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ABSTRACT

Continual reinforcement learning faces a central challenge in striking a balance
between plasticity and stability to mitigate catastrophic forgetting. In this pa-
per, we introduce SSDE, a novel structure-based method that aims to improve
plasticity through a fine-grained allocation strategy with Structured Sparsity and
Dormant-guided Exploration. Specifically, SSDE decomposes the parameter
space for each task into forward-transfer (frozen) parameters and task-specific
(trainable) parameters. Crucially, these parameters are allocated by an efficient co-
allocation scheme under sparse coding, ensuring sufficient trainable capacity for
new tasks while promoting efficient forward transfer through frozen parameters.
Furthermore, structure-based methods often suffer from rigidity due to the accu-
mulation of non-trainable parameters, hindering exploration. To overcome this,
we propose a novel exploration technique based on sensitivity-guided dormant
neurons, which systematically identifies and resets insensitive parameters. Our
comprehensive experiments demonstrate that SSDE outperforms current state-of-
the-art methods and achieves a superior success rate of 95% on the CW10-v1
Continual World benchmark.

1 INTRODUCTION

While human beings demonstrate remarkable abilities to adapt knowledge from previous tasks to
new challenges without forgetting, Al models, particularly reinforcement learning (RL) agents,
struggle in non-stationary environments (Thrun||1998;|Choi et al.,|1999). Research in continual RL
aims to overcome this by enabling agents to learn sequential tasks (Wotczyk et al.;, 2021} [Khetarpal
et al., |2022). However, this work faces a major challenge: catastrophic forgetting (McCloskey &
Cohenl, |1989; |Caruanal, [1997). This problem comes from the difficulty in balancing plasticity and
stability in learning systems. Plasticity allows agents to quickly adapt to new tasks, while stability
ensures that previously learned skills are retained (Abbas et al., [2023; |Dohare et al., 2024). Exist-
ing works have pursued three main approaches: (i) rehearsal-based, (ii) regularization-based, and
(iii) structure-based (Khetarpal et al., [2022; [Wang et al., 2024). Notably, rehearsal-based and reg-
ularization-based methods offer relatively limited control over stability, as experience replay and
constrained learning pose the risk of unintended interference with previously learned parameters.
In contrast, structure-based methods excel at preserving stability by explicitly forming task bound-
aries and allocating task-specific sub-networks, effectively minimizing interference and preventing
catastrophic forgetting.

Structure-based methods often leverage sparsity to accommodate the sub-networks for multiple
tasks within a shared parameter space (Wang et al.| [2022; 2024). PackNet (Mallya & Lazebnik,
2018) prunes parameters after each task, retaining only the most crucial ones. CoTASP (Yang
et al, [2023) generates sparse binary masks based on task descriptions to calibrate the output of
each layer. These masks, initialized through sparse coding and dictionary learning, are updated
via gradient computed from RL objectives. However, treating sub-network allocation as a uni-
fied process leads to a gradual reduction in trainable parameters as more tasks are introduced.



Under review as a conference paper at ICLR 2025

on
o &
eo

This limits the model’s capacity to adapt and compromise
plasticity, especially for complex tasks (scaling law (Hilton
et al., 2023)). Moreover, these methods demand substan-
tial computational overhead for sub-network allocation due
to resource-intensive operations like pruning or gradient-
based optimization. To enhance the plasticity of structure-
based methods, it is essential to allocate sufficient train-
able parameters for new tasks while effectively utilizing ek | @ G CEesAC |
trained parameters from previous tasks during inference. Reg 12 :
Both are critical for maintaining the expressiveness of the T rormard Transter (Plastivity)
sub-network policy and improving the continual learning  Fijgure 1: Plasticity-stability trade-off on
performance of structure-based methods. CW10-v1. SSDE achieves SOTA stability
of 95%. Plasticity is the normalized step
to learn a task, where SSDE is competitive
to BC baselines that benefit from replay.
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In this paper, we present SSDE, a novel method for “en-
hancing plasticity through Structured Sparsity and Dormant
neuron-guided Exploration”, designed to optimize the three
core aspects of continual RL policies: (i) Allocation: SSDE introduces a fine-grained co-allocation
strategy based on sparse coding, which explicitly decomposes sub-network parameters into forward-
transfer (fixed) and task-specific (trainable) components, and ensures sufficient capacity for learning
new skills while maintaining knowledge transfer efficiency. (ii) Inference: SSDE incorporates a
dedicated inference function with a novel trade-off parameter that dynamically balances forward-
transfer and task-specific parameters, preventing frozen parameters from overshadowing trainable
ones and expanding the solution space for flexible and diverse inference strategies. (iii) Train-
ing: SSDE introduces a sensitivity-guided dormant neuron algorithm to enhance expressiveness of
sparse policy which restrictive capacity for trainable neurons. By identify neurons unresponsive to
input sensitivity, it addresses the unique expressivity challenges of sparse sub-networks.

Together, the strategic combination of fine-grained co-allocation and exploration with dormant neu-
rons establish a robust foundation for SSDE to significantly enhance the plasticity-stability trade-off.
We show SSDE not only achieves SOTA stability but also achieves competitive plasticity even when
compared to strong behavior cloning baselines that benefit from data replay (Figure [I). We also
show the consistency of SSDE’s performance across both vl & v2 of Continual World benchmark
(Table 3] & Table[Z). A case study on co-allocated masks with structured sparsity highlights that our
approach significantly improves parameter utilization while drastically reducing allocation time (Ta-
ble[T] & Figure ). Visualizations of sub-network masks further demonstrate that structural sparsity
effectively captures task similarities (Figure[5|& Figure[T3). Finally, a comprehensive ablation study
(Table[) confirms that SSDE’s core components are crucial for driving the success of the model.

2 RELATED WORKS

Continual RL, a.k.a. lifelong RL, seeks to develop agents capable of continuously learning from
a sequence of tasks without forgetting previous knowledge. For a comprehensive survey, we refer
readers to (Khetarpal et al.l 2022), and for a formal definition of continual RL agents, see (Abel
et al., [2023). A detailed illustration of rehearsal-based, regularization-based, and structure-based
strategies is provided in Appendix[A3] Among these approaches, the SOTA for continual learning
on Meta-World manipulation tasks (Yu et al., 2019) is held by the rehearsal-based method CloneEX-
SAC (Wolczyk et al., |2022). By storing previous task data and policies for behavior cloning, it
achieves high forward transfer via intensive data replay, though at a significant computational cost.
In contrast, structure-based methods avoid data reuse and use a single set of parameters to represent
multiple policies, enabling more efficient training and inference.

While structure-based methods reduce task interference by using sub-networks, they often pur-
sue sparsity-driven allocation, which sacrifices capacity and hinders adaptation (plasticity). Pack-
Net (Mallya & Lazebnikl [2018) prunes the network after each task, fine-tuning the dense policy into
a sparse one by retaining the most important parameters, albeit with significant computational ef-
fort. HAT (Serra et al.,|2018]) learns a hard attention mask for each task by adding a small number of
trainable weights that are updated alongside the main model. CSP (Gaya et al.| 2023)) progressively
expands the subspace of policies by integrating new policies into the space as anchors, if learning
with the new parameters brings positive performance gain. Rewire (Sun & Mul |2023)) employs a dif-
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ferentiable wiring mechanism to adaptively permute neuron connections, enhancing policy diversity
and stability in non-stationary environments. Recently, sparse prompting-based approaches have
emerged, effectively bridging cross-modality task relationships with parameter allocation strategies.
TaDeLL (Rostami et al.,|2020) employs a coupled dictionary optimization to augment task descrip-
tors and policy parameters, initializing the policy for a new task as a sparse linear combination over
a shared basis. CoTASP (Yang et al.l [2023) extends this by initializing sparse sub-network masks
through sparse encoding and dictionary learning, which are updated during RL via gradient opti-
mization. Though both works focus on leveraging task similarities for parameter allocation, they
overlook a critical issue of sparse networks progressively losing trainable parameter capacity, which
hinders the acquisition of new skills. Our work overcomes this limitation with a novel co-allocation
strategy built on sparse coding, designed to ensure effective forward-transfer parameter allocation
while simultaneously dedicating sufficient capacity for trainable parameters. SSDE further achieves
fully preemptive allocation, removing the need for computationally intensive dictionary learning or
iterative updates used in CoTASP, significantly enhancing allocation efficiency.

Our work further bridges continual RL with the recently proposed dormant neuron phe-
nomenon (Sokar et al., 2023) to address a key question: How can structure-based continual RL
agents use their sparse sub-networks to their full potential? |Sokar et al.| (2023) proposes ReDo,
a mechanism that periodically resets inactive neurons from full-scale dense policies to restore net-
work capacity without significantly altering policy. It identifies dormants using a simple yet effective
method based on neuron activation scales. In context of structure-based continual RL, expressivity
challenge is more pronounced due to sparse sub-networks, where a substantial portion of parame-
ters are frozen, leaving only a small fraction trainable. SSDE extends the dormant neuron concept
by proposing a sensitivity-guided dormant that intuitively identifies neurons unresponsive to ob-
servation changes, enhancing the sparse policy’s responsiveness to crucial states. Integrating this
phenomenon into continual RL is crucial, as expressivity is directly tied to plasticity, especially
in sparse sub-networks where limited capacity hinders adaptability. To the best of our knowledge,
SSDE is the first work to address expressivity limitations of sparse policy networks in continual RL.

3 PROBLEM FORMULATION

Our work focuses on solving continual RL problems under a task-incremental setting, following
(Wolczyk et al 2021} [Yang et al [2023). Formally, we aim to train a single RL policy to solve
a sequence of N distinct tasks 7., = {71,..., Tn }, where each task 7} is observed sequentially
and defined as a Markov Decision Process (MDP), 7, = <S(k)7A(k),p(k),R(k)77>. Here, S(¥)

represents the state space, A*) is the action space, p(¥) : St(k) X Agk) — St(_lf_)l is the transition

probability function, R(*) : St(k) X Agk) — R is a reward function, and y € [0, 1) is the discount
factor. The goal of the agent is to learn an optimal continual RL policy 7 that performs well on the
entire distribution of tasks through sequential task interaction,

-
0" =argmax » E.,
max ) Eny | )

k=1

Structure-based continual RL tackles the challenge of plasticity-stability trade-off with a strategy of
dynamically partitioning the policy network into task-specific sub-networks, minimizing task inter-
ference and preserving the degradation of earlier behaviors. Formally, for each task 7y, it establishes
a mapping ¢ : 6 X task;4(k) — 6 that automatically maps the network parameters 6 and task iden-
tity task;q to generate a dedicated sub-network policy 7, , where 6 C 6. Crucially, the space for

the sub-network parameters can be decomposed into two parts: 6;, = {0,’:”, 6,7}, where 9‘;“’ rep-
resents a group of the forward-transfer parameters shared with previous tasks 64, ..., 0;_1, frozen

k—1
after training and used for inference only. Formally, 9,{1” = ( U Gi) ﬂ 0, and the remaining are
i=1
task-specific parameters, updated solely for learning the current task, i.e., ;" = 0 \ 0}:“’. Note
that each task only updates its task-specific parameters 0;°, while the forward-transfer parameters

9,’:“’ remain fixed to prevent task interference. To scale the agent’s capability for handling multiple
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tasks, the sub-network parameters are typically sparse. For efficient task allocation, we employ a
neuron-level partitioning method to establish task boundaries. For each layer [, sub-networks are

prompted by applying binary masks ¢,gl) to the outputs of the I-th layer 3("), generating calibrated
network outputs as follows:

v = @ flyy 750, 2)

where f(-) is the conventional inference function for the i-th layer, 8" = {9£w<l) ,0,"0}, and ©
is element-wise multiplication. The key to the structure-based approach lies in determining how to
allocate 6" and 6:7 for each task to maximize the use of learned knowledge through /" while en-
suring sufficient capacity in ;" to capture new skills. However, existing structure-based RL methods
overlook these fine-grained relationships and address the allocation of 6y, as a unified process.

4 METHODOLOGY

In this section, we propose SSDE (plasticity through Structured Sparsity with Dormant neuron-
guided Exploration). In Sec 1] we introduce a fine-grained co-allocation algorithm that allocates
parameters for each task regarding task global relationship and local structure. The allocated param-
eters are decomposed into forward-transfer (fixed) and task-specific (trainable), allocated under an
objective of preserving knowledge from previous tasks for forward transfer while maximizing the
number of trainable parameters for increased network plasticity (Sec f.I.T). Then we detail a sub-
network masking mechanism that facilitates task-specific prompting during inference and training.
Using neuron-level and parameter-level masks, sub-networks can be efficiently frozen or activated
as needed (Sec .1.2). In Sec .2 we introduce a dormant neuron-guided exploration strategy
that re-activates the sensitivity-guided dormant neurons to overcome the expressiveness challenges
of training sparse sub-network policies.

4.1 FINE-GRAINED SUB-NETWORK ALLOCATION

Sparse prompting-based approaches (Yang et all,[2023} [Reimers & Gurevych} [2019) enhance plas-
ticity by assigning sparse codes to respective tasks, which are then transformed into neuron masks
to generate dedicated sub-networks. Building on this foundation, we propose a sub-network co-
allocation strategy that leverages global task correlation and task-specific local dictionaries for ef-

fective allocation. Specifically, we introduce global task-related sparse prompting, denoted as oy,
derived from embeddings of text descriptions encoded by pre-trained Sentence-BERT

and a global coding dictionary, to capture shared task relationships. Crucially, we
also introduce local task-capacity sparse prompting, a[a], derived from individual local dictionaries,
to ensure sufficient capacity for task-specific parameters. These two components synergistically co-
allocate dedicated forward-transfer and task-specific parameters in sparse sub-networks, enhancing
network plasticity. During reinforcement learning, we incorporate a fine-grained masking mecha-
nism to efficiently manage the forward-transfer parameters, freezing them for stability and forward
transfer, while selectively updating task-specific parameters to integrate new knowledge.

4.1.1 CO-ALLOCATION WITH SPARSE PROMPTING

To obtain a global task-related sparse prompting oy, r), we begin by generating task embeddings
e, € R™ of tasks 7 by encoding their corresponding task textual descriptions using a pre-trained
LM. For each layer-/ in the sub-network, we construct a shared space among all the tasks as an
over-complete dictionary D) e RWX”“), where n() is the number of neurons at layer-/ in the
full network. Elements in D) are sampled from normal distribution A (0,1) and DY is fixed for
all task in 7.;. We aim to learn a sparse prompting a,(cl[)r] e R™"” that could reconstruct the task
embeddings e, as a linear combination of neuron’s representations, i.e., atoms from the dictionary.

The sparse prompting O‘g[)r] can be obtained by optimizing the Lasso problem formalized as follows,

)
(]

1
= argmin §||ek - D(l)a,(cl[)r]ﬂg + )\[F]Ha,(cl[)r]ﬂl, forlayer!=1,...,L—1, (3)

l
o
Qg(r] eRm™
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: Figure 2: Co-allocation with sparse prompt-
e o o(-) ing aims to learn two sets of calibration embed-
‘ i — | oy dings, auxry and s, which generate neuron-

level binary calibration masks q&,(cl) to determine
P the sub-net structure for the [-th layer. Upper: a
global-level sparse coding process learns aug[r) by
o= (D——> [ )g¢?| projecting different task embeddings onto a shared
plane of DO, assigning similar masks to simi-
lar tasks. Lower: a task-specific prompting pro-
cess leverages random projection planes to learn
a[a] to increase the capacity for trainable pa-
taerwie | rameters. Together, these processes co-allocate bi-
nary masks, promoting enhanced plasticity.

0

Different
ak‘ A]  planes

where || - ||, is the L, norm, \rj is a hyperparameter controlling the sparsity of the forward-transfer

prompting oz,(cl[)r] ,and L is the number of layers. A step function p(-) transforms the sparse prompting

into a binary mask, i.e., ¢§cl[)1‘] = P(O‘l(cl[)r])' The binary mask ¢1(cl[)1“] e {0, 1}"(” selects the sub-
network neurons for task 7y, at layer-I.

Through this optimization, similar tasks will result in neuron masks that allocate similar neurons.
However, this similarity introduces a challenge: the overlap of fixed neurons with previous tasks
leads to fewer trainable parameters for new tasks, potentially limiting the network’s capacity to
learn and adapt. To fully leverage the limited training capacity, we implement a strategy to maximize
separation between task representations. The goal is to reduce the overlap in neuron usage across
different tasks. This is achieved by introducing a novel mechanism: the embedding for each task,

Tk, is projected using its own unique dictionary, D,(Cl). This approach allows for more distinct
representations of each task, even when the original task descriptions are similar.

Specifically, each element in D,gl) is drawn from A/(0,1). The task-specific prompting a](cl[)A] that
selects the trainable neurons is learned by solving the following objective:

.1
al(cl[)A] = argmin §||e;€ - D,(f)ag[)A]H% + )\[A]||a,(€l[)A]||1, forlayer/=1,...,L—1, (4

ak[A]GRm

where A[5) is a hyperparameter to control the sparsity for a,(f[)A]. To efficiently compute the sparse

promptings, we employ a Cholesky-based implementation of the LARS algorithm (Efron et al.|
2004), which offers a good balance of performance and ease of implementation. The binary mask

for random projection, 615;(@[[)/\] = P(Ot,(j[)A]), is obtained by applying a threshold function p(-) to a,(j[)A].

The final fine-grained sub-task masks, <b,(€l), are derived by combining the two groups of masks:
l(j) = ‘bg[)r] Vv (/)fcl[) P where V represents the element-wise OR operation, and each element in the

mask is a Boolean value (0 or 1).

Co-allocated final masks for each task’s sub-network would convey high-quality forward-transfer

parameters for fast adaptation, meanwhile also providing sufficient trainable parameters for current

task updates. This mask learning process is computationally and data-efficient by using only the
task description embeddings without dependence on any gradient optimization.

4.1.2 FINE-GRAINED SUB-NETWORK MASKING

With the neuron level mask qS,(Cl), we can investigate which parameters in weight matrix W ¢

(1) 5y (1= 1) . . . . .
R™ Dxnlt are in used, i.e. the sub-network allocated, in Task 7. We denote a binary mask matrix
by \i/g) c Rn(l)xn(l*l)

layer neuron mask ¢

, which can be computed by matrix-multiplication with qﬁg) and previous
(1-1),
Pl

v =0 (0 )" )

where the value 1 indicates the parameter is activated in task 7. Specially, d),(co) =1 and gi),(CL ) -1

are vectors where all elements are ones. The element at row p and column ¢ in matrix \fl,(cl) is one
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if and only if the p-th element of qbk and q th element of (;Sk ) are both ones. Therefore, matrix
\ilg) is more or equal sparse compared to (b and ¢ . As mentioned in Section 2, the parameters

indicated by ‘I/( ) are allocated as the sub-network parameters for the current task 7 and as part
of forward- transfer fixed parameters 6/ in future tasks 7 1.y to prevent catastrophic forgetting.

However, recent structure-based methods (Mallya & Lazebnikl 2018}, Yang et al., 2023) freeze pa-
rameters in neuron level, in which whole rows of parameter in W () aIe ﬁxed after training task

Tk Many parameters, which are selected by ¢k) but not covered by ¢k , are wasted, as they
remain scratch till the end of training. This strategy dramatically reduces the network plasticity and
trainable parameters, leading to less network capacity for future tasks.

In order to solve this drawback, our work proposes fine-grained sub-network masking mechanism

that freezes the exact parameters which have been trained in previous task 77.,_1. We maintain

1)

another mask matrix lIl,(cf1 for the frozen parameters, formally defined as performing element-wise

OR operation across all seen fine-grained mask \ilgl) fori <k —1,i.e. \Ilg)_1 = \/i.:ll ﬁlz(»l).
The fine-grained mask \1/1(31 covers the exact parameter that are used in tasks 7.1 and should
be fixed starting from task 7. The forward function of layer-/ can be decomposed into two part
regarding \Ilgil, inferring with the rask-specific (trainable) parameters, and the forward-transfer
(frozen) parameters, respectively.

g0 = ((1_\1,@) )®\I,<z>®w<z>) yV s (\1,511@@’(91)@”/@)) g b0 @ g,

task-specific parameters (trainable) trade-off  forward-transfer parameters (frozen)

(6)

where y( ) is the pre-activation output, and the layer output is y ( ) = = h(y (l)) with h(-) being the
activation function. We introduce a trade-off parameter /3, Wthh plays a crucial role in achieving
fine-grained control over the impact of forward-transfer parameters. As the task distribution evolves,
the capacity of frozen parameters increases while the availability of trainable parameters decreases.
Our fine-grained inference method utilizes 3 to control the balance of pre-trained knowledge with
the acquisition of new skills, preventing the pre-trained knowledge from overshadowing the trainable
parameters, enhancing the plasticity, and enabling the model learn new tasks effectively. Figure 3]
shows an example of the fine-grained inference procedure in SSDE.

Learning To optimize our proposed fine-grained sub-network allocation method, we update only
the task-specific parameters using masked gradient descent as follows:

0O 60 —a(1-v" gl 7

where « is the learning rate and g () is the gradient w.r.t. layer-i parameters ("), which are set to

zeros when \Ili) 1 1s 1. In other words, we stop gradient for the term \I/(l) 1 ® \I/(l) QWO wrt. WO,
A detailed version of our proposed co-allocation method in SSDE is presented in Algorithm [T}

4.2 STRUCTURAL EXPLORATION WITH SENSITIVITY-GUIDED DORMANT NEURONS

Training sparse prompted sub-network policies in the continual RL domain often encounters a cru-
cial challenge of limited expressivity due to the increasing rigidity of the policy network over tasks.
As training progresses, the proportion of non-trainable parameters grows, dominating the network’s
output and restricting its adaptability to new tasks. This rigidity arises from the need to fix parame-
ters to prevent catastrophic forgetting, reduces the availability of trainable parameters to adequately
shape the policy for new learning (lose of plasticity). Consequently, only a subset of neurons remains
active, leading to a less stochastic policy that becomes increasingly non expressive.

To enhance the adaptability of sparse sub-networks, we propose a novel sensitivity-guided struc-
tural exploration strategy facilitated by a newly defined sensitivity dormant scores. Motivated
by dormant neurons phenomenon (Sokar et al., 2023)), our approach involves periodically resetting
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Figure 3:  Illustration of structural ex-
ploration with dormant neurons in SSDE.
Structural sparsity is achieved by generating
a sub-network from neurons co-allocated by
two sparse prompting processes (I' and A).
Fine-grained inference is performed on it, with
the trade-off coefficient 3 controlling the bal-
ance of trainable and frozen parameters. For
structural exploration, the input of the sparse
network is perturbed to maximize the sensitiv-
ity of active neurons. Neurons colored blue are

evaluated on sensitivity score cz(-l), and inactive
ones, denoted as dormant (marked ‘D’ with re-

set) are reset to enhance expressiveness.

0
Dormant Score CE ):

Global-allocation Neuron

0 ——> Sensitivity | -

Task-allocation Neuron

<0 Trad-off Coefficient - -- Frozen Parameter ~ —% Reset Parameter

. . Inactivate Neuron
. Dormant Reset —— Trainable Parameter ww Input Pertubation -

neurons that have become unresponsive. Unlike prior work, which evaluates responsiveness solely
by neuron activation scale, SSDE addresses the unique rigidity of sparse sub-networks, where lim-
ited trainable parameters hinder exploration and learning, often rendering the policy unresponsive
to input variations (as highlighted in Appendix [A.4.).

To tackle this, we introduce sensitivity-guided dormant neurons, bridging neuron activation with
their sensitivity to observational distribution. Formally, our reset process involves injecting con-
trolled perturbation noise into input observations and analyzing output variations across the sub-
network layers. Neurons exhibiting significant output changes are identified as highly sensitive and
retained for structural exploration. This scoring method effectively reactivates underutilized neu-
rons, addressing the expressivity challenges inherent to sparse policies, and significantly enhancing
plasticity and capacity to adapt new skills in structure-based continual RL policies.

Definition 4.1 (Sensitivity dormant scores). Let y,il)(i) (s) denote the i-th neuron output of layer-

given observation s as the input, and A be noise vector to perturb s. Given a observation distribution
D; and s € Dy, the sensitive-dormant score of neuron ¢ at layer-/ is defined as:

ESEDS

! !
ylgi,)(i)(s) - yl(c,)(i) (s + A))

1 l :
O UNERSN]

O

1 ®)

[ R
) 1

We say a neuron ¢ in layer [ is 7-dormant if cgl) <.

Periodically Resetting. At the beginning of training, we store the randomly initialized values
of all parameters. We periodically evaluate the sensitivity dormant scores for all neurons at fixed
training intervals where the scores are computed according to Equation[8] As illustrated in Figure[3]
neurons with scores cl(-l) < 7 are designated as dormant. Only the trainable task-specific parameters
connected to these dormant neurons are reset to their initial stored values. In contrast, all frozen

parameters are maintained unchanged, irrespective of their connection with dormant neurons.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Benchmarks. To assess the performance of SSDE, we follow the standard Continual World exper-
imental setup from (Wolczyk et al.,2022)) and conduct extensive evaluations. Our primary bench-
mark is CW10 from Continual World (Woftczyk et al., 2021), which features 10 representative ma-
nipulation tasks drawn from Meta-World (Yu et al., [2019). Additionally, we also use CW20, a
version of CW10 repeated twice, to evaluate the transferability of the learned policy across repeated
tasks. Details on the CW benchmark is presented in Appendix [A.3]
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Evaluation Metrics. We employ three key metrics, as introduced by Wotczyk et al.| (2021): (1)
Average Performance (P) (1): the average performance for all tasks, P(t) = |7.l‘ ZLTCZI i (t),
where py(t) is the success ratio of the k-th task at step ¢. (2) Forgetting (F) ({): the average loss in
performance across all tasks after learning is complete, F' = \T | Zml‘ Pk (k - 0) — pr(| Tl - )],

where 0 represents the number of environment steps allocated for each task. (3) Forward Transfer
(F'T) (1): the transfer is computed as a normalized area between the training curve of the compared
method and the training curve of a single-task reference method trained from scratch (no adaptation).
The reference performance is denoted as p? € [0, 1], and the forward transfer is measured as:

AUC;, — AUC? 1 [k

FTj, = . AUC
g 1— AUCL ke

1 5
pr(t)dt, AUCY := = / ph(t)dt.  (9)
5 (k—1)-6 5 Jo

Training Details. To ensure the reliability and comparability of our experiments, we follow the
training details outlined in (Wolczyk et al., |2021), implementing all baseline methods using Soft
Actor-Critic (SAC) (Haarnoja et al.l |2018). To ensure a fair comparison across tasks, we limit the
number of environment interaction steps to 1e6 per task, with each result averaged over five random
seeds. And the Delta is defined as 0.01 times the average state over the preceding 1,000 steps.
Additional implementation details for SSDE are presented in Appendix [A]

5.2 EVALUATION OF SPARSE PROMPTING-BASED SUB-NETWORK CO-ALLOCATION

Iy
o

We begin with a proof-of-concept ex-
periment to demonstrate the advan-
tage of our proposed network al-
location strategy, sparse prompt-
ing with fine-grained co-allocation,
over the sparse prompting in Co-
TASP. SSDE’s co-allocation not only
captures task similarity for high-
quality #/* but also ensures an ade-
quate allocation of task-specific 6°P
to effectively learn new knowledge,
significantly enhancing the expres-
sivity of the sparse network. Figure [] illustrates the network utilization ratio under our method

1) d 1 . . oye . .
and CoTASP, measured as W Our method achieves a much higher utilization ratio,

using nearly 40% of parameters compared to CoTASP’s < 25%, reducing parameter waste. Ad-
ditionally, SSDE consistently outperforms CoTASP in success ratio, highlighting that co-allocation
generates sub-networks with greater capacity, leading to improved plasticity.
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Figure 4: Evaluation on SSDE’s co-allocation vs. Co-
TASP’s sparse prompting on CW10-v1. Left: network uti-
lization; Right: average performance .

We also examine the computational efficiency of our method Table 1: Allocation efficiency.

compared to its closest structure-based counterparts, PackNet  —yr o0 Allocation Ti

and CoTASP. Table [T] reports the per-task sub-network allo- cho ocation Time ({)

cation time. The overhead for PackNet is due to its compu- CoTASP 72.25 (6.45x)
PackNet 422.0s (37.68x%)

tationally intensive network pruning (i.e., fine-tuning process

with a significant amount of data) and that for COTASP stems SSDE (Qurs) 1125 (1x)

from dictionary learning and gradient-based optimization. As a result, PackNet requires more than
37x over SSDE, and CoTASP takes more than 6x. These results highlight that SSDE generates
high-quality sub-networks with significantly greater computational efficiency.

5.3 EVALUATION ON CONTINUAL WORLD BENCHMARK

We conduct benchmark evaluations on the Continual World 10 Tasks (CW-10) & 20 Tasks
(CW-20) environments, with results presented in Table @ Overall, SSDE demonstrates a supe-
rior success ratio on CW10-v1, improving the state-of-the-art record of 86%, held by a strong
rehearsal-based baseline ClonEx-SAC, to 95%, marking a 9% increase. Figure |§| illustrates
the learning curve for SSDE alongside representative baselines. The curve shows a clear ad-
vantage for SSDE compare to strong structure-based counterparts like PackNet and CoTASP.
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Table 3: Benchmark evaluation results on Continual World (v1).

Benchmarks-v1 CW 10 CW 20

Metrics P (1) F) FT® | P® F) FT M
L2 (Kirkpatrick et al.{|2017) 042 +0.10  0.024+0.02 -0.57 +0.20 | 0.43 £0.04  0.02+0.01  -0.71 +0.10

o EWC (Kirkpatrick et al.|[2016) 0.66 +0.05 0.03 +£0.02  0.054+0.07 | 0.60 £0.03  0.03+0.03 -0.17 +0.07

& MAS (Aljundi et al.|[2018) 0.59 £0.03  -0.02+0.01 -0.35+0.07 | 0.50+0.02 0.00 +0.01  -0.52 £0.05
VCL (Nguyen et al.|[2018) 0.58 +0.04  -0.02+0.01 -043 +0.13 | 0.47 £0.02 0.01 +£0.02 -0.48 +0.08
Fine-tuning 0.124+0.00  0.724+0.02  0.324+0.03 | 0.05+0.00 0.72 +0.03 0.20 +0.03
PackNet (Mallya & Lazebnik|2018)  0.83 £0.04  0.00 +0.00  0.21 +0.05 | 0.80+0.01  0.00 +£0.00  0.18 £0.03

§ HAT (Serra et al.|[2018) 0.68 +0.12  0.00 +0.00 — 0.67 £0.08  0.00 +0.00 -

“2 CoTASP (Yang et al.| 2023fE| 0.73 £0.11 0.00 £0.00  -0.21 £0.04 | 0.74 +£0.03  0.00 +0.01  -0.19 +0.02

= Reservoir 0.29 £0.03 0.03 £0.01  -1.11 £0.08 | 0.124+0.03  0.07 £0.02  -1.33 +0.08

& A-GEM (Chaudhry et al.[[2019) 0.14 £0.05 0.73 £0.01 0.28 +0.01 | 0.07 £0.02  0.70 +0.01 0.13 +0.03
ClonEx-SAC (Wolczyk et al.}|2022)  0.86 £0.02  0.024+0.02  0.44 +0.02 | 0.87 +0.01  0.02 +0.01 0.54 £0.02

—~ MTL (Yuetal.|[2019) 0.51 +0.10 — — 0.51 +0.11 — —

= MTL+PopArt (Hessel et al.|[2019) 0.66 +0.04 — — 0.65 £0.03 — —
SSDE (Ours) 0.95+0.02  0.00+0.00  0.30+0.02 ‘ 0.87 +0.02  0.00 £0.00  0.29 +0.02

Additionally, we demonstrate our method could enhance plasticity by showing the forward-
transfer effect in Figure [7] which compares SSDE and CoTASP to a standard single-task pol-
icy provided by Continual World. The results highlight that SSDE achieves stable policy
learning progress, converging to higher success ratio with positive forward-transfer (plasticity).
We also demonstrate SSDE’s scalability in handling more . .

tasks through CW20-vl experiments. SSDE achieves Table 2: Evaluation on CW10-v2.

a comparable performance to ClonEx-SAC, a strong Method Average Success (1)
behavior-cloning baseline. It’s important to note that CW20  ~ ragp 0734013
repeats CW10 twice, and ClonEx-SAC would gain access  pyckNet 0.82--0.04
to all expert data and policies for all CW20 tasks, resem- SSDE (Ours) 0.87--0.03

bling offline RL. Our method treats each task as a new task,
and advances the best score for structure-based method from 80% to 87%. To further illustrate the
consistency of SSDE’s performance, we evaluated it on CW10-v2. As shown in Table 2] SSDE
significantly outperforms its structure-based counterparts.

To better assess the quality of the 1 ] = R v
sub-networks generated by SSDE, we =~ v = - I - . 2
provide visualization of the similarity -l - -
heatmaps of sub-network masks allo- s "2 s "

cated by SSDE in Figure 5] For tasks . e
with similar task embeddings (e.g., s
Task-2 vs. Task-4 and Task-2 vs. tesco
Task-7), we notice strong alignment ™"

between the two similarity heatmaps. ~ * Cee
This demonstrates that SSDE effec- Figure 5: Visualization of task description similarity (/ef)

tively captures task similarities en- and that for sub-network similarity (right) for SSDE.
coded in the descriptions. The strong alignment is crucial for fast adaptation and enhanced plasticity,
as SSDE can allocate forward-transfer parameters from similar tasks, allowing new tasks to lever-
age high-quality parameters trained on previous tasks. Additional visualizations of the sub-network
mask ¢(¥) for each layer are provided in Figure|13|in the Appendix.

All layer overlap ratio

task 7

Prompt Similarity

task 8

task 9

task 10

5.4 ABLATION STUDY

In table @] presents the results of the ablation study on the CWI10-vl sequence, using av-
erage success as the evaluation metric. Among the three SSDE variants: ‘w/o 3’ does
not utilize the Trade-off Coefficient mechanism, keeping all frozen parameters at their origi-
nal values during training; ‘w/o Dormant’ removes the reset parameters mechanism; and‘w/o
Fine-Grained ¢, ¥’ relies solely on a fixed dictionary for sub-network allocation. Addition-
ally, we create an ablation baseline “W/o Dormant, w/o 3’ which employs only co-allocation
mask, for a fair comparison with the sparse prompting-based allocation from CoTASP. We

'Reproduced from https://github.com/stevenyangyj/CoTASP
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Figure 6: Learning curves for each method on CW10-v1.
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Figure 7: Tllustration of forward transfer (plasticity). Each row compares the learning curve for each
CW10-vl1 task, against a single-task SAC baseline. Blue region: single-task learns faster (negative transfer);
Red/Yellow region: positive transfer, indicating high plasticity. Overall, SSDE demonstrates strong plasticity,
consistently leading to faster and more effective learning than SAC.

also introduce a basleine ‘SSDE(w/ ReDo)‘ to compare the effectiveness of our sensitivity-
guided dormant score to the original dormant mechanism from ReDo (Sokar et al [2023).
From this table, we observe that the removal of Fine- ) .

Grained mask allocation has the most significant im- Table 4: Ablation study on CW10-v1.

pact on the experimental results. Compared to the =~ Method Average Success (1)
sparse prompting in CoTASP, our co-allocation im-  —/~ 3 0.83 +0.14
proves the performance by more than 10%. This un- /0 Dormant 0.85 &+ 0.06
derscores the critical role of ensuring a dedicated al- w/o Fine-Grained ¢, ¥ 0.80 + 0.07
location of trainable parameters to incorporate new w/o Dormant, w/o (3 0.81 £ 0.08
knowledge, an aspect that has been largely over- SSDE (w/ ReDo) 0.88 + 0.02
looked in previous works. We also observed that the  SSDE (ours) 0.95 - 0.02

Trade-off Coefficient 3 contributes to more stable ex-
perimental results. This is due to its ability to effectively alleviate the impact of frozen parame-
ters on model performance, leading to more consistent outcomes. Additionally, comparing SSDE’s
sensitivity-guided dormant with ReDo underscores the importance of connecting the sensitivity at
observation level to the neuron’s activation to address rigidity of sparse policy with particularly con-
strained trainable capacity. Overall, the core components of SSDE, each addressing critical aspects
of continual RL, work synergistically to form the foundation of the model’s success.

6 CONCLUSION

We introduce SSDE, a novel structure-based continual RL method. At its core, SSDE features an
efficient co-allocation algorithm, uniquely allocates dedicated capacity for trainable parameters for
task-specific learning while leveraging frozen parameters for effective forward transfer from previ-
ous policies, balanced by a trade-off parameter for fine-grained inference. To address the expres-
sivity limitations of sparse sub-networks, SSDE introduces a structural exploration strategy with
sensitivity-guided dormant neurons. These generalizable techniques provide a solid foundation for
advancing multi-task, continual learning, and continuous control problems with neural policy. Look-
ing ahead, there is significant potential to further enhance structural sparsity through more dedicated
sub-network allocation strategies. Integrating advanced neuron permutation strategies like differen-
tiable wiring mechanisms also offer a promising direction for enhancing the expressiveness of policy.

10
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A APPENDIX

This supplementary material is organized as follows:

* Sec[A.T} implementation details for SSDE.
* Sec[AZ} a detailed algorithm for SSDE.
 Sec[A3l extended discussion on related works.

* Sec [A:4} additional experimental results, including (i) a case study on input sensitivity
with a complex task T5 : stick-pull, (ii) visualization on sub-network similarities, and (iii)
per-task score for the experiments.

* Sec[A.3} an overview of the robotic manipulation task in Continual World, highlighting the
difference between v1 and v2 environments.

The code for reproducing all the experiments and the learning curves will be released after the paper
is accepted.

A.1 IMPLEMENTATION DETAILS

Table 5: Detailed hyperparameter configurations for SSDE.

Hyperparameter Value Range

SAC

Actor hidden size 1024 {256,512,1024}
Critic hidden size 256 {256,512,1024}
# of hidden layers for meta policy 4 {2,3,4}

# of hidden layers for critic Q1 4 {2,3,4}

# of hidden layers for critic Q2 4 {2,3,4}
Activation function LeakyReLU -

Batch size 256 {64, 128,256}
Discount factor 0.99 -

Target entropy —-2.0 -

Target interpolation 5x 1073 -

Replay buffer size le6 {2e5,5e5,1e6}
Exploratory steps le4 -

Optimizer Adam -

Learning rate 3x1074 -

Continual Learning

Training steps for each task le6

Evaluation steps for each task

SSDE

Sparsity ratio Ar, Aa 1073 {1072,1073,107%,107°}

Trade-off parameter 3 0.3 {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,1}
Dormant threshold 7 0.6 {0.2,0.4,0.6,0.8}

Dormant reset interval 8ed {1e4, 2e4, Se4, 8e4, 1e5, 2e5}

SSDE is developed on top of the Jax Implementation of SAC from JaxRLEl The actor policy and
critic networks are parameterized as standard MLPs. Notably, SSDE introduces no additional train-
able parameters compared to SAC. All calibration masks are determined beforehand through the
co-allocation strategy, ensuring that during training, the masks remain fixed, allowing for efficient
learning with pre-allocated sub-networks. As a result, SSDE achieves highly computationally effi-
cient sub-network allocation. SSDE also does not employ task-specific policy heads. Additionally,
we do not store any data from previous tasks or perform rehearsal on past experiences, differentiating
it from rehearsal-based approaches like ClonEx-SAC.

https://github.com/ikostrikov/jaxrl
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For the evaluation on computational efficiency presented in Table [I] we use a GPU server with 4
L40, and 120 cores "AMD EPYC 9554P 64-Core Processor" CPU.

A.2 DETAILED ALGORITHM

Algorithm 1: SSDE: Structured Sparsity with Dormant Neuron-guided Exploration Algorithm

Input: Meta-policy network 7y, task descriptions {.Sy, }1_1, trade-off parameter 3, sparse coding Ak[r)
and Ay[4), dormant threshold 7, critics Q1 and )2, temperature temp, replay buffer B = 0,
training budget Iy, dormant interval p, batch_size bs.

Output: Policy 6, sub-network mask {¢1, ..., on }=_1, P (1), F (1), FT (D).

1 function Fine_Grained_CoAllocation

2 for task k =1 — N do
3 Compute task embedding e, = SENTENCE_BERT(Sk).
4 for layer | =1 — L do
5 if k=1 then
6 Initialize DY ~ A(0,1). // Fixed dictionary.
7 end
8 Solve Oég[)r] by sparse_coding (ex, DO, A(r)) from Eq . // I'-Allocation:
enhance forward transfer mask
9 Discretize qb,(f[)r] — p(a,il[)r])
10 Initialize D,(J) ~ N(0,1). // Random dictionary.
11 Solve ag[)A] by sparse_coding (e, D,(Cl), Ak[a)) from Eq (H) // A-Allocation:
enhance trainable capacity
" M _ 4D\ p®
k k[T K[A]®
13 end
14 end
15 return {qzﬁfcl)}kN:l forl=1,..., L.
16 end
17 function Train_and_Eval
/* Sub-network Allocation Before Training. */

18 Get {¢§€l)}kN:1 forl =1, ..., L from Fine_Grained_CoAllocation
19 for task k =1 — N do

20 Get 0y, from 6 under neuron mask {qﬁLl) Mg
21 Save current parameters 0;pir,x = 0.
2 Computer param mask {\ilg) }£ , from neuron mask {(bg)}f:l follow Eq .
23 for: =110 Iy do
24 Act with a; Nﬂ'gk(st;ﬁ,\yk_l,‘i/k,qbk) follow Eq (@) // Forward path
25 Fill (s, at, ¢, st, done) to buffer .
/+ Learning */
26 Sample 7 = {s;,a;,7;,s},done}s%, from B.
27 Computer gradient g, by optimizing SAC loss.
28 Update 7y: 0 < 0 — (1 — ¢1) ® gx, following Eq . // Backward path
29 Update Q1, Q2 and temp by SGD.
30 if i % Ip = O then
/+ Dormant exploration */
31 Compute cgl) for each qﬁg) from layer 1, .., L, following Eq .
32 Reset params in ,;, that is connected to neurons with cgl) < 7 from Oinit k-
33 end
34 end
/* Evaluation x/
35 Evaluate 7, on 71, ...Tn.
36 \i/g) = \/(\Ilgf)7 \I/gll) fori=1,...L. // Accumulate gradient mask
37 end
38 return On, P (1), F (1), FT (1)
39 end
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A.3 DETAILED REVIEW OF RELATED WORKS

Rehearsal-based methods replay stored experiences from previous tasks to reinforce the stability
of neural policies while accommodating adaptation during new task learning. A-GEM (Chaudhry
et al.| [2019) stores samples from previous tasks in a memory buffer and projects gradients from new
tasks in a way that prevents interference with past knowledge. Perfect Memory (Wolczyk et al.,
2021)) retains the entire buffer across tasks, ensuring that no information is forgotten by continuously
remembering all past data. ClonEx-SAC (Wolczyk et al.||2022) disentangles the policy into shared
and task-specific components and performs behavior cloning based on previous samples to mitigate
forgetting. Fine-tuning (Wolczyk et al., 2021)) is a forgetful method that continually updates the
model with new task data, without specifically managing stability. While easy to implement with a
relatively straightforward stability-enhancing mechanism, rehearsal-based methods often experience
performance degradation as the number of tasks increases, largely due to escalating memory and
computational demands.

Regularization-based methods attempt to mitigate catastrophic forgetting by introducing con-
straints or penalties during the learning process, ensuring that important parameters for previously
learned tasks are preserved. EWC (Kirkpatrick et al.,[2016) uses the Fisher information matrix to
approximate the importance of each weight and selectively penalizes changes to those deemed cru-
cial for previously learned tasks. L2 (Kirkpatrick et al.l [2017) emposes a Lo penalty to regularize
the change of parameters. MAS (Aljundi et al., | 2018])) evaluates a weighted penalty based on the im-
portance of each parameter to the network output. VCL minimizes the KL divergence between the
prior and posterior of parameters to enhance stability. Despite their effectiveness, a key drawback of
these methods is that their rigid regularizers can overly constrain the model, diminishing plasticity
while still not fully ensuring the protection of crucial parameters for stability.

Structure-based methods, also known as parameter isolation methods, focus on preserving and
updating the network architecture to accommodate different tasks. PackNet (Mallya & Lazebnik],
2018) performs computational intensive pruning after the training of each task, allocating distinct
sub-networks for each task in a sparsity-driven manner. HAT (Serra et al.,|2018) learns a hard atten-
tion mask for each task to generate sub-networks. Our work is mostly related to the sparse prompting
methods driven by task descriptions. TaDeLL (Rostami et al., 2020) proposes a coupled dictionary
optimization to generate new task parameters as a sparse linear combination over a shared basis
with textual descriptions. CoTASP (Yang et al., 2023) combines sparse encoding with dictionary
learning to generate sparse sub-networks. Though both works pursue sparse sub-networks, their al-
location considers allocating the entire sub-network as a monotonic process, while SSDE considers
fine-grained allocation to accommodate forward-transfer parameters and free-parameters.

A.4 ADDITIONAL RESULTS
A.4.1 SSDE’Ss SENSITIVITY-GUIDED DORMANT VS REDO: A CASE STUDY

Sparse sub-policies in structure-based continual RL methods often encounter the challenge of rigid-
ity, where limited trainable parameters progressively lose sensitivity to input variations. This rigidity
significantly hinders the policy’s ability to adapt to complex tasks requiring precise, multi-step exe-
cution. Traditional approaches like ReDo (Sokar et al [2023)), which assess neuron responsiveness
based solely on activation scales, inadequately capture this issue, as they overlook the critical role
of neuron sensitivity to input variations. In this section, we use Task-5 Stick-Pull as a case study
to statistically measure and showcase the rigidity of sparse sub-policies in terms of input sensitivity.
Our observations reveal that policies with restrictive expressivity, constrained by sparse allocation,
fail to respond effectively to critical state inputs. This limitation motivates the development of
our sensitivity-guided dormant scores, which bridge neuron activation with input sensitivity. By
addressing the expressivity challenges inherent in sparse sub-policies, SSDE enhances their respon-
siveness and adaptability, enabling them to handle such demanding tasks more effectively.

Task Description: Task-5 Stick-Pull (Grasp a stick and pull a cup with the stick) is a relatively
complex manipulation task from CW10. It involves multiple sub-skills, which need to be executed in
sequence: (1) maneuvering the arm to the stick, (2) picking it up, (3) placing the stick into a hole, and
(4) finally pulling the cup to a designated target position. Many continual RL policies struggle with
this task, often resulting in sub-optimal policies and failing to achieve desired goal-reaching per-
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formance. Unless the agent successfully manages all sub-skills, the policy will score a 0% success
rate. While training a large network with SAC can easily yield a 100% success rate, structure-based
continual learning methods, such as CoTASP, often perform poorly, frequently resulting in failed
policy with a 0% success rate on this task.

SEEEH EEEER

. Successfully pull the cup to the goal ! . Picking and placing but no pulling

(a) Successful Policy (b) Failed Policy

Figure 8: Demonstration of the rigidity in the sparse continual RL policy. The failed policy (right)
stuck in sub-optimal solutions: the agent can pick up stick, place stick to cup, but cannot pull cup to
goal location. The failed policy is highly insensitive to change on goal location from the state
inputs.

Analysis: Although the environment provides dense rewards, the failed agent is only able to learn
partial skills. As shown in Figure 8] the agent successfully picks up and places the stick but fails
to pull it toward the goal. This illustrates a common scenario where a policy becomes stuck in a
sub-optimal solution due to insufficient exploration. Enhancing the exploration capabilities of the
sparse sub-network remains a critical challenge to address. Additionally, we pose the following
assumption:

Q: Could the failure for sparse sub-networks to learn complex manipulation skills be attributed to
the insensitivity of the sub-network parameters to changes in key input features?

episode 1 episode 2 episode 3 —— successful policy

~—— failed policy
—— cup position
—— goal position

J e bl
) 100 200 300 400 500 600

0.0 0.2 0.4 0.6 0.8 10

1e6

(a) Successful Policy (b) Failed Policy (c) Learning curve on Task-5

Figure 9: Evaluation on input sensitivity for a successful policy and failed policy, on Task-5. The
failed policy remains insensitive to change on goal position, compared to other features, and thereby
fail in pushing the cup to the goal.

Empirical Results: We empirically evaluated the sensitivity for sub-network policy param-
eters w.r.t changes in input. We grouped the input into four major categories (gripper position,
stick position, cup position, and goal position), and applied Az to each group, where Az is a static
perturbation noise to the input. The change in the network’s response to the perturbed state is de-
noted as a’, and the difference |a’ — a| is recorded. We present the sensitivity of a successful policy
and a failed policy, from Figure 9] (a) and (b), respectively. The results show that, while the failed
policy exhibits high sensitivity to cup position features and stick position, its sensitivity to goal is
significantly lower. In contrast, the successful policy demonstrates more balanced sensitivity across
all feature groups, without overlooking certain inputs like goal position. This motivates us to pro-
pose a sensitivity-guided exploration strategy. We define a novel concept of sensitivity-guided
dormant score, using it to actively identify insensitive parameters in response to input perturbations.
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A.4.2 CO-ALLOCATION FROM SSDE vs. SPARSE PROMPTING FROM COTASP

We discuss on the difference between our proposed sparse prompting method with that from Co-
TASP in detail. While CoTASP focuses primarily on sub-network allocation, SSDE systemati-
cally contributes to: (i) sub-network allocation; (ii) fine-grained inference; (iii) training sparse
sub-networks with restrictive expressiveness.

Allocation: CoTASP models task similarities with BERT embeddings, and applies sparse coding
to generate sparse allocation parameters («) for each task. These parameters «, when discretized,
form binary masks applied to neuron outputs, creating sparse sub-networks as policies for each task.
However, this allocation strategy has two major drawbacks:

1. Extensive overlap in a with increasing tasks: As more tasks are introduced, sub-
networks for similar tasks exhibit significantly overlap. This leads to a substantial increase
in frozen parameters, thereby reducing the trainable parameters in a policy. This diminishes
the policy’s capacity to adapt to new tasks.

2. Iterative updates to o during training: The sparse prompting masks « are continuously
optimized during RL through alternative update. This iterative process incurs significant
computational overhead and can lead to training instability.

Given the critical importance of maintaining sufficient capacity for trainable parameters, CoOTASP
addresses this issue by slightly altering the sparse coding’s projection plane after each task. This
adjustment relies on dictionary learning, a computationally intensive and complex optimization
process designed to refine the task dictionary.

In contrast, SSDE’s co-allocation eliminates the need for computationally intensive alternative up-
dates for task prompts () and dictionary learning for task dictionaries. Our method ensures
high-quality forward-transfer parameter allocation and sufficient capacity for trainable parameters
with a co-allocation that combines two processes:

1. Sparse coding with a global shared task dictionary D, which facilitates the allocation of
high-quality forward-transfer parameters. This process resembles the sparse coding from
CoTASP.

2. Sparse coding with a local task-specific dictionary D, randomly mapping task embed-
dings to sub-networks.

Combining the two processes effectively resolves the overlapping issue and ensures a balance be-
tween plasticity and stability. This co-allocation strategy alleviates the need to further optimize
task dictionary (remove dictionary learning) or task prompts (remove alternative update), thus oper-
ating in a fully preemptive manner—computed prior to training with no further updates required.
SSDE achieves higher computational efficiency.

Beyond allocation, SSDE addresses the following crucial limitations in structure-based continual
RL methods:

Inference: SSDE introduces fine-grained inference, incorporating a novel trade-off parameter to
dynamically balance forward-transfer and task-specific parameters.

Training: To enhance the expressivity of sparse sub-networks, SSDE proposes a novel sensitivity-
guided dormant neuron strategy, improving the adaptability and plasticity of the trained policies.

A.4.3 SENSITIVITY ANALYSIS

We analyze the sensitivity of key hyperparameters introduced by our method, using experiments
conducted with five random seeds. The detailed results are provided in Tables[6]and[7} while Figure
[[0]illustrates the trends in mean performance. We observe that as the value of 3 increases, the model
initially achieves a peak performance at § = 0.3 with an average success rate of 0.95, but further
increments lead to a decline, accompanied by increased variance, suggesting that excessive reliance
on frozen parameters adversely impacts overall performance. On the other hand, for the threshold 7,
the model achieves optimal performance at 7 = 0.6 with an average success rate of 0.95. However,
higher thresholds such as 7 = 0.8 result in a performance drop, likely due to an increased number
of reset parameters compromising model stability and reducing the benefits of learned sparsity.
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Figure 10: Sensitivity analysis results on crucial model parameters for SSDE. We report the perfor-
mance of each setting under 5 random seeds. The left figure correspond to the trade-off coefficient
beta, and right one correspond to the dormant threshold 7 for sensitivity-guided dormant.

B 0.1 0.2 0.3 04 0.5
Avg Success  0.72£0.01 0.83+£0.02 0.95+0.02 0.89+0.03 0.84=£0.05
Ié] 0.6 0.7 0.8 0.9 1.0

Avg Success 0.84 £0.07 0.82+0.08 0.83£0.08 0.82+0.10 0.83+0.14

Table 6: Sensitivity analysis results of varying the trade-off parameter 3.

T 0.2 0.4 0.6 0.8
Avg Success  0.86 £0.01 0.88+0.02 0.95+£0.02 0.83£0.06

Table 7: Sensitivity analysis results of varying the dormant threshold 7.

A.4.4 GENERALIZATION RESULTS ON BRAX HALFCHEETAH “COMPOSITIONAL" SCENARIO

To demonstrate SSDE can generalize to different problem domains, we provide extended results on
the locomotion tasks, focusing on the ¢’compositional' task sequence from Brax. This continual
RL task consists of a sequence of four distinct tasks, where the fourth task is a composition of the
first and second tasks. This challenging environment not only incorporates compositional skills to
complete the task, but also introduces diverse dynamics for the agent.

To integrate SSDE into Brax scenarios, sparse coding works conveniently upon task descriptions as
summarized in Table@ For evaluation, we compare SSDE with two state-of-the-art methods on Brax
scenarios, [Sun & Mu|(2023) and [Gaya et al| (2023). The scores for SSDE are averaged across five
different random seeds. The overall results in different continual RL metrics are presented in Table[9]
We normalize the task returns based on the corresponding SAC-N results, following the approach
used in Rewire. The learning curves are shown in Figure SSDE demonstrates outstanding
performance in the Brax compositional scenarios, surpassing the state-of-the-art Performance

Task-id Name Description

1 tinyfoot halfcheetah with a tiny foot.

2 moon halfcheetah in a small gravity environment.

3 carry_stuff_hugegravity  halfcheetah is carrying heavy stuff.

4 tinyfoot_moon halfcheetah with a tiny foot and in a small gravity environment.

Table 8: A list of task descriptions for Halfcheetah/compositional scenario from Salina CL (Gaya

2023)
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Figure 11:  Learning curves for training
SSDE on the HalfCheetah-Compositional sce-
nario from Brax, to investigate whether our
method could generalize to alternative do-
mains. Each task consists of 1M steps, fol-
lowing the learning sequence: tiny_foot —

moon — carry_stuff_huge_gravity — tiny-
025 s foot_moon. SSDE achieves an impressive P(1)
0501 N e o et of 1.04£0.05, outperforming CSP and Rewire

= noticeably.

Normalized Return
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Figure 12: Trade-off between model size (x-
axis) and performance (y-axis) on CW10.
N Model sizes are normalized relative to the fine-
. ours tuning baseline with a hidden size of 256. SSDE
081 and CoTASP share the same network architec-
‘ ture, using a hidden size of 1024. Notably, on
e r————— modern GPUs, training MLPs with 256 or 1024
ool hidden units results in negligible differences in
i both inference and backpropagation times, with

Reg: vCL a ratio of 1:1.13 for inference and 1:1.07 for

‘ e Rt backpropagation. In inference, batch size in-
L troduces more additional computational over-
] i T s B 1 1w head, but in JAX’s gradient update, batch size
Model Size has a much smaller impact on backpropagation.
Therefore, the gap in backpropagation will be

smaller.

Performance

[]
EEEEe

>

(1) achieved by Rewire, with higher Transfer (1) and zero Forgetting (|). While SSDE operates
with a larger model size (hidden dimension of 1024) compared to CSP and Rewire, the parallel
computation capabilities of modern GPUs ensure that this increase in size has negligible impact on
computation time. This additional results underscore the generalization ability and effectiveness for
our proposed method.

Table 9: Comparison of CSP, Rewire, and SSDE in “Halfcheetah/compositional" tasks.

Method Performance () Model Size (|]) Transfer () Forgetting ()
CSP 0.69 £+ 0.09 3.4+1.5 —0.31 £0.09 0.0£0.0
Rewire 0.88 + 0.09 2.1£0.0 —0.18 £0.09 —0.0+0.0
SSDE (Ours) 1.04 +£0.05 15.7+0.0 0.04 +£0.05 0.0£0.0

From the learning curves, we observe that our method effectively learns tasks without exhibiting
catastrophic forgetting. Notably, for the fourth task, we find that during the learning of the first
and second tasks, the performance on the fourth task improves to varying degrees during testing.
This phenomenon highlights the relevance between tasks, demonstrating that the shared parameters
within the model can effectively contribute to learning. These findings provide strong evidence
supporting the validity of our shared parameter mechanism.

A.4.5 MODEL SIZE VS. PERFORMANCE

In this section, we analyze the trade-off between model size and performance across different meth-
ods, as shown in Figure[12]

A key feature of our approach is the use of a larger backbone policy network with 1024 neurons,
consistent with CoOTASP. This larger backbone is essential for structure-based methods like CoOTASP
and SSDE as it provides the capacity and flexibility needed to allocate parameters effectively and
ensure dedicated amount of trainable parameters for each task. In contrast, many rehearsal-based
models utilize a smaller hidden size but incur significant overhead in storing large volumes of

19



Under review as a conference paper at ICLR 2025

data frames, highlighting a trade-off in resource utilization from a different perspective.

Notably, with modern GPUs, training time doesn’t scale linearly with the model size, and rea-
sonable variations in model size (e.g., hidden dimensions of 256 vs. 1024) result in negligible
difference in inference or backpropagation update time, due to the GPU parallelism in compu-
tation. To verify this, we measure the inference and backpropagation time for a fine-tuning network
architecture (with a relative model size of 1) compared to SSDE’s network. Under a standard batch
size of 256, the increase in inference/backpropagation time is only about 13%/7%.

A.4.6 VISUALIZATION OF EACH LAYER’S SUB-NETWORK PROMPTS

We provide a visualization of task similarities encoded in the task embedding e; and the structural
sparse sub-networks allocated by our method, SSDE, for each layer of the policy. The results, shown
in Figure[T3] Overall, the results reveal several key insights:
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Figure 13: Visualization of task similarities in the task embedding ej, and across each layer from
policy allocated by SSDE.

(a) The masks for the input and mean layers are more sensitive to task similarities in the embedding
e, as indicated by the darker colors compared to the hidden layers.

(b) More similar tasks tend to result in more similar sub-network masks. For example, the embed-
ding for Task-2 (push wall) shows a strong positive correlation with Task-4 (push back) and Task-7
(push), i.e., (e2 vs. e4) and (e vs. e7) score high from the first sub-figure, and such pattern holds in
the sub-network layers compared to other tasks.

(c) The pattern of task similarity remains consistent across different layers of the policy. The dark-
est blocks, representing the most similar task pairs, appear consistently from Layer_1 through the
Mean_Layer.

(d) When allocated sub-network can capture task similarities from ey, it highlights that our method
is likely allocating forward-transfer parameters from similar tasks to the current task, facilitating
positive forward transfer and enhanced plasticity.
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Benchmarks CW 10 (v1) Success Rate
T1: hammer T5: push-wall  T3: faucet-close T4: push-back T5s: stick-pull
CoTASP 0.62 +£0.41 0.58 +£0.19 0.88 +0.16 140.00 0.32 +£0.41
SSDE (Ours)  0.98 +0.04 0.92 +0.08 0.94 +0.09 140.00 0.9 +0.09
Ts: handle-press-side T%: push Ty: shelf-place  Ty: window-close T1o: peg-unplug-side
CoTASP 0.96 +0.05 0.66 +0.11 0.32 +0.25 140.00 0.96 +0.05
SSDE (Ours)  0.94 +0.09 0.9 £0.10 0.98 +0.04 140.00 0.98 +0.04
Benchmarks CW 10 (v2) Success Rate
T1: hammer T»: push-wall  T3: faucet-close T4: push-back Ts: stick-pull
CoTASP 0.8 +0.44 0.92 +0.08 0.9 +0.14 0.62 +0.40 0 +£0.00
SSDE (Ours) 1+0.00 0.87 +0.12 0.87 +0.15 0.6 +0.40 0.57 +0.12
Ts: handle-press-side T%7: push Ts: shelf-place  Ty: window-close 7'o: peg-unplug-side
CoTASP 140.00 140.00 0.22 +0.23 0.92 +0.11 0.96 +0.09
SSDE (Ours) 1+0.00 0.87 +£0.06 0.87 +0.06 140.00 1+0.00

Table 10: The success rate (mean4-std) scored on each task for SSDE and its counterpart CoTASP
from CW 10 (v1) and CW 10 (v2) benchmarks.

A.4.7 PER-TASK SCORE FOR THE EXPERIMENTS

A.5 CONTINUAL WORLD BENCHMARK

Continual World (Wolczyk et al., 2021) is a continual RL benchmark adapted from the Meta-World
robotic manipulation tasks (Yu et al.,2019). It features ten distinct manipulation tasks, each varying
in aspects such as state space, reward functions, and learning objectives. In the CW10 setup, the
ten tasks are presented sequentially to the agent, while CW20 repeats this process twice. The agent
is allocated 1 million steps to learn each task. Continual World is designed to evaluate how well
RL agents can retain and adapt knowledge as they encounter new tasks in a dynamic, evolving
environment.

faucet-close

hammer push-wall push-back stick-pull

handle-press-side push window-close

shelf-place peg-unplug-side

Figure 14: Example states from robotic manipulation tasks in the Continual World benchmark.

The Continual World benchmark is available in two widely used versions, vl and v2, with
notable differences:

¢ Observation Space: In vl, the observations were non-Markovian, making it harder for
agents to solve tasks. In v2, the observation space has been improved to make it fully
Markovian. Additionally, the observation space dimension differs: v1 has a state dimension
of 12, while v2 has a state dimension of 39.

* Reward Structure: v1 featured a complex and inconsistent reward structure, with rewards
differing widely between tasks. In v2, the rewards have been normalized across all tasks,
scaled between 0 and 10. This change ensures smoother and more dense rewards, helping
agents focus on gradual progress within tasks and making reward interpretation consistent.
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Both versions of Continual World are valuable benchmarks for assessing the ability of continual RL
agents to handle nonstationary environments. An effective continual policy is expected to consis-
tently excel in its performance on both versions of the benchmark.

Task-id Name Description

1 hammer Hammer a screw on the wall.

2 push-wall Bypass a wall and push a puck to a goal.
3 faucet-close Rotate the faucet clockwise.

4 push-back Pull a puck to a goal.

5 stick-pull Grasp a stick and pull a cup with the stick.
6 handle-press-side  Press a handle down sideways.

7 push Push the puck to a goal.

8 shelf-place Pick and place a puck onto a shelf.

9 window-close Push and close a window.

10 peg-unplug-side ~ Unplug a peg sideways.

Table 11: A list of task descriptions for Continual World (Yang et al., 2023).
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