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Abstract—Noninvasive neural recording methods like elec-
troencephalography (EEG) offer high temporal resolution for
capturing neural activity. However, interpreting EEG data is
challenging scalp-recorded signals (sensor space) reflect complex,
integrated activity from multiple cortical regions (source space),
complicating the reconstruction of underlying neural dynamics.
Traditional approaches like minimum norm estimation require
extensive subject-specific data, including MRI scans, precise
electrode placement, and detailed anatomical atlases. To address
these limitations, we propose a two-part framework: (1) an unsu-
pervised biLSTM autoencoder that reveals clustering patterns in
EEG electrode activations and their temporal dynamics during
auditory stimulus processing; and (2) a deep learning architecture
to predict temporally evoked neural features in sensor space
EEG from source representations using a dual-path network with
independent stimulus processing and dilated convolutional layers.

The clustering identifies evolving spatiotemporal co-activation
patterns between stimulus onset and gaps, revealing functional
reorganization. The reconstruction network reduces input di-
mensionality and integrates features via convolutional blocks
with residual connections, trained using a hybrid loss that com-
bines feature-based and spectral terms. Our results demonstrate
accurate reconstruction of stimulus-related neural correlates
and reveal topographical patterns consistent with the clustering
findings. The model generalizes well across subjects. By analyzing
both functional organization in sensor signals and source-to-
sensor mappings, our framework enhances understanding of
EEG transformations. This has significant implications for brain-
computer interfaces, neuroimaging, and EEG processing where
accurate reconstruction and interpretation are essential.

Index Terms—EEG; Dimensionality Reduction; Autoencoder;
CNN; Reconstruction; Brain Computer Interface

I. INTRODUCTION

Electroencephalography (EEG) provides flexible, low-cost
neural activity measurement with high temporal resolution,
but mapping cortical sources to scalp recordings remains
challenging due to anatomical variability and standardiza-
tion difficulties across subjects. We develop a deep learning
model that directly learns source-to-sensor mappings from
data, accounting for inter-subject and experimental variability.
Understanding cortical-to-scalp EEG relationships is crucial
for brain-computer interfaces, neurological diagnostics, and
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Fig. 1. DualPathEEG source-to-sensor reconstruction network autoencoder
(AE) architecture diagram

cognitive neuroscience. While EEG’s accessibility makes it
widely used, experimental variability (cap placement, anatom-
ical differences) degrades signal quality. Linear inverse meth-
ods like minimum norm estimates (MNE) [1] and beamform-
ers fail to capture nonlinear source-sensor dynamics, losing
spatiotemporal information. Numerical EEG forward solutions
have been extensively studied. Grech, Cassar, Muscat, et al.
[2] emphasize accurate head models using Finite Element
(FEM) and Boundary Element Methods (BEM) for optimal
accuracy-efficiency balance. Wolters, Anwander, Tricoche, et
al. [3] examine conductivity assumption effects. Hybrid ap-
proaches include Erdbrügger, Westhoff, Höltershinken, et al.
[4]’s CutFEM, combining hexahedral and tetrahedral meshing
for improved computational efficiency.
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Deep learning provides efficient forward modeling alter-
natives. Sun and Sclabassi [5] demonstrated neural networks
approximating forward solutions faster than traditional meth-
ods. Xiong, Ma, and Li [6] proposed autoencoders for EEG
denoising, improving time and frequency domain metrics.
Cisotto, Zancanaro, Zoppis, et al. [7] developed variational
autoencoders for robust multi-channel reconstruction. Physics-
informed approaches include Wei, Lou, Wang, et al. [8]’s
sparse basis networks with Gaussian source priors and Panwar,
Rad, Jung, et al. [9]’s Wasserstein GANs for realistic EEG
simulation. Cross-subject and cross-stimulus generalization
remains challenging. Full time-series reconstruction models
suffer from experimental factor variability, while GANs suit
image data better and rely on synthetic datasets. Our Dual-
PathEEG reconstructs 32-channel sensor EEG from 20,484-
channel source data, addressing distribution scaling and patient
variability challenges including cap placement and noise.
Focusing on behaviorally relevant events rather than full time-
series reduces complexity while preserving critical informa-
tion, enabling real-time brain-computer interface applications.
We propose a bi-directional LSTM autoencoder [10] clustering
32-channel EEG responses to reveal auditory event patterns.
Our DualPathEEG architecture integrates convolutional neural
network (CNN) blocks [11] to reconstruct source-to-sensor
signal changes, capturing local and global dependencies for
enhanced signal quality and interpretability.

II. METHODS

A. Auditory Stimulus EEG Dataset

We used a lab-generated EEG dataset (n=38 adults)
recorded with tone-gap auditory stimuli consisting of two
4kHz pure tones (0.5s each) separated by gaps of 16ms,
32ms, or 64ms, presented with 0.5s inter-stimulus intervals
and embedded in octave band noise centered at 4kHz. EEG
was recorded using a 32-electrode BioSemi system at 4096
Hz sampling rate. Preprocessing included re-referencing to
average earlobe electrodes, 1-40 Hz band-pass filtering, artifact
removal (ocular via signal-space projections, muscular via
150µV peak-to-peak threshold rejection), and epoching from

Fig. 3. Sample sensor space EEG topographical maps (top) and their
corresponding source activation maps (bottom)
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Fig. 4. Auditory stimulus structure used in the EEG study

300ms pre-stimulus to second tone offset with 200ms pre-
stimulus baseline correction. Source reconstruction employed
averaged evoked responses (20 trials per average) using MNE-
Python’s fsaverage template with corresponding source (src)
and boundary element method (BEM) models. Forward mod-
eling used the fsaverage BEM for realistic head conductivity,
while the cortical surface source space constrained estimates
to anatomically plausible locations. After electrode-anatomy
alignment and noise covariance estimation, minimum norm
estimation computed the inverse model to project sensor data
to cortical activation maps (Figure 3). The auditory paradigm
(Figure 4) targets two key events: stimulus onset, which acti-
vates primary auditory filters marking environmental change,
and gap detection, where neural adaptation to continuous
stimulation creates increased activity following perturbations.
This reflects mismatch negativity at larger scales [12] and
deviant detection at smaller scales [13], phenomena observed
across species [14]. Figure 5 shows processed 32-electrode
sensor signals and onset/gap value distributions across 20
patients for both sensor and source datasets.

B. Unsupervised Clustering Analysis

To uncover underlying patterns in neural responses during
onset and gap stimulus events, we design a deep learning-
based feature extraction model. The framework consists of



a bi-directional LSTM autoencoder [10] for temporal feature
learning with Uniform Manifold Approximation and Projec-
tion (UMAP) [15] dimensionality reduction for visualization
and clustering analysis. Our bi-directional LSTM autoencoder
employs an encoder-decoder structure where the encoder fenc
maps input sequence X to latent representation Z, and decoder
fdec reconstructs the input: Z = fenc(X) for Z ∈ RL and
X̂ = fdec(Z) for X ∈ RT×C , where T represents the
temporal dimension (sequence length) corresponding to time
samples in each EEG epoch, C is the electrode count (32), and
L is the latent space dimension (64) representing compressed
input signal representation. The encoder pathway incorporates
an input projection layer reducing sequence length through
linear transformation with layer normalization and ReLU acti-
vation. Figure 2 illustrates the complete biLSTM autoencoder
architecture and processing flow with UMAP reduction and
clustering.

Learned latent representations undergo UMAP process-
ing to create two-dimensional embeddings configured with
nneighbors = 4 and min dist = 0.1 parameters, capturing local
electrode channel relationships while preserving global struc-
ture. Using UMAP embeddings, we implement co-occurrence
based clustering (Figure 6). The co-occurrence matrix C
captures frequency of similar activation patterns between elec-
trode channels:

Cij =
1

N

N∑
k=1

1(dkij ≤ τ), (1)

where N represents total recordings, dkij is the Euclidean
distance between electrode channels i and j in recording
k, and τ is the distance threshold (1.5). Stable clusters are
identified using DBSCAN clustering [16] with parameters
ϵ = 0.5 and min samples = 3, evaluated using Silhouette
score averaging ≈ 0.7. Clustering analysis was performed on
two time segments: 300ms before and after the gap event,
enabling temporal pattern comparison across different phases
of auditory processing.

C. Source-to-Sensor Reconstruction

The DualPathEEG architecture reconstructs sensor space
EEG from source space representations by focusing on neu-
ral correlates of two temporal events (stimulus onset and
gap) rather than full time-course reconstruction. For each
event, normalized RMS quantifies signal strength change:
RMSnorm = RMSPost/RMSPre using 300ms post-event win-
dows. The task transforms high-dimensional source signals
(batch-size, 20484, 2) to sensor space (batch-size, 32, 2),
where each sample contains RMS change indices for onset
and gap events. The architecture employs dual processing
pathways. The first pathway implements independent stimulus
processing through parallel multilayer perceptrons (MLPs)
[17] performing two-stage dimensionality reduction: 20,484
→ 8,192 → 4,096 → 1,024 features via transformations
with batch normalization, ReLU activation, and 0.1 dropout
regularization. The second pathway uses eight CNN blocks
in encoder-decoder architecture with dilated convolutions at

Onset Signal Gap Signal

Fig. 5. Example of full EEG signal (top) along with sensor and source data
distribution (bottom) of calculated RMS values for onset and gap for a batch
of 20 samples.

progressively increasing rates (1, 2, 4, 8) for encoding and
decreasing rates (4, 2, 1, 1) for decoding. Each CNN block
incorporates dual Conv1D layers (kernel size 5), batch normal-
ization, ReLU activation, dropout, and skip connections [18]
for gradient flow and feature preservation. Multi-scale feature
capture uses three parallel adaptive average pooling operations
(128, 64, 32 temporal resolutions), fused through Conv1D with
batch normalization, ReLU, and dropout. Final mapping to
output dimensions uses a Conv1D layer, effectively capturing
temporal dynamics and frequency characteristics while main-
taining computational efficiency. Training employs a hybrid
loss function combining feature and spectral components:

Lfeature = 0.5 · LMSE + 0.5 · LSmoothL1

Lspectral =
1

N

N∑
i=1

(|F (yi)| − |F (ŷi)|)2

Ltotal = αLfeature + βLspectral

(2)

Where F is fourier transform, and α = 0.7, β = 0.3, ensur-
ing both time-domain feature accuracy and spectral fidelity.
Stimulus-wise normalization uses dataset-wide statistics with
independent onset/gap parameters. The 80/20 train/validation
split across patients prevents data leakage. Training uses
AdamW optimizer [19] (learning rate 1e-4, weight decay 1e-5)
with adaptive scheduling, gradient clipping (max norm 0.5),
200 epochs, batch size 32, and 5-fold cross-validation.
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Fig. 6. Cluster co-occurrence matrix for 32 electrode sensor data with their respective stable clusters mapped on the electrode montage. Figures A and B,
represent pre- and post onset signal. Figures C and D represent the pre- and post gap signal.

III. RESULTS

A. Cluster Analysis Reveals Patterns In Stimulus Temporal
Dynamics

Unsupervised clustering was performed on 300ms evoked
neural signals before and after gap occurrence using the
biLSTM autoencoder architecture. Our analysis revealed dis-
tinct spatiotemporal patterns of electrode channel co-activation
across different temporal segments as shown in Figure 6.
Figure 6 A1-D1 displays electrode channel co-occurrence
matrices for pre- and post-onset and gap periods, while Fig-
ure 6 A2-D2 shows corresponding topographical distributions
of clustered electrodes. During pre- and post-onset periods
(Figure 6 A1, B1), we observed strong co-activation pat-
terns primarily among frontal and central electrodes, indicated
by high-intensity diagonal blocks in co-occurrence matrices.
Topographical visualization (Figure 6 A2, B2) reveals four
main clusters: right frontal (blue), left frontal (orange), central
(green/yellow), and posterior (red) regions. This organization
reflects the initial auditory processing hierarchy with segre-
gated functional networks responding to stimulus onset.

Pre- and post-gap periods (Figure 6 C1, D1) demonstrated
reorganization of co-activation patterns with notably stronger
inter-regional connectivity between frontal and parietal elec-
trode channels, evidenced by increased off-diagonal elements
in co-occurrence matrices. Topographical distributions (Fig-
ure 6 C2, D2) show cluster composition shifts, particularly
in central regions where electrodes exhibit enhanced cou-
pling with posterior sites. This suggests adaptive network
reconfiguration for gap detection processing. Quantitatively,
clustering analysis yielded stable clusters with average Sil-
houette score of approximately 0.75, indicating robust cluster

separation. Temporal evolution suggests dynamic functional
network reconfiguration during task processing, with initial
frontal-posterior segregation in pre-gap periods transitioning
to integrated processing patterns post-gap. Cross-validation
using even and odd numbered recordings separately confirmed
robustness of identified electrode channel groupings, validating
the biological plausibility of observed spatiotemporal patterns.
Motivated by these biologically plausible clustering results
demonstrating systematic reorganization of neural networks
during auditory processing, we constructed a dual-channel
feed-forward neural network aimed at learning latent embed-
dings of source-level data and predicting sensor-level activity
from high-dimensional cortical representations.

B. DualPathEEG Reconstructs Source-to-Sensor Neural
Markers

Our DualPathEEG architecture effectively reconstructed
sensor space EEG signals from source space representations.

TABLE I
MEAN ± STD METRICS ACROSS 5 CROSS-VALIDATION FOLDS OVER ONSET

AND GAP STIMULUS. DUALPATH AE IS OUR PROPOSED ARCHITECTURE.
SINGLEPATH AE IS ABLATION OF MLP LAYERS. DUALPATH GAN ADDS

ADVERSARIAL TRAINING.

Metric DualPath AE SinglePath AE DualPath GAN

Tr
ai

n

↓ MAE 0.765 ± 0.286 0.893 ± 0.255 0.819 ± 0.338
↓ MSE 1.097 ± 1.280 1.546 ± 1.329 1.380 ± 1.877
↓ RMSE 0.979 ± 0.372 1.190 ± 0.361 1.060 ± 0.451
↑ Corr. 0.402 ± 0.253 0.020 ± 0.181 0.373 ± 0.261

V
al

↓ MAE 0.802 ± 0.208 0.891 ± 0.239 0.809 ± 0.208
↓ MSE 1.156 ± 0.798 1.524 ± 1.014 1.177 ± 0.827
↓ RMSE 1.036 ± 0.284 1.190 ± 0.326 1.045 ± 0.292
↑ Corr. 0.219 ± 0.283 0.018 ± 0.174 0.207 ± 0.213
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Fig. 7. DualPath AE, SinglePath AE, and DualPath GAN training and validation loss across 5 cross-val folds
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Fig. 8. DualPath AE, SinglePath AE, and DualPath GAN stimulus-specific metrics across 5 cross-val folds

We tested three variants: the proposed DualPath AutoEncoder
(AE) shown in Figure 1, a SinglePath AE that ablates the initial
MLP layers, and a DualPath GAN with adversarial training
and a CNN discriminator. The MLP block efficiently reduces
features from 20484 to 1024 through aggressive downsam-
pling, and its removal in SinglePath AE degraded performance.
The DualPath GAN uses adversarial loss to reject unrealis-
tic signal artifacts. All models converged over 200 epochs
(Figure 7), with training loss decreasing from ∼4.0 to ∼1.0
and validation loss stabilizing around epoch 100 after initial
volatility. The training-validation gap indicates generalization
challenges due to limited samples (ntrain = 797, nval = 199
from 38 subjects). We addressed this through 5-fold cross-
validation to reduce variance and overfitting.

Performance metrics revealed significant differences be-
tween model architectures (Table I). Our proposed DualPath
AE demonstrated superior performance across all metrics.
During training, DualPath AE achieved MSE of 1.097 ±
1.280, substantially outperforming SinglePath AE (1.546 ±
1.329) and DualPath GAN (1.380 ± 1.877). MAE values
confirmed this effectiveness: DualPath AE yielded 0.765 ±
0.286 compared to 0.893 ± 0.255 for SinglePath AE and
0.819 ± 0.338 for DualPath GAN. Validation performance
remained robust with MSE of 1.156 ± 0.798 and MAE of
0.802 ± 0.208. Most notably, correlation metrics revealed
significant advantages for DualPath AE, achieving 0.402 ±
0.253 (training) and 0.219 ± 0.283 (validation), substantially
exceeding SinglePath AE’s near-zero correlations (0.020 ±
0.181 training, 0.018 ± 0.174 validation) and outperforming
DualPath GAN (0.373 ± 0.261 training, 0.207 ± 0.213
validation). Figure 8 illustrates stimulus-specific metrics across
models. Unpaired t-tests across 5 cross-validation folds re-
vealed no significant differences between training and vali-
dation performance, confirming robust generalization. These
results demonstrate that the AE-based dual-pathway approach

effectively captures stimulus-specific features despite challeng-
ing dimensional reduction from 20,484 source to 32 sensor
dimensions. The dedicated onset and gap MLP pathways
provide crucial representational capacity lacking in single-
pathway architectures. Total training carbon footprint was
0.89 kg CO2eq (4.17 hours on NVIDIA RTX 4090, 475 g
CO2eq/kWh) [20].

Figure 9 illustrates the ground-truth and predicted tem-
poral EEG reconstruction and their respective topographical
maps for both onset and gap stimulus, revealing consistent
patterns across the four selected patients. The reconstructed
time-series captures the general waveform trends, and the
predictions exhibited some deviations in amplitude and tim-
ing compared to ground-truth signals. Correlation coefficients
provide quantitative evidence of reconstruction quality, rang-
ing from moderate (0.4018 for patient 9C onset stimulus)
to relatively strong (0.7293 for patient 9C gap stimulus).
The model generally performed better with gap stimuli (also
seen in figure 8), achieving consistently higher correlation
values across patients. Notable challenges included difficulty
reproducing sharp transitions and peak amplitudes, particu-
larly evident in patients 9A and 9B. Peak amplitudes were
often underestimated, especially in cases where the ground-
truth signal showed sudden large deviations. MSE and MAE
metrics further confirm varying reconstruction accuracy, with
lower errors observed in patient 9A onset stimulus (MSE:
0.2364) compared to patient 9B onset stimulus (MSE: 6411).
The temporal alignment between predicted and ground-truth
signals varies across samples, with some predictions showing
phase shifts relative to the actual measurements.

Figure 9 ground-truth and reconstructed EEG topographical
maps for both onset and gap conditions shows voltage dis-
tributions represented on a scale of range -4.0 µV (blue) to
+4.0 µV (red). In patient Figure 9A the ground-truth onset
map shows a distributed pattern of activation spread across
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Fig. 9. DualPathEEG ground-truth vs. predicted values for the reconstructed EEG signal for both onset and gap stimulus, and its respective topographical
maps. These four patient samples were selected from the best performing cross-validation fold. The inference was performed using the model from the final
epoch on the validation set.

the right temporal and the central regions. The reconstructed
onset demonstrates similar activity spread across with slight
variation, possibly because of minor difference across ground-
truth and predicted voltage values. Patient Figure 9B exhibits
strong frontal parietal activations in ground-truth conditions,
which are largely preserved in the reconstructed map with
slightly reduced area spread in the frontal regions. Patient
Figure 9C map reveals similar activation spread across the
frontal and left temporal regions, which were mostly conserved
in both the ground-truth and the reconstructed topological map.
Similarly, in patient Figure 9D the ground-truth map and the
reconstructed map show similar activation regions across pari-
etal and occipital regions. Across all cases, our reconstruction
algorithm predicted very similar activation regions with the
ground-truth, showing it’s capability to capture global voltage

difference across the electrodes.

IV. DISCUSSION

We introduce two complementary deep learning approaches
for EEG analysis: a biLSTM autoencoder with UMAP re-
duction for unsupervised functional clustering, and the Dual-
PathEEG model for source-to-sensor reconstruction. The biL-
STM autoencoder revealed dynamic network reconfiguration
during auditory processing with robust clusters (Silhouette
scores averaging 0.75), showing initial frontal-posterior seg-
regation pre-gap transitioning to integrated processing post-
gap. Lateral temporal electrodes exhibited weak co-occurrence
patterns, suggesting relative independence, while midline elec-
trodes demonstrated consistent regional clustering as potential
hub nodes. These findings align with behaviorally relevant



onset and gap events engaging distributed cortical circuits in-
cluding frontal salience and prediction error systems [12] [13].
The DualPathEEG architecture successfully addressed source-
to-sensor transformation through dual-pathway design. Dedi-
cated MLP processors for onset and gap stimuli proved critical,
significantly outperforming single-pathway models. The CNN
pathway with dilated convolutions captured multi-scale tem-
poral dependencies, while hybrid loss ensured time-frequency
domain fidelity. Results demonstrated effective dimensionality
reduction and successful reconstruction of physiologically
relevant features with good generalization across held-out
patients. Some reconstructions showed enhanced central Cz
activation compared to ground-truth, potentially from template
surface model limitations and electrode placement variations.
Our loss function prioritizes global accuracy, favoring high-
energy central electrodes; future subject-specific models with
spatial regularization should address this. Despite these limita-
tions, polarity patterns and spatial distributions remained con-
sistent, indicating good fidelity. Remaining challenges include
reconstructing sharp transitions and peak amplitudes. Future
work will incorporate anatomical information, explore sophis-
ticated architectures, and evaluate across sensory modalities
like MRI. Applications include clinical neurological diagnosis,
enhanced brain-computer interfaces, and functional network
identification. By combining unsupervised clustering with
deep learning reconstruction, our framework bridges source-
sensor space representations in neuroimaging.
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V. APPENDIX

Delta Band EEG signal (1Hz to 4Hz)

Theta Band EEG signal (4Hz to 7Hz)

Ground Truth Onset Channel Synthesized Onset Channel

Ground Truth Gap Channel Synthesized Gap Channel

Fig. 10. DualPathEEG ground-truth vs. predicted values for the reconstructed
EEG signal for both onset and gap stimulus, and its respective topographical
maps for Delta (1Hz to 4Hz) and Theta (4Hz to 7Hz) bands
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