes N, with n = |N|, connected by
m edges M, where m = |M|. The matrix X contains initial feature vectors of length d for each node, and
the embedding matrix Z holds the resulting p-dimensional node embeddings. In this work, we assume a
transductive setting where G is fully observed during the computation of Z, which is common in unsupervised
node embedding models (Zhang et al., 2021; Thakoor et al., 2022; Hou et al., 2022; Sadowski et al., 2022).

The goal of message-passing is to gather graph structure information into the embeddings of each node. This
is achieved by iteratively updating each node embedding by incorporating information from the nodes’ respec-
tive neighbourhood, resulting in a sequence of progressively refined embedding matrices. We denote the em-
bedding matrix after k message-passing iterations as H(k) ∈ Rn×pk , where the embedding dimensionality pk

may vary across iterations. The final embeddings are obtained after K iterations, represented as Z = H(K).

Each message-passing iteration consists of two key steps: aggregation and update. In the aggregation step,
each node collects information from its immediate neighbours, aggregating these inputs into a new vector
called a message. We denote the matrix of all messages at iteration k as M (k). In the update step, each
node integrates the new information by combining its received message with its current embeddings. This
iterative process allows information to propagate through the graph, enabling each node to gather data from
increasingly distant nodes, effectively expanding its receptive field with each iteration.

We now describe the aggregation and update operations used by PCAPass in detail. Let A ∈ Rn×n represent
the graph’s adjacency matrix, where the element Ai,j indicates the presence of an edge from node j to node i.

1ACC model code: https://github.com/ciwanceylan/acc-mp.
Experiments code: https://github.com/ciwanceylan/acc-experiments-tmlr2024.

3

https://github.com/ciwanceylan/acc-mp
https://github.com/ciwanceylan/acc-experiments-tmlr2024

Published in Transactions on Machine Learning Research (05/2025)

The out-degree and in-degree of node i are denoted as degO(i) and degI(i), respectively:

Ai,j =
{

1 if (j, i) ∈M,

0 otherwise,
degO(i) =

n∑
k=1

Ak,i, degI(i) =
n∑

k=1
Ai,k. (1)

Additionally, let DO be a diagonal matrix containing the out-degrees, with DOi,i = degO(i), and similarly, let
DI be a diagonal matrix of in-degrees. The matrices D−1

O and D−1
I represent their respective inverses, with

elements corresponding to nodes with zero out-degree or in-degree set to 0.

For undirected graphs, the adjacency matrix is symmetric, A = A⊺, and each node has a single degree,
so D = DO = DI. The normalized adjacency matrix is then defined as AN = D−1A. Using the above
definitions, the embedding aggregation step used by PCAPass can be formulated as M (k) = ANH(k−1),
where the message for node i, M

(k)
i,: , is the average of its neighbours’ embeddings.

PCAPass updates its embeddings in each iteration using a concatenation and compression approach. This
update can be expressed as H(k) =

[
H(k−1) M (k)] V (k), where the brackets indicate horizontal concate-

nation. The matrix V (k) ∈ R2pk−1×pk is derived through PCA (Murphy, 2012, Ch. 12.2) and serves to
compress the embeddings. Compression is essential because, without it, the dimensionality of the embed-
ding space would double with each message-passing iteration, resulting in a final dimension of 2Kd. This
exponential growth would impose considerable memory and computational overhead, and could negatively
impact downstream tasks due to the curse of dimensionality.

Although Sadowski et al. (2022) originally formulated PCAPass for undirected graphs, it can be straight-
forwardly extended to directed graphs by following the approach of Rossi et al. (2023). In directed graphs,
each node has two distinct sets of neighbours: those connected by incoming edges and those connected by
outgoing edges. To capture the information from these distinct neighbourhoods, two separate aggregation
operators are employed: AF = D−1

I A and AB = D−1
O A⊺. Here, AF uses the adjacency matrix A, while AB

uses its transpose A⊺, corresponding to a graph where all edge directions are reversed. The forward operator
AF aggregates messages based on a node’s incoming edges and normalizes by in-degree, while the backward
operator AB aggregates based on outgoing edges and normalizes by out-degree.

With these operators, the directed aggregation step for PCAPass is defined as M
(k)
F = AFH(k−1) and

M
(k)
B = ABH(k−1). In the update step, both forward and backward messages are concatenated with the

previous embeddings and compressed: H(k) =
[
H(k−1) M

(k)
F M

(k)
B

]
V (k), with V (k) ∈ R3pk−1×pk .

3 Embedding aggregation and concatenation results in rank deficiency

As outlined above, PCAPass (Sadowski et al., 2022) leverages embedding aggregation, concatenation, and
compression to generate node embeddings. This approach aims to address the over-smoothing issue that
often plagues message-passing models (Li et al., 2018; Chen et al., 2020a). However, the repeated process
of embedding aggregation and concatenation introduces and retains redundant features in the embeddings.
This not only leads to inefficient computation but also results in rank deficiency, a condition where the
embedding matrix becomes ill-conditioned, adversely affecting the quality and usefulness of the embeddings.

3.1 Origin of rank deficiency

A matrix Z ∈ Rn×p is considered rank-deficient if it exhibits a cluster of small singular values, with a clear
gap between the large and small singular values (Hansen, 1998, Ch. 1.). This situation arises when the
columns of Z are not linearly independent, indicating the presence of redundant features.

To illustrate the relationship between redundant features and small singular values, consider a simple ex-
ample. Let X ∈ Rn×d be a full-rank matrix with the singular value decomposition (SVD) X = UΣV ⊺.
Here, U ∈ Rn×d and V ∈ Rd×d have orthogonal columns with unit norms, and Σ is a non-negative diagonal
matrix containing the singular values in descending order (Golub & Van Loan, 2013, Ch. 2.4).

4

Published in Transactions on Machine Learning Research (05/2025)

Now, define a matrix Z =
[
X X

]
∈ Rn×2d, where each column of X is duplicated, making the last d

columns in Z redundant. The SVD of Z can then be expressed as Z = UZΣZV ⊺
Z , where

UZ =
[
U ΥU

]
, ΣZ =

[√
2Σ 0
0 0

]
, V ⊺

Z = 1√
2

[
V ⊺ V ⊺

Υ⊺
V1

Υ⊺
V2

]
. (2)

Here, the block matrices ΥU ∈ Rn×d, ΥV1 ∈ Rd×d, and ΥV2 ∈ Rd×d are orthonormal and satisfy Υ⊺
U U = 0

and Υ⊺
V1

V = Υ⊺
V2

V = 0. We can verify this decomposition through matrix multiplication:

UZΣZV ⊺
Z =

[
U ΥU

] [√
2Σ 0
0 0

]
1√
2

[
V ⊺ V ⊺

Υ⊺
V1

Υ⊺
V2

]
=

[
UΣ 0

] [
V ⊺ V ⊺

Υ⊺
V1

Υ⊺
V2

]
=

[
UΣV ⊺ UΣV ⊺

]
. (3)

(See Appendix A for verification of the orthonormality of UZ and VZ .)

The expression for ΣZ in Equation 2 reveals two clusters of singular values: the d values contained in Σ
and d singular values equal to zero. Each of the zero singular values corresponds to a column in ΥU , which
we refer to as singular dimensions. These singular dimensions span the left null space of Z and do not
contain any information about X. All information about X is already encapsulated in U , Σ, and V , as
demonstrated by Equation 3. The columns of ΥU are only constrained by their orthogonality to the columns
in U , and their elements can otherwise be chosen arbitrarily. Similarly, ΥV1 and ΥV2 are only constrained
by their orthogonality to V .

Although the values of ΥU , ΥV1 , and ΥV2 are not uniquely defined, in practical applications, they are
determined by a combination of numerical inaccuracies and the arbitrary implementation choices of the
specific algorithm used to compute the SVD. Since they do not carry any meaningful information about X,
they can effectively be considered noise. Furthermore, numerical implementations of SVD will not produce
singular values that are exactly zero due to rounding errors, as reflected in the definition of rank deficiency.

3.2 Rank deficiency in PCAPass

Having established the connection between redundant features and rank deficiency, we now analyse the
message-passing mechanism in PCAPass, as described in Section 2, to show how redundant features con-
tribute to rank deficiency in its embeddings. For simplicity, we focus on undirected message-passing; however,
the results readily extend to directed graphs.

Let pk denote the dimension of the embeddings after compression in the kth iteration, with p0 = d, and
let W (k) ∈ R2pk−1×pk denote the compression matrix for iteration k. Then, the PCAPass message-passing
update step can be expressed as H(k) =

[
H(k−1) ANH(k−1)] W (k),with the first two iterations given by

H(1) =
[
X ANX

]
W (1),

H(2) =
[
H(1) ANH(1)] W (2).

(4)

By inserting H(1) into the expression for H(2), and factoring out W (1), we obtain the following result:

H(2) =
[
H(1) ANH(1)] W (2)

=
[[

X ANX
]

W (1) AN
[
X ANX

]
W (1)] W (2)

=
[
X ANX ANX A2

NX
] [

W (1) 0
0 W (1)

]
W (2)

= A
(2)
X Ŵ (2),

(5)

A
(2)
X =

[
X ANX ANX A2

NX
]
∈ Rn×4d, (6)

Ŵ (2) =
[
W (1) 0

0 W (1)

]
W (2) ∈ R4d×p2 . (7)

5

Published in Transactions on Machine Learning Research (05/2025)

We see that H(2) = A
(2)
X Ŵ (2), where A

(2)
X consists of four submatrices of aggregated node features. We can

express H(3) on the same block matrix form:

H(3) =
[
H(2) ANH(2)] W (3)

=
[
X ANX ANX A2

NX ANX A2
NX A2

NX A3
NX

] [
Ŵ (2) 0

0 Ŵ (2)

]
W (3)

= A
(3)
X Ŵ (3),

(8)

A
(3)
X =

[
X ANX ANX A2

NX ANX A2
NX A2

NX A3
NX

]
∈ Rn×8d, (9)

Ŵ (3) =
[
Ŵ (2) 0

0 Ŵ (2)

]
W (3) ∈ R8d×p3 . (10)

Continuing this pattern, we see that H(k) = A
(k)
X Ŵ (k), where A

(k)
X ∈ Rn×2kd and Ŵ (k) ∈ R2kd×pk .

Notice that the submatrix ANX is repeated twice in A
(2)
X and three times in A

(3)
X , where A2

NX also appears
three times. These redundant submatrices contribute to the rank deficiency of the PCAPass embeddings.
In fact, only one linearly independent submatrix is introduced in each message-passing iteration, specifically
Ak

N X in iteration k, implying that rank(A(k)
X) ≤ (k + 1)d. Consequently, we can obtain an upper bound on

the rank of H(k) by applying Sylvester’s inequality (Horn & Johnson, 2012, Ch. 0.4.5):

rank(H(k)) ≤ min(rank(A(k)
X), rank(Ŵ (k))) ≤ rank(A(k)

X) ≤ (k + 1)d. (11)

Thus, we have ρk ≥ pk−(k+1)d, with ρk being the number of singular values close to zero for H(k) ∈ Rn×pk .
This bound indicates that the PCAPass embeddings will be rank-deficient unless pk ≤ (k + 1)d. However,
note that setting pk = (k + 1)d does not guarantee full-rank embeddings, as additional sources of rank
deficiency may be present, such as the potential rank deficiency of X itself.

Having established the rank-deficiency of the PCAPass embeddings regardless of the specific compression
method used to compute each W (k), we now examine the PCA compression utilized by Sadowski et al.
(2022) in greater detail. Recall that PCA is typically and efficiently implemented through centring and
SVD (Murphy, 2012, Ch. 12.2.3). Therefore, if all singular dimensions are retained, the final PCAPass
embeddings can be expressed as Z =

[
UΣ ΥΣ≈0

]
Here, UΣ ∈ Rn×(k+1)d represents the informative part

of the embeddings, while ΥΣ≈0 ∈ Rn×ρk captures the singular dimensions, with elements in Σ≈0 being close
to zero.

Applying compression in each iteration has the potential to address the rank deficiency by removing
the singular dimensions Υ. However, the effectiveness of this approach depends on the specifics of the
PCA compression. Sadowski et al. (2022) implement a maximum embedding dimension, pmax, such that
pk = min(pmax, 2kd), where 2kd is the embedding dimension without compression for undirected message-
passing. This implies that the PCAPass embedding will remain rank-deficient in each iteration until
(k + 1)d ≥ pmax. Thus, using a fixed value for pmax does not ensure the removal of singular dimen-
sions. Instead, the number of retained dimensions would need to vary with each iteration k to guarantee
the elimination of all singular dimensions. This introduces additional algorithmic complexity, especially
since the bound on pk must be adapted for directed message-passing and for message-passing with multiple
aggregation operations (Jin et al., 2019; Corso et al., 2020).

An alternative approach is to apply a threshold to the singular values during compression, removing any
dimensions where Σi,i ≤ θΣ1,1, where Σ1,1 is the largest singular value and θ ∈ [0, 1] a relative tolerance.
However, setting θ either too low or too high can lead to a loss of accuracy in downstream tasks, see
Section 5.1.

Moreover, even if the singular dimensions are successfully eliminated, computational resources have still
been unnecessarily spent on computing the redundant features in the first place. Given that the number
of singular dimensions can grow rapidly, as suggested by the bound ρk ≥ (2k − k − 1)d, and that PCA
compression has quadratic time complexity with respect to the number of features (Golub & Van Loan,
2013, Ch. 2.4), the amount of unnecessary computation is substantial.

6

Published in Transactions on Machine Learning Research (05/2025)

A B C D E F

0 10
UMAP dim 1

0

5

10

UM
A

P
di

m
2

(a) Original, X

2.5 5.0 7.5
UMAP dim 1

2

4

6

8

UM
A

P
di

m
2

(b) X duplicated 1 time

2.5 5.0 7.5
UMAP dim 1

4

6

8

UM
A

P
di

m
2

(c) X duplicated 2 times

8 10 12
UMAP dim 1

4

6

8

UM
A

P
di

m
2

(d) X duplicated 4 times

Figure 2: The effect of increasing rank deficiency on cluster structures. Figure 2a shows UMAP projection of
X, comprising 200 data points from 6 classes originally sampled on the surface of a 6D sphere. Figures 2a to
2d illustrate the cluster structure deterioration as X is horizontally concatenated with itself and whitened.

3.3 The negative effects of rank-deficient embeddings on clustering

Rank-deficient or otherwise ill-conditioned embedding matrices can violate fundamental assumptions made
by downstream machine learning models, like the linear independence of features, and contribute to the
instability of numerical computations (Trefethen & Bau, 1997, Pt. 3). In supervised learning, the adverse
effects of rank deficiency are often mitigated through regularization techniques. For example, ridge regression
(Hoerl & Kennard, 1970) effectively addresses this issue. However, regularization and model selection become
much more challenging in unsupervised settings, where the absence of a guiding supervision signal complicates
the process (Ma et al., 2023). As a result, unsupervised tasks that rely on embedding distances, such as
clustering and graph alignment, are particularly vulnerable to the negative impacts of rank deficiency.

The rank-deficient embedding matrices produced by PCAPass are especially problematic when subjected to
common preprocessing operations like standardization (Aggarwal, 2015, Ch. 2.3.3) and whitening (Hyvärinen
et al., 2009). We illustrate this with a simple clustering example. We generate a matrix X ∈ R200×6,
consisting of 200 six-dimensional samples. The data is divided into six classes, each corresponding to a normal
distribution centred at one of six equidistant points. This setup ensures that samples from each Gaussian
blob are well-separated. We visualize this in Figure 2a using 2D UMAP projections (McInnes et al., 2018).

To simulate the introduction of redundant features, we concatenate X with itself, forming X̃ =
[
X X

]
.

Applying PCA-based whitening to X̃ yields the simulated embedding matrix Z =
√

n− 1
[
U Υ

]
. This

expression highlights the connection to PCAPass embeddings that have been standardized to unit variance.

Figure 2 visually demonstrates how cluster separability diminishes as the number of duplicate features
increases. This degradation in separability can also be quantified by running k-means clustering (Arthur &
Vassilvitskii, 2007). The average normalized mutual information (NMI) (Danon et al., 2005) over 10 seeds is
1.0 for the original data, indicating perfect separation of the classes. However, as X is duplicated, the NMI
decreases to 0.78, and then to 0.71 with two duplicates, and down to 0.47 with four duplicates.

Note that the information required to distinguish the clusters remains present in Z, and a regularized
supervised classifier could still achieve high classification accuracy. However, the relevant information has
been diluted by the singular dimensions, Υ, which significantly impairs the class’s clustering separability.

In this toy example, the negative effects of the singular dimensions can be mitigated by using
Z =

[
UΣ ΥΣ≈0

]
as input for clustering, which simulates not preprocessing the PCAPass embeddings.

However, in practice, preprocessing is often necessary for achieving high task accuracy. Embedding-based
graph alignment using structural input features is one such example.

3.4 The negative effects of rank-deficient embeddings on graph alignment

Graph alignment is the task of finding node correspondences between two graphs, G1 = (N,M1) and
G2 = (N,M2). We assume, for simplicity, that while the node set N is shared, while the edge sets differ.
When M2 is a subset or superset of M1, we refer to the missing or added edges as noise edges.

7

Published in Transactions on Machine Learning Research (05/2025)

−2.5 0.0 2.5−4

−2

0

2

4

(a) No whitening

−2.5 0.0 2.5−4

−2

0

2

4

(b) With whitening

10−3 102

Σi,i – singular value

10−8

10−5

10−2

δ i
–

di
sp

la
ce

m
en

t

(c) Arenas

10−2 103

Σi,i – singular value

10−8

10−5

10−2

δ i
–

di
sp

la
ce

m
en

t

(d) Enron

Figure 3: Visualization explaining the need for whitening in embedding-based graph alignment. In Figure 3a,
the goal is to match the blue plus with the blue circle. However, the Euclidean distance fails to account for
the data’s shape, causing the erroneous orange squares to appear closer. Whitening corrects this issue, as
shown in Figure 3b. The assumption in Figure 3a is that the direction of displacement aligns with the data’s
variation. Figures 3c and 3d provide empirical evidence of a strong correlation between the displacement
along axis i and the corresponding singular value, Σi,i, based on PCAPass embeddings.

Embedding-based graph alignment (Heimann et al., 2018) is a greedy approach where node embeddings are
used to match the nodes. Specifically, the nodes in G2 are matched to the nodes in G1 with the most similar
embeddings in terms of Euclidean distance, which can be computed efficiently using KD-trees (Bentley,
1975). When the graphs lack node attributes, structural node embeddings are used (Jin et al., 2021). These
embeddings can be generated by message-passing models where X consists of structural features such as
node degrees and local clustering coefficients (Fagiolo, 2007).

For this approach to be effective, the embeddings need to be whitened before matching. This is detrimental to
the alignment accuracy of PCAPass embeddings, since applying whitening removes the scaling of Σ≈0 from
the singular dimensions, allowing Υ to introduce noise into the distance computation. Consequently, the
PCAPass embeddings struggle to produce high graph alignment accuracies, as we demonstrate in Section 5.

Figure 3 provides a visual explanation for why whitening is necessary. The gray scatter points in Figure 3a
represent the embeddings for each node in G1, and the ellipse highlights variations along the principal axes
of the embedding matrix. The coloured points show a magnified version of the alignment process. The blue
circle represents an embedding vector in G1, and the blue plus represents the corresponding node in G2. The
orange squares represent embeddings for other nodes in G1.

As shown, both orange squares are closer to the blue plus than the blue circle in terms of Euclidean distance.
Thus, this node would be incorrectly matched. However, if the covariance of the data is considered in the

Algorithm 1: The ACC algorithm for a directed graph G
with node features X using K message-passing iterations,
desired dimensionality pmax, minimal message size cmin and
relative tolerance θ ∈ [0, 1].

1 def ACC(G, X, K, pmax, cmin = 2, θ = 10−8):
2 c = max (⌊pmax/(K + 1)⌋, cmin)
3 M (0) = PCA(X, c, θ)
4 H(0) = M (0)

5 for k in range(1, K + 1):
Compute aggregations in both direction.

6 M (k) =
[
AFM (k−1) ABM (k−1)]

7 M (k) ← PCA(M (k), c, θ)
Concatenate with existing embeddings.

8 H(k) =
[
H(k−1) M (k)]

9 return H(K)

Algorithm 2: PCA compression computed
via SVD as used for ACC. Here X ∈ Rn×p is
a real-valued matrix, c an integer s.t. c ≤ p,
and θ ∈ [0, 1] a relative tolerance.

1 def PCA(X, c, θ):
2 X ← centre_columns(X)
3 U , Σ, V ⊺ = SVD(X)

Find the index of the smallest
singular value which exceeds the
given tolerance relative to the
largest singular value Σ1,1.

4 kθ = max{j | Σj,j ≥ θΣ1,1}
Keep at most kθ dimensions.

5 k = min(c, kθ)
6 Xc = XV:,:k
7 return Xc

8

Published in Transactions on Machine Learning Research (05/2025)

distance calculation, the blue plus is closer to the blue circle, as indicated by the green ellipse. Whitening
spheres the data, equalizing the variance along each principal axis. Therefore, Euclidean distance provides
the correct matching in the whitened space, as shown in Figure 3b.

This explanation assumes that the direction of the embedding displacement, indicated by the black arrow
in Figure 3a, correlates with the data variation. Figures 3c and 3d provide empirical support for this
assumption. These figures show the singular values of the PCAPass embeddings for G1, denoted Z(1), on the
x-axes. The y-axes show the average embedding displacement along the corresponding principal axis, defined
as δi = 1

n∥(Z
(1) − Z(2))V:,i∥2, where V is a basis for the principal axes of Z(1). As seen, the correlation

between the directions of variation and displacement is strong, supporting our assumption.

In summary, the rank-deficient embeddings produced by PCAPass contain arbitrary column vectors that act
as noise for unsupervised downstream tasks such as clustering and graph alignment. This issue is particularly
problematic when normalizing preprocessing steps are required for optimal performance, as is the case with
whitening for graph alignment. Therefore, it is crucial to avoid rank-deficient node embeddings.

4 The ACC model and message aggregation

To address the issues of rank-deficient embeddings, we introduce the ACC, which stands for Aggregate,
Compress, and Concatenate. Performed in this order, these operations result in a message-passing approach
where the message matrices, rather than the embeddings, are passed between message-passing iterations.
We refer to this as message aggregation, and as we will demonstrate, it avoids computing the redundant
features that cause the rank deficiency observed in PCAPass. Furthermore, ACC is designed to work with
directed graphs, expanding its applicability and versatility.

The complete ACC algorithm is detailed in pseudocode in Algorithm 1. Initially, the feature matrix X is
compressed into a c-dimensional message matrix, M (0) ∈ Rn×c, using Principal Component Analysis (PCA)
(Murphy, 2012, Ch. 12.2). Once this initial compression is complete, the message-passing procedure begins.
The main distinguishing feature of ACC, as shown on Line 6 of Algorithm 1, is message aggregation. This
means that ACC applies aggregation operators directly to the message matrices from the previous iteration,
M (k) =

[
AFM (k−1) ABM (k−1)]. This approach is crucial for avoiding the creation of redundant features,

as seen in PCAPass when aggregating and concatenating embedding matrices in Equation 9.

The new message matrix M (k) is then compressed to c dimensions using PCA and concatenated with the em-
bedding matrix, H(k) =

[
H(k−1) M (k)]. Consequently, the final embedding matrix is a concatenation of

all message matrices, H(K) =
[
M (0) M (1) . . . M (K)], with a total embedding dimension of p = (K +1)c.

Typically, the value of c is chosen as the largest integer such that the total embedding dimension p does not
exceed a desired limit, (K + 1)c ≤ pmax. However, this condition would result in c = 0 if (K + 1) > pmax.
To prevent this, ACC enforces a minimal value for c, denoted as cmin, as specified on Line 2 of Algorithm 1.
By default, we set cmin = 2 to account for the two message-passing directions in directed graphs.

For undirected graphs, ACC is slightly modified on Line 6, as message-passing is conducted using only the
undirected matrix AN, M (k) = ANM (k−1). In this scenario, the compression steps on Line 7 is technically
unnecessary since M (k) is already c-dimensional. Nonetheless, for consistency across our experiments, we
always perform PCA.

To demonstrate that ACC avoids computing the redundant features seen for PCAPass in Equa-
tion 9, we write out the expression for the undirected ACC embeddings after K iterations:
H(K) =

[
XW (0), ANXW (1), . . . , AK

N XW (K)]. In this formulation, each W (k) ∈ Rd×c is a compres-
sion matrix derived from successive applications of PCA. Unlike PCAPass, the ACC embeddings exclude
the repeated submatrices found in Equation 9. Specifically, H(K) in ACC contains exactly one instance of
Ak

N X for each k ∈ {0, . . . , K}, representing the non-redundant information produced at each iteration.

We can further verify that the ACC embeddings are not rank-deficient by examining the number of singular
values close to zero, denoted as ρK , where K represents the number of message-passing iterations. To
compute ρK , we count the number of singular values for which Σii ≤ 10−6Σ11. Figure 4 illustrates ρK for

9

Published in Transactions on Machine Learning Research (05/2025)

0.0 2.5 5.0 7.5 10.0
K

0

100

101

102

103

ρ
K

ACC
PCAPass
(2K −K − 1)d

(a) Arenas, # Σi,i ≈ 0

0.0 2.5 5.0 7.5 10.0
K

101

102

103

p K

ACC
PCAPass
2Kd

(b) Arenas, dimensions

0.0 2.5 5.0 7.5 10.0
K

0

100

101

102

103

ρ
K

ACC
PCAPass

(c) Enron, # Σi,i ≈ 0

0.0 2.5 5.0 7.5 10.0
K

100

101

102

103

104

p K

ACC
PCAPass
3Kd

(d) Enron, dimensions

Figure 4: Figures 4a and 4c show the number of small singular values, ρK , as a function of the number of
message-passing iterations, K, for two graphs: Arenas and Enron. The dashed line in 4a represents the the-
oretical prediction for ρK discussed in Section 3.2. Figures 4b and 4d display the embedding dimensionality
pK . Both ACC and PCAPass use the maximum dimensionality pmax = 512, resulting in the curve cut-off.

both the ACC and PCAPass embeddings, along with the corresponding embedding dimensions pK , for two
graphs: Arenas, an undirected graph, and Enron, a directed graph. The initial number of features is d = 2 for
Arenas and d = 6 for Enron. In both cases, the maximum embedding dimensionality pmax = 512 is applied.

We observe that the number of small singular values remains at zero for all values of K for ACC, indicating
that its embeddings are full rank. In contrast, for PCAPass, ρK grows rapidly for both graphs until the
embedding dimensionality pK reaches the maximum value pmax. For Arenas, the growth of ρK closely follows
our predicted lower bound (2k− k− 1)d, as depicted by the dashed black curve in Figure 4a. For Enron, ρK

initially increases more rapidly than for Arenas, consistent with the fact that the dimensionality pK expands
more quickly for directed graphs due to the concatenation of forward and backward aggregations. This also
results in pmax being reached sooner, and as a consequence, the singular dimensions are replaced by non-
redundant features after K = 4, causing ρK to drop to zero. This analysis highlights the interaction between
the PCAPass rank deficiency, the number of message-passing iterations, and the maximum dimensionality
used for PCA compression.

While message aggregation effectively avoids computing the redundant features highlighted for PCAPass
in Equation 8, other sources of singular dimensions can still arise. For instance, singular dimensions can
be introduced if X itself is not full rank, or if the adjacency matrix contains eigenvalues close to zero. To
mitigate these issues, ACC employs a small threshold θ during the PCA compression to discard embedding
dimensions with small singular values, as outlined in Lines 4 to 6 of Algorithm 2.

However, singular dimensions can also emerge due to correlations across message-passing iterations. For
example, if X contains an eigenvector of AN, this would introduce a singular dimension in

[
X ANX

]
.

ACC cannot remove these correlations during message-passing because the messages from each iteration are
compressed independently. This further implies that the dimensions of the final ACC embeddings, Z, may
exhibit correlations, which could impact certain downstream tasks.

To address these concerns, decorrelation and removal of singular dimensions from H(K) after message-passing
could be beneficial. However, in our experiments, we have not incorporated these steps by default, treating
them instead as potential preprocessing steps for specific downstream tasks.

4.1 Time complexity, scalability, and the inductive learning setting

The time complexity of ACC is primarily determined by the message aggregation and PCA compression
steps (lines 3, 6, and 7 in Algorithm 1). For an input matrix of size n × p, PCA has complexity O(np2),
arising from both the complexity of SVD (Golub & Van Loan, 2013, Ch. 5.5.6) and the matrix multiplication
in Algorithm 2, line 6. Thus, line 3 has complexity O(nd2). The message aggregation step (line 6) involves
sparse-dense matrix multiplications with complexity O(mck), where ck denotes the dimension of the message
matrix M (k−1) from the previous iteration. The PCA compression step (line 7) has complexity O(nc2

k),
which also varies with iteration k. Using the bound ck ≤ pmax

K+1 from line 2, we derive the overall worst-case
complexity for K iterations as O

(
nd2 + K

K+1 mpmax + K
(K+1)2 np2

max

)
.

10

Published in Transactions on Machine Learning Research (05/2025)

ACC PCAPass ACC + whitening PCAPass + whitening

0 5 10
K

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

(a) Arenas

0 5 10
K

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

(b) PPI

0 5 10
K

0.00

0.25

0.50

0.75

Ac
cu

ra
cy

(c) Enron

0 5 10
K

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

(d) Polblogs

0 5 10
K

0.0

0.2

0.4

Ac
cu

ra
cy

(e) Magna

Figure 5: ACC and PCAPass for graph alignment with 15% noise edges. The x-axis shows the number of
message-passing iterations K. Markers and shaded areas represent the average and standard deviation over
5 seeds. Without whitening, both algorithms perform poorly. Whitening benefits ACC across all datasets,
with its accuracy reaching 60% on Arenas compared to 10% for PCAPass. Whitening only benefits PCAPass
when embeddings are not rank-deficient, as shown in Figure 4.

The linear dependence on n and m highlights ACC’s scalability. Furthermore, both message aggregation
and PCA compression benefit from parallelization and GPU acceleration, as supported by prevalent graph
learning libraries (Paszke et al., 2019; Fey & Lenssen, 2019). Importantly, ACC learns embeddings in a
single forward pass without gradient-based optimization. This is in contrast to self-supervised graph neural
networks, which typically require hundreds or thousands of training epochs (Hou et al., 2022), making ACC
a computationally efficient alternative.

PCAPass similarly features linear complexity in n and m. However, while ACC restricts message matrix
dimensionality with ck ≤ pmax

K+1 , the corresponding bound for PCAPass is ck ≤ pmax. Consequently, the worst-
case complexity for PCAPass over K iterations is O(Kmpmax + Knp2

max) which represents an increase by a
factor of K+1 in the term involving m, and by a factor of (K+1)2 in the term involving n, compared to ACC.

ACC is primarily designed for transductive learning, where the entire graph is available during training.
Given its efficiency, recomputation of embeddings upon graph updates remains straightforward. However,
ACC can also be adapted for inductive learning using a GraphSAGE-inspired approach (Hamilton et al.,
2017). Given a new node with known features and connections to existing nodes, its embedding can be
computed by aggregating messages from neighbors within a sampled subgraph.

The primary challenge for inductive learning with ACC is the PCA-based compression step, since the pro-
jection matrices V (k) are derived from the original training graph. One practical solution is to project
new message matrices M (k) onto the previously computed PCA bases, ensuring consistency with existing
embeddings. Additionally, incremental PCA methods could be employed to dynamically update the bases
without full recomputation (Balsubramani et al., 2013; Yu et al., 2017).

Both subgraph sampling and incremental PCA introduce potential sources of noise, necessitating careful
empirical evaluation. Given ACC’s computational efficiency, inductive extensions are primarily relevant for
very large graphs, and we thus leave a detailed empirical investigation of such extensions to future work.

5 Experiments

In this section, we empirically demonstrate the superior graph alignment accuracy of the ACC model com-
pared to PCAPass, highlighting the negative impact of rank deficiency. Additionally, we compare ACC
to state-of-the-art self-supervised graph neural networks (SSGNNs) across five standard node classification
benchmarks for directed graphs (Rossi et al., 2023). Our results show that ACC is over 70 times faster on the
largest datasets while achieving better accuracy with default hyperparameters compared to the SSGNNs.

5.1 Graph alignment: ACC vs. PCAPass

To evaluate alignment accuracy, we adopt the established experimental protocol from Heimann et al. (2018).
Specifically, we generate a second graph G2 from a reference graph G1 by permuting node indices and removing
15% of the edges. We conduct experiments using four datasets: Arenas, PPI, Enron, and Polblogs. Arenas

11

Published in Transactions on Machine Learning Research (05/2025)

and PPI are widely used undirected benchmark graphs (Heimann et al., 2018; Jin et al., 2021; Skitsas et al.,
2023), while Enron and Polblogs provide examples of directed graphs.

Additionally, we evaluate performance on the real-world Magna dataset (Saraph & Milenković, 2014), where
the perturbed graph G2 contains 15% more edges than G1. These noisy edges were selected by Saraph &
Milenković (2014) based on observed node interaction probabilities. Real-world datasets like Magna are rare
due to the complexity inherent to the graph alignment problem. Detailed dataset statistics are provided in
Appendix C.1.

For both ACC and PCAPass, we set the maximum embedding dimension to pmax = 512 and use node
structural features as input, X ∈ Rn×d. For undirected graphs, the input features are the node degree and
local clustering coefficient (d = 2). For directed graphs, we expand the feature set to include the in-degree,
out-degree, and the four local clustering coefficients—out, in, cycle, and middleman—as defined by Fagiolo
(2007), resulting in d = 6.

We first compare ACC and PCAPass across varying numbers of message-passing iterations K, with and
without whitening, as shown in Figure 5. Without whitening, both ACC and PCAPass yield low accuracy,
as expected given the necessity of whitening for embedding-based graph alignment (see discussion in
Section 3.4). With whitening, ACC accuracy markedly improves on all datasets, reaching 60% on Arenas
and 75% on Enron. In contrast, PCAPass accuracy remains low for undirected graphs, peaking at only
10% on Arenas. For directed graphs, accuracy initially increases, then deteriorates, and eventually recovers.
This fluctuation is closely linked to the presence of singular dimensions in PCAPass embeddings. As shown
in Figure 4c, accuracy drops when the number of small singular values is high, particularly for K ∈ {2, 3, 4}.
These results highlight the detrimental impact of rank deficiency on alignment accuracy.

We next investigate how singular value thresholding can mitigate rank deficiency in PCAPass. Specifically,
we apply a threshold θ, removing embedding dimensions with singular values Σi,i ≤ θΣ1,1, where Σ1,1 is the
largest singular value. We use K = 10 for undirected graphs and K = 4 for directed graphs, settings where
PCAPass exhibits maximum rank deficiency.

The results are shown in Figure 6, with the threshold θ varying along the x-axis. We observe that selecting
an appropriate θ effectively addresses rank deficiency, allowing PCAPass to achieve accuracies comparable to
ACC. However, choosing θ requires careful consideration: it must be high enough to remove singular dimen-
sions but not so high as to eliminate important information. The optimal range for θ depends on numerical
precision and dataset characteristics; for Magna, only θ ∈ [10−6, 10−5] yields accuracies matching ACC.

Moreover, ACC consistently outperforms PCAPass in terms of computational speed by avoiding the com-
putation of redundant features. As illustrated in Figures 6c and 6d, this speed advantage is substantial. On
the Magna dataset, for instance, ACC is approximately 80% faster than PCAPass, with runtimes around 55
ms compared to 100 ms for PCAPass.

Finally, we compare ACC’s graph alignment accuracy against three state-of-the-art graph alignment methods:
S-GWL (Xu et al., 2019), CONE (Chen et al., 2020b), and FUGAL (Bommakanti et al., 2024). Here, ACC
is significantly more efficient—approximately 100 times faster than CONE and FUGAL, and over 1,000
times faster than S-GWL. Additionally, ACC achieves the highest accuracy on the Enron dataset due to its
effectiveness on dense, directed graphs, a scenario challenging for other methods. Detailed results of this
comparison are provided in Appendix E.

5.2 Node classification: ACC vs self-supervised graph neural networks

To compare ACC with self-supervised graph neural networks (SSGNNs), we evaluate node classification accu-
racy on five standard directed graph datasets from the literature (Pei et al., 2020; Lim et al., 2021; Platonov
et al., 2023; Rossi et al., 2023). Dataset details are provided in Appendix C.1. For initial node features X,
we use both the dataset-provided node features and the structural features used for graph alignment.

We train a gradient boosting classifier on top of the embeddings, following the setup of Sadowski et al.
(2022). Specifically, we employ Scikit-learn’s implementation of LightGBM (Ke et al., 2017) with default

12

Published in Transactions on Machine Learning Research (05/2025)

0 10−8 10−6 10−4 10−2 100

Relative tolerance, θ

0.0

0.1

0.2

0.3

0.4
Ac

cu
ra

cy

ACC
PCAPass

(a) Magna, accuracy

0 10−8 10−6 10−4 10−2 100

Relative tolerance, θ

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

ACC
PCAPass

(b) Enron, accuracy

0 10−8 10−6 10−4 10−2 100

Relative tolerance, θ

0.1

0.2

0.3

0.4

0.5

Ru
n

tim
e

(s)

ACC
PCAPass

(c) Magna, run time

0 10−8 10−6 10−4 10−2 100

Relative tolerance, θ

0.6

0.7

0.8

Ru
n

tim
e

(s)

ACC
PCAPass

(d) Enron, run time

Figure 6: ACC and PCAPass for graph alignment with 15% noise edges, K = 10 for Magna, and K = 4
for Enron. The x-axes show the relative tolerance θ used to remove dimensions with small singular values.
Figures 6a and 6b show accuracy on the y-axis, while 6c and 6d show run time. Markers and shaded areas in-
dicate the average and standard deviation over 5 seeds. ACC achieves equal or superior accuracy for all θ, and
retains its accuracy for θ = 0, as its embeddings are full rank. ACC is also consistently faster than PCAPass.

hyperparameters. To ensure robustness, we perform three repeats of 5-fold cross-validation with five different
random seeds, reporting mean and standard deviation statistics for the classification accuracy.

All models are executed in a Google Cloud g2-standard-32 environment with one Nvidia L4 24GB GPU, 32
vCPUs @ 2.20GHz, and 128 GB of memory. Reported run times are averages over the five random seeds.

We adapt all baseline models to use directed message-passing following the approach outlined by Rossi et al.
(2023), except for MVGRL (Hassani & Khasahmadi, 2020) and GREET (Liu et al., 2023), which feature
non-standard architectures. Additionally, we introduce BGRL-GS and GraphMAEv2-GS by replacing the
default GNNs in BGRL (Thakoor et al., 2022) and GraphMAEv2 (Hou et al., 2023) with the GraphSAGE
model (Hamilton et al., 2017). SGCN and PCAPass are also included in our comparisons. For all models,
including ACC, we use K = 2 message-passing iterations and p = 512 embedding dimensions, both of
which are commonly used values in the literature (Hamilton et al., 2017; Veličković et al., 2018; Zhang
et al., 2021; Thakoor et al., 2022; Hou et al., 2022). We use default values for optimizer and loss function
hyperparameters. In the Appendix H, we provide a discussion on hyperparameter tuning of unsupervised
learning models, as well as an analysis of huperparameter tuning results for the number of training epochs
and embedding dimmensions for the SSGNNs.

Table 1 displays the accuracies and run times for all models and datasets. ACC stands out with the highest
accuracy across all datasets. Moreover, these results demonstrate ACC’s superior scalability compared to
SSGNNs. On the Arxiv Year dataset, with 1 milion edges, ACC is over 70 times faster than CCA-SSG,
the fastest SSGNN. Moreover, whereas most SSGNNs take a full day or more to run on Snap Patents, the
largest dataset with 14 million edges, ACC requires only 27 seconds.

The linear model SGCN is the only baseline faster than ACC. However, SGCN suffers from over-smoothing,
leading to ACC’s substantial accuracy advantage on the Roman Empire dataset. This underscores how
ACC’s concatenation approach mitigates over-smoothing. Further results are available in the Appendix D.

Additionally, we observe a significant accuracy discrepancy between ACC and PCAPass on the Squirrel
dataset, which cannot be attributed to the PCAPass rank deficiency. Our detailed analysis, available in
Appendix F, highlights another benefit of ACC’s message aggregation. Unlike PCAPass, which compresses
its full embeddings in each iteration and may discard informative but low-variance features, ACC compresses
features separately at each iteration, preserving information more evenly. Consequently, the ACC embeddings
retains more information than PCAPass from the class-informative but low-variance features provided by
ABX in the Squirrel dataset, resulting in higher accuracy.

6 Rank deficiency in SSGNNs: Beyond the linear setting

As demonstrated by our theoretical analysis in Section 3 and experimental results in Section 5, the embedding
concatenation approach of PCAPass leads to rank deficiency, negatively impacting embedding quality. A
natural question is whether similar issues affect self-supervised graph neural networks (SSGNNs), and if so,
whether ACC’s message aggregation approach could mitigate them.

13

Published in Transactions on Machine Learning Research (05/2025)

Table 1: Gradient boosting node classification results. The top 3 accuracies are highlighted in bold. Snap
Patents results were gathered using CPU only due to GPU memory limits. OOM abbreviates out of memory.

Model Chameleon Squirrel Roman Empire Arxiv Year Snap-Patents
Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy Time

No model, X 64.6 ± 2.3 0ms 52.1 ± 1.4 0ms 70.4 ± 0.7 0ms 44.7 ± 0.2 0ms 56.1 ± 0.1 0ms

GAE1 62.2 ± 2.2 11s 44.8 ± 1.5 1m 4s 53.4 ± 3.1 16s 42.3 ± 0.3 7m 34s 51.9 ± 0.1 3h 15m
DGI2 61.5 ± 2.3 14s 44.2 ± 1.6 1m 40s 73.4 ± 0.9 4m 2s 47.1 ± 0.2 5h Timeout ≥24h
MVGRL3 66.3 ± 2.2 26m 44s 46.4 ± 1.5 26m 32s 64.3 ± 1.0 39m 13s OOM ≥128 GB OOM ≥128 GB
BGRL4 66.1 ± 2.2 7m 49s 46.7 ± 1.3 31m 45s 76.0 ± 0.8 25m 24s 46.6 ± 0.3 4h 52m Timeout ≥24h
BGRL-GS4 65.3 ± 2.2 8m 31s 44.8 ± 1.5 33m 21s 74.4 ± 0.7 21m 52s 43.7 ± 0.2 3h 8m Timeout ≥24h
CCA-SSG5 71.0 ± 2.1 4s 59.9 ± 1.2 7s 63.7 ± 0.7 10s 48.4 ± 0.2 1m 11s 56.1 ± 0.0 1h 40m
GraphMAE6 68.9 ± 2.0 27s 56.9 ± 1.8 59s 53.9 ± 1.0 1m 8s 44.2 ± 0.3 8m 55s 45.6 ± 0.1 16h
GraphMAEv27 69.6 ± 1.9 36s 51.2 ± 2.5 1m 14s 53.5 ± 0.9 1m 46s 44.3 ± 0.3 14m 53s 44.0 ± 0.0 23h
GraphMAEv2-GS7 74.1 ± 2.3 29s 57.0 ± 1.4 1m 6s 80.0 ± 0.7 1m 35s 46.3 ± 0.3 10m 46s 53.8 ± 0.1 18h
GREET8 61.4 ± 2.2 1m 25s 44.2 ± 1.6 6m 45s 80.1 ± 0.5 1h 56m OOM ≥128 GB OOM ≥128 GB
SPGCL9 66.3 ± 2.2 16s 45.8 ± 1.5 1m 23s 73.6 ± 0.8 55s 46.4 ± 0.2 52m 6s OOM ≥128 GB

SGCN10 74.7 ± 1.8 374ms 68.3 ± 1.4 723ms 45.4 ± 0.8 393ms 45.0 ± 0.2 1s 50.2 ± 0.1 26s
PCAPass11 71.7 ± 2.2 2s 51.5 ± 1.3 22s 73.0 ± 0.7 852ms 46.3 ± 0.2 2s 61.2 ± 0.1 2m 20s

ACC 76.6 ± 1.9 1s 71.5 ± 1.3 1s 81.5 ± 0.6 432ms 49.4 ± 0.3 1s 62.6 ± 0.1 27s
1 Kipf & Welling (2017) 2 Veličković et al. (2019) 3 Hassani & Khasahmadi (2020) 4 Thakoor et al. (2022)
5 Zhang et al. (2021) 6 Hou et al. (2022) 7 Hou et al. (2023) 8 Liu et al. (2023) 9 Wang et al. (2023)
10 Wu et al. (2019) 11 Sadowski et al. (2022)

The two main differences between SSGNNs and the PCAPass/ACC models are:

1. GNNs employ non-linear activation functions during message-passing.

2. Self-supervised GNNs require optimization of a loss function using non-convex methods due to these
non-linearities.

These differences introduce challenges for both theoretical and empirical analyses. First, the non-linearities in
GNNs invalidate the rank-deficiency analysis presented in Section 3. Consequently, more sophisticated math-
ematical frameworks are necessary, similar to ongoing theoretical investigations in deep learning (Roberts
et al., 2022). Such advanced analyses are beyond the scope of this paper and constitute important directions
for future research.

Empirical analysis is complicated by the diversity of existing SSGNN architectures, which differ significantly
in terms of message-passing schemes (e.g., GCNs (Kipf & Welling, 2017) add self-loops, whereas GATs
(Veličković et al., 2018) utilize attention mechanisms) and loss functions (Veličković et al., 2019; Zhang
et al., 2021; Thakoor et al., 2022; Hou et al., 2022). Additionally, SSGNNs contain many hyperparameters
influencing embedding quality, related to both architecture and optimization.

A comprehensive empirical study of rank deficiency and embedding quality across various SSGNN setups
would therefore be extensive and is beyond this paper’s scope. Nonetheless, we perform a small-scale analysis
of SSGNN versions of PCAPass and ACC in Appendix G, summarized here for completeness.

Specifically, we convert PCAPass into an SSGNN model similar to GraphSAGE (Hamilton et al., 2017) by
using the message-passing update:

H(k) = σ
([

H(k−1) M
(k)
F M

(k)
B

]
W (k)

)
, (12)

where σ is the PReLU activation function (He et al., 2015), W (k) ∈ R3pk−1×pk are learnable weight matrices,
and dimensions are set as p0 = d and pk = pmax for k ≥ 1. The message matrices M

(k)
F and M

(k)
B are

computed as in Section 2. We refer to this model as PCAPass-GNN.

For the corresponding ACC-GNN model, we modify lines 3 and 6–7 in Algorithm 1 as follows:

M (0) = σ
(

XW (0)
)

, M (k) = σ
([

AFM (k−1) ABM (k−1)] W (k)
)

, (13)

where W (0) ∈ Rd×c and W (k) ∈ R2c×c for k ≥ 1, with c = pmax/(K + 1), consistent with standard ACC.

14

Published in Transactions on Machine Learning Research (05/2025)

We train PCAPass-GNN and ACC-GNN using the GraphMAEv2 loss function (Hou et al., 2023), evaluating
performance at 0, 20, and 200 training epochs to observe changes induced by weight learning. We assess both
the embedding rank and the graph alignment accuracy across varying numbers of message-passing iterations,
using a fixed embedding dimensionality of pmax = 512. Full results are provided in Appendix G; key insights
are summarized below.

Most notably, we find that PCAPass-GNN embeddings do not exhibit rank deficiency, as evidenced by the
absence of significant gaps in their singular value spectra across all training epochs. This suggests that
the inclusion of activation functions mitigates the explicit rank collapse observed in the linear setting. In
terms of downstream performance, PCAPass-GNN shows substantial improvement over the original linear
PCAPass model in graph alignment tasks and even surpasses ACC on one dataset.

Despite this improvement, two critical issues remain. First, PCAPass-GNN’s alignment accuracy peaks
around K = 5, after which performance declines as K increases, suggesting a progressive loss of discriminative
information. This pattern mirrors the behaviour observed for linear PCAPass in Figure 5, and stands in
contrast to ACC-GNN, which, like ACC, maintains stable or plateauing accuracy across larger values of K.

Second, we observe that PCAPass-GNN achieves its highest alignment accuracy without training (0 epochs),
with performance deteriorating after 20 and 200 training epochs. This performance deterioration appear to
correlate with variability in the singular value spectra. Although the embeddings are not rank-deficient, we
find that the condition number, i.e., the ratio between the largest and smallest singular values, increases
significantly in many cases where alignment accuracy drops. This effect is particularly pronounced for
undirected graphs, after 200 epochs of training, and at high message-passing depths (e.g., K = 10).

In contrast, ACC-GNN does not exhibit such degradation, instead maintaining more stable condition num-
bers and accuracies across training epochs, albeit with higher variance compared to linear ACC. However,
these trends are not entirely consistent across all datasets and models, warranting further investigation.

From this exploratory analysis, we conclude that while PCAPass-GNN does not suffer from explicit rank defi-
ciency, its embedding quality and behaviour closely resemble those of the linear PCAPass model. Meanwhile,
ACC-GNN continues to mirror the robustness of linear ACC. This consistency suggests a deeper underlying
reason for the benefits of ACC’s message aggregation strategy—one that manifests as rank deficiency in the
linear case and as instability in the non-linear setting. We hypothesize that large fluctuations in singular val-
ues may be linked to the observed performance degradation in PCAPass-GNN. As previously noted, formal
theoretical analysis is needed to rigorously understand these effects, and this remains an important direction
for future research in unsupervised node embedding models.

7 Conclusion and future work

In this paper, we addressed the issue of rank-deficient node embeddings generated by linear message-passing
models, which not only lead to computational inefficiencies but also risk degrading downstream task perfor-
mance. To overcome this, we introduced ACC, a novel unsupervised node embedding model that leverages
message aggregation to avoid redundant feature computations, thereby ensuring full-rank embeddings.

Beyond our analysis of linear models, we also provided initial insights into rank instability in self-supervised
graph neural networks, pointing to the existence of deeper underlying mechanisms behind the observed
deficiencies. These findings motivate further theoretical and empirical investigation.

A promising direction for future work is to explore whether the layerwise PCA-based compression schemes
used in ACC and PCAPass can be reformulated as the optimization of a global loss function. Such a
formulation could deepen our theoretical understanding of these models and extend to a broader class of
unsupervised message-passing architectures, including self-supervised graph neural networks.

Moreover, ACC’s message aggregation strategy inherently ties each embedding feature to a specific hop
distance within the graph. Replacing PCA with a feature selection mechanism could further enhance inter-
pretability by explicitly linking each embedding dimension to a single input feature. This extension could
be particularly valuable for applications requiring transparency, such as anomaly detection.

15

Published in Transactions on Machine Learning Research (05/2025)

References
Lada A. Adamic and Natalie Glance. The Political Blogosphere and the 2004 U.S. Election: Divided They

Blog. In LinkKDD ’05, pp. 36–43, 2005. URL https://doi.org/10.1145/1134271.1134277.

Charu C. Aggarwal. Data Mining: The Textbook. Springer, first edition, 2015. URL https://doi.org/10.
1007/978-3-319-14142-8.

David Arthur and Sergei Vassilvitskii. K-means++: The Advantages of Careful Seeding. In SODA ’07, pp.
1027–1035, 2007. URL https://dl.acm.org/doi/10.5555/1283383.1283494.

Akshay Balsubramani, Sanjoy Dasgupta, and Yoav Freund. The fast convergence of incremental pca. In
NeurIPs ’13, volume 26, 2013. URL https://doi.org/10.48550/arXiv.1501.03796.

Jon Louis Bentley. Multidimensional Binary Search Trees Used for Associative Searching. Communications
of the ACM, 18(9):509–517, 1975. URL https://doi.org/10.1145/361002.361007.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag, 2006. URL https://link.springer.com/book/9780387310732.

Aditya Bommakanti, Harshith Reddy Vonteri, Konstantinos Skitsas, Sayan Ranu, Davide Mottin, and Pana-
giotis Karras. FUGAL: Feature-fortified Unrestricted Graph Alignment. In NeurIPS ’24, 2024. URL
https://openreview.net/forum?id=SdLOs1FR4h.

Bobby-Joe Breitkreutz, Chris Stark, Teresa Reguly, Lorrie Boucher, Ashton Breitkreutz, Michael Livstone,
Rose Oughtred, Daniel H. Lackner, Jürg Bähler, Valerie Wood, Kara Dolinski, and Mike Tyers. The
BioGRID Interaction Database: 2008 update. Nucleic Acids Research, 36(suppl_1):D637–D640, 2007.
URL https://doi.org/10.1093/nar/gkm1001.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global structural
information. In CIKM ’15, pp. 891–900, 2015. URL https://doi.org/10.1145/2806416.2806512.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and Relieving the Over-Smoothing
Problem for Graph Neural Networks from the Topological View. AAAI ’20, 34(04):3438–3445, 2020a. URL
https://doi.org/10.1609/aaai.v34i04.5747.

Xiyuan Chen, Mark Heimann, Fatemeh Vahedian, and Danai Koutra. CONE-Align: Consistent Network
Alignment with Proximity-Preserving Node Embedding. In CIKM ’20, pp. 1985–1988, 2020b. URL
https://doi.org/10.1145/3340531.3412136.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Velickovic. Principal Neighbourhood
Aggregation for Graph Nets. In NeurIPS’20, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/99cad265a1768cc2dd013f0e740300ae-Abstract.html.

Leon Danon, Albert Díaz-Guilera, Jordi Duch, and Alex Arenas. Comparing community structure iden-
tification. Journal of Statistical Mechanics: Theory and Experiment, 2005(09), 2005. URL https:
//dx.doi.org/10.1088/1742-5468/2005/09/P09008.

Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning Structural Node Embeddings
Via Diffusion Wavelets. In KDD’18, pp. 1320–1329, 2018. URL https://doi.org/10.1145/3219819.
3220025.

Giorgio Fagiolo. Clustering in complex directed networks. Physical Review E, 76(2), 2007. URL https:
//doi.org/10.1103/PhysRevE.76.026107.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019. URL https://doi.org/10.48550/
arXiv.1903.02428.

16

https://doi.org/10.1145/1134271.1134277
https://doi.org/10.1007/978-3-319-14142-8
https://doi.org/10.1007/978-3-319-14142-8
https://dl.acm.org/doi/10.5555/1283383.1283494
https://doi.org/10.48550/arXiv.1501.03796
https://doi.org/10.1145/361002.361007
https://link.springer.com/book/9780387310732
https://openreview.net/forum?id=SdLOs1FR4h
https://doi.org/10.1093/nar/gkm1001
https://doi.org/10.1145/2806416.2806512
https://doi.org/10.1609/aaai.v34i04.5747
https://doi.org/10.1145/3340531.3412136
https://proceedings.neurips.cc/paper/2020/hash/99cad265a1768cc2dd013f0e740300ae-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/99cad265a1768cc2dd013f0e740300ae-Abstract.html
https://dx.doi.org/10.1088/1742-5468/2005/09/P09008
https://dx.doi.org/10.1088/1742-5468/2005/09/P09008
https://doi.org/10.1145/3219819.3220025
https://doi.org/10.1145/3219819.3220025
https://doi.org/10.1103/PhysRevE.76.026107
https://doi.org/10.1103/PhysRevE.76.026107
https://doi.org/10.48550/arXiv.1903.02428
https://doi.org/10.48550/arXiv.1903.02428

Published in Transactions on Machine Learning Research (05/2025)

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural Message
Passing for Quantum Chemistry. In ICML ’17, pp. 1263–1272, 2017. URL https://proceedings.mlr.
press/v70/gilmer17a.html.

Gene H. Golub and Charles F. Van Loan. Matrix Computations. JHU Press, fourth edition, 2013. URL
https://epubs.siam.org/doi/abs/10.1137/1.9781421407944.

Roger Guimera, Leon Danon, Albert Díaz-Guilera, and Francesc Giraltand Alex Arenas. Self-similar
community structure in a network of human interactions. Physical Review E, 68:065103, 2003. URL
https://doi.org/10.1103/PhysRevE.68.065103.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on Large Graphs. In
NeurIPS’17, 2017. URL https://doi.org/10.48550/arXiv.1706.02216.

Per Christian Hansen. Rank-Deficient and Discrete Ill-Posed Problems. Society for Industrial and Applied
Mathematics, 1998. URL https://epubs.siam.org/doi/abs/10.1137/1.9780898719697.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive Multi-View Representation Learning on Graphs.
In ICML’20, pp. 4116–4126, 2020. URL https://proceedings.mlr.press/v119/hassani20a.html.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification. In ICCV ’15, pp. 1026–1034, 2015. URL https://doi.
org/10.1109/ICCV.2015.123.

Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. Regal: Representation Learning-Based
Graph Alignment. In CIKM’18, pp. 117–126, 2018. URL https://doi.org/10.1145/3269206.3271788.

Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato Basu, Leman Akoglu, Danai
Koutra, Christos Faloutsos, and Lei Li. RolX: structural role extraction & mining in large graphs. In
KDD’12, pp. 1231–1239, 2012. URL https://doi.org/10.1145/2339530.2339723.

Nicholas J. Higham and Awad H. Al-Mohy. Computing matrix functions. Acta Numerica, 19:159–208, 2010.
URL https://doi.org/10.1017/S0962492910000036.

Arthur E. Hoerl and Robert W. Kennard. Ridge Regression: Biased Estimation for Nonorthogonal Problems.
Technometrics, 12(1):55–67, 1970. URL http://www.jstor.org/stable/1267351.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 2 edition, 2012. URL
https://doi.org/10.1017/9781139020411.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang. GraphMAE:
Self-Supervised Masked Graph Autoencoders. In KDD’22, pp. 594–604, 2022. URL https://doi.org/
10.1145/3534678.3539321.

Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, and Jie Tang. GraphMAE2:
A Decoding-Enhanced Masked Self-Supervised Graph Learner. In WWW’23, pp. 737–746, 2023. URL
https://doi.org/10.1145/3543507.3583379.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs. In NeurIPS ’20, pp.
22118–22133, 2020. URL https://doi.org/10.48550/arXiv.2005.00687.

Aapo Hyvärinen, Jarmo Hurri, and Patrik O. Hoyer. Principal Components and Whitening, pp. 93–130.
Springer London, 2009. URL https://doi.org/10.1007/978-1-84882-491-1_5.

Di Jin, Ryan A. Rossi, Eunyee Koh, Sungchul Kim, Anup Rao, and Danai Koutra. Latent Network Sum-
marization: Bridging Network Embedding and Summarization. In KDD’19, pp. 987–997, 2019. URL
https://doi.org/10.1145/3292500.3330992.

17

https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.mlr.press/v70/gilmer17a.html
https://epubs.siam.org/doi/abs/10.1137/1.9781421407944
https://doi.org/10.1103/PhysRevE.68.065103
https://doi.org/10.48550/arXiv.1706.02216
https://epubs.siam.org/doi/abs/10.1137/1.9780898719697
https://proceedings.mlr.press/v119/hassani20a.html
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1145/3269206.3271788
https://doi.org/10.1145/2339530.2339723
https://doi.org/10.1017/S0962492910000036
http://www.jstor.org/stable/1267351
https://doi.org/10.1017/9781139020411
https://doi.org/10.1145/3534678.3539321
https://doi.org/10.1145/3534678.3539321
https://doi.org/10.1145/3543507.3583379
https://doi.org/10.48550/arXiv.2005.00687
https://doi.org/10.1007/978-1-84882-491-1_5
https://doi.org/10.1145/3292500.3330992

Published in Transactions on Machine Learning Research (05/2025)

Junchen Jin, Mark Heimann, Di Jin, and Danai Koutra. Toward Understanding and Evaluating Structural
Node Embeddings. ACM TKDD, 16(3), 2021. URL https://doi.org/10.1145/3481639.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In NeurIPS’17, pp. 3149–3157, 2017.
URL https://dl.acm.org/doi/10.5555/3294996.3295074.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks. In
ICLR ’17, 2017. URL https://openreview.net/pdf?id=SJU4ayYgl.

Bryan Klimt and Yiming Yang. The Enron Corpus: A New Dataset for Email Classification Research. In
Machine Learning: ECML 2004, pp. 217–226. Springer Berlin Heidelberg, 2004. URL https://doi.org/
10.1007/978-3-540-30115-8_22.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrinking
diameters and possible explanations. In KDD ’05, pp. 177–187, 2005. URL https://doi.org/10.1145/
1081870.1081893.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper Insights Into Graph Convolutional Networks for Semi-
Supervised Learning. In AAAI’18, 2018. URL https://doi.org/10.1609/aaai.v32i1.11604.

Derek Lim, Felix Matthew Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Prasad Bhalerao,
and Ser-Nam Lim. Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong
Simple Methods. In NeurIPS’21, 2021. URL https://doi.org/10.48550/arXiv.2110.14446.

Yixin Liu, Yizhen Zheng, Daokun Zhang, Vincent Lee, and Shirui Pan. Beyond Smoothing: Unsupervised
Graph Representation Learning with Edge Heterophily Discriminating. In AAAI’23, pp. 4516–4524, 2023.
URL https://doi.org/10.1609/aaai.v37i4.25573.

Martin Q. Ma, Yue Zhao, Xiaorong Zhang, and Leman Akoglu. The Need for Unsupervised Outlier Model Se-
lection: A Review and Evaluation of Internal Evaluation Strategies. ACM SIGKDD Explorations Newslet-
ter, 25(1):19–35, 2023. URL https://doi.org/10.1145/3606274.3606277.

Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approximation and Projection
for Dimension Reduction. ArXiv e-prints, 2018. URL https://doi.org/10.48550/arXiv.1802.03426.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT press, 2012. URL https:
//mitpress.mit.edu/9780262018029/.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In NeurIPs
’19, pp. 8024–8035, 2019. URL https://dl.acm.org./doi/10.5555/3454287.3455008.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-GCN: Geometric Graph
Convolutional Networks. In ICLR’20, 2020. URL https://openreview.net/forum?id=S1e2agrFvS.

Bryan Perozzi, Vivek Kulkarni, Haochen Chen, and Steven Skiena. Don’t walk, skip! online learning of
multi-scale network embeddings. In ASONAM ’17, pp. 258–265, 2017. URL https://doi.org/10.1145/
3110025.3110086.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A critical
look at evaluation of gnns under heterophily: Are we really making progress? In ICLR’23, 2023. URL
https://doi.org/10.48550/arXiv.2302.11640.

Daniel A. Roberts, Sho Yaida, and Boris Hanin. The Principles of Deep Learning Theory. Cambridge
University Press, 2022. URL https://deeplearningtheory.com.

18

https://doi.org/10.1145/3481639
https://dl.acm.org/doi/10.5555/3294996.3295074
https://openreview.net/pdf?id=SJU4ayYgl
https://doi.org/10.1007/978-3-540-30115-8_22
https://doi.org/10.1007/978-3-540-30115-8_22
https://doi.org/10.1145/1081870.1081893
https://doi.org/10.1145/1081870.1081893
https://doi.org/10.1609/aaai.v32i1.11604
https://doi.org/10.48550/arXiv.2110.14446
https://doi.org/10.1609/aaai.v37i4.25573
https://doi.org/10.1145/3606274.3606277
https://doi.org/10.48550/arXiv.1802.03426
https://mitpress.mit.edu/9780262018029/
https://mitpress.mit.edu/9780262018029/
https://dl.acm.org./doi/10.5555/3454287.3455008
https://openreview.net/forum?id=S1e2agrFvS
https://doi.org/10.1145/3110025.3110086
https://doi.org/10.1145/3110025.3110086
https://doi.org/10.48550/arXiv.2302.11640
https://deeplearningtheory.com

Published in Transactions on Machine Learning Research (05/2025)

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Günnemann, and
Michael M Bronstein. Edge Directionality Improves Learning on Heterophilic Graphs. In LoG ’23, 2023.
URL https://doi.org/10.48550/arXiv.2305.10498.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-Scale attributed node embedding. Journal of
Complex Networks, 9(2), 2021. URL https://doi.org/10.1093/comnet/cnab014.

Krzysztof Sadowski, Michał Szarmach, and Eddie Mattia. Dimensionality Reduction Meets Message Passing
for Graph Node Embeddings. ArXiv e-prints, 2022. URL https://doi.org/10.48550/arXiv.2202.
00408.

Vikram Saraph and Tijana Milenković. MAGNA: Maximizing Accuracy in Global Network Alignment.
Bioinformatics, 30(20):2931–2940, 2014. URL https://doi.org/10.1093/bioinformatics/btu409.

Konstantinos Skitsas, Karol Orłowski, Judith Hermanns, Davide Mottin, and Panagiotis Karras. Com-
prehensive Evaluation of Algorithms for Unrestricted Graph Alignment. In EDBT’23, 2023. URL
https://doi.org/10.48786/edbt.2023.21.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-Scale Information
Network Embedding. In WWW ’15, 2015. URL https://doi.org/10.1145/2736277.2741093.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L. Dyer, Remi Munos,
Petar Veličković, and Michal Valko. Large-Scale Representation Learning on Graphs via Bootstrapping.
In ICLR’22, 2022. URL https://doi.org/10.48550/arXiv.2102.06514.

Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. Society for Industrial and Applied Mathe-
matics, 1997. URL https://epubs.siam.org/doi/book/10.1137/1.9781611977165.

Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon Hjelm.
Deep Graph Infomax. In ICLR’19, 2019. URL https://openreview.net/forum?id=rklz9iAcKQ.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph Attention Networks. In ICLR ’18, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Haonan Wang, Jieyu Zhang, Qi Zhu, Wei Huang, Kenji Kawaguchi, and Xiaokui Xiao. Single-Pass Con-
trastive Learning Can Work for Both Homophilic and Heterophilic Graph. Transactions on Machine
Learning Research, 2023. URL https://openreview.net/forum?id=244KePn09i.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying
Graph Convolutional Networks. In ICML’19, pp. 6861–6871, 2019. URL https://doi.org/10.48550/
arXiv.1902.07153.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A Comprehensive
Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1):
4–24, 2021. URL https://doi.org/10.1109/TNNLS.2020.2978386.

Hongteng Xu, Dixin Luo, and Lawrence Carin. Scalable Gromov-Wasserstein Learning for Graph Partition-
ing and Matching. In NeurIPS ’19, 2019. URL https://openreview.net/forum?id=S1lMD4BgLB.

Wenjian Yu, Yu Gu, Jian Li, Shenghua Liu, and Yaohang Li. Single-Pass PCA of Large High-Dimensional
Data. In IJCAI ’17, pp. 3350–3356, 2017. URL https://doi.org/10.24963/ijcai.2017/468.

Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and S Yu Philip. From Canonical Correlation Analysis
to Self-supervised Graph Neural Networks. In NeurIPS’21, 2021. URL https://doi.org/10.48550/
arXiv.2106.12484.

19

https://doi.org/10.48550/arXiv.2305.10498
https://doi.org/10.1093/comnet/cnab014
https://doi.org/10.48550/arXiv.2202.00408
https://doi.org/10.48550/arXiv.2202.00408
https://doi.org/10.1093/bioinformatics/btu409
https://doi.org/10.48786/edbt.2023.21
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.48550/arXiv.2102.06514
https://epubs.siam.org/doi/book/10.1137/1.9781611977165
https://openreview.net/forum?id=rklz9iAcKQ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=244KePn09i
https://doi.org/10.48550/arXiv.1902.07153
https://doi.org/10.48550/arXiv.1902.07153
https://doi.org/10.1109/TNNLS.2020.2978386
https://openreview.net/forum?id=S1lMD4BgLB
https://doi.org/10.24963/ijcai.2017/468
https://doi.org/10.48550/arXiv.2106.12484
https://doi.org/10.48550/arXiv.2106.12484

Published in Transactions on Machine Learning Research (05/2025)

ACC (K = 4) PCAPass (K = 4) ACC (K = 10) PCAPass (K = 10)

0.0 0.5 1.0
i/pK

10−6

10−4

10−2

100

102

Σ
i,
i

(a) Arenas

0.0 0.5 1.0
i/pK

10−5

10−2

101

Σ
i,
i

(b) PPI

0.0 0.5 1.0
i/pK

10−5

10−2

101

Σ
i,
i

(c) Magna

0.0 0.5 1.0
i/pK

10−4

10−1

102

Σ
i,
i

(d) Enron

0.0 0.5 1.0
i/pK

10−5

10−2

101

Σ
i,
i

(e) Polblogs

Figure 7: The singular values spectrum for ACC and PCAPass on all graph alignment datasets. Spectrums
using both K = 4 and K = 10 message-passing iterations are shown. The y-axes show the singular values,
and the x-axes their index in descending order, normalized using the number of embedding dimensions pK .

A SVD of rank-deficient matrix

In Section 3.1, we stated the SVD of the matrix Z =
[
X X

]
∈ Rn×2d, as Z = UZΣZV ⊺

Z , where

UZ =
[
U ΥU

]
, ΣZ =

[√
2Σ 0
0 0

]
, V ⊺

Z = 1√
2

[
V ⊺ V ⊺

Υ⊺
V1

Υ⊺
V2

]
, (14)

and the block matrices ΥU ∈ Rn×d, ΥV1 ∈ Rd×d, and ΥV2 ∈ Rd×d each have orthogonal columns and satisfy
the conditions Υ⊺

U U = 0, Υ⊺
U ΥU = I, Υ⊺

V1
V = Υ⊺

V2
V = 0, and Υ⊺

V1
ΥV1 = Υ⊺

V2
ΥV2 = I.

Here, we verify the orthonormality of UZ and VZ via matrix multiplication:

U⊺
ZUZ =

[
U⊺

Υ⊺
U

] [
U ΥU

]
=

[
U⊺U U⊺ΥU

Υ⊺
U U Υ⊺

U ΥU

]
=

[
I 0
0 I

]
V ⊺

Z VZ = 1
2

[
V ⊺ V ⊺

Υ⊺
V1

Υ⊺
V2

] [
V ΥV1

V ΥV2

]
= 1

2

[
V ⊺V + V ⊺V V ⊺ΥV1 + V ⊺ΥV2

Υ⊺
V1

V + Υ⊺
V2

V Υ⊺
V1

ΥV1 + Υ⊺
V2

ΥV2

]
=

[
I 0
0 I

]
.

B Singular values of ACC and PCAPass

Figure 7 presents the singular value spectra for the ACC and PCAPass embedding matrices across all graph
alignment datasets. Both models use a maximum embedding dimension of pmax = 512. However, this does
not result in the same final embedding dimension, pK , for each model. To facilitate comparison, we normalize
the singular value index i (x-axis) by the embedding dimension.

For the undirected graphs (Arenas, PPI, and Magna), the singular value gap indicating rank deficiency is
clearly visible for PCAPass, with both K = 4 and K = 10 message-passing iterations. On the directed
graphs, this gap only appears for K = 4, consistent with the results in Figure 4c. In contrast, ACC shows
no such singular value gaps, further confirming that it produces full-rank embeddings.

20

Published in Transactions on Machine Learning Research (05/2025)

Table 2: Table 2a shows graph statistics for the graph alignment datasets. Specifically, it shows the number of
nodes and edges, the number of weakly and strongly connected components, the global clustering coefficient,
CG , and the average path length, ⟨lpath⟩. Table 2b shows basic information regarding the node classification
datasets: the number of nodes, edges and node features, and the number of node classes.

(a) Graph alignment datasets and statistics.

Dataset n m Dir. # CC # SCC CG ⟨lpath⟩
Arenas 1.1K 11K ✗ 1 – 0.17 3.6
PPI 3.9K 76K ✗ 35 – 0.09 3.1
PolBlogs 1.5K 19K ✓ 268 688 0.25 3.4
Enron 7.9K 142K ✓ 58 861 0.16 3.5
Magna 1K 17K ✗ 1 – 0.62 5.5

(b) Node classification datasets.

Dataset n m # Feat. # Cls.
Chameleon 2.3K 36K 2325 5
Squirrel 5.2K 217K 2089 5
Roman Empire 23K 33K 300 18
Arxiv Year 169K 1.2M 128 5
Snap patents 2.9M 14M 269 5

C Additional experiments information and results

C.1 Datasets

Table 2a provides statistics for the graph alignment datasets. Arenas (Guimera et al., 2003) is an undirected
email network, where each edge represents email communication between two students. Similar to Magna,
PPI (Breitkreutz et al., 2007) is a protein-protein interaction graph, with nodes representing proteins and
edges denoting interactions between them. Polblogs (Adamic & Glance, 2005) is a hyperlink graph of political
blogs, while Enron (Klimt & Yang, 2004) is an email communication network, where each node corresponds
to an email address. Specifically, we use a subgraph of the full Enron dataset for our experiments.

Table 2b summarizes the node classification datasets. These datasets were used in recent work by Rossi
et al. (2023) on directed message-passing for supervised graph neural networks.

The Chameleon and Squirrel datasets are both hyperlink networks, where each node represents a Wikipedia
article, and edges indicate hyperlinks between articles. Node features are binary variables indicating the
presence of specific nouns, while labels reflect the average monthly traffic for each webpage. Originally
proposed by Rozemberczki et al. (2021) for regression tasks, they were later adapted for node classification
by Pei et al. (2020).

The Roman Empire dataset, introduced by Platonov et al. (2023), is a word co-occurrence network based
on the Wikipedia page for the Roman Empire. Nodes correspond to words, and edges represent syntactic
dependencies between them, resulting in a graph that closely resembles a chain structure. The node labels
represent syntactic roles, while the features are word embeddings.

Arxiv Year and Snap Patents were introduced by Lim et al. (2021) to benchmark GNNs on large-scale
graphs. The Arxiv Year dataset is derived from the OGB Arxiv citation network (Hu et al., 2020), where
nodes represent papers and features are derived from their abstracts. Unlike OGB Arxiv, which uses subject
areas for labels, Arxiv Year assigns labels based on the publication year.

Snap Patents is a patent citation network, where nodes represent patents and edges indicate citations.
Originally studied by Leskovec et al. (2005) to investigate the evolution of citation networks over time, the
dataset used by Lim et al. (2021) assigns labels based on the year each patent was granted. Node features
are generated from patent metadata.

C.2 Additional graph alignment results

Figure 8 extends the results shown in Figure 6 from the main paper, now including the Arenas, PPI, and
Polblogs datasets. The figure presents graph alignment accuracies and run times across varying relative
tolerances θ for thresholding singular values.

The trends in accuracy and run time closely resemble those observed for Magna and Enron in Figure 6.
Specifically, PCAPass can match ACC’s accuracy within a certain range of θ values, but its accuracy sharply
drops to zero outside this range. In contrast, ACC maintains stable accuracy, only declining for very

21

Published in Transactions on Machine Learning Research (05/2025)

0 10−8 10−6 10−4 10−2 100

Relative tolerance, θ

0.0

0.2

0.4

0.6
Ac

cu
ra

cy

ACC
PCAPass

(a) Arenas, accuracy

0 10−8 10−6 10−4 10−2 100

Relative tolerance, θ

0.0

0.2

0.4

Ac
cu

ra
cy

ACC
PCAPass

(b) PPI, accuracy

0 10−8 10−6 10−4 10−2 100

Relative tolerance, θ

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

ACC
PCAPass

(c) Polblogs, accuracy

0 10−8 10−6 10−4 10−2 100

Relative tolerance, θ

0.4

0.5

0.6

0.7

Ru
n

tim
e

(s)

ACC
PCAPass

(d) Arenas, run time

0 10−8 10−6 10−4 10−2 100

Relative tolerance, θ

0.4

0.6

0.8
Ru

n
tim

e
(s)

ACC
PCAPass

(e) PPI, run time

0 10−8 10−6 10−4 10−2 100

Relative tolerance, θ

0.350

0.375

0.400

0.425

0.450

Ru
n

tim
e

(s)

ACC
PCAPass

(f) Polblogs, run time

Figure 8: ACC and PCAPass for graph alignment with 15% noise edges, K = 10 for Arenas and PPI, and
K = 4 for Polblogs. The x-axes show the relative tolerance θ applied to remove dimensions with small
singular values. Figures 8a to 8c show accuracy on the y-axis, while 8d to 8f show run time. Markers and
shaded areas indicate the average and standard deviation over 5 seeds.

high values of θ, which leads to excessive removal of embedding features. Additionally, ACC consistently
outperforms PCAPass in terms of run time.

C.3 Node classification baselines

Below, we list the baselines used in our node classification experiment, including references to the respective
model implementations and their licences. For models licensed under the MIT or Apache 2.0 licences, we
also release our directed extensions as part of this paper’s code repository. Additionally, we specify the
default number of epochs used for training, as this directly influences the reported model run times. For
other hyperparameter defaults, please refer to our code.

GAE (Kipf & Welling, 2017): https://pytorch-geometric.readthedocs.io/en/latest/generated/
torch_geometric.nn.models.GAE.html, MIT Licence, 200 epochs.

DGI (Veličković et al., 2019): https://github.com/PetarV-/DGI, MIT licence, 100 epochs.

MVGRL (Hassani & Khasahmadi, 2020): https://github.com/kavehhassani/mvgrl, No licence, 3000
epochs.

BGRL (Thakoor et al., 2022): https://github.com/nerdslab/bgrl, Apache Licence 2.0, 10000 epochs.

CCA-SSG (Zhang et al., 2021): https://github.com/hengruizhang98/CCA-SSG, Apache Licence 2.0, 100
epochs.

GraphMAE (Hou et al., 2022): https://github.com/THUDM/GraphMAE, MIT licence, 1000 epochs.

GraphMAEv2 (Hou et al., 2023): https://github.com/THUDM/GraphMAE2, MIT licence, 1000 epochs.

GREET (Liu et al., 2023): https://github.com/yixinliu233/GREET, MIT licence, 400 epochs.

SPGCL (Wang et al., 2023): https://github.com/haonan3/SPGCL, No licence, 500 epochs.

22

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.models.GAE.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.models.GAE.html
https://github.com/PetarV-/DGI
https://github.com/kavehhassani/mvgrl
https://github.com/nerdslab/bgrl
https://github.com/hengruizhang98/CCA-SSG
https://github.com/THUDM/GraphMAE
https://github.com/THUDM/GraphMAE2
https://github.com/yixinliu233/GREET
https://github.com/haonan3/SPGCL

Published in Transactions on Machine Learning Research (05/2025)

Table 3: Node classification results using a logistic regression classifier. OOM abbreviates out of memory. All
Snap Patents results were gathered using CPU only as the SSGNNs exceeded our GPU memory limit. The
top 3 accuracies for each dataset are highlighted in bold.

Model Chameleon Squirrel Roman Empire Arxiv Year Snap-Patents
Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy Time

No model, X 52.3 ± 2.2 0ms 35.3 ± 1.4 0ms 69.8 ± 0.7 0ms 43.4 ± 0.2 0ms 50.7 ± 0.1 0ms

GAE1 54.8 ± 2.6 11s 38.2 ± 1.9 1m 4s 66.1 ± 1.8 16s 43.2 ± 0.3 7m 34s 49.3 ± 0.1 3h 15m
DGI2 54.0 ± 2.8 14s 40.4 ± 1.7 1m 40s 76.5 ± 0.7 4m 2s 49.4 ± 0.3 5h Timeout ≥24h
MVGRL3 55.4 ± 3.0 26m 44s 40.0 ± 1.4 26m 32s 65.1 ± 0.9 39m 13s OOM ≥128 GB OOM ≥128 GB
BGRL4 55.9 ± 2.6 7m 49s 42.8 ± 1.5 31m 45s 79.0 ± 0.7 25m 24s 49.4 ± 0.3 4h 52m Timeout ≥24h
BGRL-GS4 58.6 ± 2.1 8m 31s 41.6 ± 1.7 33m 21s 78.9 ± 0.7 21m 52s 47.8 ± 0.3 3h 8m Timeout ≥24h
CCA-SSG5 59.5 ± 2.7 4s 41.6 ± 1.4 7s 70.0 ± 0.7 10s 50.9 ± 0.3 1m 11s 55.3 ± 0.1 1h 40m
GraphMAE6 65.3 ± 2.1 27s 43.5 ± 1.7 59s 55.7 ± 0.8 1m 8s 43.8 ± 0.3 8m 55s 44.1 ± 0.1 16h
GraphMAEv27 65.1 ± 2.2 36s 40.4 ± 2.1 1m 14s 55.0 ± 0.9 1m 46s 44.1 ± 0.3 14m 53s 42.7 ± 0.1 23h
GraphMAEv2-GS7 70.6 ± 2.3 29s 48.6 ± 1.6 1m 6s 80.2 ± 0.7 1m 35s 46.9 ± 0.3 10m 46s 54.7 ± 0.0 18h
GREET8 53.9 ± 2.3 1m 25s 37.1 ± 1.5 6m 45s 77.5 ± 0.6 1h 56m OOM ≥128 GB OOM ≥128 GB
SPGCL9 58.2 ± 2.3 16s 42.5 ± 1.5 1m 23s 76.2 ± 0.7 55s 48.2 ± 0.3 52m 6s OOM ≥128 GB

SGCN10 49.8 ± 2.7 374ms 35.3 ± 1.2 723ms 39.2 ± 0.7 393ms 43.2 ± 0.2 1s 42.3 ± 0.7 26s
PCAPass11 48.7 ± 2.1 2s 40.5 ± 1.3 22s 77.6 ± 0.7 852ms 49.3 ± 0.3 2s 54.5 ± 0.1 2m 20s

ACC 60.7 ± 2.5 1s 44.1 ± 1.4 1s 79.3 ± 0.6 432ms 49.4 ± 0.3 1s 56.6 ± 0.0 27s
1 Kipf & Welling (2017) 2 Veličković et al. (2019) 3 Hassani & Khasahmadi (2020) 4 Thakoor et al. (2022)
5 Zhang et al. (2021) 6 Hou et al. (2022) 7 Hou et al. (2023) 8 Liu et al. (2023) 9 Wang et al. (2023)
10 Wu et al. (2019) 11 Sadowski et al. (2022)

SGCN (Wu et al., 2019): https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_
geometric.nn.conv.SGConv.html, MIT licence.

PCAPass (Sadowski et al., 2022): The original PCAPass implementation is available at https://github.
com/krzysztof-daniell/PCAPass under the MIT License. However, we use our reimplementation for this
paper, available alongside ACC in our online code repository.

C.4 Node classification results using logistic regression

Table 3 presents the node classification test accuracies for each embedding model and dataset using a logistic
regression classifier. The experimental setup otherwise follows the description in Section 5.2. We observe that
the accuracies obtained with logistic regression are generally lower than those achieved using the gradient
boosting classifier in the main paper (Table 1). This is expected, as gradient boosting is a more expressive
and less biased model capable of capturing highly non-linear class boundaries.

Overall, ACC embeddings perform competitively against the SSGNNs also using the logistic regression
classifier, achieving the highest accuracy on Snap Patents, the second-highest on Arxiv Year and Roman
Empire, and ranking third on Squirrel and fourth on Chameleon.

On the Chameleon and Squirrel datasets, we observe a notable drop in ACC’s performance with logistic
regression compared to gradient boosting: from 76.6% to 60.7% on Chameleon, and from 71.5% to 44.1% on
Squirrel. A similar trend is seen for other linear embedding models like SGCN and PCAPass. This suggests
that a non-linear classification model is necessary to fully exploit the information in these embeddings.

In contrast, the performance gap is smaller for several SSGNNs. For instance, GraphMAEv2-GS sees only
a modest decline in accuracy from 74.1% to 70.6% on Chameleon. This indicates that the inherent non-
linearity of GNNs can compensate for the simplicity of logistic regression. However, the extent to which this
potential is realized depends on the specific GNN architecture and training, as many SSGNN models still
achieve lower accuracies than ACC with logistic regression.

23

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SGConv.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SGConv.html
https://github.com/krzysztof-daniell/PCAPass
https://github.com/krzysztof-daniell/PCAPass

Published in Transactions on Machine Learning Research (05/2025)

4 8 16 32 64 128 256 512

0 5 10
K

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

(a) Arenas

0 5 10
K

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

(b) PPI

0 5 10
K

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

(c) Magna

0 5 10
K

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(d) Enron

0 5 10
K

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

(e) Polblogs

10−1 102

Σi,i – singular value

10−4

10−3

10−2

10−1

100

δ i
–

di
sp

la
ce

m
en

t K = 2

K = 6

K = 12

(f) Polblogs, ACC, pmax = 512

0 10−8 10−6 10−4 10−2 100

Relative tolerance, θ

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

K = 12

(g) Polblogs, ACC, pmax = 512

Figure 9: Figures 9a to 9e present the ACC graph alignment accuracy (y-axis) for varying numbers of
message-passing iterations K (x-axis) and embedding dimensions pmax (indicated by hue and line style).
Figures 9f and 9g provide deeper insights into the results for the Polblogs dataset. Similar to Figure 3c,
Figure 9f plots the singular values of the embedding matrix (x-axis) against the average displacement along
the corresponding principal axis, δi (y-axis). For K = 6 and K = 12, the correlation between singular value
and displacement observed at K = 2 is disrupted, with some features exhibiting larger displacements than
expected based on their singular values. These features cause the accuracy drop shown in Figure 9e. Finally,
Figure 9g confirms that by removing the dimensions corresponding to these high-displacement, low-singular-
value features, the alignment accuracy can be restored.

D Effect of the number of message-passing iterations and embedding dimensions

In this section, we investigate how the quality of ACC embeddings is influenced by the two primary hyperpa-
rameters: the number of message-passing iterations, K, and the maximum embedding dimensionality, pmax.
To assess their impact, we replicate the graph alignment and node classification experiments, measuring the
accuracy of ACC embeddings across a grid of K and pmax values.

D.1 Graph Alignment

Figures 9a to 9e present the grid evaluation results for graph alignment, where the x-axes denote the number
of message-passing iterations, K. The hue and line style differentiate the pmax values.

The first key observation is that accuracy increases steadily with K for each undirected graph, eventually
plateauing. This illustrates ACC’s ability to preserve information across multiple message-passing iterations.

Secondly, for the undirected graphs, the value of pmax appears to have no significant effect. This is because
the initial number of features, d = 2, matches the minimum compression dimensionality, cmin = 2, for these
datasets. Therefore, regardless of the value of pmax, the resulting ACC embeddings will have dimensionality
pK = 2 · (K + 1).

24

Published in Transactions on Machine Learning Research (05/2025)

On the directed graphs, we observe different behaviour. Starting with Enron in Figure 9d, when pmax is
sufficiently high, the accuracy follows a similar pattern to the undirected graphs, increasing steadily before
levelling off. However, for pmax ∈ 8, 16, 32, a different trend emerges: the accuracy initially increases, but
then decreases, eventually aligning with the curve for pmax = 4.

This seemingly unusual behaviour stems from the formula used to determine the number of compression
dimensions, c = max (⌊pmax/(K + 1)⌋, cmin), which in turn defines the final embedding dimensionality, pK =
c · (K + 1). As K increases, this formula can lead to a decrease in the final embedding dimensionality, p.
Consequently, more information must be compressed into fewer dimensions, resulting in a loss of information
and a corresponding drop in accuracy. However, once K + 1 becomes a factor of pmax, the value of pK

increases again, restoring some of the lost accuracy.

For example, with pmax = 8, we obtain p0 = 6 and p1 = 8 for K = 0 and K = 1, but then p2 = 6 for
K = 2, before increasing again to p3 = 8. Beyond K ≥ 4, the formula sets c = cmin = 2, which is why the
curve for pmax = 8 converges with the curve for pmax = 4. A similar explanation applies to the curves for
pmax ∈ 16, 32, as shown in Figure 9d.

In Figure 9e, we observe the same effect for pmax ∈ {8, 16, 32} on Polblogs as we did for Enron. However,
we also notice a distinctly different behaviour: as K increases, the accuracy begins to drop for pmax ≥ 64.

This decline in accuracy is neither due to information loss from compression nor rank deficiency. As seen
in Figure 7e, the singular value spectrum for ACC on Polblogs with K = 10 does not exhibit any singular
value gaps. Instead, the drop in accuracy occurs because increasing K generates embedding features that
are disproportionately noisy.

We demonstrate this effect in Figure 9f. Similar to Figures 3c and 3d in the main paper, Figure 9f plots the
singular values of the embedding matrix against the average displacement along the corresponding principal
axis due to noise from graph alignment. As a reminded from the main paper, let Z(1) represent the embedding
matrix for graph G1, and Z(2) the embedding matrix for the noisy graph G2. Using the singular value
decomposition U , Σ, V ⊺ = Z(1), where V contains the principal axes for Z(1), the x-axis shows the singular
values Σi,i, and the y-axis shows the displacement δi = 1

n∥(Z
(1) −Z(2))V:,i∥2 along the ith principal axis.

For K = 2, we observe that the displacement δi is proportional to the singular values Σi,i, consistent with
our observations across the other four graph alignment datasets. However, for K = 6 and K = 10, this linear
correlation breaks down, and features with disproportionately large displacements emerge. This is seen as
the curvature of the point clouds in Figure 9f.

We further verify that these high-displacement features cause the accuracy drop by applying singular value
thresholding. The results for K = 12 and pmax = 512 are shown in Figure 9g. As can be seen, the alignment
accuracy improves dramatically, from 30% to 60%, once the dimensions with small singular values and high
displacements are removed.

We do not yet fully understand why the high-displacement dimensions appear in the Polblogs embeddings.
Looking at the graph statistics in Table 2a, two potential causes stand out: the large number of weakly
connected components and the high global clustering coefficient for Polblogs. However, we can rule out the
former, as we observe the same behaviour when running the graph alignment experiment on the largest
connected component of Polblogs. This leaves the high global clustering coefficient as the most likely cause.
Further research is needed to verify this hypothesis and to explore the underlying mechanisms that might
lead to the emergence of these high-displacement dimensions.

D.2 Node classification

Figure 10 illustrates the effect of K and pmax on ACC node classification accuracies, measured using a logistic
regression classifier. Regarding pmax, we observe a consistent increase in accuracy across all values of K.
This is expected, as higher embedding dimensionality allows the embeddings to capture more information,
facilitating better classification performance.

The effect of increasing the number of message-passing iterations K depends on the embedding dimensionality
pmax. When pmax is sufficiently large, classification accuracy rises and eventually plateaus for all four datasets.

25

Published in Transactions on Machine Learning Research (05/2025)

64 128 256 512 1024 2048

0 5 10
K

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

(a) Chameleon

0 5 10
K

0.3

0.4

0.5

Ac
cu

ra
cy

(b) Squirrel

0 5 10
K

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(c) Roman Empire

0 5 10
K

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

(d) Arxiv Year

Figure 10: These figures the ACC node classification accuracy (y-axis) for various number of message-passing
iterations K (x-axis), and embedding dimensions pmax (hue and style).

0 5 10
K

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

306

(a) Roman Empire

0 5 10
K

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

134

(b) Arxiv Year

0 5 10
K

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

2

(c) Magna

0 5 10
K

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

6

(d) Enron

Figure 11: These figures show the SGCN (Wu et al., 2019) node classification accuracy (Figures 11a and
11b) and graph alignment accuracy (Figures 11c and 11d) on the y-axis, plotted against the number of
message-passing iterations K (x-axis). The legends indicate the number of SGCN embedding dimensions,
which are always equal to the number of input features d.

However, when pmax is too small, accuracy can decline as K increases. This effect is particularly notable for
the Roman Empire dataset, as seen in Figure 10c.

The drop in accuracy is due to the increased need for compression as K grows, meaning that less information
from each scale of the graph is retained. Specifically, when K = 0, the initial d features are compressed
into pmax embedding dimensions, but when K = 12, these features are compressed into only ⌊pmax/13⌋
dimensions. The loss of information due to this increased compression results in an accuracy decline for
datasets where local features (i.e., small K) are especially important for classification. The Roman Empire
dataset exemplifies this behaviour, where the information contained in X, AFX, and ABX is critical for
achieving high accuracy.

D.3 Over-smoothing in SGCN

To highlight the advantage of the concatenation update used by ACC, we provide results using SGCN (Wu
et al., 2019) in Figure 11. SGCN employs summation rather than concatenation to update its embeddings.
This results in a loss of information with each message-passing iteration, leading to over-smoothing (Li et al.,
2018; Chen et al., 2020a).

This issue is particularly noticeable on the Roman Empire dataset, where the accuracy of SGCN drops
from 70% to 10% as K increases. In contrast, ACC’s accuracy remains stable as long as a sufficiently high
embedding dimension is used, as shown in Figure 10c.

Additionally, SGCN embeddings maintain a fixed dimension for all message-passing iterations, pK = d. This
limitation hampers graph alignment accuracy, as it prevents the integration of information from different
scales to form more distinct embeddings. Consequently, the alignment accuracy for SGCN is lower, as
evidenced in Figures 11c and 11d.

26

Published in Transactions on Machine Learning Research (05/2025)

ACC PCAPass CONE S-GWL FUGAL ACC-FUGAL

0 5 10
K

0.0

0.5

1.0

Ac
cu

ra
cy

(a) Arenas

0 5 10
K

0.0

0.5

1.0

Ac
cu

ra
cy

(b) PPI

0 5 10
K

0.0

0.5

1.0

Ac
cu

ra
cy

(c) Enron

0 5 10
K

0.0

0.5

1.0

Ac
cu

ra
cy

(d) Polblogs

0 5 10
K

0.0

0.5

1.0

Ac
cu

ra
cy

(e) Magna

Figure 12: Graph alignment accuracy comparison between ACC, PCAPass, and graph alignment baselines
under 15% edge noise. The x-axis denotes the number of message-passing iterations used for ACC and
PCAPass. For each method (CONE, S-GWL, FUGAL, ACC-FUGAL), markers and shaded regions indicate
the mean and standard deviation over three random seeds. The results for ACC and PCAPass are repeated
from Figure 5, where five were used.

E Comparison to state-of-the-art graph alignment methods

In this section, we compare the graph alignment accuracy of ACC against three state-of-the-art graph
alignment algorithms: S-GWL (Xu et al., 2019), CONE (Chen et al., 2020b), and FUGAL (Bommakanti
et al., 2024). None of these methods natively support directed graphs, which is a limitation shared by
most recent graph alignment algorithms (Skitsas et al., 2023). Fortunately, S-GWL naturally generalizes to
directed graphs, and FUGAL can be extended in a straightforward manner since it is node feature-based.
Specifically, we compute node features on both the original and transposed graphs, and concatenate the
resulting feature vectors as input to FUGAL’s optimization protocol. This simple modification enables
FUGAL to process directed graphs. In contrast, adapting CONE to directed graphs is non-trivial due to its
architecture. For all methods, we adopt the recommended hyperparameter settings from Skitsas et al. (2023).

Figure 12 shows the previously reported graph alignment accuracy results for ACC and PCAPass (with
whitening), now presented alongside the newly added results for each baseline method. The x-axis represents
the number of message-passing iterations K used for ACC and PCAPass. The corresponding run times for
all methods are provided in Figure 13.

We begin our comparison by examining ACC alongside CONE, which is the weakest of the three baseline
methods. As expected, CONE fails entirely on the directed graphs Enron and Polblogs, reflecting its lack of
support for directed edges. On the undirected datasets, CONE and ACC achieve similar levels of accuracy:
CONE slightly outperforms ACC on Arenas, ACC performs better on Magna, and the two models yield
identical results on PPI. However, when it comes to computational efficiency, ACC holds a clear advantage.
While CONE exhibits quadratic time complexity in the number of nodes, O(n2), ACC operates with linear
complexity, as discussed in Section 4.1. In practice, this difference is substantial and ACC is approximately
100 times faster than CONE, as shown in Figure 13.

S-GWL is the strongest overall baseline in terms of alignment accuracy, achieving the highest performance
on Arenas, PPI, and Polblogs. This result is consistent with the benchmark evaluation by Skitsas et al.
(2023), where S-GWL was identified as the top-performing method.

However, S-GWL is also by far the most computationally expensive of the three baselines, as shown in
Figure 13. On the Enron dataset, S-GWL failed to converge even after two hours of run time, at which
point we terminated its execution. In contrast, ACC is highly efficient; approximately 1000 times faster
across the five datasets. This efficiency stems from two key factors. First, S-GWL has a time complexity of
O(n2 log n) (Skitsas et al., 2023), while ACC scales linearly with the number of nodes. Second, S-GWL is
an iterative optimization-based method, whereas ACC generates embeddings in a single forward pass.

FUGAL is the second-best baseline in terms of alignment accuracy, achieving the highest performance on
Magna and tying with S-GWL for best results on Arenas. Notably, our extension of FUGAL to directed
graphs allows it to perform well on Polblogs, where its accuracy closely matches that of both S-GWL and

27

Published in Transactions on Machine Learning Research (05/2025)

ACC PCAPass CONE S-GWL FUGAL ACC-FUGAL

0 5 10
K

10−1

100

101

102

Ru
n

tim
e

(s)

(a) Arenas

0 5 10
K

100

102

Ru
n

tim
e

(s)
(b) PPI

0 5 10
K

100

101

102

103

Ru
n

tim
e

(s)

(c) Enron

0 5 10
K

10−1

100

101

102

Ru
n

tim
e

(s)

(d) Polblogs

0 5 10
K

10−1

100

101

102

Ru
n

tim
e

(s)

(e) Magna

Figure 13: Run time comparison of ACC and PCAPass to graph alignment baselines. The x-axis shows
the number of message-passing iterations K and the y-axis the algorithm run time in seconds. Markers
and shaded areas represent the average and standard deviation over three seeds for the graph alignment
baselines, and five seeds for ACC and PCAPass.

ACC. However, FUGAL fails completely on PPI and Enron, achieving only trivial alignment accuracy. In
contrast, ACC maintains high accuracy on both datasets while also being significantly more efficient, as
FUGAL has cubic time complexity, O(n3).

To understand why FUGAL fails on PPI and Enron, we examine the graph statistics in Table 2a. These two
graphs are simultaneously the densest in the benchmark and exhibit the lowest global clustering coefficients.
While Bommakanti et al. (2024) showed that FUGAL performs well across varying graph densities, their
experiments were conducted in noise-free settings. We therefore hypothesize that the combination of edge-
removal noise and high density poses challenges for FUGAL.

This limitation could stem from either FUGAL’s initial feature extraction step or its subsequent optimization
procedure. To investigate, we replace FUGAL’s node features with ACC embeddings computed using K = 6
and pmax = 512. The resulting method, denoted ACC-FUGAL, is shown in Figures 12 and 13. As illustrated,
ACC-FUGAL also fails on PPI and Enron, indicating that the bottleneck lies in FUGAL’s optimization stage
rather than its input features.

On the other three datasets, however, ACC-FUGAL achieves the highest accuracy among all methods. This
suggests that, if FUGAL’s limitations on dense graphs can be addressed, combining ACC embeddings with
the FUGAL optimization framework could yield a highly effective alignment algorithm. In the meantime,
using ACC on its own offers a compelling alternative as it delivers strong accuracy with far greater efficiency,
and scaling well to large graphs due to its linear time complexity.

F Analysis of node classification accuracy on the Squirrel dataset

In our node classification benchmark results using the gradient boosting classifier, as shown in Table 1, ACC
achieves an accuracy of 72% on the Squirrel dataset, whereas PCAPass achieves only 52%. In this section, we
explore the source of this discrepancy by analysing the Squirrel dataset and comparing the features generated
by message aggregation and embedding aggregation.

To identify the key features contributing to high classification accuracy on Squirrel, we perform a single
message-passing iteration to obtain three feature matrices: X ∈ Rn×d, AFX ∈ Rn×d, and ABX ∈ Rn×d.
We refer to these as feature groups.

By training a gradient boosting classifier on each feature group with an 80-20 training-test split, we find
the following test accuracies: 51% for X, 33% for AFX, and 84% for ABX. These results indicate that the
features in ABX are particularly crucial for achieving high classification accuracy on the Squirrel dataset.

Next, we investigate how well each feature group is preserved in the PCAPass and ACC embeddings. Ignoring
the column centring step of PCA, we can express the PCAPass embeddings after one message-passing

28

Published in Transactions on Machine Learning Research (05/2025)

iteration as

Z = H(1) = [X, AFX, ABX]W = XWX + AFXWF + ABXWB, W =

WX

WF
WB

 , (15)

where W ∈ R3d×p is the projection matrix learned via PCA. We divide this matrix vertically into three sub-
matrices: WX ∈ Rd×p, WF ∈ Rd×p, and WB ∈ Rd×p. These matrices compress X, AFX, and ABX respec-
tively. By analysing these matrices, we can assess how much information from each feature group is preserved.

Specifically, for each of the p = 512 features, we compute the proportion of each feature group that contributes
to the embedding. Since each column in W has unit norm, these proportions can be calculated as follows:

wX =
d∑

i=1
(WX)2

i,: , wF =
d∑

i=1
(WF)2

i,: , wB =
d∑

i=1
(WB)2

i,: , (16)

where wX , wF, and wB denote the proportions of each feature group represented in the embeddings. Note
that wX + wF + wB = 1p, where 1p is a length-p vector of ones.

We can perform a similar analysis for ACC. In this case, the embeddings are given by Z = [M (0), M (1)],
where M (0) = XVX and

M (1) = [AFM (0), ABM (0)]V = AFXVXVF + ABXVXVB, V =
[
VF
VB

]
. (17)

Here, the matrices VX ∈ Rd×c, VXVF ∈ Rd×c, and VXVB ∈ Rd×c are used to compress the three feature
groups.

An important difference from PCAPass is that VX is computed separately via PCA from VF and VB, meaning
that VX forms an orthogonal basis by itself, i.e., V ⊺

XVX = Ic. Consequently, the column norms of VXVF are
equal to the column norms in VF, and similarly for VXVB and VB. This can be demonstrated by considering
the norm of the ith column in VXVF:

∥VXVFi,:∥2
2 = VF

⊺
i,:V

⊺
XVXVFi,: = VF

⊺
i,:IcVFi,: = ∥VFi,:∥2

2. (18)

Therefore, the ACC proportion vectors are

vX =
d∑

i=1

(
VX i,:

)2 = 1c, vF =
c∑

i=1

(
VFi,:

)2
, vB =

c∑
i=1

(
VBi,:

)2
, (19)

where vF + vB = 1c.

In Figure 14, we visualize the proportion vectors as heat maps. The heat maps on the left show the PCAPass
vectors, wX , wF, and wB, while the heat maps on the right display the ACC vectors, vF and vB. The colours
in the heat maps represent the proportion of information derived from each feature group. The bright colours
in the first two rows for PCAPass indicate that most of the information is captured from the features in
X and AFX. In contrast, ACC captures more information from ABX, as evidenced by the more uniform
colour distribution in its heat map.

We can further quantify this difference by computing the effective number of features extracted from each
feature group. We denote this as p

(eff)
∗ , where the star is either X, F, or B for each respective feature group.

These quantities are computed as the sum of each proportion vector:

p
(eff)
X =

p∑
k=1

wX k, p
(eff)
F =

p∑
k=1

wFk, p
(eff)
B =

p∑
k=1

wBk, (20)

for PCAPass, and

p
(eff)
X =

c∑
k=1

vX = 256, p
(eff)
F =

c∑
k=1

vFk, p
(eff)
B =

c∑
k=1

vBk, (21)

29

Published in Transactions on Machine Learning Research (05/2025)

0 43 86 12
9

17
2

21
5

25
8

30
1

34
4

38
7

43
0

47
3

X

F

B

0.0

0.2

0.4

0.6

0.8

1.0

(a) PCAPass

0 22 44 66 88 11
0

13
2

15
4

17
6

19
8

22
0

24
2

F

B

0.0

0.2

0.4

0.6

0.8

1.0

(b) ACC

Figure 14: Visualization of the projection matrices used in the first
message-passing iteration for PCAPass and ACC. Each column represents
an embedding dimension, while each row corresponds to one of three fea-
ture groups: the input features X, the forward aggregation features AFX,
and the backward aggregation features ABX. The colour indicates the
proportion of each feature group represented in each embedding dimen-
sion. These proportions are calculated using Equations 16 and 19.

Model p
(eff)
X p

(eff)
F p

(eff)
B

PCAPass 309 140 63
ACC 256 160 96

Table 4: The effective number of
embedding dimensions used per
feature group after one message-
passing iteration using ACC and
PCAPass. The effective dimen-
sions are calculated using Equa-
tions 20 and 21.

for ACC. Note that p
(eff)
X = c = 256 since ACC always includes c features per message-passing iteration.

The effective number of embedding dimensions is shown in Table 4. Compared to PCAPass, ACC effectively
uses 53 fewer features from X and 33 more features from ABX, which represents more than a 50% increase
compared to 63 for PCAPass. The inclusion of these class-informative features explains the higher accuracy
achieved by message aggregation compared to embedding aggregation on the Squirrel dataset.

G Experimental investigation of rank deficiency in self-supervised graph neural
networks

G.1 Singular value spectra and graph alignment experiments

In this section, we present experimental results supporting the discussion in Section 6 on rank deficiency
in self-supervised graph neural networks (SSGNNs). As described there, we evaluate SSGNN versions of
PCAPass and ACC, trained by minimizing the GraphMAEv2 loss (Hou et al., 2023), and assess their
behaviour after 0, 20, and 200 training epochs.

We first revisit the experiments from Section B and compute the singular value spectra of the resulting
embeddings for K = 4 and K = 10. The results are shown in Figure 15. Comparing the spectra of
PCAPass-GNN to those of the linear PCAPass model in Figure 7, we observe that PCAPass-GNN does not
exhibit rank deficiency, as there is no clear spectral gap. This confirms that the inclusion of non-linearities
in the model prevents the explicit rank collapse seen in the linear setting.

The next question is whether the absence of rank deficiency in PCAPass-GNN implies improved embedding
quality. To investigate this, we repeat the graph alignment experiments from Section 5.1 using the learned
embeddings of both PCAPass-GNN and ACC-GNN.

The results are shown in Figure 16. Notably, we observe a significant increase in variance across random seeds
for both PCAPass-GNN and ACC-GNN, compared to their linear counterparts. This increased variability
stems from the random initialization of the learnable weight matrices introduced in Equations 12 and 13,
which introduces greater sensitivity to seed selection.

In terms of accuracy, PCAPass-GNN substantially outperforms the original linear PCAPass model (cf.
Figure 5), suggesting that resolving rank deficiency does indeed improve embedding quality. However,
performance degrades with increased training: PCAPass-GNN trained for 200 epochs performs poorly across

30

Published in Transactions on Machine Learning Research (05/2025)

ACC-GNN:0 ACC-GNN:20 ACC-GNN:200 PCAPass-GNN:0 PCAPass-GNN:20 PCAPass-GNN:200

0.0 0.5 1.0
i/pK

10−7

10−3

101

105

Σ
i,
i

(a) Arenas, K = 4

0.0 0.5 1.0
i/pK

10−7

10−3

101

105

Σ
i,
i

(b) Arenas, K = 10

0.0 0.5 1.0
i/pK

10−7

10−3

101

105

Σ
i,
i

(c) PPI, K = 4

0.0 0.5 1.0
i/pK

10−7

10−3

101

105

Σ
i,
i

(d) PPI, K = 10

0.0 0.5 1.0
i/pK

10−7

10−3

101

105

Σ
i,
i

(e) Magna, K = 4

0.0 0.5 1.0
i/pK

10−7

10−3

101

105

Σ
i,
i

(f) Magna, K = 10

0.0 0.5 1.0
i/pK

10−4

100

104

Σ
i,
i

(g) Enron, K = 4

0.0 0.5 1.0
i/pK

10−4

100

104

Σ
i,
i

(h) Enron, K = 10

0.0 0.5 1.0
i/pK

10−5

10−1

103

107

Σ
i,
i

(i) Polblogs, K = 4

0.0 0.5 1.0
i/pK

10−5

10−1

103

107
Σ
i,
i

(j) Polblogs, K = 10

Figure 15: The singular values spectrum for the SSGNN versions of ACC and PCAPass on all graph alignment
datasets using K = 4 and K = 10. The colours correspond to 0, 20 and 200 training epochs for ACC-
GNN and PCAPass-GNN respectively. The y-axes show the singular values, and the x-axes their index in
descending order, normalized using the number of embedding dimensions pK .

all datasets. Additionally, as the number of message-passing iterations K increases, PCAPass-GNN initially
improves, reaching a peak accuracy, but then consistently declines beyond a certain point.

In contrast, ACC-GNN exhibits greater robustness. Its accuracy does not degrade with increasing training
epochs or message-passing iterations K on the undirected datasets. The only dataset where increased training
leads to a noticeable drop in accuracy is Enron, see ACC-GNN:200. On Polblogs, accuracy decreases with
increasing K, reflecting a trend also observed for the linear ACC model, as discussed in Section D.1.

Despite the absence of a clear spectral gap, we can still relate the behaviour of the graph alignment accuracies
to the singular value spectra of PCAPass-GNN and ACC-GNN. To this end, we consider the condition number
κ(Z) of the embedding matrix Z, defined as the ratio between its largest and smallest singular values:

κ(Z) = σmax(Z)
σmin(Z) . (22)

The condition number is closely related to the numerical sensitivity of matrix operations, particularly matrix
inversion (Higham & Al-Mohy, 2010, Ch. 5.8). In general, higher condition numbers indicate greater
sensitivity and potential numerical instability. While rank deficiency often leads to a high condition number,
the converse does not necessarily hold: a matrix can have a large condition number even in the absence of
an explicit spectral gap.

Table 5 reports the condition numbers of PCAPass-GNN and ACC-GNN for K = 4 and K = 10, across
training epochs 0, 20, and 200, and for each dataset. For comparison, we also include the condition numbers
of the linear PCAPass and ACC embeddings.

31

Published in Transactions on Machine Learning Research (05/2025)

ACC-GNN:0 ACC-GNN:20 ACC-GNN:200 PCAPass-GNN:0 PCAPass-GNN:20 PCAPass-GNN:200

0 5 10
K

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

(a) Arenas

0 5 10
K

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

(b) PPI

0 5 10
K

0.00

0.25

0.50

0.75

Ac
cu

ra
cy

(c) Enron

0 5 10
K

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

(d) Polblogs

0 5 10
K

0.0

0.2

0.4

Ac
cu

ra
cy

(e) Magna

Figure 16: SSGNN versions of ACC and PCAPass for graph alignment with 15% noise edges. The x-axis
shows the number of message-passing iterations K. The colour shades represent distinct number of training
epochs. Markers and shaded areas represent the average and standard deviation over 3 seeds.

The general trend is that, for a fixed value of K, embeddings with lower condition numbers κ tend to yield
higher graph alignment accuracies. This pattern is clearly observed for ACC and PCAPass on the undirected
datasets (Arenas, PPI, and Magna), where ACC exhibits significantly lower κ values alongside substantially
higher alignment performance. A similar relationship holds for Enron and Polblogs at K = 4. At K = 10,
however, the condition numbers and alignment accuracies of ACC and PCAPass become more comparable,
reflecting the effects of deeper message-passing and greater compression. These observations align with the
rank deficiency analysis presented in the main paper.

A similar trend appears in the GNN variants. For 200 training epochs, PCAPass-GNN typically exhibits
much higher condition numbers than ACC-GNN, and correspondingly lower alignment accuracies. At 0
epochs of training, their κ values are more similar, and so are their accuracies, suggesting that weight
optimization in PCAPass-GNN amplifies instability in the embeddings.

Nonetheless, there are notable exceptions to this trend. For instance, on Polblogs at K = 10, PCAPass-GNN
with 0 epochs has a much lower condition number than ACC-GNN, but does not outperform it in accuracy.
Additionally, both ACC and ACC-GNN tend to have higher condition numbers at K = 10 than at K = 4, yet
their accuracies also increase, highlighting that κ is not a sufficient standalone predictor of embedding quality.

In conclusion, while the SSGNN variant of PCAPass is not explicitly rank-deficient, there appears to be a cor-
relation between information redundancy induced by its embedding aggregation and concatenation strategy,
elevated condition numbers, and reduced embedding quality. These issues are mitigated by ACC’s message
aggregation approach, both in linear and non-linear settings. However, analysing the non-linear GNN case
remains significantly more complex and calls for deeper theoretical and empirical investigation in future work.

G.2 Node classification results for ACC-GNN and PCAPass-GNN

We also evaluate node classification accuracy for both ACC-GNN and PCAPass-GNN. Results using a
gradient boosting classifier are reported in Table 6, and those using logistic regression are shown in Table 7.

Table 5: The condition number of the embedding matrices for ACC and PCAPass, and the ACC-GNN and
PCAPass-GNN models for 0, 20 and 200 epochs of training. Displayed values are log10 κ(Z).

(a) K = 4

Model Arenas PPI Magna Enron Polblogs

ACC 1.83 2.23 1.84 2.98 3.41
PCAPass 8.61 8.82 8.83 9.16 9.54

ACC-GNN:0 2.29 2.09 4.62 4.49 4.72
PCAPass-GNN:0 3.99 4.06 4.23 3.38 3.63

ACC-GNN:20 2.67 1.96 3.27 4.50 5.12
PCAPass-GNN:20 6.53 5.82 5.64 6.32 7.36

ACC-GNN:200 1.98 2.38 2.26 4.35 4.63
PCAPass-GNN:200 5.41 5.09 5.48 5.81 8.03

(b) K = 10

Model Arenas PPI Magna Enron Polblogs

ACC 4.34 4.70 4.26 4.41 5.20
PCAPass 9.35 9.32 9.74 3.06 3.85

ACC-GNN:0 4.87 5.14 4.34 7.33 7.71
PCAPass-GNN:0 4.80 4.96 4.94 4.14 4.60

ACC-GNN:20 4.54 5.46 4.14 7.46 8.14
PCAPass-GNN:20 4.88 7.81 8.70 7.65 7.96

ACC-GNN:200 5.78 4.71 4.24 8.88 9.16
PCAPass-GNN:200 9.34 8.69 9.46 5.95 7.52

32

Published in Transactions on Machine Learning Research (05/2025)

Table 6: Gradient boosting node classification results for SSGNN versions of ACC and PCAPass. The
results for ACC and the best performing SSGNNs from Table 1 are included for reference. The highest
accuracy is highlighted in bold.

Model Chameleon Squirrel Roman Empire Arxiv Year Snap-Patents
Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy Time

No model, X 64.6 ± 2.3 0ms 52.1 ± 1.4 0ms 70.4 ± 0.7 0ms 44.7 ± 0.2 0ms 56.1 ± 0.1 0ms

CCA-SSG1 71.0 ± 2.1 4s 59.9 ± 1.2 7s 63.7 ± 0.7 10s 48.4 ± 0.2 1m 11s 56.1 ± 0.0 1h 40m
GraphMAEv2-GS2 74.1 ± 2.3 29s 57.0 ± 1.4 1m 6s 80.0 ± 0.7 1m 35s 46.3 ± 0.3 10m 46s 53.8 ± 0.1 18h

ACC 76.6 ± 1.9 1s 71.5 ± 1.3 1s 81.5 ± 0.6 432ms 49.4 ± 0.3 1s 62.6 ± 0.1 27s

ACC-GNN 73.8 ± 1.9 906ms 66.7 ± 1.4 1s 78.0 ± 0.8 1s 47.9 ± 0.2 8s 62.3 ± 0.1 11m 23s
PCAPass-GNN 66.1 ± 2.1 989ms 45.0 ± 1.5 1s 66.2 ± 0.9 2s 45.2 ± 0.3 16s 60.0 ± 0.1 16m 17s
1 Zhang et al. (2021) 2 Hou et al. (2023)

Table 7: Logistic regression node classification results for SSGNN versions of ACC and PCAPass. The
results for ACC and the best performing SSGNNs from Table 1 are included for reference. The highest
accuracy is highlighted in bold.

Model Chameleon Squirrel Roman Empire Arxiv Year Snap-Patents
Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy Time

No model, X 52.3 ± 2.2 0ms 35.3 ± 1.4 0ms 69.8 ± 0.7 0ms 43.4 ± 0.2 0ms 50.7 ± 0.1 0ms

CCA-SSG1 59.5 ± 2.7 4s 41.6 ± 1.4 7s 70.0 ± 0.7 10s 50.9 ± 0.3 1m 11s 55.3 ± 0.1 1h 40m
GraphMAEv2-GS2 70.6 ± 2.3 29s 48.6 ± 1.6 1m 6s 80.2 ± 0.7 1m 35s 46.9 ± 0.3 10m 46s 54.7 ± 0.0 18h

ACC 60.7 ± 2.5 1s 44.1 ± 1.4 1s 79.3 ± 0.6 432ms 49.4 ± 0.3 1s 56.6 ± 0.0 27s

ACC-GNN 57.8 ± 3.0 906ms 42.2 ± 1.7 1s 77.7 ± 0.6 1s 48.7 ± 0.4 8s 61.3 ± 0.1 11m 23s
PCAPass-GNN 56.0 ± 2.9 989ms 39.0 ± 2.0 1s 74.4 ± 0.8 2s 47.7 ± 0.4 16s 60.6 ± 0.1 16m 17s
1 Zhang et al. (2021) 2 Hou et al. (2023)

For ease of comparison, we also include the best-performing results from the main paper. All experiments
were conducted with 20 training epochs and consistent hyperparameter settings: K = 2 and pmax = 512.

Consistent with earlier findings, ACC-GNN generally outperforms PCAPass-GNN across datasets, suggest-
ing that message aggregation produces higher-quality embeddings than embedding aggregation, even in the
presence of non-linearity. Furthermore, although self-supervised graph neural networks (SSGNNs) are theo-
retically more expressive, they do not outperform ACC in practice under default hyperparameters. Due to
their reliance on iterative gradient descent, these models are also significantly less efficient, particularly on
large-scale datasets such as Snap-Patents.

H Hyperparameter tuning of self-supervised graph neural network baselines

For the node classification benchmarks presented in Section 5.2, we fix the number of message-passing
iterations to K = 2 and the embedding dimension to p = 512 across all embedding models, while keeping all
other hyperparameters at their default settings. This ensures a fair comparison by standardizing two of the
most influential factors across models.

Since K and p have a well-documented impact on embedding quality, as demonstrated for ACC in Section D,
using consistent values for these parameters eliminates variation due to their influence. We selected K = 2
and p = 512 based on their frequent use in prior work (Veličković et al., 2019; Zhang et al., 2021; Thakoor
et al., 2022; Hou et al., 2022; Wang et al., 2023). For all other hyperparameters, which vary between models,
we use the authors’ default configurations, as these have typically been optimized and validated during the
original model development.

An alternative approach would be to perform hyperparameter tuning and select the best configuration for
each model and dataset. However, there are several reasons to avoid this strategy. First, hyperparameter
tuning is notoriously difficult in real-world unsupervised learning scenarios (Ma et al., 2023). This difficulty

33

Published in Transactions on Machine Learning Research (05/2025)

arises from the fact that tuning typically relies on ground-truth labels to guide the selection process. In un-
supervised learning, however, such label information is not available by design. Indeed, the absence of labels
is precisely why unsupervised methods are used in the first place. Consequently, evaluating unsupervised
embedding models under their default hyperparameters provides a more realistic and practical assessment
of their utility in real-world applications.

Second, hyperparameter tuning is computationally expensive. Each self-supervised graph neural network
(SSGNN) includes numerous hyperparameters, and evaluating different combinations requires training and
validating the model multiple times. Ideally, this process must also be repeated over several random seeds
to account for initialization variance. As shown in Table 3, training SSGNNs is significantly more time-
consuming than training ACC. Thus, comprehensive hyperparameter tuning would require substantial com-
pute resources and cloud GPU hours, which are unfortunately beyond the financial means of the authors.

While comprehensive hyperparameter tuning is infeasible, we conduct a limited tuning experiment to esti-
mate the potential accuracy gains that SSGNNs might achieve with optimized settings. Specifically, we tune
the embedding dimension p, which we previously found to significantly influence node classification accuracy
for ACC (Figure 10), and the number of training epochs, a common tuning parameter in SSGNN stud-
ies (Veličković et al., 2019; Hassani & Khasahmadi, 2020; Zhang et al., 2021; Hou et al., 2022; 2023; Wang
et al., 2023). To reduce computational overhead, we use logistic regression rather than gradient boosting for
evaluation, as the latter is substantially more expensive to train and validate.

The classification accuracy results for each baseline model and dataset are presented in Figures 17 and 18.
Each coloured line represents a different embedding dimension p, and the x-axis shows the number of training
epochs. The orange marker highlights the best-performing configuration observed during the sweep, while the
black dashed line indicates the accuracy reported in Table 3 using p = 512 and the model’s default number
of training epochs (see Section C.3). Figures 19 and 20 show the corresponding loss values across training.

The primary observation from the tuning experiment is that, for the majority of models and datasets, accu-
racy tends to increase with the embedding dimension p. This is expected: a larger embedding space allows the
classifier to model more complex decision boundaries, reducing bias. The accompanying increase in variance
is mitigated by the large number of training samples and the use of regularization in the classifier (Bishop,
2006, Ch. 3.2). However, increasing p also leads to greater computational cost. These findings support our
decision to evaluate all models using a common embedding dimensionality of p = 512, as comparing models
with different p values would introduce unfair advantages to those using higher-dimensional embeddings.

That said, we also observe that for GAE, GraphMAE, and GraphMAEv2, performance degrades when
p = 2048 on the Chameleon and Squirrel datasets. In these cases, accuracy drops noticeably compared to
p = 512, and this drop is accompanied by a sharp increase in loss values. We speculate that this behaviour
stems from these models’ reliance on autoencoding losses, which may overfit or become unstable when the
embedding space is too large relative to the dataset size. This hypothesis is supported by the fact that
Chameleon and Squirrel are the two smallest datasets in terms of node count. However, further investigation
is required to confirm the underlying cause.

Regarding the number of training epochs, we find no consistent benefit from deviating from the default values.
For most models with p = 512, accuracy either peaks near the default epoch setting or plateaus around the
same value. The exceptions are BGRL and MVGRL, where accuracy improves with longer training. Notably,
their default epoch values—10,000 for BGRL and 3,000 for MVGRL—exceed the maximum number of epochs
tested in our sweep, suggesting that the defaults are already well-chosen in these cases.

34

Published in Transactions on Machine Learning Research (05/2025)

64 128 256 512 1024 2048 Best p & epoch Table 3 (p = 512)

0 1000
Epoch

0.4

0.6

Ac
cu

ra
cy

GAE, Chameleon

0 1000
Epoch

0.3

0.4

Ac
cu

ra
cy

GAE, Squirrel

0 1000
Epoch

0.50

0.75

Ac
cu

ra
cy

GAE, Roman Empire

0 1000
Epoch

0.4

0.5

Ac
cu

ra
cy

GAE, Arxiv Year

0 1000
Epoch

0.4

0.6

Ac
cu

ra
cy

DGI, Chameleon

0 1000
Epoch

0.3

0.4

Ac
cu

ra
cy

DGI, Squirrel

0 1000
Epoch

0.50

0.75

Ac
cu

ra
cy

DGI, Roman Empire

0 1000
Epoch

0.45

0.50

Ac
cu

ra
cy

DGI, Arxiv Year

0 1000
Epoch

0.4

0.6

Ac
cu

ra
cy

BGRL, Chameleon

0 1000
Epoch

0.3

0.4

Ac
cu

ra
cy

BGRL, Squirrel

0 1000
Epoch

0.50

0.75

Ac
cu

ra
cy

BGRL, Roman Empire

0 1000
Epoch

0.425

0.450

0.475

Ac
cu

ra
cy
BGRL, Arxiv Year

0 1000
Epoch

0.4

0.6

Ac
cu

ra
cy

BGRL-GS, Chameleon

0 1000
Epoch

0.3

0.4

Ac
cu

ra
cy

BGRL-GS, Squirrel

0 1000
Epoch

0.6

0.8

Ac
cu

ra
cy

BGRL-GS, Roman Empire

0 1000
Epoch

0.40

0.45

Ac
cu

ra
cy

BGRL-GS, Arxiv Year

0 1000
Epoch

0.4

0.6

Ac
cu

ra
cy

CCA-SSG, Chameleon

0 1000
Epoch

0.3

0.4

0.5

Ac
cu

ra
cy

CCA-SSG, Squirrel

0 1000
Epoch

0.5

0.6

0.7

Ac
cu

ra
cy

CCA-SSG, Roman Empire

0 1000
Epoch

0.45

0.50

Ac
cu

ra
cy

CCA-SSG, Arxiv Year

Figure 17: Node classification accuracy across training epochs for GAE, DGI, BGRL, BGRL-GS, and CCA-
SSG. Each subplot corresponds to a dataset, while line colours and marker shapes represent the embedding
dimension p. The orange marker indicates the highest observed accuracy across all settings. The black
dashed line shows the accuracy reported in Table 3 for p = 512 and the model’s default number of training
epochs. Shaded areas represent standard deviations computed over five repeated 5-fold cross-validation runs
for the classifier, using five different random seeds for the embedding model.

35

Published in Transactions on Machine Learning Research (05/2025)

64 128 256 512 1024 2048 Best p & epoch Table 3 (p = 512)

0 1000
Epoch

0.5

0.6

Ac
cu

ra
cy

GraphMAE, Chameleon

0 1000
Epoch

0.3

0.4

Ac
cu

ra
cy

GraphMAE, Squirrel

0 1000
Epoch

0.4

0.6

Ac
cu

ra
cy

GraphMAE, Roman Empire

0 1000
Epoch

0.40

0.45

Ac
cu

ra
cy

GraphMAE, Arxiv Year

0 1000
Epoch

0.4

0.6

Ac
cu

ra
cy

GraphMAEv2, Chameleon

0 1000
Epoch

0.3

0.4

Ac
cu

ra
cy

GraphMAEv2, Squirrel

0 1000
Epoch

0.4

0.6

Ac
cu

ra
cy

GraphMAEv2, Roman Empire

0 1000
Epoch

0.40

0.45

Ac
cu

ra
cy

GraphMAEv2, Arxiv Year

0 1000
Epoch

0.50

0.75

Ac
cu

ra
cy

GraphMAEv2-GS, Chameleon

0 1000
Epoch

0.25

0.50

Ac
cu

ra
cy

GraphMAEv2-GS, Squirrel

0 1000
Epoch

0.6

0.8

Ac
cu

ra
cy

GraphMAEv2-GS, Roman Em-
pire

0 1000
Epoch

0.40

0.45

Ac
cu

ra
cy

GraphMAEv2-GS, Arxiv Year

0 1000
Epoch

0.4

0.5

Ac
cu

ra
cy

MVGRL, Chameleon

0 1000
Epoch

0.3

0.4

Ac
cu

ra
cy

MVGRL, Squirrel

0 1000
Epoch

0.5

0.6

0.7

Ac
cu

ra
cy

MVGRL, Roman Empire

0 1000
Epoch

0.4

0.6

Ac
cu

ra
cy

GREET, Chameleon

0 1000
Epoch

0.3

0.4
Ac

cu
ra

cy

GREET, Squirrel

0 1000
Epoch

0.6

0.8

Ac
cu

ra
cy

GREET, Roman Empire

0 1000
Epoch

0.4

0.6

Ac
cu

ra
cy

SPGCL, Chameleon

0 1000
Epoch

0.3

0.4

Ac
cu

ra
cy

SPGCL, Squirrel

0 1000
Epoch

0.50

0.75

Ac
cu

ra
cy

SPGCL, Roman Empire

Figure 18: Node classification accuracy across training epochs for GraphMAE, GraphMAEv2, GraphMAEv2-
GS, MVGRL, GREET, and SPGCL. Each subplot corresponds to a dataset, while line colours and marker
shapes represent the embedding dimension p. The orange marker indicates the highest observed accuracy
across all settings. The black dashed line shows the accuracy reported in Table 3 for p = 512 and the model’s
default number of training epochs. Shaded areas represent standard deviations computed over five repeated
5-fold cross-validation runs for the classifier, using five different random seeds for the embedding model.

36

Published in Transactions on Machine Learning Research (05/2025)

64 128 256 512 1024 2048

0 1000
Epoch

0

20

Lo
ss

GAE, Chameleon

0 1000
Epoch

0

20

Lo
ss

GAE, Squirrel

0 1000
Epoch

0

20

Lo
ss

GAE, Roman Empire

0 1000
Epoch

0

20

Lo
ss

GAE, Arxiv Year

0 1000
Epoch

0

1000

Lo
ss

DGI, Chameleon

0 1000
Epoch

0

10000

Lo
ss

DGI, Squirrel

0 1000
Epoch

0

10000

Lo
ss

DGI, Roman Empire

0 1000
Epoch

0

500

Lo
ss

DGI, Arxiv Year

0 1000
Epoch

1

2

Lo
ss

BGRL, Chameleon

0 1000
Epoch

1

2

Lo
ss

BGRL, Squirrel

0 1000
Epoch

1

2

Lo
ss

BGRL, Roman Empire

0 1000
Epoch

1

2

Lo
ss

BGRL, Arxiv Year

0 1000
Epoch

1

2

Lo
ss

BGRL-GS, Chameleon

0 1000
Epoch

1

2

Lo
ss

BGRL-GS, Squirrel

0 1000
Epoch

1

2

Lo
ss

BGRL-GS, Roman Empire

0 1000
Epoch

1

2

Lo
ss

BGRL-GS, Arxiv Year

0 1000
Epoch

−2000

0

Lo
ss

CCA-SSG, Chameleon

0 1000
Epoch

−2000

0

Lo
ss

CCA-SSG, Squirrel

0 1000
Epoch

−1000

0

Lo
ss

CCA-SSG, Roman Empire

0 1000
Epoch

−750

−500

−250

Lo
ss

CCA-SSG, Arxiv Year

Figure 19: Loss curves across training epochs for GAE, DGI, BGRL, BGRL-GS, CCA-SSG. Each subplot
corresponds to a dataset, while line colours represent the embedding dimension p. Shaded areas represent
standard deviations over 5 different seeds.

37

Published in Transactions on Machine Learning Research (05/2025)

64 128 256 512 1024 2048

0 1000
Epoch

0.5

1.0

Lo
ss

GraphMAE, Chameleon

0 1000
Epoch

0.5

1.0

Lo
ss

GraphMAE, Squirrel

0 1000
Epoch

0.5

1.0

Lo
ss

GraphMAE, Roman Empire

0 1000
Epoch

0.5

1.0

Lo
ss

GraphMAE, Arxiv Year

0 1000
Epoch

1

2

Lo
ss

GraphMAEv2, Chameleon

0 1000
Epoch

1

2

Lo
ss

GraphMAEv2, Squirrel

0 1000
Epoch

1

2

Lo
ss

GraphMAEv2, Roman Empire

0 1000
Epoch

1

2

Lo
ss

GraphMAEv2, Arxiv Year

0 1000
Epoch

1

2

Lo
ss

GraphMAEv2-GS, Chameleon

0 1000
Epoch

1

2

Lo
ss

GraphMAEv2-GS, Squirrel

0 1000
Epoch

1

2

Lo
ss

GraphMAEv2-GS, Roman Em-
pire

0 1000
Epoch

1

2

Lo
ss

GraphMAEv2-GS, Arxiv Year

0 1000
Epoch

0

5

Lo
ss

MVGRL, Chameleon

0 1000
Epoch

0

2

Lo
ss

MVGRL, Squirrel

0 1000
Epoch

0

5

Lo
ss

MVGRL, Roman Empire

0 1000
Epoch

7

8

Lo
ss

GREET, Chameleon

0 1000
Epoch

8.0

8.5

Lo
ss

GREET, Squirrel

0 1000
Epoch

9

10

Lo
ss

GREET, Roman Empire

0 1000
Epoch

0

50

Lo
ss

SPGCL, Chameleon

0 1000
Epoch

0

50

Lo
ss

SPGCL, Squirrel

0 1000
Epoch

0

50

Lo
ss

SPGCL, Roman Empire

Figure 20: Loss curves across training epochs for GraphMAE, GraphMAEv2, GraphMAEv2-GS, MVGRL,
GREET, and SPGCL. Each subplot corresponds to a dataset, while line colours represent the embedding
dimension p. Shaded areas represent standard deviations over 5 different seeds.

38

	Introduction
	Background: Node embeddings via message-passing and embedding aggregation
	Embedding aggregation and concatenation results in rank deficiency
	Origin of rank deficiency
	Rank deficiency in PCAPass
	The negative effects of rank-deficient embeddings on clustering
	The negative effects of rank-deficient embeddings on graph alignment

	The ACC model and message aggregation
	Time complexity, scalability, and the inductive learning setting

	Experiments
	Graph alignment: ACC vs. PCAPass
	Node classification: ACC vs self-supervised graph neural networks

	Rank deficiency in SSGNNs: Beyond the linear setting
	Conclusion and future work
	SVD of rank-deficient matrix
	Singular values of ACC and PCAPass
	Additional experiments information and results
	Datasets
	Additional graph alignment results
	Node classification baselines
	Node classification results using logistic regression

	Effect of the number of message-passing iterations and embedding dimensions
	Graph Alignment
	Node classification
	Over-smoothing in SGCN

	Comparison to state-of-the-art graph alignment methods
	Analysis of node classification accuracy on the Squirrel dataset
	Experimental investigation of rank deficiency in self-supervised graph neural networks
	Singular value spectra and graph alignment experiments
	Node classification results for ACC-GNN and PCAPass-GNN

	Hyperparameter tuning of self-supervised graph neural network baselines

