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1 Introduction

In Transfusion: Understanding Transfer Learning for Medical Imaging by Raghu et al. (1) (hereafter
“their paper”), the authors investigate the efficacy of transfer learning from natural image classification
to medical image classification. In their paper, a comparison is made between the performance of
models that are trained to convergence on ImageNet and then trained on the medical task, and models
that are only trained on the task. They found that in all cases the medical task accuracies differed
insignificantly between the models with transfer learning and those without, so long as enough data
was used. Two state-of-the-art models, ResNet50 and InceptionV3 were compared, as well as a
family of smaller CNN models, on the RETINA (2) and CheXpert (3) data sets. We reproduce their
work for the state-of-the-art models for the RETINA task on a similar, publicly available dataset, and
offer an alternate interpretation of for these experiments.

We suggest that rather than the convergence of random and transfer-initialized models marginalizing
the usefulness of transfer techniques, it is interesting that models transfered from such disparate
domains do not result in overall worse performance.

2 Background: Transfer Learning

State-of-the-art models used for medical image classification tasks routinely leverage Convolutional
Neural Networks (CNNs) trained via transfer learning. Often, these models are pretrained on the
ImageNet dataset, which is to say that the weights of the CNN trained on the image classification task
are initialized as weights which perform better on classification of ImageNet classes than a random
initialization.

Transfer learning is performed as follows. A model is trained to some satisfaction condition on a
dataset DA for some task A, resulting in parameters θA. In this work (as in the paper by Raghu et
al.), DA was the ImageNet dataset and task A is image classification. ImageNet contains 1 million
images, with each image labeled as member to 1 of 1000 mutually exclusive classes. Next, a model
with weights initialized to θ is trained on some different dataset DB for task B, the desired task,
resulting in parameters θB . Some goals of transfer learning include:

• Transfer conditioned parameters θB outperform parameters θ′B on task B where the θ′B is
trained from random initialization (no preconditioning from another task).

• Transfer conditioned parameters θB achieve minimal test loss faster than θ′B .
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Interpretations of these improvements center on the reuse of low-level features (4) from task A, which
can capture a range of basic computer vision basics such as edge and shape detection. Because of
differences between taskA and taskB, there is sometimes a need to modify the structure of the model
between tasks. This is solved by removing the last fully connected layer and replacing it with a fully
connected layer of appropriate dimension to the output size. While this throws out some expertise
from the pretrained parameterization, it is considered to be of little significance since the final layer
was the most task specific to task A, and so likely would play little role in learning another task.

In this work, as in their paper, we consider all weights θB for uniform update on the target task, both
transferred and randomly initialized weights. Other transfer update regimes include:

• Only updating the last layer or layers (if more than one fully connected layer is present
at the top of the model). This regime avoids learning any basic vision expertise in the
convolutional layers. This task can be modeled as a feed forward network problem where the
convolutional layers of the model from task A act as a feature embedding of the low-level
features described above.

• Updating the weights of the whole model with non-uniform learning rate, where the learning
rate at the bottom (near the input layer) of the model is lower than the learning rate at
the top, low-level features at the bottom of the model while being more flexible than the
previous method. In contrast, the embedding here can be updated according to the need of
the problem, but not nearly as much as in our work.

3 Models

Two models are considered in this work: ResNet50 (5) and InceptionV3 (6). Each of these are deep
computer vision models which perform near the state-of-the-art for tasks like ImageNet ILSVRC
(ImageNet Large Scale Visual Recognition Challenge) (7).

• ResNet is a CNN which leverages layer-skip-connections and a restricted set of internal
function approximations (residual functions) to improve performance, allowing it to be
deeper than standard CNN models due to loss of gradient information at equivalent numbers
of layers.

• InceptionV3 is a network designed by Google. It makes use of “Inception Blocks” which
concatenate the results of multiple convolutional filters of varying size as a single operation,
capturing different resolutions of detail at once.

4 Data set and Tasks

The RETINA dataset is a collection of retina photographs, each labeled with the grade of Diabetic
Retinopathy (DR) that the image was diagnosed with by an expert. The grades are 1 to 5 in increasing
order of severity, with 3 and above considered referable DR. While in the original paper a private
dataset was used (3), which contains roughly 320k images, this dataset is inaccessible and so we used
a smaller public dataset of the same kind, from a Kaggle competition in 2015 (8) which contains
just over 35k results. However, the Raghu paper reported results for ‘The Very Small Data Regime’,
which examined models which are only trained on 5000 images from the medical task. This was
meant to simulate the impact of transfer learning for tasks with very small data sets. Unlike in the
larger data regime, a significant positive difference in the performance of the transfer-initialized
model than in the randomly initialized model. Our results will be in the order of magnitude between
their results, and we will interpret accordingly. As in the Raghu paper, the images were all resized to
587x587 pixels.

5 Implementation and Methodology

All models were implemented with the pytorch-lightning framework. Both models were instantiated
using the torchvision library, which contains classes and pretrained weights for several models,
among them those that are considered in this paper. The performance listed in the documentation for
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top-5 ImageNet performance is in line with the performance listed in Raghu paper1. We start with
models pretrained on ImageNet (1000 classes), but work on problems with 5 classes. To address
this, we replaced the final layer with a layer of dimension 5, with the parameters leading to it from
the penultimate layer (global average normalization of dimension 2048) in line with the section
on transfer learning methodology described above. Both models were treated under a multi-class
framework where each class corresponds to a level of DR was calculated as a probability of class
presence. We performed a 9:1 train-test split and trained models on the target task for 50 epochs. We
did not find an explicit stopping criteria mentioned in their paper. For each experiment, 3 models
were trained from the same transfer initialization, and conclusions are drawn from statistics about
those samples. As in their paper, we used the Adam optimizer with a learning rate of 0.001 for both
data sets.

6 Performance Metrics

As in the original paper, for each trained model we calculate the Receiver Operating Characteristic
Area Under Curve (AUC) score. The Receiver Operating Characteristic (ROC) curve is a plot
comparing true positive rate against the false positive rate, from which we derive a single statistic:
AUC, the integrated area of the ROC curve. In the comparison of hidden layer representation, Raghu
et al. invoke Singular Vector Canonical Correlation Analysis (9) ( CCA ). The goal of this work
is to measure the performance difference between the reports in the Raghu paper and our own
implementations of their work. Therefore, we have generated our own results and compare them
qualitatively to their results.

7 Results

We evaluate the performance of the state-of-the-art models on the Retina task, comparing the
AUC performance of both transfer and random initialization in table 1. The evolution of the AUC
performance for all runs can be seen in figures 1 and 2. We also calculate the CCA performance
for for the models, comparing the representations in the final hidden layer of models trained from
random initialization and from transfer initialization, using the similarity of two random init models
as a baseline. This comparison can be see in figures 3 and 4.

Model Random Init AUC Transfer AUC
Resnet-50 (theirs) 96.4% ± 0.05 96.7% ± 0.04
Resnet-50 (ours) 81.25 % ± 0.02 86.89% ± 0.03
InceptionV3 (theirs) 96.6% ± 0.13 96.7% ± 0.05
InceptionV3 (ours) 86.57 % ± 0.03 93.1 % ± 0.007

Table 1: Performance of models on Retina Data. Note the large deviation, both in AUC and in the
different impact of transfer initialization between our ResNet models and theirs. This is accounted
for by the difference dataset scale described above. While our results seem to reinforce the ‘Very
Small Data Regime’ result as mentioned above, it contradicts the results of the extended results given
in their paper’s appendix: the improvement seen in models with transfer over random initialization is
not anticipated by their work.

7.1 Replicability Analysis

Our results do not align easily with those of Raghu et al. We forward a several possibilities that could
account for this, including differences in dataset size, differences in data quality (both of images and
labels), and transfer initialization realization.

In spite of the difference in performance, we do no feel that our results are sufficient to contradict any
of their results.

1model metrics available here:https://pytorch.org/docs/stable/torchvision/models.html#classification
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Figure 1: The epoch evolution of each of the ResNet models’ AUC for the validation dataset.
Notice that the transfer-init models improve faster than the random-init models, however the overall
performance difference is not as extreme after all models converge.

8 Conclusion

We compared performance of the ResNet models with different initialization methods. We found
differences in performance which emphasise the usefulness of transfer initialization outside of the
presence of massive in-task-domain data sets. We were unable to substantiate the claim that the
difference in distribute from natural images to medical images marginalizes the usefulness of transfer
learning for medical imaging tasks.

8.1 Future Work

As mentioned in the Replicability Analysis section, transfer initialization realization quality plays a
role of unknown magnitude for transfer learning tasks. Neither this work nor theirs considered the
impact of transfer weight initialization, and it may be the case that some pretrained models are less
suited for transfer than others. Addressing this will require a more rigorous layer-wise correlation
analysis to find when models stop developing generalizing features and begin building task-focused
features.

The authors also believe that more work on the mean-var transfer initialization from the raghu
paper will be informative insofar as explaining which aspects of transfer initializations result in
higher-performance on the transfer task.
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Figure 3: This comparison shows the CCA similarity of the activation vector of the final layer of a
transfer-init model and a random-init model, with a baseline of two random-init models’ similarity.
This is meant to show that the transfered model is less similar to a model with random initialization
than two randomly initialized models are similar to one another, and so justify the claim that the
transfered model learns new representations from the randomly initialized model.

Figure 4: Unlike the CCA comparison for ResNet, the Inception models display a greater gap in
similarity, more akin to the figures in their paper. This may be confounded by the performance gap
noted in table 1.
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