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Abstract

State-of-the-art performance by large pre-001
trained models in computer vision (CV) and002
natural language processing (NLP) suggests003
their potential for domain-specific tasks, such004
as in the medical sector. However, training005
these models requires vast amounts of labelled006
data, a challenge in medicine due to the cost007
and expertise required for data labelling. Ac-008
tive Learning (AL) can mitigate this by select-009
ing minimal yet informative data for model010
training. While AL has been mainly applied to011
single-modal tasks in the fields of NLP and CV,012
its application in multi-modal tasks remains013
underexplored, such as generating clinical re-014
ports from images. In this work, we proposed015
a novel AL strategy, Bidirectional Contrastive016
Active Learning strategy (BiCAL), that uses017
both image and text latent spaces to identify018
contrastive samples to selects batch to query019
for labels. BiCAL is robust to cold-start learn-020
ing problem in AL and class imbalance data by021
its design. Our experiments show that BiCAL022
outperforms standard methods in clinical effi-023
cacy metrics, improving recall by 2.4% and F1024
score by 9.5%, showcasing its effectiveness in025
actively training clinical multi-modal models.026

1 Introduction027

Active Learning (AL) is a branch of machine learn-028

ing that aims to select a small set of the most infor-029

mative data to annotate for a model train (Settles,030

2009). This technique allows the model to achieve031

optimal performance while lowering the cost of032

annotation. It has shown great potential in the field033

of NLP recently by reducing the volume of anno-034

tated data while not sacrificing model performance035

(Shelmanov et al., 2021; Dor et al., 2020; Shen036

et al., 2017; Margatina et al., 2022).037

However, relatively few have explored the appli-038

cation of active learning to fine-tune multi-modal039

models in image-to-text downstream tasks. There040

has been close work of AL on natural language gen- 041

eration (NLG) (Gidiotis and Tsoumakas, 2021a; 042

Tsvigun et al., 2023; Perlitz et al., 2023) and neural 043

machine translation (NMT) (Haffari et al., 2009; 044

Ambati et al., 2010). However, in specific domains 045

like the clinical sector, obtaining quality labelled 046

data is challenging due to the clinical expertise re- 047

quired for accurate annotation (Budd et al., 2021; 048

Chen et al., 2015), which is costly in both time 049

and money. This motivates us to explore active 050

learning’s application in the clinical report gener- 051

ation tasks. Moreover, in domain-specific active 052

learning, there exists two challenges: 1) Cold-start 053

learning: Uncertainty-based AL strategies usually 054

rely on the underlying training model to provide 055

a measure of uncertainty. They became ineffec- 056

tive since the underlying training model does not 057

acquire domain-specific knowledge in the early 058

training phase (Yuan et al., 2020; Ash and Adams, 059

2020). 2) Class imbalance in datasets like medical 060

ones, where existing AL methods struggle to prior- 061

itize positive (unhealthy) samples in its selection, 062

hindering model learning for positive cases – our 063

prime interests in training medical models. 064

In this study, we introduce a novel AL strategy Bi- 065

CAL that is tailored to address the two challenges 066

in domain-specific active learning. We assess Bi- 067

CAL and other established AL methods on clinical 068

report generation from chest X-ray images. Our 069

key contributions are: 070

1. We develop a novel AL strategy BiCAL that 071

is robust to the cold start learning and class 072

imbalance problem in domain-specific active 073

learning. 074

2. We show that BiCAL outperforms the litera- 075

ture in clinical efficacy metrics while main- 076

taining competitive in NLG metrics. 077

3. We present an in-depth analysis of existing AL 078

strategies for clinical report generation. To the 079
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best of our knowledge, this is the first study080

of AL for image-to-text generation tasks.081

2 Related Work082

This section provides the background of our pro-083

posed AL strategy BiCAL.084

2.1 Clinical Report Generation085

General image-captioning by large deep learning086

models has been seen successful in application087

(Li et al., 2022, 2023; Radford et al., 2021; Doso-088

vitskiy et al., 2020; Li et al., 2021). Motivated089

by this success, many have explored its poten-090

tial on the radiology report generation task, where091

most adopt encoder-decoder architecture to achieve092

image-to-text translation. (Chen et al., 2022; Jing093

et al., 2017; Yuan et al., 2019; Li et al., 2018; Liu094

et al., 2019b; Li et al., 2019; You et al., 2022; Hou095

et al., 2021; Tanida et al., 2023). Moreover, to096

facilitate research in clinical report generation, re-097

searchers have also curated and released clinical098

image-report pair datasets. (Johnson et al., 2019a;099

Demner-Fushman et al., 2015; Irvin et al., 2019).100

2.2 Uncertainty-based and Diversity-based101

Active Learning102

Uncertainty-based AL strategies often use a heuris-103

tic that can measure the model’s uncertainty toward104

unlabelled data and choose the unlabelled data with105

the highest uncertainty (Lewis, 1995; Wang et al.,106

2019; Shannon, 2001). (Gal et al., 2017) demon-107

strated the idea of measuring model uncertainty108

by combining Bayesian Active Learning by Dis-109

agreement (BALD) (Houlsby et al., 2011) with110

Bayesian formulation of Neural Networks such as111

Bayesian by Backprop (Blundell et al., 2015) and112

MC dropout (Gal and Ghahramani, 2016). How-113

ever, uncertainty-based active learning typically114

depends on the underlying training model’s pre-115

dictions for uncertainty measurements. This de-116

pendence results in the ’cold-start’ problem (Yuan117

et al., 2020; Ash and Adams, 2020), where these118

methods are ineffective early in training due to the119

initial model’s naivety.120

On the other side, diversity-based Active Learning121

aims to select a subset of the data that can best122

represent the whole dataset, such that the model123

achieves similar performance to full-tuning when124

trained on the selected subset. There has been125

much previous work in this stream of designing AL126

strategies (Kim et al., 2006; Citovsky et al., 2021;127

Sener and Savarese, 2018). 128

There have also been some hybrid AL methods 129

that combine diversity and uncertainty in their de- 130

sign (Ash et al., 2019; Yuan et al., 2020). Ap- 131

proaches that infuse reinforcement learning into 132

AL strategies which learn the selection heuristic 133

from scratch were also seen (Fang et al., 2017; Liu 134

et al., 2018; Vu et al., 2019). When considering the 135

closest literature, the work most aligned with ours 136

are active learning in natural language generation 137

and abstractive text summarization (Tsvigun et al., 138

2023; Gidiotis and Tsoumakas, 2021a; Perlitz et al., 139

2023; Gidiotis and Tsoumakas, 2021b). BiCAL dif- 140

fers from these methods in the way that it is able 141

to select positive samples in a medical dataset in- 142

herently through contrastive sampling, leading to 143

a better model that can achieve a higher recall of 144

diseases. 145

3 Bidirectional Contrastive Active 146

Learning 147

As this work focuses on investigating AL’s applica- 148

tion in clinical report generation, we formalize the 149

active learning problem under this task and set up 150

the notation for the rest of the paper. Given a model 151

M, unlabelled image data pool Xpool. We denote 152

an unlabelled input image as x ∈ Xpool, and the la- 153

belled text report as y ∈ Y , where y = (y1, ..., yn), n 154

is the number of tokens in the generated report. 155

We define the labelled data pool Xlabel to con- 156

tain image-report pairs. The whole data pool is 157

Xall := Xlabel ∪ Xpool. The model is parameterized 158

by vector w, as follows: 159

M = pw(y | x) = pw(y1, ..., yn | x) (1) 160

An acquisition function representing the query 161

heuristic in the AL setting is denoted as a(x,M). 162

At each active learning iteration, we acquire the 163

label of a batch Q of b number of unlabelled in- 164

stances from Xpool and add to the labelled data pool 165

Xlabel using a(x,M). The updated labelled data 166

pool Xlabel is used to train the underlying model 167

every iteration. This process iterates until a pre- 168

defined budget B is depleted. Sampling from the 169

pool is determined by the acquisition function as 170

follows : 171

x∗ = argmaxx∈Xpool
a(x,M) (2) 172

3.1 Limitation of Contrastive Active Learning 173

Contrastive Actice Learning (CAL) (Margatina 174

et al., 2021) hypothesize that if two data points are 175
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close in the model feature space but result in very176

different model predictive likelihood, then they177

may be lying on the model’s decision boundary178

and therefore are a good candidate to query.179

CAL uses K-Nearest Neighbors (KNN) (Cover and180

Hart, 1967) to find and record the top k neighbour-181

ing points by their model representation encodings182

from the input. Then it computes the KL diver-183

gence (Kullback and Leibler, 1951) between the184

model’s output probability of each unlabelled in-185

stance with their recorded k neighbours. The con-186

trastive score of each unlabelled instance is then187

calculated by the average of all KL-divergence val-188

ues of the neighbours. Ultimately, the data point189

with the highest contrastive score is selected to190

be queried. However, CAL exhibits two crucial191

limitations in domain-specific active learning as192

mentioned earlier:193

Cold Start Problem The standard CAL ap-194

proach depends on the encoding function of the195

base training model. This leads to the "cold-start196

problem". At the beginning of training, the model197

may not possess domain-specific knowledge, hence198

the encoding of input data points by the underlying199

training model became uninformative, leading to in-200

accurate neighbours drawn by the KNN algorithm,201

hence making CAL ineffective.202

Targeting Positive Cases Under the original203

CAL’s contrastive definition, if there are two data204

points that have the same sickness, they first be-205

come neighbours of each other, and if the model206

predicts differently of the two data points, they207

are considered as ’contrastive’ and queried. How-208

ever, in medical datasets, it is very often seen that209

the dataset will have a class imbalance problem,210

where the proportion of negative (healthy) cases211

outweighs the positive (unhealthy) cases. CAL212

cannot locate the positive cases efficiently, be-213

cause negative neighbours pairs would outweigh214

the positive neighbours pair in population, leading215

to the sampling process suffering from the class216

imbalance and queries too many negative instances.217

Therefore, models trained using CAL achieves a218

bad performance in clinical efficacy and recalling219

positive cases, as revealed by our experiments.220

3.2 BiCAL Algorithm221

The main improvements of BiCAL from CAL222

(Margatina et al., 2021) are summarised as follows.223

1) We address the Cold-Start Learning problem224

by leveraging pre-trained encoders to reduce the 225

algorithm’s reliance on the underlying modelM 226

in providing embeddings of input data. 2) BiCAL 227

inherently select positive (unhealthy) samples re- 228

gardless of the class imbalance problem. This is 229

done by augmenting the contrastive definition into 230

bidirectional. The augmented definition combined 231

with the quality embeddings from the pre-trained 232

encoder empowers the algorithm to select positive 233

samples. 234

We redefine two types of contrastive samples. For 235

BiCAL, contrastive examples have to satisfy one 236

of the following definitions: 237

1. Two data points with similar pre-trained em- 238

beddings but different pre-trained embed- 239

dings of their model generation outputs. 240

2. Two data points with different pre-trained em- 241

beddings but similar pre-trained embeddings 242

of their model generation outputs. 243

The intuition behind the second augmented defini- 244

tion is that negative cases and positive cases will 245

most likely have the most different representations 246

of each other. Therefore, If a model generates simi- 247

lar outputs for two data points that have different 248

representations, this means it is highly possible that 249

at least one positive sample is within the two data 250

points. Hence by augmenting the contrastive defi- 251

nition in BiCAL, we have increased the chance of 252

querying a positive case, compared to CAL. 253

Formally, each data point xi should obtain k num- 254

ber of similar neighbours Xclose and k number of 255

dissimilar neighbours X f ar. 256

Xclose := f
(
Φ(xi),Φ(x j)) < ϵ

X f ar := f
(
Φ(xi),Φ(x j)) > γ

(3) 257

For the first contrastive sample, the data point 258

should satisfy the following condition: 259

f
(
Ω(M(xi)),Ω(M(xm

close))
)
> γ (4) 260

For the second contrastive sample, the data point 261

should satisfy the following condition: 262

f
(
Ω(M(xi)),Ω(M(xm

f ar))
)
< ϵ (5) 263

Where Φ(.) ∈ Rd′ is a selected pre-trained image 264

encoder that maps input xi and x j to its feature 265

space. Ω(.) ∈ Rd′′ is the selected pre-trained text en- 266

coder that maps the predicted output of underlying 267
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Algorithm 1 Single iteration of BiCAL
Input: all data Xall, unlabeled data Xpool, acquisition size b, modelM, number of neighbours k, distance

metric function f (.), pre-trained image (encoding) function Φ(.), pre-trained text (encoding)
function Ω(.), contrastive ratio c ∈ [0, 1], Total number of unlabelled data N, .

1 S close := ∅ ; S f ar := ∅
2 for i in 1, . . . ,N do
3 d j ← f

(
Φ(xi),Φ(x j)

)
▷ x j ∈ Xall, j = 1, ...,N

4 Xclose ← Select k number of x∈ Xall with lowest d j ▷ Xclose = {x1
close, ..., x

k
close}; j , i

5 X f ar ← Select k number of x∈ Xall with highest d j ▷ X f ar = {x1
f ar, ..., x

k
f ar}

6 Ŷclose ←M(Xclose)
7 Ŷ f ar ←M(X f ar)
8 ŷi ←M(xi)

9 si
close ←

1
k

k∑
m=1

f
(
Ω(ŷi),Ω(ŷ m

close)
)

10 si
f ar ←

1
k

k∑
m=1

f
(
Ω(ŷi),Ω(ŷ m

f ar)
)

11 S close := S close ∪ {si
close} ; S f ar := S f ar ∪ {si

f ar}

12 end
13 Q1 ← Select b × c number of x ∈ Xpool with the highest sclose ▷ sclose ∈ S close

14 Q2 ← Select b × (1 − c) number of x ∈ Xpool with the lowest s f ar ▷ s f ar ∈ S f ar

Output: Q1 ∪ Q2

model ŷi to its feature space. f(.) is a distance met-268

ric, such as Euclidean distance or cosine similarity.269

ϵ and γ represent the threshold for a very small and270

a very large distance value respectively, although in271

practice we adopt ranking instead of using a thresh-272

old. M(.) is the underlying training model of the273

active learning loop, such that ŷi ← M(xi). We274

detail the single iteration of BiCAL’s algorithm as275

follows:276

Compute Neighbours We use the encoding func-277

tion from the pre-trained model Φ(.) to map all the278

data points to its pre-trained embedding space. For279

each unlabelled instance xi, we use cosine simi-280

larity f (.) to measure the distances between the281

embeddings of xi and all the other data point in282

the Xall (line 3). We record xi’s nearest (top k) and283

furthest (bottom k) neighbours in the embedding284

space by the distance calculated (lines 4-5).285

Compute Contrastive Scores The unlabelled in-286

stance xi and all its neighbours Xclose and X f ar will287

be passed to the underlying modelM to generate288

their text outputs ŷ (lines 6-8). The generated text289

from the model is then encoded by the selected pre-290

trained language model Ω(.) to obtain text embed-291

ding of the generated text. Using these embeddings,292

we can calculate two different contrastive scores293

for the unlabelled instance xi (lines 9-10). The first294

contrastive score si
close is calculated by the average 295

distance between the embedding of generated out- 296

put of the unlabelled instances with their nearest 297

neighbours, and the second one si
f ar is calculated 298

with its furthest neighbours. 299

Query Two Contrastive Batches For each unla- 300

belled instance xi, we obtain two lists of contrastive 301

scores S close and S f ar. We select the unlabelled in- 302

stances using the two contrastive scores separately. 303

For S close, we select the top b × c number of in- 304

stances, where b is the total intended batch size 305

for query, and c is a hyperparameter "contratsive 306

ratio" that controls the ratios of samples sampled 307

from the two contrastive definitions. This gives 308

us a batch of instances Q1 of the first contrastive 309

definition (line 13). For S f ar, we select the bottom 310

b × (1 − c) number of instances. This gives us a 311

batch of instances Q2 of the second contrastive def- 312

inition (line 12). Ultimately, two batches Q1 and 313

Q2 combines to give the output of BiCAL. 314

4 Experiment Settings 315

We evaluate BiCAL on image-to-text generation 316

task in the medical domain, specifically, Chest X- 317

ray clinical report generation task. In every active 318

learning loop, the underlying model denoted asM, 319

was fine-tuned twice on the labelled pool Xlabel. 320
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Subsequently, we evaluated the model on the test321

dataset using various NLG metrics. Each experi-322

ment was run in 3 folds with different random seeds,323

each fold containing 10 active learning iterations,324

where 100 data points were queried per iteration,325

i.e. 1000 data points were queried in total.326

4.1 Baselines327

We evaluate our proposed BiCAL against various328

literature Active Learning strategies:329

1. Random Sampling (RS): Unlabelled in-330

stances are drawn at random.331

2. Normalized Sequence Probability (NSP):
Uses the probability of the generated sequence
by the model as a measure of uncertainty.

NSP = 1−exp

1
n

n∑
i=1

logP(yi | y1 . . . , yn, x)


(Tsvigun et al., 2023; Wang et al., 2019).332

3. Expected Normalised Sentence Probability
(ENSP): Bayesian AL method where it has
the same intuition as NSP.

ENSP = 1 − Ew∼qθ̂ p̄w(y|x)

(Tsvigun et al., 2023; Ueffing and Ney, 2007;333

Wang et al., 2019).334

4. Expected Normalised Sentence Variance
(ENSV): Similar to ENSP but uses variance
instead of expectation between the sequence
probability.

ENSV = Varw∼qθ p̄w(y|x)

(Tsvigun et al., 2023; Ueffing and Ney, 2007;335

Wang et al., 2019).336

5. Contrastive Active Learning (CAL): SOTA337

AL method described in section 3 (Margatina338

et al., 2021).339

In addition, For BiCAL, we implemented two vari-340

ants. BiCAL algorithm requires the specification of341

two pre-trained encoders, one for encoding image342

input, and one for encoding the generated text out-343

put of the underlying training modelM, denoted344

as Φ(.) and Ω(.) respectively. For the pre-trained345

image encoder Φ(.), we have experimented with346

two types of pre-trained model models, Dinov2347

and CheSS, to examine the effect of different types348

of pre-trained image encoders in our algorithm.349

Dinov2 is an image model that is pre-trained on a 350

general image dataset (Oquab et al., 2023), whereas 351

CheSS is pre-trained on a CXR dataset (Cho et al., 352

2023). For the pre-trained text encoder Ω(.), we 353

have fixed the selection to GatorTron (Yang et al., 354

2022) based on its SOTA performance in clini- 355

cal NLP tasks (that outperforms BioBERT (Lee 356

et al., 2019), ClinicalBERT (Huang et al., 2020), 357

BioMegatron (Shin et al., 2020)). 358

4.2 Datasets 359

We used the labelled dataset MIMIC-CXR (John- 360

son et al., 2019a) and IU X-Ray (Demner-Fushman 361

et al., 2015) for a simulation of active learning con- 362

ditions. IU X-ray contains a total of 3955 radiology 363

reports with 7470 associated chest X-ray images, 364

and MIMIC-CXR contains 227,835 radiology re- 365

ports with 377,110 associated chest X-ray images. 366

For both datasets, we adopted the methodology 367

from Chen et al. (2022) to exclude samples without 368

accompanying reports. The IU X-RAY dataset was 369

partitioned into training and testing sets using a 370

ratio of 85%:15%, while the MIMIC-CXR dataset 371

was divided according to its official train-test split. 372

In our simulated active learning experiments, we 373

only queried 1000 data points in total, therefore 374

it was unnecessary and impractical in terms of 375

time constraint, to run an active learning experi- 376

ment on the full dataset of MIMIC-CXR, which 377

consists of 377,110 images. To address this, we 378

have leveraged the structured labels provided by 379

MIMIC-CXR-JPG (Johnson et al., 2019b). We con- 380

ducted stratified sampling to obtain a 10% subset of 381

the train split of dataset (34463 data points). This 382

approach ensured that the subset dataset closely 383

mirrored the label distribution of the full dataset of 384

MIMIC-CXR. The label distributions before and 385

after this stratified sampling are depicted in appen- 386

dices. Consequently, for MIMIC-CXR, we em- 387

ployed the stratified sampled subset for training 388

and used the official test set for evaluation. We 389

release the processed reports with their image ID 390

for both datasets in CSV files in the repository. 391

4.3 Setup 392

Experiments are run on a single NVIDIA 393

RTX6000 GPU. We adopted the AdamW optimizer 394

(Loshchilov and Hutter, 2019) with a learning rate 395

set to 3e-5 and a weight decay of 3e-7. A warm-up 396

scheduler was applied to the learning rate for the 397

initial 500 steps. Due to computational constraints, 398
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Figure 1: Average NLG Performance of AL Strategies and Best-performing Baselines on MIMIC-CXR

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
CAL 0.4978 0.4177 0.3313 0.2685 0.3115 0.0996 0.2143
RS 0.4487 0.3762 0.3008 0.2456 0.3040 0.0979 0.2138
NSP 0.4832 0.3997 0.3160 0.2563 0.2994 0.1026 0.2178
ENSP 0.4238 0.3569 0.2868 0.2355 0.3066 0.1013 0.2205
ENSV 0.3588 0.3060 0.2477 0.2047 0.2939 0.0969 0.2119
BiCAL Dinov2 0.5025 0.4200 0.3343 0.2726 0.3096 0.1001 0.2183
BiCAL CheSS 0.3930 0.3299 0.2636 0.2153 0.2870 0.0905 0.2078

Table 1: Average NLG performance of different AL strategies after 1000 queries on MIMIC-CXR

we used a training batch size of 8. We limited the399

maximum number of tokens for generation to 100.400

In the experiment, we fine-tune a vision encoder-401

decoder model that is initialized by pre-trained vi-402

sion transformers (ViT) (Dosovitskiy et al., 2020)403

and GPT-2 (Radford et al., 2019), the choice of404

the two models chosen is based on their popularity405

and good performance in CV and NLP field respec-406

tively, we do not delve into investigating different407

choice of this underlying model in this work as our408

primary focus is to investigate AL strategy in clin-409

ical report generation task. We utilized Hugging-410

Face (Wolf et al., 2020) and Deepspeed (Rasley411

et al., 2020) to aid the set-up of our experiments.412

We use two types of evaluation metrics, the tra-413

ditional natural language generation (NLG) met-414

rics and clinical efficacy metrics. For NLG met-415

rics, we report BLEU (Papineni et al., 2002) and416

ROUGE (Lin, 2004) scores every active learning it-417

eration. For clinical efficacy metrics, we use CheX-418

pert (Irvin et al., 2019) to label the generated re-419

ports and the reference reports, and we report the420

precision, recall and F1 scores of the labelled cat- 421

egory of the generated and reference reports, this 422

approach is used widely in this task (Chen et al., 423

2022; Liu et al., 2019a, 2021). 424

5 Results and Analysis 425

5.1 Natural Language Generation Metrics 426

We found that for the IU X-ray dataset, no single 427

strategy consistently surpasses the others. Notably, 428

RS and NSP exhibit marginally better performance 429

during the initial four iterations in both BLEU and 430

ROUGE metrics. For the MIMIC-CXR dataset, 431

we find that CAL performs slightly better than 432

other strategies in ROUGE scores, BiCAL is able 433

to achieve competitive performance with CAL in 434

BLEU score as shown in Figure 1. 435

We observe a varying performance of CAL across 436

MIMIC-CXR and IU X-Ray datasets, where the 437

superiority of CAL doesn’t show in the IU X-Ray 438

dataset. This might stem from the different data 439

volumes. Smaller datasets result in a limited unla- 440

beled data pool, potentially narrowing batch sample 441
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Precision Recall F-1 Score Amount of training data
RS 0.450 0.252 0.168 1000
NSP 0.436 0.241 0.194 1000
ENSP 0.558 0.266 0.200 1000
ENSV 0.451 0.268 0.195 1000
CAL 0.326 0.221 0.187 1000
BiCAL Dinov2 0.403 0.255 0.191 1000
BiCAL CheSS 0.429 0.274 0.219 1000
Full Tune 0.309 0.273 0.259 34,463 (full subset)
R2Gen(Chen et al.,
2022)

0.333 0.274 0.276 377,110 (full data)

CCR (Liu et al.,
2019a)

0.586 0.237 <0.300* 377,110 (full data)

Table 2: Clinical Efficacy Metrics across AL Strategies after 1000 data queried on MIMIC-CXR Dataset. * stared
entries is estimated as the result is not found in the original paper. The best results over AL strategies of each metric
are highlighted in blue. Detailed results can be found in Appendix.

variance and consequently minimizing observable442

performance variance, i.e. the queried batch of dif-443

ferent AL strategies on IU-dataset will have more444

overlap than on MIMIC-CXR, hence leading to445

similar performance using different strategies.446

We can observe that for the BLEU score, BiCAL447

Dinov2 has a better performance than all strate-448

gies before 500 queries, but is surpassed by CAL449

afterwards (≥ 500) though it still remains competi-450

tive. For ROUGE scores, CAL consistently retains451

a slightly better performance starting from 300452

queried data. This comparison result has demon-453

strated BiCAL’s competitiveness in its performance454

on NLG metrics. On the other side, as shown in Ta-455

ble 1, after 1000 queries, BiCAL Dinov2 achieves456

the best performance in all BLEU scores, while457

able to achieves the second-best performance in all458

ROUGE scores.459

In conclusion, for the NLG metrics, although460

BiCAL only surpasses literature AL methods in461

some metrics, it remains competitive with the best-462

performing baseline methods. However, it’s worth463

noting that language models have faced criticism464

for producing text that might sound authoritative465

but can be misleading (Ouyang et al., 2022; Stien-466

non et al., 2020; Ziegler et al., 2019). In a medi-467

cal setting, our priority is creating clinically accu-468

rate reports, instead of reports that are authoritative469

sounding. With this in mind, we’ll further assess470

the baseline methods and our strategy after 1000471

queries on MIMIC-CXR using the clinical efficacy472

metric.473

5.2 Clinical Efficacy Metrics 474

Table 2 displays the clinical efficacy metrics of var- 475

ious active learning (AL) strategies, based on 1000 476

data queries on a MIMIC-CXR dataset subset. The 477

table’s last three rows display the performances of 478

our underlying model after fine-tuning for 5 epochs 479

on the full MIMIC-CXR dataset subset, R2Gen 480

(Chen et al., 2022), and the model in paper (Liu 481

et al., 2019a), respectively. The latter two are full 482

supervision models where they were trained with 483

full MIMIC-CXR and were designed to excel in 484

chest radiology report generation task. Their perfor- 485

mance was referenced directly from their published 486

paper. 487

A notable observation is that BiCAL CheSS sur- 488

passes baseline methods in the recall and F-1 score 489

while maintaining an average competitive preci- 490

sion score. This suggests that the BiCAL CheSS 491

approach can effectively recognize a higher num- 492

ber of actual positive cases (unhealthy scenarios) 493

than other AL strategies, although may occasion- 494

ally lead to an increase in false positive errors, as 495

indicated by the precision score. In the context of 496

medical diagnostics, it’s crucial to catch every po- 497

tential disease case (reduce false negatives). This is 498

because we do not want to miss any illness, mean- 499

ing that high recall is preferable to high precision. 500

Therefore BiCAL’s performance is a desirable be- 501

haviour in our context and demonstrates BiCAL 502

CheSS’s superiority in generating better clinically 503

accurate reports. 504

Remarkably, the BiCAL CheSS method achieves a 505
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recall score that surpasses the models that are fine-506

tuned on the entire subset of MIMIC-CXR (Full507

Tune). Moreover, it is able to achieve competitive508

performance with fully supervised model R2Gen509

and CCR, where it achieves a better recall score510

and a f1 score that is not lower by a large margin.511

We highlight this result, as we note that this perfor-512

mance is achieved only on 1000 data points (less513

than 0.3% of the whole MIMIC-CXR).514

An interesting observation is that although CAL515

performs well in the NLG metrics on the MIMIC-516

CXR dataset (Figure 1), but its clinical precision517

and recall scores are the least impressive among518

all methods, not to mention in comparison with519

BiCAL Chess. This suggests that while CAL520

trains models to produce seemingly accurate re-521

ports, these might not be clinically sound. Also, it522

demonstrates that by augmenting the contrastive523

bidirectionally and utilizing pre-trained encoders,524

the clinical efficacy performance of this contrastive525

active learning approach can be largely enhanced,526

suggesting the successfulness of our approach.527

Furthermore, evidence of the task’s complexity528

is seen in the last three rows of Table 2. These529

rows include results from R2Gen and CCR, mod-530

els specifically tailored for chest x-ray report gen-531

eration and trained comprehensively on the full532

MIMIC-CXR dataset. Despite their specialized533

design, their clinical performance still is at a rel-534

atively low level. This observation underscores535

the inherent challenge of our downstream task -536

clinical report generation, this may be due to the537

intricacies in medical images are hard to learn by538

the underlying model’s capability. To truly elevate539

clinical accuracy, there may be a need to design su-540

perior clinical models adept at the task. It’s worth541

noting that the potential of active learning is inher-542

ently bounded by the capability of the base model.543

In essence, if a model’s upper limit is, say, 90%544

accuracy, then even the most optimal active learn-545

ing strategy would struggle to push its performance546

beyond this threshold.547

5.3 Ablation Study548

In the BiCAL algorithm, a crucial component is549

the contrastive ratio, denoted as c. This ratio deter-550

mines how a batch of BiCAl is queried, defining551

the sampling ratio between two contrastive defini-552

tions. The previous experiments used a default c553

value of 0.5, meaning an equal split between the554

two contrastive definitions. In the section, we fix555

c Precision Recall F-1 Score
0 0.381 0.254 0.177

0.25 0.376 0.241 0.170
0.50 0.430 0.274 0.219
0.75 0.516 0.250 0.188

1 0.417 0.264 0.199

Table 3: Micro Average of Precision, Recall, and F-1
Score on CheXpert classification Result of BiCAL using
different contrastive ratio c after 1000 data queried on
MIMIC-CXR Dataset

BiCAL to its CheSS variant version and varied c 556

within the range [0,1] to explore its influence on 557

BiCAL’s performance. 558

As shown in Table 3, for clinical efficacy metrics, 559

the BiCAL performs best when c is 0.5 for clin- 560

ical recall and F1 scores. Regarding clinical pre- 561

cision, the value of c = 0.75 seems optimal. The 562

poorest performance in terms of clinical recall is 563

observed at c = 0.25. This suggests that a c value 564

of 0.5 might not be the best for NLG metrics, but 565

it assures a model that can generate higher clinical 566

quality reports as it achieves the best recalling of 567

diseases in the generated report. 568

6 Conclusion 569

In this study, we evaluated the effectiveness of cur- 570

rent active learning methods for generating clinical 571

reports from chest X-ray images. We introduced 572

BiCAL, a new active learning technique, which 573

excelled in both NLG and clinical metrics, notably 574

outperforming baselines in clinical recall and F1- 575

score. We find that existing AL strategies demon- 576

strate similar performance in NLG metrics. This 577

may be due to the complexity of our task, which 578

requires training the model to acquire domain- 579

specific knowledge to generate clinical-sounding 580

reports. A possible solution is the Actune frame- 581

work: first fine-tuning the language decoder autore- 582

gressively on a medical text dataset, then actively 583

learning on the downstream task (Yu et al., 2022). 584

Interestingly, our tests revealed that an AL strat- 585

egy’s high performance in NLG metrics doesn’t 586

ensure equal success in clinical metrics, which may 587

be due to untruthful generation by language mod- 588

els. 589
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Ethical Consideration and Limitations 590

We note that despite the success of BiCAL in our 591

study of clinical report generation, in practice, its 592

performance is yet to be confirmed. We have simu-593

lated our experiments based on a labelled dataset594

where the radiology report was collected under a595

monitored condition such that their format may596

achieve a certain level of consistency (Johnson597

et al., 2019a; Demner-Fushman et al., 2015). How-598

ever, in practice, the queried data’s label report may599

vary based on different radiologist labellers, this600

may cause noise in the training dataset, which may601

affect the effectiveness of BiCAL.602

We identify that for this work have used sensitive603

personal data that is related to the health sector. We604

used MIMIC-CXR (Johnson et al., 2019a) and IU605

X-Ray (Demner-Fushman et al., 2015) datasets in606

this project. We note that both datasets have been607

de-identified, where they have removed all personal608

health information (PHI). This has ensured the pri-609

vacy and confidentiality of the individuals. During610

this project, we handled the data responsibility and611

used it only for the purpose of research. No at-612

tempt at re-identification of the datasets is made.613

We have also signed the data use agreement for614

MIMIC-CXR before we use the data. We note that615

MIMIC-CXR and IU X-rays, just like all datasets,616

may contain inherent biases based on patient infor-617

mation such as where the data is collected. More-618

over, active learning is a technique that samples619

data based on a certain heuristic, which therefore620

may introduce additional bias in the sampling and621

training of the model. This work researches the622

effectiveness of active learning in clinical report623

generation, we recognize this potential bias that624

may be introduced by our research, and this also625

comes along with our work’s contribution to the626

improvement of the field of active learning in the627

clinical sector.628
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Table 4: Label Distribution for Full MIMIC-CXR Dataset

-1.0 0.0 1.0 N/A
Atelectasis 4.53% 0.67% 20.11% 74.69%
Cardiomegaly 2.65% 6.98% 19.68% 70.68%
Consolidation 1.90% 3.50% 4.73% 89.87%
Edema 5.78% 11.25% 11.86% 71.10%
Enlarged Cardiomediastinum 4.11% 2.32% 3.15% 90.42%
Fracture 0.24% 0.39% 1.93% 97.44%
Lung Lesion 0.50% 0.38% 2.76% 96.36%
Lung Opacity 1.68% 1.35% 22.62% 74.36%
No Finding 0.00% 0.00% 33.12% 66.88%
Pleural Effusion 2.55% 11.92% 23.83% 61.69%
Pleural Other 0.34% 0.06% 0.88% 98.73%
Pneumonia 8.03% 10.68% 7.27% 74.02%
Pneumothorax 0.50% 18.59% 4.55% 76.36%
Support Devices 0.10% 1.53% 29.21% 69.15%

Table 5: Label Distribution for Stratified Subset of MIMIC-CXR Dataset

-1.0 0.0 1.0 N/A
Atelectasis 4.62% 0.72% 19.94% 74.72%
Cardiomegaly 2.62% 6.83% 19.82% 70.73%
Consolidation 1.83% 3.52% 4.62% 90.03%
Edema 5.79% 11.53% 11.51% 71.17%
Enlarged Cardiomediastinum 4.06% 2.29% 3.10% 90.55%
Fracture 0.24% 0.38% 1.93% 97.45%
Lung Lesion 0.55% 0.42% 2.64% 96.38%
Lung Opacity 1.68% 1.40% 22.71% 74.21%
No Finding 0.00% 0.00% 33.26% 66.74%
Pleural Effusion 2.57% 11.99% 23.54% 61.90%
Pleural Other 0.32% 0.06% 0.87% 98.75%
Pneumonia 8.09% 10.56% 7.39% 73.97%
Pneumothorax 0.50% 18.36% 4.65% 76.48%
Support Devices 0.09% 1.48% 29.43% 69.00%
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Figure 2: BLEU scores of BiCAL using Different Image Encoder on IU X-Ray dataset

Figure 3: ROUGE scores of BiCAL using Different Image Encoder on MIMIC-CXR dataset
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Figure 4: BLEU scores of BiCAL using Different Image Encoder on IU X-Ray dataset

Figure 5: ROUGE scores of BiCAL using Different Image Encoder on MIMIC-CXR dataset
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Figure 6: BLEU scores of Different Baseline AL Strategies on IU X-Ray dataset

Figure 7: ROUGE scores of Different Baseline AL Strategies on MIMIC-CXR dataset
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Figure 8: BLEU scores of Different Baseline AL Strategies on IU X-Ray dataset

Figure 9: ROUGE scores of Different Baseline AL Strategies on MIMIC-CXR dataset
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Figure 10: BLEU scores of BiCAL and Best Performing Baseline AL Strategies on IU X-Ray dataset

Figure 11: ROUGE scores of BiCAL and Best Performing Baseline AL Strategies on MIMIC-CXR dataset
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Figure 12: BLEU scores of BiCAL and Best Performing Baseline AL Strategies on IU X-Ray dataset

Figure 13: ROUGE scores of BiCAL and Best Performing Baseline AL Strategies on MIMIC-CXR dataset
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Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
CAL 0.4524 0.3839 0.3246 0.2824 0.3841 0.1408 0.2812
RS 0.5116 0.4354 0.3674 0.3184 0.3900 0.1529 0.2838
NSP 0.3633 0.3055 0.2567 0.2228 0.3526 0.1310 0.2660
ENSP 0.5019 0.4292 0.3654 0.3193 0.4005 0.1566 0.2930
ENSV 0.4285 0.3628 0.3062 0.2660 0.3733 0.1433 0.2781
BiCAL naive 0.4251 0.3579 0.3001 0.2598 0.3624 0.1370 0.2717
BiCAL Dinov2 0.4179 0.3534 0.2978 0.2578 0.3658 0.1377 0.2721
BiCAL CheSS 0.4688 0.3986 0.3386 0.2954 0.3849 0.1532 0.2851

Table 9: Average NLG performance after 1000 queries on IU X-Ray

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
CAL 0.4978 0.4177 0.3313 0.2685 0.3115 0.0996 0.2143
RS 0.4487 0.3762 0.3008 0.2456 0.3040 0.0979 0.2138
NSP 0.4832 0.3997 0.3160 0.2563 0.2994 0.1026 0.2178
ENSP 0.4238 0.3569 0.2868 0.2355 0.3066 0.1013 0.2205
ENSV 0.3588 0.3060 0.2477 0.2047 0.2939 0.0969 0.2119
BiCAL naive 0.5117 0.4201 0.3318 0.2694 0.3001 0.0977 0.2156
BiCAL dinov2 0.5025 0.4200 0.3343 0.2726 0.3096 0.1001 0.2183
BiCAL CheSS 0.3930 0.3299 0.2636 0.2153 0.2870 0.0905 0.2078

Table 10: Average NLG performance after 1000 queries on MIMIC-CXR
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