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Abstract

State-of-the-art performance by large pre-
trained models in computer vision (CV) and
natural language processing (NLP) suggests
their potential for domain-specific tasks, such
as in the medical sector. However, training
these models requires vast amounts of labelled
data, a challenge in medicine due to the cost
and expertise required for data labelling. Ac-
tive Learning (AL) can mitigate this by select-
ing minimal yet informative data for model
training. While AL has been mainly applied to
single-modal tasks in the fields of NLP and CV,
its application in multi-modal tasks remains
underexplored, such as generating clinical re-
ports from images. In this work, we proposed
anovel AL strategy, Bidirectional Contrastive
Active Learning strategy (BiCAL), that uses
both image and text latent spaces to identify
contrastive samples to selects batch to query
for labels. BiCAL is robust to cold-start learn-
ing problem in AL and class imbalance data by
its design. Our experiments show that BiICAL
outperforms standard methods in clinical effi-
cacy metrics, improving recall by 2.4% and F1
score by 9.5%, showcasing its effectiveness in
actively training clinical multi-modal models.

1 Introduction

Active Learning (AL) is a branch of machine learn-
ing that aims to select a small set of the most infor-
mative data to annotate for a model train (Settles,
2009). This technique allows the model to achieve
optimal performance while lowering the cost of
annotation. It has shown great potential in the field
of NLP recently by reducing the volume of anno-
tated data while not sacrificing model performance
(Shelmanov et al., 2021; Dor et al., 2020; Shen
et al., 2017; Margatina et al., 2022).

However, relatively few have explored the appli-
cation of active learning to fine-tune multi-modal
models in image-to-text downstream tasks. There

has been close work of AL on natural language gen-
eration (NLG) (Gidiotis and Tsoumakas, 2021a;
Tsvigun et al., 2023; Perlitz et al., 2023) and neural
machine translation (NMT) (Haffari et al., 2009;
Ambati et al., 2010). However, in specific domains
like the clinical sector, obtaining quality labelled
data is challenging due to the clinical expertise re-
quired for accurate annotation (Budd et al., 2021;
Chen et al., 2015), which is costly in both time
and money. This motivates us to explore active
learning’s application in the clinical report gener-
ation tasks. Moreover, in domain-specific active
learning, there exists two challenges: 1) Cold-start
learning: Uncertainty-based AL strategies usually
rely on the underlying training model to provide
a measure of uncertainty. They became ineffec-
tive since the underlying training model does not
acquire domain-specific knowledge in the early
training phase (Yuan et al., 2020; Ash and Adams,
2020). 2) Class imbalance in datasets like medical
ones, where existing AL methods struggle to prior-
itize positive (unhealthy) samples in its selection,
hindering model learning for positive cases — our
prime interests in training medical models.

In this study, we introduce a novel AL strategy Bi-
CAL that is tailored to address the two challenges
in domain-specific active learning. We assess Bi-
CAL and other established AL methods on clinical
report generation from chest X-ray images. Our
key contributions are:

1. We develop a novel AL strategy BiCAL that
is robust to the cold start learning and class
imbalance problem in domain-specific active
learning.

2. We show that BiCAL outperforms the litera-
ture in clinical efficacy metrics while main-
taining competitive in NLG metrics.

3. We present an in-depth analysis of existing AL
strategies for clinical report generation. To the



best of our knowledge, this is the first study
of AL for image-to-text generation tasks.

2 Related Work

This section provides the background of our pro-
posed AL strategy BiCAL.

2.1 Clinical Report Generation

General image-captioning by large deep learning
models has been seen successful in application
(Lietal., 2022, 2023; Radford et al., 2021; Doso-
vitskiy et al., 2020; Li et al., 2021). Motivated
by this success, many have explored its poten-
tial on the radiology report generation task, where
most adopt encoder-decoder architecture to achieve
image-to-text translation. (Chen et al., 2022; Jing
etal., 2017; Yuan et al., 2019; Li et al., 2018; Liu
et al., 2019b; Li et al., 2019; You et al., 2022; Hou
et al., 2021; Tanida et al., 2023). Moreover, to
facilitate research in clinical report generation, re-
searchers have also curated and released clinical
image-report pair datasets. (Johnson et al., 2019a;
Demner-Fushman et al., 2015; Irvin et al., 2019).

2.2 Uncertainty-based and Diversity-based
Active Learning

Uncertainty-based AL strategies often use a heuris-
tic that can measure the model’s uncertainty toward
unlabelled data and choose the unlabelled data with
the highest uncertainty (Lewis, 1995; Wang et al.,
2019; Shannon, 2001). (Gal et al., 2017) demon-
strated the idea of measuring model uncertainty
by combining Bayesian Active Learning by Dis-
agreement (BALD) (Houlsby et al., 2011) with
Bayesian formulation of Neural Networks such as
Bayesian by Backprop (Blundell et al., 2015) and
MC dropout (Gal and Ghahramani, 2016). How-
ever, uncertainty-based active learning typically
depends on the underlying training model’s pre-
dictions for uncertainty measurements. This de-
pendence results in the *cold-start’ problem (Yuan
et al., 2020; Ash and Adams, 2020), where these
methods are ineffective early in training due to the
initial model’s naivety.

On the other side, diversity-based Active Learning
aims to select a subset of the data that can best
represent the whole dataset, such that the model
achieves similar performance to full-tuning when
trained on the selected subset. There has been
much previous work in this stream of designing AL
strategies (Kim et al., 2006; Citovsky et al., 2021;

Sener and Savarese, 2018).

There have also been some hybrid AL methods
that combine diversity and uncertainty in their de-
sign (Ash et al., 2019; Yuan et al., 2020). Ap-
proaches that infuse reinforcement learning into
AL strategies which learn the selection heuristic
from scratch were also seen (Fang et al., 2017; Liu
etal., 2018; Vu et al., 2019). When considering the
closest literature, the work most aligned with ours
are active learning in natural language generation
and abstractive text summarization (Tsvigun et al.,
2023; Gidiotis and Tsoumakas, 2021a; Perlitz et al.,
2023; Gidiotis and Tsoumakas, 2021b). BiCAL dif-
fers from these methods in the way that it is able
to select positive samples in a medical dataset in-
herently through contrastive sampling, leading to
a better model that can achieve a higher recall of
diseases.

3 Bidirectional Contrastive Active
Learning

As this work focuses on investigating AL’s applica-
tion in clinical report generation, we formalize the
active learning problem under this task and set up
the notation for the rest of the paper. Given a model
M, unlabelled image data pool X,,,. We denote
an unlabelled input image as x € X/, and the la-
belled text report as y € ¥, where y = (y!,...,y"), n
is the number of tokens in the generated report.
We define the labelled data pool Xjzpes to con-
tain image-report pairs. The whole data pool is
Xail := Xiabel Y Xpoor. The model is parameterized
by vector w, as follows:

M=p,1x)=pu, .y 10 (D)

An acquisition function representing the query
heuristic in the AL setting is denoted as a(x, M).
At each active learning iteration, we acquire the
label of a batch Q of b number of unlabelled in-
stances from X),,,; and add to the labelled data pool
Xiaper using a(x, M). The updated labelled data
pool Xjuper is used to train the underlying model
every iteration. This process iterates until a pre-
defined budget 8 is depleted. Sampling from the
pool is determined by the acquisition function as
follows :

a(x, M) )

X' = argmax ey,

0ol

3.1 Limitation of Contrastive Active Learning

Contrastive Actice Learning (CAL) (Margatina
et al., 2021) hypothesize that if two data points are



close in the model feature space but result in very
different model predictive likelihood, then they
may be lying on the model’s decision boundary
and therefore are a good candidate to query.

CAL uses K-Nearest Neighbors (KNN) (Cover and
Hart, 1967) to find and record the top k neighbour-
ing points by their model representation encodings
from the input. Then it computes the KL diver-
gence (Kullback and Leibler, 1951) between the
model’s output probability of each unlabelled in-
stance with their recorded k neighbours. The con-
trastive score of each unlabelled instance is then
calculated by the average of all KL-divergence val-
ues of the neighbours. Ultimately, the data point
with the highest contrastive score is selected to
be queried. However, CAL exhibits two crucial
limitations in domain-specific active learning as
mentioned earlier:

Cold Start Problem The standard CAL ap-
proach depends on the encoding function of the
base training model. This leads to the "cold-start
problem". At the beginning of training, the model
may not possess domain-specific knowledge, hence
the encoding of input data points by the underlying
training model became uninformative, leading to in-
accurate neighbours drawn by the KNN algorithm,
hence making CAL ineffective.

Targeting Positive Cases Under the original
CAL’s contrastive definition, if there are two data
points that have the same sickness, they first be-
come neighbours of each other, and if the model
predicts differently of the two data points, they
are considered as ’contrastive’ and queried. How-
ever, in medical datasets, it is very often seen that
the dataset will have a class imbalance problem,
where the proportion of negative (healthy) cases
outweighs the positive (unhealthy) cases. CAL
cannot locate the positive cases efficiently, be-
cause negative neighbours pairs would outweigh
the positive neighbours pair in population, leading
to the sampling process suffering from the class
imbalance and queries too many negative instances.
Therefore, models trained using CAL achieves a
bad performance in clinical efficacy and recalling
positive cases, as revealed by our experiments.

3.2 BiCAL Algorithm

The main improvements of BiCAL from CAL
(Margatina et al., 2021) are summarised as follows.
1) We address the Cold-Start Learning problem

by leveraging pre-trained encoders to reduce the
algorithm’s reliance on the underlying model M
in providing embeddings of input data. 2) BiCAL
inherently select positive (unhealthy) samples re-
gardless of the class imbalance problem. This is
done by augmenting the contrastive definition into
bidirectional. The augmented definition combined
with the quality embeddings from the pre-trained
encoder empowers the algorithm to select positive
samples.

We redefine two types of contrastive samples. For
BiCAL, contrastive examples have to satisfy one
of the following definitions:

1. Two data points with similar pre-trained em-
beddings but different pre-trained embed-
dings of their model generation outputs.

2. Two data points with different pre-trained em-
beddings but similar pre-trained embeddings
of their model generation outputs.

The intuition behind the second augmented defini-
tion is that negative cases and positive cases will
most likely have the most different representations
of each other. Therefore, If a model generates simi-
lar outputs for two data points that have different
representations, this means it is highly possible that
at least one positive sample is within the two data
points. Hence by augmenting the contrastive defi-
nition in BiCAL, we have increased the chance of
querying a positive case, compared to CAL.

Formally, each data point x; should obtain k num-
ber of similar neighbours X5, and k number of
dissimilar neighbours X,

Xelose = f(q)(xi)’ q)(xj)) <€

X 1= f@) OG>y O

For the first contrastive sample, the data point
should satisfy the following condition:

JQIM(x)), QM) > ¥ “

For the second contrastive sample, the data point
should satisfy the following condition:

FQM(x), QM(XE,,)) < € ®

Where ®(.) € R is a selected pre-trained image
encoder that maps input x; and x; to its feature
space. Q(.) € RY" is the selected pre-trained text en-
coder that maps the predicted output of underlying



Algorithm 1 Single iteration of BICAL

Input: all data X,;;, unlabeled data X/, acquisition size b, model M, number of neighbours k, distance
metric function f(.), pre-trained image (encoding) function @(.), pre-trained text (encoding)
function €(.), contrastive ratio ¢ € [0, 1], Total number of unlabelled data N, .

-

S close =03 Sfar =0
foriinl,...,Ndo
s | dj e f(O0). O(xy))

[ 5]

4 Xciose < Select k number of xe X, with lowest d;
5 Xyar < Select k number of xe X,,;; with highest d;

6 ?close — M(Xciose)
7 Yfar — M(Xfar)
8 Ji & M(x;)

9 Ll()\e < % Z]i‘ f(Q(y’) Q(yclose))

1
1 I;: PN
0o s, < 1 2 f(Q00.007,)
1 S close := S close Y {sclose} S far =S far Y {sfur}

12 end

13 Q1 « Select b X ¢ number of x € X,,,,; with the highest 5,5
14 O < Select b X (1 — ¢) number of x € Xy, with the lowest s,

Output: Q| U Q»

l>xj€Xa1] jZl LN

LjEd
k

{far"" far}

1
{xclose’ o cl() se

> Xfar =

close =

> Sclose € S close
> Sfar € Sfar

model y; to its feature space. f{.) is a distance met-
ric, such as Euclidean distance or cosine similarity.
€ and y represent the threshold for a very small and
a very large distance value respectively, although in
practice we adopt ranking instead of using a thresh-
old. M(.) is the underlying training model of the
active learning loop, such that ; < M(x;). We
detail the single iteration of BiCAL’s algorithm as
follows:

Compute Neighbours We use the encoding func-
tion from the pre-trained model @(.) to map all the
data points to its pre-trained embedding space. For
each unlabelled instance x;, we use cosine simi-
larity f(.) to measure the distances between the
embeddings of x; and all the other data point in
the X,y (line 3). We record x;’s nearest (top k) and
furthest (bottom k) neighbours in the embedding
space by the distance calculated (lines 4-5).

Compute Contrastive Scores The unlabelled in-
stance x; and all its neighbours X, and Xy, will
be passed to the underlying model M to generate
their text outputs y (lines 6-8). The generated text
from the model is then encoded by the selected pre-
trained language model €(.) to obtain text embed-
ding of the generated text. Using these embeddings,
we can calculate two different contrastive scores
for the unlabelled instance x; (lines 9-10). The first

contrastive score silm is calculated by the average
distance between the embedding of generated out-
put of the unlabelled instances with their nearest
neighbours, and the second one s;ar is calculated
with its furthest neighbours.

Query Two Contrastive Batches For each unla-
belled instance x;, we obtain two lists of contrastive
scores S ¢jose and S 7, We select the unlabelled in-
stances using the two contrastive scores separately.
For S .jp5e, We select the top b X ¢ number of in-
stances, where b is the total intended batch size
for query, and c is a hyperparameter "contratsive
ratio" that controls the ratios of samples sampled
from the two contrastive definitions. This gives
us a batch of instances Q; of the first contrastive
definition (line 13). For § ¢,,, we select the bottom
b x (1 — ¢) number of instances. This gives us a
batch of instances Q> of the second contrastive def-
inition (line 12). Ultimately, two batches Q; and
(> combines to give the output of BiCAL.

4 Experiment Settings

We evaluate BICAL on image-to-text generation
task in the medical domain, specifically, Chest X-
ray clinical report generation task. In every active
learning loop, the underlying model denoted as M,
was fine-tuned twice on the labelled pool Xj,pe;.



Subsequently, we evaluated the model on the test
dataset using various NLG metrics. Each experi-
ment was run in 3 folds with different random seeds,
each fold containing 10 active learning iterations,
where 100 data points were queried per iteration,
i.e. 1000 data points were queried in total.

4.1 Baselines

We evaluate our proposed BiCAL against various
literature Active Learning strategies:

1. Random Sampling (RS): Unlabelled in-
stances are drawn at random.

2. Normalized Sequence Probability (NSP):
Uses the probability of the generated sequence
by the model as a measure of uncertainty.

1 ¢ ,
NSP = l—exp{— ZlogIP’(y’ |y1 ...,y",x)}
-

(Tsvigun et al., 2023; Wang et al., 2019).

3. Expected Normalised Sentence Probability
(ENSP): Bayesian AL method where it has
the same intuition as NSP.

ENSP = 1 - E,—y, puw()%)

(Tsvigun et al., 2023; Ueffing and Ney, 2007,
Wang et al., 2019).

4. Expected Normalised Sentence Variance
(ENSYV): Similar to ENSP but uses variance
instead of expectation between the sequence
probability.

ENSV = Var,,q4, pw(ylx)

(Tsvigun et al., 2023; Ueffing and Ney, 2007;
Wang et al., 2019).

5. Contrastive Active Learning (CAL): SOTA
AL method described in section 3 (Margatina
etal., 2021).

In addition, For BiCAL, we implemented two vari-
ants. BiCAL algorithm requires the specification of
two pre-trained encoders, one for encoding image
input, and one for encoding the generated text out-
put of the underlying training model M, denoted
as ®(.) and Q(.) respectively. For the pre-trained
image encoder @(.), we have experimented with
two types of pre-trained model models, Dinov2
and CheSS, to examine the effect of different types
of pre-trained image encoders in our algorithm.

Dinov2 is an image model that is pre-trained on a
general image dataset (Oquab et al., 2023), whereas
CheSS is pre-trained on a CXR dataset (Cho et al.,
2023). For the pre-trained text encoder €(.), we
have fixed the selection to GatorTron (Yang et al.,
2022) based on its SOTA performance in clini-
cal NLP tasks (that outperforms BioBERT (Lee
et al., 2019), Clinical BERT (Huang et al., 2020),
BioMegatron (Shin et al., 2020)).

4.2 Datasets

We used the labelled dataset MIMIC-CXR (John-
son et al., 2019a) and IU X-Ray (Demner-Fushman
et al., 2015) for a simulation of active learning con-
ditions. IU X-ray contains a total of 3955 radiology
reports with 7470 associated chest X-ray images,
and MIMIC-CXR contains 227,835 radiology re-
ports with 377,110 associated chest X-ray images.
For both datasets, we adopted the methodology
from Chen et al. (2022) to exclude samples without
accompanying reports. The IU X-RAY dataset was
partitioned into training and testing sets using a
ratio of 85%:15%, while the MIMIC-CXR dataset
was divided according to its official train-test split.

In our simulated active learning experiments, we
only queried 1000 data points in total, therefore
it was unnecessary and impractical in terms of
time constraint, to run an active learning experi-
ment on the full dataset of MIMIC-CXR, which
consists of 377,110 images. To address this, we
have leveraged the structured labels provided by
MIMIC-CXR-JPG (Johnson et al., 2019b). We con-
ducted stratified sampling to obtain a 10% subset of
the train split of dataset (34463 data points). This
approach ensured that the subset dataset closely
mirrored the label distribution of the full dataset of
MIMIC-CXR. The label distributions before and
after this stratified sampling are depicted in appen-
dices. Consequently, for MIMIC-CXR, we em-
ployed the stratified sampled subset for training
and used the official test set for evaluation. We
release the processed reports with their image ID
for both datasets in CSV files in the repository.

4.3 Setup

Experiments are run on a single NVIDIA
RTX6000 GPU. We adopted the AdamW optimizer
(Loshchilov and Hutter, 2019) with a learning rate
set to 3e-5 and a weight decay of 3e-7. A warm-up
scheduler was applied to the learning rate for the
initial 500 steps. Due to computational constraints,
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Figure 1: Average NLG Performance of AL Strategies and Best-performing Baselines on MIMIC-CXR

Method BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | ROUGE-1 | ROUGE-2 | ROUGE-L
CAL 0.4978 0.4177 0.3313 0.2685 0.3115 0.0996 0.2143
RS 0.4487 0.3762 0.3008 0.2456 0.3040 0.0979 0.2138
NSP 0.4832 0.3997 0.3160 0.2563 0.2994 0.1026 0.2178
ENSP 0.4238 0.3569 0.2868 0.2355 0.3066 0.1013 0.2205
ENSV 0.3588 0.3060 0.2477 0.2047 0.2939 0.0969 0.2119
BiCAL Dinov2 | 0.5025 0.4200 0.3343 0.2726 0.3096 0.1001 0.2183
BiCAL CheSS | 0.3930 0.3299 0.2636 0.2153 0.2870 0.0905 0.2078

Table 1: Average NLG performance of different AL strategies after 1000 queries on MIMIC-CXR

we used a training batch size of 8. We limited the
maximum number of tokens for generation to 100.

In the experiment, we fine-tune a vision encoder-
decoder model that is initialized by pre-trained vi-
sion transformers (ViT) (Dosovitskiy et al., 2020)
and GPT-2 (Radford et al., 2019), the choice of
the two models chosen is based on their popularity
and good performance in CV and NLP field respec-
tively, we do not delve into investigating different
choice of this underlying model in this work as our
primary focus is to investigate AL strategy in clin-
ical report generation task. We utilized Hugging-
Face (Wolf et al., 2020) and Deepspeed (Rasley
et al., 2020) to aid the set-up of our experiments.

We use two types of evaluation metrics, the tra-
ditional natural language generation (NLG) met-
rics and clinical efficacy metrics. For NLG met-
rics, we report BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) scores every active learning it-
eration. For clinical efficacy metrics, we use CheX-
pert (Irvin et al., 2019) to label the generated re-
ports and the reference reports, and we report the

precision, recall and F1 scores of the labelled cat-
egory of the generated and reference reports, this
approach is used widely in this task (Chen et al.,
2022; Liu et al., 2019a, 2021).

5 Results and Analysis

5.1 Natural Language Generation Metrics

We found that for the IU X-ray dataset, no single
strategy consistently surpasses the others. Notably,
RS and NSP exhibit marginally better performance
during the initial four iterations in both BLEU and
ROUGE metrics. For the MIMIC-CXR dataset,
we find that CAL performs slightly better than
other strategies in ROUGE scores, BiCAL is able
to achieve competitive performance with CAL in
BLEU score as shown in Figure 1.

We observe a varying performance of CAL across
MIMIC-CXR and IU X-Ray datasets, where the
superiority of CAL doesn’t show in the IU X-Ray
dataset. This might stem from the different data
volumes. Smaller datasets result in a limited unla-
beled data pool, potentially narrowing batch sample




Precision | Recall | F-1 Score | Amount of training data
RS 0.450 0.252 0.168 1000
NSP 0.436 0.241 0.194 1000
ENSP 0.558 0.266 0.200 1000
ENSV 0.451 0.268 0.195 1000
CAL 0.326 0.221 0.187 1000
BiCAL Dinov2 0.403 0.255 0.191 1000
BiCAL CheSS 0.429 0.274 0.219 1000
Full Tune 0.309 0.273 0.259 34,463 (full subset)
R2Gen(Chen et al., 0.333 0.274 0.276 377,110 (full data)
2022)
CCR (Liu et al., 0.586 0.237 | <0.300* 377,110 (full data)
2019a)

Table 2: Clinical Efficacy Metrics across AL Strategies after 1000 data queried on MIMIC-CXR Dataset. * stared
entries is estimated as the result is not found in the original paper. The best results over AL strategies of each metric
are highlighted in blue. Detailed results can be found in Appendix.

variance and consequently minimizing observable
performance variance, i.e. the queried batch of dif-
ferent AL strategies on [U-dataset will have more
overlap than on MIMIC-CXR, hence leading to
similar performance using different strategies.

We can observe that for the BLEU score, BICAL
Dinov2 has a better performance than all strate-
gies before 500 queries, but is surpassed by CAL
afterwards (> 500) though it still remains competi-
tive. For ROUGE scores, CAL consistently retains
a slightly better performance starting from 300
queried data. This comparison result has demon-
strated BICAL’s competitiveness in its performance
on NLG metrics. On the other side, as shown in Ta-
ble 1, after 1000 queries, BICAL Dinov?2 achieves
the best performance in all BLEU scores, while
able to achieves the second-best performance in all
ROUGE scores.

In conclusion, for the NLG metrics, although
BiCAL only surpasses literature AL methods in
some metrics, it remains competitive with the best-
performing baseline methods. However, it’s worth
noting that language models have faced criticism
for producing text that might sound authoritative
but can be misleading (Ouyang et al., 2022; Stien-
non et al., 2020; Ziegler et al., 2019). In a medi-
cal setting, our priority is creating clinically accu-
rate reports, instead of reports that are authoritative
sounding. With this in mind, we’ll further assess
the baseline methods and our strategy after 1000
queries on MIMIC-CXR using the clinical efficacy
metric.

5.2 Clinical Efficacy Metrics

Table 2 displays the clinical efficacy metrics of var-
ious active learning (AL) strategies, based on 1000
data queries on a MIMIC-CXR dataset subset. The
table’s last three rows display the performances of
our underlying model after fine-tuning for 5 epochs
on the full MIMIC-CXR dataset subset, R2Gen
(Chen et al., 2022), and the model in paper (Liu
et al., 2019a), respectively. The latter two are full
supervision models where they were trained with
full MIMIC-CXR and were designed to excel in
chest radiology report generation task. Their perfor-
mance was referenced directly from their published

paper.

A notable observation is that BICAL CheSS sur-
passes baseline methods in the recall and F-1 score
while maintaining an average competitive preci-
sion score. This suggests that the BICAL CheSS
approach can effectively recognize a higher num-
ber of actual positive cases (unhealthy scenarios)
than other AL strategies, although may occasion-
ally lead to an increase in false positive errors, as
indicated by the precision score. In the context of
medical diagnostics, it’s crucial to catch every po-
tential disease case (reduce false negatives). This is
because we do not want to miss any illness, mean-
ing that high recall is preferable to high precision.
Therefore BICAL’s performance is a desirable be-
haviour in our context and demonstrates BICAL
CheSS’s superiority in generating better clinically
accurate reports.

Remarkably, the BICAL CheSS method achieves a



recall score that surpasses the models that are fine-
tuned on the entire subset of MIMIC-CXR (Full
Tune). Moreover, it is able to achieve competitive
performance with fully supervised model R2Gen
and CCR, where it achieves a better recall score
and a f1 score that is not lower by a large margin.
We highlight this result, as we note that this perfor-
mance is achieved only on 1000 data points (less
than 0.3% of the whole MIMIC-CXR).

An interesting observation is that although CAL
performs well in the NLG metrics on the MIMIC-
CXR dataset (Figure 1), but its clinical precision
and recall scores are the least impressive among
all methods, not to mention in comparison with
BiCAL Chess. This suggests that while CAL
trains models to produce seemingly accurate re-
ports, these might not be clinically sound. Also, it
demonstrates that by augmenting the contrastive
bidirectionally and utilizing pre-trained encoders,
the clinical efficacy performance of this contrastive
active learning approach can be largely enhanced,
suggesting the successfulness of our approach.

Furthermore, evidence of the task’s complexity
is seen in the last three rows of Table 2. These
rows include results from R2Gen and CCR, mod-
els specifically tailored for chest x-ray report gen-
eration and trained comprehensively on the full
MIMIC-CXR dataset. Despite their specialized
design, their clinical performance still is at a rel-
atively low level. This observation underscores
the inherent challenge of our downstream task -
clinical report generation, this may be due to the
intricacies in medical images are hard to learn by
the underlying model’s capability. To truly elevate
clinical accuracy, there may be a need to design su-
perior clinical models adept at the task. It’s worth
noting that the potential of active learning is inher-
ently bounded by the capability of the base model.
In essence, if a model’s upper limit is, say, 90%
accuracy, then even the most optimal active learn-
ing strategy would struggle to push its performance
beyond this threshold.

5.3 Ablation Study

In the BiCAL algorithm, a crucial component is
the contrastive ratio, denoted as ¢. This ratio deter-
mines how a batch of BiCAl is queried, defining
the sampling ratio between two contrastive defini-
tions. The previous experiments used a default ¢
value of 0.5, meaning an equal split between the
two contrastive definitions. In the section, we fix

c Precision | Recall | F-1 Score

0 0.381 0.254 0.177
0.25 0.376 0.241 0.170
0.50 0.430 0.274 0.219
0.75 0.516 0.250 0.188

1 0.417 0.264 0.199

Table 3: Micro Average of Precision, Recall, and F-1
Score on CheXpert classification Result of BICAL using
different contrastive ratio ¢ after 1000 data queried on
MIMIC-CXR Dataset

BiCAL to its CheSS variant version and varied ¢
within the range [0,1] to explore its influence on
BiCAL'’s performance.

As shown in Table 3, for clinical efficacy metrics,
the BiCAL performs best when c is 0.5 for clin-
ical recall and F1 scores. Regarding clinical pre-
cision, the value of ¢ = 0.75 seems optimal. The
poorest performance in terms of clinical recall is
observed at ¢ = 0.25. This suggests that a ¢ value
of 0.5 might not be the best for NLG metrics, but
it assures a model that can generate higher clinical
quality reports as it achieves the best recalling of
diseases in the generated report.

6 Conclusion

In this study, we evaluated the effectiveness of cur-
rent active learning methods for generating clinical
reports from chest X-ray images. We introduced
BiCAL, a new active learning technique, which
excelled in both NLG and clinical metrics, notably
outperforming baselines in clinical recall and F1-
score. We find that existing AL strategies demon-
strate similar performance in NLG metrics. This
may be due to the complexity of our task, which
requires training the model to acquire domain-
specific knowledge to generate clinical-sounding
reports. A possible solution is the Actune frame-
work: first fine-tuning the language decoder autore-
gressively on a medical text dataset, then actively
learning on the downstream task (Yu et al., 2022).
Interestingly, our tests revealed that an AL strat-
egy’s high performance in NLG metrics doesn’t
ensure equal success in clinical metrics, which may
be due to untruthful generation by language mod-
els.



Ethical Consideration and Limitaticas

We note that despite the success of BiCAL, in our
study of clinical report generation, in practice, its
performance is yet to be confirmed. We have simu-
lated our experiments based on a labelled dataset
where the radiology report was collected under a
monitored condition such that their format may
achieve a certain level of consistency (Johnson
et al., 2019a; Demner-Fushman et al., 2015). How-
ever, in practice, the queried data’s label report may
vary based on different radiologist labellers, this
may cause noise in the training dataset, which may
affect the effectiveness of BiCAL.

We identify that for this work have used sensitive
personal data that is related to the health sector. We
used MIMIC-CXR (Johnson et al., 2019a) and TU
X-Ray (Demner-Fushman et al., 2015) datasets in
this project. We note that both datasets have been
de-identified, where they have removed all personal
health information (PHI). This has ensured the pri-
vacy and confidentiality of the individuals. During
this project, we handled the data responsibility and
used it only for the purpose of research. No at-
tempt at re-identification of the datasets is made.
We have also signed the data use agreement for
MIMIC-CXR before we use the data. We note that
MIMIC-CXR and IU X-rays, just like all datasets,
may contain inherent biases based on patient infor-
mation such as where the data is collected. More-
over, active learning is a technique that samples
data based on a certain heuristic, which therefore
may introduce additional bias in the sampling and
training of the model. This work researches the
effectiveness of active learning in clinical report
generation, we recognize this potential bias that
may be introduced by our research, and this also
comes along with our work’s contribution to the
improvement of the field of active learning in the
clinical sector.
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Table 4: Label Distribution for Full MIMIC-CXR Dataset

-1.0 0.0 1.0 N/A
Atelectasis 453% 0.67% 20.11% 74.69%
Cardiomegaly 265% 698% 19.68% 70.68%
Consolidation 1.90% 3.50% 4.73% 89.87%
Edema 578% 11.25% 11.86% 71.10%
Enlarged Cardiomediastinnm 4.11% 2.32% 3.15% 90.42%
Fracture 024% 039% 1.93% 97.44%
Lung Lesion 0.50% 038% 2.76% 96.36%
Lung Opacity 1.68% 1.35% 22.62% 74.36%
No Finding 0.00% 0.00% 33.12% 66.88%
Pleural Effusion 2.55% 11.92% 23.83% 61.69%
Pleural Other 0.34% 0.06% 0.88% 98.73%
Pneumonia 8.03% 10.68%  7.27% 74.02%
Pneumothorax 0.50% 18.59%  4.55% 76.36%
Support Devices 0.10% 1.53% 29.21% 69.15%

Table 5: Label Distribution for Stratified Subset of MIMIC-CXR Dataset

-1.0 0.0 1.0 N/A
Atelectasis 4.62% 0.72% 19.94% 74.72%
Cardiomegaly 262%  6.83% 19.82% 70.73%
Consolidation 1.83% 3.52% 4.62% 90.03%
Edema 579% 11.53% 11.51% 71.17%
Enlarged Cardiomediastinum 4.06% 2.29%  3.10% 90.55%
Fracture 024% 038% 1.93% 97.45%
Lung Lesion 0.55% 0.42% 2.64% 96.38%
Lung Opacity 1.68% 1.40% 22.71% 74.21%
No Finding 0.00%  0.00% 33.26% 66.74%
Pleural Effusion 257% 11.99% 23.54% 61.90%
Pleural Other 0.32% 0.06% 0.87% 98.75%
Pneumonia 8.09% 10.56%  7.39% 73.97%
Pneumothorax 0.50% 18.36%  4.65% 76.48%
Support Devices 0.09% 148% 29.43% 69.00%
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Figure 2: BLEU scores of BiCAL using Different Image Encoder on IU X-Ray dataset
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Figure 3: ROUGE scores of BiCAL using Different Image Encoder on MIMIC-CXR dataset
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Figure 4: BLEU scores of BiCAL using Different Image Encoder on IU X-Ray dataset
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Figure 5: ROUGE scores of BiCAL using Different Image Encoder on MIMIC-CXR dataset
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Figure 7: ROUGE scores of Different Baseline AL Strategies on MIMIC-CXR dataset
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Figure 8: BLEU scores of Different Baseline AL Strategies on IU X-Ray dataset
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Figure 9: ROUGE scores of Different Baseline AL Strategies on MIMIC-CXR dataset
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Figure 10: BLEU scores of BiICAL and Best Performing Baseline AL Strategies on IU X-Ray dataset
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Figure 11: ROUGE scores of BICAL and Best Performing Baseline AL Strategies on MIMIC-CXR dataset
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Figure 12: BLEU scores of BICAL and Best Performing Baseline AL Strategies on IU X-Ray dataset
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Figure 13: ROUGE scores of BICAL and Best Performing Baseline AL Strategies on MIMIC-CXR dataset
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Method BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | ROUGE-1 | ROUGE-2 | ROUGE-L
CAL 0.4524 0.3839 0.3246 0.2824 0.3841 0.1408 0.2812
RS 0.5116 0.4354 0.3674 0.3184 0.3900 0.1529 0.2838
NSP 0.3633 0.3055 0.2567 0.2228 0.3526 0.1310 0.2660
ENSP 0.5019 0.4292 0.3654 0.3193 0.4005 0.1566 0.2930
ENSV 0.4285 0.3628 0.3062 0.2660 0.3733 0.1433 0.2781
BiCAL naive 0.4251 0.3579 0.3001 0.2598 0.3624 0.1370 0.2717
BiCAL Dinov2 | 0.4179 0.3534 0.2978 0.2578 0.3658 0.1377 0.2721
BiCAL CheSS 0.4688 0.3986 0.3386 0.2954 0.3849 0.1532 0.2851
Table 9: Average NLG performance after 1000 queries on IU X-Ray
Method BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | ROUGE-1 | ROUGE-2 | ROUGE-L
CAL 0.4978 0.4177 0.3313 0.2685 0.3115 0.0996 0.2143
RS 0.4487 0.3762 0.3008 0.2456 0.3040 0.0979 0.2138
NSP 0.4832 0.3997 0.3160 0.2563 0.2994 0.1026 0.2178
ENSP 0.4238 0.3569 0.2868 0.2355 0.3066 0.1013 0.2205
ENSV 0.3588 0.3060 0.2477 0.2047 0.2939 0.0969 0.2119
BiCAL naive 0.5117 0.4201 0.3318 0.2694 0.3001 0.0977 0.2156
BiCAL dinov2 | 0.5025 0.4200 0.3343 0.2726 0.3096 0.1001 0.2183
BiCAL CheSS | 0.3930 0.3299 0.2636 0.2153 0.2870 0.0905 0.2078

Table 10: Average NLG performance after 1000 queries on MIMIC-CXR
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